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Digital proximity tracing on empirical contact
networks for pandemic control
G. Cencetti1,10, G. Santin 1,10, A. Longa 1,2, E. Pigani 1,3, A. Barrat 4,5, C. Cattuto6,7, S. Lehmann 8,

M. Salathé9 & B. Lepri 1✉

Digital contact tracing is a relevant tool to control infectious disease outbreaks, including the

COVID-19 epidemic. Early work evaluating digital contact tracing omitted important features

and heterogeneities of real-world contact patterns influencing contagion dynamics. We fill

this gap with a modeling framework informed by empirical high-resolution contact data to

analyze the impact of digital contact tracing in the COVID-19 pandemic. We investigate how

well contact tracing apps, coupled with the quarantine of identified contacts, can mitigate the

spread in real environments. We find that restrictive policies are more effective in containing

the epidemic but come at the cost of unnecessary large-scale quarantines. Policy evaluation

through their efficiency and cost results in optimized solutions which only consider contacts

longer than 15–20 minutes and closer than 2–3 meters to be at risk. Our results show that

isolation and tracing can help control re-emerging outbreaks when some conditions are met:

(i) a reduction of the reproductive number through masks and physical distance; (ii) a low-

delay isolation of infected individuals; (iii) a high compliance. Finally, we observe the ineffi-

cacy of a less privacy-preserving tracing involving second order contacts. Our results may

inform digital contact tracing efforts currently being implemented across several countries

worldwide.
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A
s of mid-January 2021, the COVID-19 pandemic has
resulted in over 85 million detected cases worldwide1,
overwhelming the healthcare capacities of many countries

and thus presenting extraordinary challenges for governments
and societies2,3. Rigorous restrictions such as lockdowns and
quarantine have proven to be effective in many countries as a
measure to curb the spread of COVID-19, limit contagions and
reduce the effective reproductive number2,4–12. Many areas slowly
started to lift the restrictions, but new outbreaks appeared again,
arriving in waves as anticipated by several early models13,14. An
effective and affordable long-term plan is required, since the
fraction of the population that has been infected is still far too low
to provide herd immunity3.

Despite their efficacy, large-scale quarantine and lockdown
strategies carry large costs5. Moreover, in a situation where most
of the population is not infected, population-wide lockdowns are
far from optimal, and interventions at smaller scale, selectively
targeting individuals at higher risk of spreading the disease, are
more desirable.

While the testing and isolation of symptomatic cases is crucial,
it is insufficient in the case of COVID-19, since there is clear
evidence of presymptomatic and asymptomatic transmission15–19.
Thus, the identification and isolation of infected cases must be
coupled with a strategy for tracing their contacts and preventively
quarantining them17,20–22. Traditional manual contact tracing,
besides being slow and labor intensive23–25, is not able to entirely
reconstruct close proximity contacts26,27. Thus, technologies based
on digital sensors have been developed to complement manual
tracing. The idea is to leverage the widespread dissemination of
smartphones to develop proximity-sensing apps based on the
exchange of Bluetooth radio packets between them17,28–33, within
a privacy-preserving contact tracing framework28.

The efficacy of digital contact tracing (DCT)20–22,34–41 has
been discussed in several recent papers. We draw inspiration
from the work by Fraser et al.42, recently adapted to the case of
COVID-19 by Ferretti et al.17. These work models the pandemic
evolution using recursive equations describing the number of
infected individuals in a homogeneously mixed population, tak-
ing into account the evolving infectiousness of the infected
individuals. The analysis is based on two effective parameters, εI
and εT, to represent the ability to identify and isolate infected
individuals, and to correctly trace their contacts, respectively.
Assuming an exponential growth for the number of infected
individuals (applicable in early phases of an uncontrolled epi-
demic outbreak) the authors studied how the growth rate depends
on these intervention parameters.

Here, to better understand the effectiveness of real-world
contact tracing, we expand this approach.

First, we restructure and generalize the mathematical frame-
work to allow us to completely avoid assumptions regarding the
functional form of the epidemic growth. This development makes
the setting applicable to any possible evolution shape and any
phase of the epidemic. Moreover, we modify the epidemiological
aspects of the model according to the recent literature on
COVID-1943–45, to properly consider asymptomatic cases and
the delay in isolating individuals after they are identified as
infected. We consider different values of R0, reduced with respect
to the one assigned to the free pandemic, to take into account the
widely implemented additional containment strategies, e.g.,
physical distancing and wearing masks (Supplementary Note 2).

Second, we provide a realistic quantification of the tracing
ability εT by performing simulations of contact tracing strategies
on real-world data sets collected across different social settings
(i.e., a university campus, a workplace, a high school)46–48.
Hence, the tracing ability εT, defined by Ferretti et al.17 as a free
parameter, becomes here an empirically estimated quantity,

which directly depends on the contact network. The impact of the
tracing procedure on the spread can then be evaluated by
inserting εT into the mathematical model.

Third, we assume that the probability of a contagion event
occurring during an interaction between a susceptible and an
infected individual also depends on the duration and on the
degree of proximity of the contact49,50 (along with other epide-
miological variables such as the infectiousness of the individual).
This can be simulated on real contact data sets, in particular on
the Copenhagen Networks Study (CNS) data set46 that provides
proximity information, via the strength of Bluetooth radio
packets exchanged between their smartphones.

Finally, we investigate in detail the contact tracing procedure,
designing appropriate policies in terms of the definition of the
most risky contacts. We thus implement a system where tracing
does not necessarily imply a massive preventive quarantine of the
population. We define duration and proximity thresholds to
discriminate between “risky” contacts and contacts that instead
correspond to a low contagion probability. Note that, as con-
tagion events are stochastic in nature, not all contacts that we
consider at risk lead to infection events. This leads to “false
positives”, i.e., non-infected individuals who will be quarantined.
Similarly, among the contacts considered as “non-risky” by the
contact tracing, some might actually have led to a contagion event
(“false negatives”). Quantifying these outcomes represents crucial
information to calibrate the policies for contact tracing apps.
Quarantine too few and omit many potential spreaders. Quar-
antine too many and incur unnecessarily high social costs.

Overall, our approach allows to evaluate the effect of different
contact tracing policies, not only on the disease spread but also in
terms of their impact on the population, as quantified by the
fraction of quarantined individuals.

Results
A modeling framework for DCT on empirical contact net-
works. In this section, we introduce our model for contact tra-
cing. The tracing procedure allows to identify individuals who are
considered to be at the highest infection risk, and to quarantine
them without necessarily isolating a large fraction of the popu-
lation. This allows devising ad hoc strategies to control the
epidemic.

We consider a population within which a virus is spreading,
and the spread is determined by the contacts between
individuals. As we do not consider geography nor large-scale
mobility, our modeling can be considered as referring to a
limited geographical area or community, similar to previous
modeling efforts17,21. The spreading process is designed in order
to mimic the COVID-19 epidemic, thus characterized by values
of R0, viral load and fraction of asymptomatic individuals that
are typical of SARS-CoV-2. We assume that two types of non-
pharmaceutical interventions are at play: isolation and contact
tracing. Infected individuals are isolated when they self-report as
symptomatic or if they are identified through randomized
testing. Isolated individuals do not have contact with other
individuals, thus can not infect anyone else once they have been
identified. In other words, they are removed from the system.
Individuals who have had potentially contagious contact with
identified infected individuals are traced and can be warned
through a privacy-preserving app on their smartphone28, and
they quarantine preemptively.

The only difference between isolation and quarantine is that
the latter is only precautionary: if quarantined individuals show
symptoms before the end of quarantine they immediately become
isolated and their past contacts (before quarantine) are traced,
otherwise they are released at the end of the quarantine.
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A natural baseline for the work we present here is the model by
Fraser et al.42, recently adapted to the COVID-19 case in Ferretti
et al.17. The mathematical model is based on recursive equations
designed to quantify the number of newly infected individuals at
time intervals, given a characterization of the disease in terms of
infectiousness and manifestation of symptoms. The model is
designed to consider the two interventions described above,
whose effectiveness are quantified by two parameters εI, εT
varying from 0 to 1, where εI= 0 means “no isolation” and
εI= 1 represents a perfectly successful identification and isolation
of all infected individuals; analogously, εT quantifies the efficacy
of contact tracing.

Here we use this model as a stepping stone in order to define a
more general approach. The generalization of the equations of
Fraser et al.42 is derived in detail in the Supplementary
Information and resolves an important limitation. Indeed, it
identifies a solution at finite time t, while the original model only
shows the asymptotic behavior, for t going to infinity. The
equation models the number Λ(t, τ) of people who are infected at
time t by people that have been in turn infected for a time τ ≤ t. In
the equation, R0 is the reproductive number of the disease, ω(τ) is
the infectiousness of individuals at time τ after being infected, and
s(τ) is the probability of symptom onset at time τ after infection.
The details of each of these quantities are discussed in
Supplementary Note 1.1. The equation reads

Λðt; τÞ ¼ R0ωðτÞ 1� εIsðτÞð Þ

Z

t�τ

0

1� εT
sðρþ τÞ � sðρÞ

1� sðρÞ

� �

Λðt � τ; ρÞdρ ;

ð1Þ

where the integration variable ρ spans the time range between 0
and t− τ, meaning that the contagion at time t from people
infected at time t− τ is in turn affected by contagion at time ρ
before t− τ.

For εI= 0 and εT= 0 we obtain a free spreading without control.
The quantity of interest, which can be derived by numerically
solving the above equations, is the incidence λðtÞ :¼

R t

0 Λðt; τÞdτ
of newly infected individuals at time t. We use the model to predict
the evolution of λ(t) up to time t= 50 days, which is sufficient for
the numerical solutions to reach a stationary growth or decline
regime (constant growth or decline rate of λ(t)), and we consider
the average growth or decline in the last 10 days as an indicator of
the long-term behavior of the epidemic. A negative number
indicates that the epidemic is declining, while a positive one
corresponds to growth (uncontained epidemic).

An important feature of the model is given by the probability
s(τ). The ideal case in which all infected individuals can

eventually be identified because they exhibit symptoms (s(τ)
approaching 1 for large times) is reported in Fig. 1a: this
represents the best-case scenario, considered in the previous
studies of this model17,42. Next, we assume instead that 40% of
infected individuals are asymptomatic17–19,51,52 and that only
symptomatic individuals can be identified: no randomized testing
is performed. This represents our worst-case scenario. We
represent the presence of asymptomatic individuals by consider-
ing that the probability of an infected individual to display
symptoms is a growing function of time, which however never
reaches 1. In this case, the model predicts epidemic containment
for the upper half of the range of values of the parameters εI and
εT (Fig. 1c).

In the following, we assume an alternative scenario where 50%
of the asymptomatic individuals are identified by a policy of
randomized testing11. These, added to the symptomatic indivi-
duals, result in a detection of 80% of the total infected cases. We
remark that this scenario is equivalent to assuming that
asymptomatic individuals account for only 20% of the infected
population53,54. Indeed, there is still no agreement in the scientific
community about the fraction of asymptomatic infections for
COVID-19, and different possible scenarios should be
considered11 (Supplementary Note 1). This is our baseline for
the following investigations and the resulting model predictions
are plotted in Fig. 1b.

Note also that we take into account in all settings a delay of
2 days between the detection of an infected individual and the
time when this person is actually isolated and contact tracing is
implemented. A delay of 3 days is considered in Supplementary
Note 3.2.

Tracing efficiency based on empirical contact data. The proposed
mathematical framework makes it possible to address our main
goal: characterizing the efficiency of contact tracing. This can be
quantified by εT, which instead of being a free parameter can be
estimated numerically, by observing how well the implemented
policies enable to find the infected individuals. More precisely, we
assume that a fraction εI of infected individuals is identified at
each time step. Their recent contacts are then traced and,
according to the nature of their interaction, as we explain in detail
in the next sections, some of them will be classified as “at risk and
thus possibly contagious”. Tracing is therefore strongly depen-
dent on the ability to identify those primary infected individuals
that caused the secondary infections, and we thus assume that εT
is proportional to εI. Moreover, it is influenced by the actual
ability to find the secondary cases, given the primary infected.
This in turn depends on multiple factors, involving the spreading
model, the definition of a risky contact, the app adoption, the

Fig. 1 Infection rate scenarios. Growth or decrease rate of the number of newly infected individuals, assuming either that all the infected people can

eventually be identified and isolated (a); or that only symptomatic people can be isolated with 20% of asymptomatic infected individuals (b); or that only

symptomatic people can be isolated with 40% of asymptomatic infected individuals (c). Infection rates are reported as a function of the isolation efficiency

εI and the tracing efficiency εT. In all the three settings the cases are reported with a delay of 2 days.
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compliance to quarantine and clearly the quantity and nature of
contacts in the population. For this reason, we need a numerical
model that takes into account all these factors and simulates the
spreading, with isolation and tracing, in a population of indivi-
duals with realistic contacts. To this end, we make use of three
different data sets of empirical contacts involving large groups of
people, in a high school, in a university campus and in an office
building. The variable εT will be computed by counting, for each
primary infection, the fraction of the corresponding secondary
cases that are actually quarantined according to some contact
tracing strategy, see Section “Aggregation and parameter esti-
mation” for the details on the derivation of εT.

The data that we use have been collected using wearable
devices in different populations of individuals and contain time-
resolved information on their pairwise close-range proximity
interactions. In each case, we simulate an epidemic spread
starting from a single random individual. The epidemic
propagates from person to person via their interactions and we
assume that the recent contacts of each individual are stored in
their mobile phones. Each infected individual has a probability of
being identified equal to εI. When this happens, all the identified
people are isolated, i.e., removed from the simulation, and their
recent stored contacts are automatically traced (i.e., warned by the
app). In order to avoid quarantining a large portion of the
population, we define specific criteria to determine which
contacts are at risk, and only the corresponding individuals go
into quarantine. As the definition of risky contacts is made a
priori, and as infection events occur stochastically, quarantines
will not only concern individuals who have been infected, but also
some who have been in contact but were not infected (false
positives), while some other individuals who have been infected
although their contact were not considered at risk, will not receive
any warning by the app and thus remain outside quarantines
(false negatives). Note also that individuals who did not adopt the
app cannot be notified nor quarantined, and contribute either to
the true or to the false negatives. This is schematically explained
in Fig. 2. Different policies to define the risky contacts will be
delineated in Section “Design of appropriate policies” and their
efficiency will be quantified by not only observing their ability in
controlling the epidemic but also by their efficiency in
minimizing the number of false positives, i.e., unnecessary
quarantines.

In the following we will mainly rely, for the numerical
evaluations of tracing, on the CNS data set46. These data describe
the interactions of 706 students, as registered by the exchange of
Bluetooth radio packets between smartphones, for a period of one
month. From the complete data set we extract the proximity
measures in the form of Bluetooth signal strength. We therefore
have access to two important properties of contacts: their
duration and the proximity of the two individuals at the time

of the interaction. We are hence able to refine the spreading
model by including the dependence on these variables too, as
explained in the next section. Moreover, the risk assessment in
the tracing procedure will be based on contact proximity and
duration thresholds, corresponding to different policies which
will be discussed in Section "Design of appropriate policies”.

In the Supplementary Information we also show simulations
performed using two other data sets collected by the Socio-
Patterns collaboration in two environments: a high school48 and
an office building47.

It is important to emphasize that these simulations are
specifically used to evaluate the impact of isolation and tracing
in different contexts and under different policies and to extract
the resulting values of isolation and tracing efficiencies. On the
other hand, the epidemic model we use to understand which
policies are efficient is the theoretical one described by Eq. (1) and
is thus not restricted to any specific setting.

How infectiousness depends on duration and proximity. In the
theoretical model (1), infectiousness is simply given by the curve
ω(τ) multiplied by R0; on the other hand, as stated above, the
numerical simulations make it possible to take into account
several crucial factors, like duration and proximity of contacts.

We thus multiply ω(τ) by two independent factors, ωexposure ðeÞ
and ωdist(ss). They represent the probability for an infected
individual to transmit the disease respectively given the duration
e of contact and given the signal strength ss of a contact. Here, the
Bluetooth received signal strength can be considered as a proxy
for the distance between two individuals, where signal attenua-
tions (in dBm) with smaller absolute value tend to correspond to
smaller distances55. We refer to Supplementary Note 1.2 for a
detailed discussion on the functional shapes of ωexposure ðeÞ and
ωdist(ss). In particular, as both are parametric functions, it is
possible to tune their parameters by imposing some physical
constraints regarding duration, distance, and R0. The reproduc-
tive number of COVID-19 can be extracted from the literature as
being close to R0= 345, while there is little evidence for the
dependence on proximity and duration; we thus consider
multiple possible infection curves corresponding to different
combinations of ωexposure ðeÞ and ωdist(ss), keeping R0= 3 fixed.
To this aim, we elaborate a procedure aimed at choosing the
function parameters starting from physical constraints so as to
always consider meaningful infectiousness curves. The procedure
is explained in details in Supplementary Note 1.2, where we
characterize three different possible curves. The constraint given
by R0 requires to find a good balance between the two functions
ωexposure ðeÞ and ωdist(ss). If for instance we suppose that
infectiousness is high even at long distances we should thus set
ωexposure such that contacts are contagious only for long durations

Fig. 2 Contagion, tracing, and quarantines. The contacts among users of the contact tracing app are registered via the app. When individuals are

identified as infected they are isolated, and the tracing and quarantine policy is implemented. Depending on the policy design, the number of false positives

and false negatives may vary significantly.
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in order not to have a huge R0 (e.g., the pink curves in
Supplementary Fig. 1). Vice versa, if ωdist is adjusted such that
only close proximity contacts are contagious, we should give
more importance to duration and suppose that also short
durations are at risk (e.g., the blue curves in Supplementary
Fig. 1). In Supplementary Note 1.2, we show the results of
simulations in these different cases. We observe that for the
controllability of the epidemics, the different types of infectious-
ness do not lead to significant differences. However, from the
point of view of cost versus the effectiveness of the restrictive
measures, different curves lead to different results. We discuss
this point in Supplementary Note 2.1. Here, we choose for
definiteness one of the obtained pairs of curves (ωexposure ðeÞ,
ωdist(ss)) compatible with R0= 3, and we assume in the following
that infectiousness is governed by these. They correspond to an
ωexposure ðeÞ which reaches 90% infectiousness after 2 h of contact,
and to an ωdist such that the contagion probability drops by 50%
at a distance of 2.5 m, and by 99% at 7.0 meters.

Finally, in the numerical model, we rescale the curves of
infectiousness of a factor rR0

, which plays a pivotal role. Indeed,
the procedure described above for parameter setting is aimed at
reconstructing a scenario without restrictions, where the epidemic
of COVID-19 is free to spread and is characterized by a
reproductive number equal to 3. However, in this work we
analyze the effect of isolation and tracing in the context of
reemerging epidemics where a number of protective measures are
in places, such as face masks and physical distancing. Such
measures contribute to mitigate the spreading and enter in our
model as an overall reduction of R0, in a range suggested by
recent literature56–59. This can be obtained by setting the
reduction factor rR0

to specific values, reported in Supplementary
Table 5 in the Supplementary Information.

Design of appropriate policies. As mentioned above, the empirical
CNS data set provides us with the opportunity to devise policies
for tracing in order to avoid a massive preventive quarantine of
the population.

We can classify contacts at a low and high probability of
contagion on the basis of thresholds of duration and proximity:
only contacts with duration above a threshold Td and Bluetooth
signal strength above a threshold Tp are considered as at risk and
thus stored in the individual’s devices (when both individuals in
contact have adopted the app). Assuming that the dependence of
infectiousness from duration and proximity is unknown, we
consider several possible values for the thresholds Td and Tp, thus
defining multiple possible policies, reported in Fig. 3, from the
least to the most restrictive. We also consider two additional

policies in Supplementary Note 3.5, corresponding to either close
range but short exposure interactions or long-range but long
exposure interactions.

We remark that the policies implement distance detection
directly as a measure of the received signal strength indicator
(RSSI) values, since a precise and reliable conversion to an actual
distance is a notoriously difficult task55,60 that would only add a
layer of uncertainty to our analysis, without any gain in terms of
accuracy. It is in general true that weak signal strengths
correspond to large distances between users and vice versa but
the link between RSSI and actual distance is affected by multiple
factors, from the smartphone brand to the presence of obstacles
between devices, and more55,60.

In substance, we simulate the epidemic and at the same time
implement the contact tracing, supposing that we do not know
which individuals are infected. We then compare the set of
quarantined individuals with the set of people who have actually
been infected in the spreading simulation and measure the
performances of each tracing policy (i.e., of each definition of
thresholds Tp and Td). The performance of a policy is quantified
first of all by its ability to find the infected individuals, and
consequently by its ability to contain the epidemic according to
our mathematical model; in addition, we will measure the efficacy
of a policy in quarantining only infected individuals (i.e., in
limiting the number of false positives), in order to limit the social
and economic damage to society.

Figure 4 shows the distributions of RSSI and contact durations
of the interactions contained in the CNS data set. Most contacts
have a short duration and low signal strength, but long-lasting
durations are also observed, with overall a broad distribution
of contact durations as is typical for data on human
interactions55,61. The thresholds defined by the tracing policies
determine the fraction of these contacts that can be traced by the
app. Even slight variations in the tracing policy thresholds may
strongly influence the capacity to identify the contacts corre-
sponding to the highest risks of infection, as shown in Fig. 4 by
comparing the RSSI and contact duration distributions with the
infectiousness curves.

In line with many privacy-preserving contact tracing apps, we
additionally assume that each individual device stores the
anonymous IDs received from other devices only for a limited
time, such that every device does not keep track of all its past
contacts but only those of the last n days. This is already
implemented in apps used by most countries, applying the
privacy-preserving DCT model28. We assume n= 7 days, and
we show in the Supplementary Information (Supplementary
Note 3.1) alternative results for shorter and longer tracing
memories.

Fig. 3 Policies based on distance and duration. (a): The signal strength threshold Tp and the duration threshold Td defining the policies are reported.

Contacts with a duration larger than Td and signal strength larger than Tp are considered at risk. The last column gives the fraction of the total number of

interactions of the CNS data set that they correspond to. A larger value of the magnitude of the signal strength tends to correspond to a larger distance,

such that in the second column the thresholds go from the least to the most restrictive policy. The policies are sketched in (b).
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Digital tracing enables containment for moderate reproductive
numbers. In this section, we show the results provided by the
combination of numerical simulations on empirical data and the
theoretical model. The five policies described in Fig. 3 are tested
in different scenarios corresponding to different levels of app
adoption and different values of R0. Only individuals adopting the
app participate to contact tracing; the remaining individuals are
outside the reach of the tracing and quarantining policies, but
they are still isolated whenever detected because of symptomatic
or through random testing. We consider as possible levels of app
adoption: 20, 40, 60%. These levels constitute realistic cases, as the
fraction of the population that owns a smartphone rarely reaches
larger levels (64% for instance for the French population40,62),
and a certain level of non-compliance should be also considered
(from the point of view of the app, non-compliance or non-
adoption can be considered as equivalent). As of mid-October
2020, for example, adopters represent 24% of the population in
Germany63,64, 32% in the U.K.65, and 20% in Italy66,67.

In addition, each policy is tested with the isolation efficiency
values εI= 0.2, 0.5, 0.8, 1, which encode isolation capacities
ranging from rather poor to perfect isolation of any symptomatic
or tested positive person.

The results are shown in Fig. 5. We observe that if R0= 2,
practically none of the policies is able to stop the spreading, even
with high app adoption. However, this pessimistic scenario changes
under the hypothesis of R0= 1.5 (second line of panels in Fig. 5),
where a larger portion of the phase space implies that the spread
can be controlled. An app adoption above 40% is then sufficient to
obtain good results: all policies manage to contain the spread for εI
= 0.8 (except Policy 1 for 40% adoption), and all of them for εI= 1.

The situation is even better with R0= 1.2, as all policies are effective
as soon as the isolation efficacy is at least 0.5, even in the case of an
app adoption of only 20% (bottom left panel in Fig. 5).

We notice that the tracing efficiency εT varies considerably with
different levels of app adoption, but does practically not depend
on R0. Indeed, εT only accounts for the fraction of secondary
infections that are correctly traced, independently on the spread
of the virus and the amount of infected individuals in the
population.

The different scenarios explored above draw a framework
where R0 is limited by implementing several primary contain-
ment measures. DCT is added on top of them and its effect is
observed as a component of a broader general effort. While in the
absence of DCT a value of R0 larger than one may rapidly lead to
a new exponential outbreak and thus to renewed (possibly local)
lockdown measures, we have shown here the possible improve-
ment that can be obtained thanks to the deployment of a contact
tracing app. The results however highlight that DCT should be
accompanied by additional measures and by a sufficient app
adoption in order to be effective.

Any effective containment comes at a cost. Behind the scenes of
the results of the previous section, there is a complex dynamic
deserving further investigation. Contact tracing produces in some
cases the desirable effect of containing the spread, but side effects
emerge as well. Indeed, some of the “at risk” contacts do not
actually correspond to a contagion event, while contacts classified
as not risky might, as discussed above. It is thus important to
quantify the ability of each policy to discriminate between

Fig. 4 Contacts in CNS data set: signal strength, exposure, and inter-contact time. (a): A scatterplot of signal strength vs. duration for all contact events

in the CNS data set, displaying the thresholds defining the various policies (Tp for signal strength and Td for the duration): the contacts identified as "at risk''

are those situated above and to the right of the dashed colored lines. (b) and (c) separately depict the distributions of signal strength and duration,

together with the infectiousness functions ωdist and ωexposure , respectively (black curves), see Supplementary Note 1.2 for their analytical form. (d): The

distribution of time elapsed between the infection of an individual and their successive contacts, obtained with εI= 0.8 and for Policy 5 in the CNS data set.

The black curve shows the normalized infectiousness ω(τ) as a function of time, and the purple dashed line is the cumulative probability s(τ) to identify an

infected individual.
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contacts on which the disease actually propagated and the others,
in terms of false positives (quarantined individuals who were not
infected) and false negatives (non-quarantined infected indivi-
duals). To visualize this behavior, we focus on the setting with
R0= 1.5 and εI= 0.8, with an app adoption of 40%, since it is
representative of a situation in which some policies are effective
in containing the spread and others are not (see Fig. 5, center).
The corresponding time evolution of the average percentages of
false negatives and of false positives over the population for each
policy are shown in Fig. 6.

In terms of epidemic containment, the best policies are those
that can rapidly reduce the number of active infected, i.e., of false
negatives. In the case of Policy 1, this number remains quite high
for the entire simulation time, whereas for all other policies the
number of false negatives remains lower. These policies lead
overall to a larger value of the tracing effectiveness εT (see Section
“Methods”), thus leading to a better epidemic containment.

The smaller number of false negatives for the effective policies
comes however at the cost of an increased number of false
positives, as shown in Fig. 6b. In other words, as a policy becomes
more effective in tracing actually infected individuals, it also leads
to the quarantine of individuals that have not been infected but
that had a contact classified as risky by the tracing policy. The

maximal number of false positives is very sensitive to the specific
policy, contrarily to the number of false negatives. In particular, it
appears from the analysis of the previous Section, “Digital tracing
enables containment for moderate reproductive numbers”, that
Policies 2, 3, 4, and 5 have a similar effectiveness to contain the
epidemic and Fig. 6a shows that they yield similar numbers of
false negatives, but their undesired side costs are different, as the
broader definition of risky contacts produces a larger number of
false positives. This highlights once more the importance of the
fine-tuning of the chosen policy. Since balancing between these
two effects may be non trivial, we plot in Fig. 6c the effectiveness
vs. cost for each policy, showing that Policy 2 is favorable in that
it achieves an almost maximal effectivity (small number of false
negatives) at a very low cost (small number of quarantines).
Figure 6d reports the average percentage of the population that
had to quarantine in the simulations (increasing from policy 1 to
5) and the percentage of those were actually infected (decreasing
from policy 1 to 5).

To further facilitate the challenge of choosing the right policy,
in Supplementary Note 3 we test the behavior of the model under
extended scenarios to precisely quantify the sensitivity of the
outcomes with respect to changes in our fundamental assump-
tions. The model robustness is assessed by changing the tracing

Fig. 5 Tracing policy efficiency. Growth or decrease rate of the number of newly infected individuals assuming that symptomatic individuals can be

isolated and that an additional 50% of asymptomatics can be identified via randomized testing. The points correspond to the parameter pairs such that the

isolation efficiency εI is an input and the tracing efficiency εT an output of the simulations on CNS contact data, for the five policies. The different scenarios

are defined by an app adoption level of 20, 40, or 60% (from left to right), and by a value of the reproductive number R0 equal to 2, 1.5, or 1.2 (from top to

bottom). All the points have been obtained as mean values over n= 200 simulations and the error bars represent the standard error.
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memory (longer and shorter) in Supplementary Note 3.1, the
reporting delay in Supplementary Note 3.2, the ability to trace
second-order contacts in Supplementary Note 3.3, the fraction of
asymptomatic infected in Supplementary Note 3.4, the adoption
of modified policy thresholds in Supplementary Note 3.5, and a
different response of the population to the request of multiple
quarantines in Supplementary Note 3.6.

Discussion
Policies for DCT: implications and constraints. In the modeling
of contact tracing, considering several scenarios of isolation effi-
ciency, app adoption, and R0 values is of foremost importance in
order to account for the complex and heterogeneous issues
connected with concrete policy implementations.

These issues should be clear to any policy maker having to
decide on containment measures, in order to understand that
contact tracing is a viable containment strategy for COVID-19
only in conjunction with complementary policies, as the results of
the previous sections show.

These considerations enter our modeling approach in several
ways. On the one hand, some parameters are related to the
healthcare system capacity and to the socioeconomic condition of
the population. These include the isolation efficiency εI and the
delay in the case reporting, which should account for potential
heterogeneities in the access to tests and in the possibility of a
person to isolate. This last involves in particular both the access to
appropriate spaces and the economic feasibility of a temporary
cessation of the working activity. Since each country has a
different level of capacity to isolate individuals we considered
several levels of εI instead of prescribing a fixed setting. The delays

in turn depend on factors of different nature such as the delay in
reporting, the availability and response of the call centers and of
the health authorities, the app- and app-backend- related delays,
etc. The analyses reported here take into account a delay of 2 days
in isolating infected cases (thus in tracing and quarantining
their contacts). This realistic delay does not prevent the
proposed policies from keeping the epidemic under control,
which is possible under some conditions. However, we observe
that a larger delay, even if only one additional day, leads to a
completely different scenario (reported in Supplementary
Note 3.2) where assuming R0= 1.5 and 40% app adoption, none
of the proposed policies proves able to contain the epidemic, even
for maximal isolation efficiency, and despite the higher numbers
of quarantines, false positives and false negatives.

Moreover, we have analyzed the effect of the app within
epidemic scenarios of limited reproductive numbers (R0= 1.2, 1.5,
2.0), which are the result of the implementation of complementary
policies in addition to DCT. Such measures include traditional
manual tracing, mask use, and physical distancing.

Our model also includes the level of app adoption as an explicit
parameter and we consider 20, 40, and 60%. It should be taken
into account that factors like the limited access to supported
smartphones for different age and income brackets, but also the
willingness to adopt the app (strongly dependent on people’s trust
in DCT and health system), are crucial elements that contribute
to these values.

All these parameters should be set with some care. The design of
our model allows us to treat them as tunable inputs and in particular,
no unrealistic or idealized assumption on these parameters needs to
be made.

Fig. 6 Quarantines, false positives, and negatives, with 40% app adoption and R0= 1.5. Temporal evolution of percentages of false negatives (a), i.e.,

infected individuals not quarantined, and false positives (b), i.e., not infected individuals quarantined, over the population for the five different policies,

assuming an isolation efficiency of εI= 0.8. The graphs depict the mean and standard error over 200 independent runs. (c): Effectiveness (low number of

false negatives) vs. cost (total quarantines) of the policies. (d): The table reports the percentage of distinct individuals who have been quarantined over the

entire population and the percentage of them who were actually infected (true positive).
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Privacy issues raised by digital tracing are also of great
importance, and they have been extensively discussed35,68–70. For
these matters we refer to the decentralized models that have been
developed such as the Decentralized Privacy-Preserving Proxi-
mity Tracing (DP-3T)28, and to the discussion therein. In
particular, we adopt a tracing scheme that does not need to access
the complete network of contacts at any time but is based only on
decentralized exchange of anonymized keys.

DCT: insights and limitations. The general model that we
developed for studying the effect of isolation and contact tracing
on controlling the COVID-19 epidemic is inspired by the work of
Fraser et al.42. The main distinctive characteristics that we have
introduced are the following: (i) a general mathematical model
that allows to evaluate the evolution of an epidemic in the pre-
sence of isolation and DCT at finite time; (ii) the evaluation of
tracing efficiency by means of a numerical simulation on real
contact data, and no more as an arbitrary parameter of the model;
(iii) the dependence of infectiousness on the actual duration and
physical proximity of contacts; and (iv) consequently, the design
of appropriate policies.

The functional shape of the infectiousness that we devised is
composed by three dependencies: the time since primary
infection ω(τ), the duration of a contact ωexposure ðeÞ, and its
proximity ωdist(ss). The first is originally suggested by Ferretti
et al.17, while the other two were introduced in this work. We
have shown that the implemented model is robust to changes of
all three contributions, see Supplementary Notes 1.2 and 1.3.

Our results suggest that an insufficient app adoption may
render any digital tracing effort helpless on its own, if the
reproductive number is too high. In view of these results, bridging
the gap between a realistic app adoption and the larger tracing
capability required to contain the disease appears crucial. This
goal can only be reached with a joint effort of policy makers and
health authorities in organizing an effective manual tracing,
and of individual citizens in adopting the app. We therefore
tested different levels of app adoption and a range of possible
values of R0, reduced from its original value by other restrictive
measures, like masks wearing and physical distancing.

Moreover, we found that the set of parameters that allow
containment of the spread is strongly influenced by the fraction of
asymptomatic cases. By first assuming an ideal setting where any
pair of parameters εI, εT is possible, we showed (Fig. 1) that the
area of the phase space representing the setting where it is
possible to control the epidemic is reduced when considering 20%
or, worst-case scenario, 40% of asymptomatic individuals in the
population.

We tested five policies to define risky contacts that should be
traced (Fig. 3), with different restriction levels. Our results
highlight how isolation and tracing come at a price, and allow us
to quantify this cost using real data: the policies that are able to
contain the pandemic have the drawback that healthy persons are
unnecessarily quarantined. In other words, achieving a rapid
containment and a low number of false negatives requires
accepting a high number of false positives. This stresses the
importance of a fine tuning of the tracing and isolation policies,
in terms of the definition of what represents a risky contact, to
contain the social cost of quarantines. Let us observe that this last
could be mitigated by testing the quarantined population and
revealing the false negatives, thus translating the social cost in an
economical burden due to swabs. Among the tested policies,
those that appear to provide the best balance between effective-
ness and cost are Policies 2 and 3, corresponding to considering
as risky a contact longer than, respectively, 20 and 15 min, with
distance shorter than, respectively, around 2 and around 3 m.

This is in agreement with the European guidelines for high-risk
contacts71.

We modeled the tracing procedure assuming that contacts are
stored in each user’s app for 7 days. Such tracing memory seems a
good balance between the too short 2 days, which fails in
containing the epidemic, and the too long 15 days, expensive
in terms of quarantines and not leading to strong improvements
in the spread containment (Supplementary Note 3.1).

We also included in our model a delay of 2 days in isolating the
infected individuals. This delay might however increase when the
number of infected cases grows. For this reason, we tested a delay
of 3 days too, revealing a much worse scenario (Supplementary
Note 3.2). This highlights the importance of readiness in
implementing the testing and isolation procedure, as increased
delays might neutralize the beneficial effects of the app.

Another important result concerns the issue of privacy: we
numerically tested a second-order tracing, where also contacts of
an infected individual are quarantined. Such procedure leads to a
strongly enhanced risk in terms of privacy, but we found that it
determines a useless massive quarantine while failing to bring any
clear beneficial effect on controlling the epidemic (Supplementary
Note 3.3).

Finally, we tested the possibility that people reduce their
compliance if they are notified multiple times and asked to
quarantine despite not being infected. This might indeed lead to
some mistrust in the DCT procedure and in the healthcare and
government institutions. The results that we obtain are very similar
to those found with the standard procedure, where the level of
compliance is set at the beginning and does not depend on the
multiplicity of quarantines. This further confirms the robustness of
our general model and of our results (Supplementary Note 3.6).

Our study comes with a number of limitations. First, we have
considered data corresponding to a few limited social environ-
ments (a university campus, a high school, and a workplace) and
we cannot provide an overall general study that includes multiple
and differentiated contexts and their mutual interplay. Moreover
in each data set, only people involved in the experiment have
been tracked, neglecting other contacts occurring outside their
school, university campus or workplace. Hence, the complete data
sets only provide access to part of the interactions of the involved
individuals, which is useful to analyze contact tracing in specific
environments but does not provide a full picture of a society, e.g.,
an entire city. This limitation is due to the current lack of larger
data sets involving people belonging to different environments,
which would represent the general interactions within the
population of a city or a larger geographical area. In addition,
the implemented policies have been necessarily tailored to the
specific CNS data set, depending on the available values of RSSI
supported by the used smartphones. Those might differ in actual
implementations of DCT apps currently in use in different
countries, probably relying on a more advanced technology.
Nevertheless, we emphasize that even if we used the simulations
performed on these data sets to obtain a realistic quantification of
the tracing ability, the controllability of the disease is itself
assessed by the general mathematical framework. The results that
we present are hence general, not bounded by specific data sets,
but only numerically supported by real data to have a realistic
implementation of tracing.

Moreover, our study is limited by the current knowledge of the
contagion modalities of the SARS-CoV-2 virus, in particular
concerning its dependence on the physical distance among people
and the duration of their contacts. The curve of infectiousness has
been designed based on previous contagion studies and on
reasonable assumptions (also considering reduced transmissibility
of asymptomatic people). Additional refinements of the transmis-
sion dynamic could be obtained by accounting for aerosol
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transmission, adding a dependence from the environment
characteristics, such as being indoors or outdoors, and the
presence or not of ventilation. This factor could in principle be
modeled by considering information on the (co-)location of
the individuals, which is available for some SocioPatterns data
sets47. Should new insights emerge in the way the virus spreads,
these could be easily incorporated into our model.

Finally, we model delays in the case reporting and thus in the
isolation process, but assume that the quarantine notification of
the traced contacts is instantaneous. This is reasonable and it is
one of the advantages of relying on DCT, but two factors may
introduce a delay: the app may check for at-risk exposures only
3–4 times a day, and the backend servers that distribute
“infected” keys to the app often batches them before notifica-
tion. The combination of these factors introduces an average
delay of several hours (4–5 h) and a worst-case delay of
half a day.

Despite these limitations, the presented model represents an
important contribution to the discussion about DCT, proposing a
refined approach that allows to investigate a number of features
that are unattainable with other recent models (see Supplemen-
tary Note 6 for a discussion of the state of the art models of DCT).

In conclusion, this combination of a well-established epidemic
model with state-of-the-art, empirical interaction data collected
via radio-based proximity-sensing methods, allows us to under-
stand the role played by intrinsic limitations of digital tracing
efforts, affording a viewpoint on the ambition of achieving
containment with digital interventions. Namely, we are able to
test and quantify the role that a real contact network plays both
for the infectiousness of contact and for the ability of a policy to
detect it and to respond optimally.

Methods
The algorithm modeling the spreading and containment of the virus is imple-
mented on the real contact network and coupled with the mathematical model.

This simulation is used in two ways. First, it produces results that are averaged
over the network and then aggregated into a quantity, εT, that can be plugged into
the mathematical model. In this step, the network simulation is used as an esti-
mator of a real-world parameter value. We remark in particular that the prediction
of the outcome of the policies (epidemic containment or exponential contagion) is
obtained solely from the mathematical model, informed with these real-world
parameters.

On the other hand, the simulation on the network goes beyond the mathematical
model in that it captures complex and non-uniform events and the heterogeneity of
individual behaviors. The simulations thus give also access to several fine-grained
quantities of interest that provide a complementary view on the epidemic. In
particular, we can measure the number and time evolution of false and true
positives, offering a quantification of the cost of the quarantine measures.

In the following, we detail the implementation of the numerical simulations
(Section “Spreading and tracing on the real network”)) and the methods used to
extract the aggregated parameters (Section “Aggregation and parameter
estimation”).

Spreading and tracing on the real network. The contact data set is represented as
a temporal sequence of undirected and weighted graphs. The nodes of the graphs
are the individuals stored via their unique identifiers, and an edge connects two of
them if their respective Bluetooth devices have recorded each other. The weight of
each edge is the pair of the signal strength and the duration of this contact. These
two values are obtained by aggregating the continuous measures of the data set on
successive time windows of duration 300 s.

The simulation keeps track of the status of each node, which is updated
depending on the spread of the infection (which is a stochastic phenomenon
regulated by the infection probability ωdata) and on the enforcement of the tracing
and isolation policy (which is again stochastic, and dependent on the definition of
the policy’s thresholds).

The simulation is parametrized by two types of inputs: disease-dependent
parameters, which are discussed in Section “A modeling framework for DCT on
empirical contact networks” and Supplementary Table 2, and tracing-dependent
parameters, which are the isolation efficiency εI∈ [0, 1], the memory length of the
contact tracing, the duration of the quarantine, and the fraction of app adopters in
the population.

Once these parameters are set the algorithm works as follows:

● Setup: A fraction of the nodes, extracted uniformly at random, is set to non-
adopters, i.e., not using the app. They will contribute to the spread of the virus
and they can be isolated, but their contacts cannot be traced and they cannot
be quarantined. Observe that we make the simplifying assumption that the
app influences only the quarantining of individuals, but not the isolation
policy. Namely, we assume to be able to detect and thus isolate an infected
individual independently of the app, while we are able to trace the contacts
only between pairs of app adopters.

● Initialization: A randomly extracted node from the first graph of the sequence
is set to infected. It is assigned a time since infection chosen uniformly at
random in [0, 10] days.

● Time evolution: For each temporal step the following steps are repeated:
● Update contacts: The list of contacts of each app adopter node is updated by

adding the contacts of other app adopters at the current time, if they fall
within the policy’s thresholds. Each list stores the contacts for a fixed
maximum number of days (which is set to 7 days in the main simulations).

● Update quarantined: The list of quarantined nodes is scanned. Nodes who
completed the quarantine time (10 days in the main simulations) are just
removed from the list if healthy, or removed and added to the list of isolated if
they developed symptoms.

● Update infected: The list of infected nodes is scanned. Those who became
symptomatic or are tested positive, depending on the probability onset_time
(·) (see Section “A modeling framework for DCT on empirical contact
networks” and Supplementary Table 2) are added to the list of infected
identified by the health authority. Then, the list of identified infected is
scanned, and each of its nodes is isolated with a probability εI. For each
successfully isolated node that is an app adopter, the tracing policy is enforced
on its contacts, i.e., all the nodes registered as contacts are quarantined. All
the other infected nodes instead can spread the infection: each of their
neighbors is infected independently with a probability modeled by ωdata

(Supplementary Note 1.2).
● Check quarantined: The list of quarantined is scanned again to find

symptomatic nodes. If a symptomatic node is found, it is isolated and the
tracing policy is enforced on its contacts who are app adopters.

Observe that the contacts taken into account for the contact tracing are defined
according to a given policy’s thresholds (distance and duration), i.e., only those
interactions with sufficient duration and small enough distance are stored in the
contact lists. However, the spreading process can a priori occur between an infected
node and any of its neighbors, the probability of a contagion event being given
by ωdata.

Moreover, the simulation assumes that each individual that is required to
quarantine is willing to do so. We consider in Supplementary Note 3.6 the situation
where individuals have a decreasing acceptance to comply, based on the number of
times that they are asked to quarantine. On the other hand, the compliance to
isolation is already modeled by the user-defined parameter εI, which represents the
effective fraction of identified infected who successfully isolate, where the value of
this fraction may depend on the health system capacity, but also on the nodes’
compliance and the possibility to isolate.

Aggregation and parameter estimation. During the simulation, whenever the
tracing and quarantine policy is enforced a quarantine error eT is computed to
score its success. This value is defined for each isolated node as the ratio between
the number of its secondary infections (i.e., the nodes that it infected) that did not
quarantine, and the total number of its secondary infections.

The list of values eT (one for each isolated individual) is collected and
averaged over the entire simulation to obtain a mean score 〈eT〉. This value
encodes the contributions of the chosen policy, of the adoption rate, of the
duration of the memory of contacts, and in general of the heterogeneity of the
network dynamics.

This allows to assign to each policy a tracing efficiency εT observed over the
simulation as a function of its inputs and of the network dynamics. We define it as
the product of two independent factors modeling the efficiency of the isolation
(individuals who are not isolated are automatically excluded from the contact
tracing, so their contacts do not quarantine) and the effect of the quarantine
error, as:

εT ¼ εI 1� heT ið Þ: ð2Þ

A perfect efficiency of the tracing policy (εT= 1) is possible only under perfect
isolation (εI= 1) and zero quarantine error (〈eT〉= 0).

Considering εI as a free parameter allows us to explore different scenarios,
thus providing a full range of predictions. This choice accounts for the fact that
in a realistic scenario the ability to identify and consequently isolate an infected
individual is set by the number of tests that are implemented and by their
accuracy, features whose identification is out of the scope of this work. We
mention that the adoption of an app might have a positive effect on this
quantity if the possibility of self-reporting when symptoms appear is
implemented in the device.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available. The CNS data can
be found at https://doi.org/10.6084/m9.figshare.7267433and the SocioPatterns data at
http://www.sociopatterns.org

Code availability
We are pleased to make available the source code accompanying this research72. The
code uses Python (version 3.8.3), Numpy (version 1.18.5), Scipy (version 1.2.0),
Networkx (version 2.5), Matplotlib (version 3.0.2).

Received: 10 July 2020; Accepted: 10 February 2021;

References
1. Center for Systems Science and Engineering (CSSE) at Johns Hopkins

University. COVID-19 data repository. https://github.com/CSSEGISandData/
COVID-19.

2. Li, R. et al. The demand for inpatient and ICU beds for COVID-19 in the US
lessons from Chinese cities. Preprint at https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7239072/ (2020).

3. Salje, H. et al. Estimating the burden of SARS-CoV-2 in France. Science 369,
208–211(2020).

4. Guzzetta, G. et al. Impact of a nationwide lockdown on sars-cov-2
transmissibility, italy. Emerg. Infect. Dis. 27, 267 (2021).

5. Anderson, R. M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T. D.
How will country-based mitigation measures influence the course of the
COVID-19 epidemic? Lancet 395, 931–934 (2020).

6. Koo, J. R. et al. Interventions to mitigate early spread of SARS-CoV-2 in
singapore: a modelling study. Lancet Infect. Dis. 20, 678–688 (2020).

7. Jia, J. S. et al. Christakis. Population flow drives spatio-temporal distribution of
COVID-19 in China. Nature 582, 389–394 (2020).

8. Zhang, J. et al. Changes in contact patterns shape the dynamics of the COVID-
19 outbreak in China. Science 368, 1481–1496 (2020).

9. Cheng, H.-Y. et al. Contact tracing assessment of COVID-19 transmission
dynamics in Taiwan and risk at different exposure periods before and after
symptom onset. JAMA Intern. Med. 180, 1156–1163 (2020).

10. Block, P. et al. Social network-based distancing strategies to flatten the covid-
19 curve in a post-lockdown world. Nat. Human Behav. 4, 588–596 (2020).

11. Di Domenico, L., Pullano, G., Sabbatini, C. E., Boëlle, P. Y., & Colizza,
V. Impact of lockdown on COVID-19 epidemic in Île-de-France and possible
exit strategies. BMC medicine, 18, 1–13 (2020).

12. Gatto, M. et al. Spread and dynamics of the covid-19 epidemic in italy: effects
of emergency containment measures. Proc. Natl Acad. Sci. USA 117,
10484–10491 (2020).

13. Ferguson, N. et al. Report 9: Impact of non-pharmaceutical interventions
(NPIs) to reduce COVID19 mortality and healthcare demand. Technical
report (Imperial College London, 2020).

14. Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M.
Projecting the transmission dynamics of SARS-CoV-2 through the
postpandemic period. Science 368, 860–868 (2020).

15. Ma, S. et al. Epidemiological parameters of covid-19: Case series study. J. Med.
Internet Res. 22, e19994 (2020).

16. Ganyani, T. et al. Estimating the generation interval for coronavirus disease
(covid-19) based on symptom onset data, march 2020. Eurosurveillance 25,
2000257 (2020).

17. Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic
control with digital contact tracing. Science 368, eabb6936 (2020).

18. Lavezzo, E. et al. Suppression of a SARS-CoV-2 outbreak in the Italian
municipality of Vo. Nature 584, 425–429 (2020).

19. Pinotti, F. et al. Lessons learnt from 288 COVID-19 international cases:
importations over time, effect of interventions, underdetection of imported
cases. Preprint at https://www.medrxiv.org/content/10.1101/
2020.02.24.20027326v1 (2020).

20. Lorch, L. et al. A spatiotemporal epidemic model to quantify the effects of
contact tracing, testing, and containment. arXiv:2004.07641 [cs.LG] (2020).

21. Kucharski, A. J. et al. Effectiveness of isolation, testing, contact tracing, and
physical distancing on reducing transmission of sars-cov-2 in different
settings: a mathematical modelling study. Lancet Infect. Dis. 20, 1151–1160
(2020).

22. Hinch, R. et al. Effective configurations of a digital contact tracing app: a
report to NHSX, https://github.com/BDI-pathogens/covid-19_instant_tracing
(2020).

23. European Centre for Disease Prevention and Control. Resource estimation for
contact tracing, quarantine and monitoring activities for COVID-19 cases in
the eu/eea. https://www.ecdc.europa.eu/en/publications-data/resource-
estimation-contact-tracing-quarantine-and-monitoring-activities-covid-19.

24. Klinkenberg, D., Fraser, C. & Heesterbeek, H. The effectiveness of contact
tracing in emerging epidemics. PLoS ONE 1, 1–7 (2006).

25. Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation
of cases and contacts. Lancet Global Health 8, e488–e496 (2020).

26. Smieszek, T. et al. Contact diaries versus wearable proximity sensors in
measuring contact patterns at a conference: method comparison and
participants’ attitudes. BMC Infect. Dis. 16, 341 (2016).

27. Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: a
comparison between data collected using wearable sensors, contact diaries and
friendship surveys. PLoS ONE 10, e0136497 (2015).

28. Troncoso, C. et al. Decentralized privacy-preserving proximity tracing.
Preprint at https://arxiv.org/abs/2005.12273 (2020).

29. Dudden, A. & Marks, A. South Korea took rapid, intrusive measures against
Covid-19 - and they worked. The Guardian, 20 (2020).

30. Oliver, N. et al. Mobile phone data for informing public health actions across
the COVID-19 pandemic life cycle. Sci. Adv. 6, eabc0764 (2020).

31. Raskar, R. et al. Apps gone rogue: Maintaining personal privacy in an
epidemic. Preprint at https://arxiv.org/abs/2003.08567 (2020).

32. Hébert-Dufresne, L., Althouse, B. M., Scarpino, S. V., & Allard, A. Beyond R 0:
heterogeneity in secondary infections and probabilistic epidemic forecasting. J.
R. Soc. Interface 17, 20200393 (2020).

33. Bradshaw, W. J., Alley, E. C., Huggins, J. H., Lloyd, A. L. & Esvelt, K. M.
Bidirectional contact tracing could dramatically improve covid-19 control.
Nat. Commun. 12, 1–9 (2021).

34. Kojaku, S., Hébert-Dufresne, L., Mones, E., Lehmann, S., & Ahn, Y. Y. The
effectiveness of backward contact tracing in networks. Nat. Phys. 1–7. (2021).

35. Kaptchuk, G., Goldstein, D. G., Hargittai, E., Hofman, J. & Redmiles, E. M.
How good is good enough for COVID19 apps? the influence of benefits,
accuracy, and privacy on willingness to adopt. Preprint at https://arxiv.org/
abs/2005.04343 (2020).

36. Gorji, H., Arnoldini, M., Jenny, D. F., Hardt, W.-D. & Jenny, P. STeCC: smart
testing with contact counting enhances covid-19 mitigation by bluetooth app
based contact tracing. Preprint at https://www.medrxiv.org/content/10.1101/
2020.03.27.20045237v2 (2020).

37. Firth, J. A. et al. Using a real-world network to model localized COVID-19
control strategies. Nat. Med. 26, 1616–1622 (2020).

38. Mao, Y. et al. Data-driven analytical models of COVID-2019 for epidemic
prediction, clinical diagnosis, policy effectiveness and contact tracing: a survey.
Preprints 2020070124 (2020).

39. Abueg, M. et al. Modeling the combined effect of digital exposure notification
and non-pharmaceutical interventions on the covid-19 epidemic in
washington state. Preprint at https://www.medrxiv.org/content/10.1101/
2020.08.29.20184135v1.article-info (2020).

40. López, J. A. M. et al. Anatomy of digital contact tracing: role of age,
transmission setting, adoption and case detection. Preprint at https://www.
medrxiv.org/content/10.1101/2020.07.22.20158352v1 (2020).

41. Barrat, A., Cattuto, C., Kivelä, M., Lehmann, S. & Saramäki, J. Effect of manual
and digital contact tracing on covid-19 outbreaks: a study on empirical contact
data. Preprint at https://www.medrxiv.org/content/10.1101/
2020.07.24.20159947v1 (2020).

42. Fraser, C., Riley, S., Anderson, R. M. & Ferguson, N. M. Factors that make an
infectious disease outbreak controllable. Proc. Natl Acad. Sci. USA 101,
6146–6151 (2004).

43. He, X. Temporal dynamics in viral shedding and transmissibility of COVID-
19. Nat. Med. 26, 672–675 (2020).

44. Zhang, J. et al. Evolving epidemiology and transmission dynamics of
coronavirusdisease 2019 outside hubei province, china: a descriptive and
modellingstudy. Lancet Infect. Dis. 20, 793–802 (2020).

45. Cereda, D. et al. The early phase of the covid-19 outbreak in Lombardy, Italy.
Preprint at https://arxiv.org/abs/2003.09320 (2020).

46. Sapiezynski, P., Stopczynski, A., Lassen, D. D., & Lehmann, S. Interaction data
from the Copenhagen Networks Study. Sci. Data 6, 315 (2019).

47. Génois, M. & Barrat, A. Can co-location be used as a proxy for face-to-face
contacts? EPJ Data Sci. 7, 11 (2018).

48. Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: a
comparison between data collected using wearable sensors, contact diaries and
friendship surveys. PLoS ONE 10, e0136497 (2015).

49. Rea, E. et al. Duration and distance of exposure are important predictors of
transmission among community contacts of ontario sars cases. Epidemiol.
Infect. 135, 914–921 (2007).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21809-w ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1655 | https://doi.org/10.1038/s41467-021-21809-w |www.nature.com/naturecommunications 11

https://doi.org/10.6084/m9.figshare.7267433
http://www.sociopatterns.org
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239072/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239072/
https://www.medrxiv.org/content/10.1101/2020.02.24.20027326v1
https://www.medrxiv.org/content/10.1101/2020.02.24.20027326v1
https://github.com/BDI-pathogens/covid-19_instant_tracing
https://www.ecdc.europa.eu/en/publications-data/resource-estimation-contact-tracing-quarantine-and-monitoring-activities-covid-19
https://www.ecdc.europa.eu/en/publications-data/resource-estimation-contact-tracing-quarantine-and-monitoring-activities-covid-19
https://arxiv.org/abs/2005.12273
https://arxiv.org/abs/2003.08567
https://arxiv.org/abs/2005.04343
https://arxiv.org/abs/2005.04343
https://www.medrxiv.org/content/10.1101/2020.03.27.20045237v2
https://www.medrxiv.org/content/10.1101/2020.03.27.20045237v2
https://www.medrxiv.org/content/10.1101/2020.08.29.20184135v1.article-info
https://www.medrxiv.org/content/10.1101/2020.08.29.20184135v1.article-info
https://www.medrxiv.org/content/10.1101/2020.07.22.20158352v1
https://www.medrxiv.org/content/10.1101/2020.07.22.20158352v1
https://www.medrxiv.org/content/10.1101/2020.07.24.20159947v1
https://www.medrxiv.org/content/10.1101/2020.07.24.20159947v1
https://arxiv.org/abs/2003.09320
www.nature.com/naturecommunications
www.nature.com/naturecommunications


50. Smieszek, T. A mechanistic model of infection: why duration and intensity of
contacts should be included in models of disease spread. Theor. Biol. Medical
Model. 6, 25 (2009).

51. Nishiura, H. et al. Estimation of the asymptomatic ratio of novel coronavirus
infections (COVID-19). Int. J. Infect. Dis. 94, 154–155 (2020).

52. Oran, D. & Topol, E. Prevalence of asymptomatic sars-cov-2 infection. Annals
Internal Med. 0:null, 0. (2020).

53. Bi, Q. et al. Epidemiology and transmission of covid-19 in 391 cases and 1286
of their close contacts in shenzhen, china: a retrospective cohort study. Lancet
Infect. Dis. 20, 911–919 (2020).

54. Mizumoto, K., Kagaya, K., Zarebski, A. & Chowell, G. Estimating the
asymptomatic proportion of coronavirus disease 2019 (covid-19) cases on
board the diamond princess cruise ship, yokohama, japan, 2020.
Eurosurveillance 25, 2000180 (2020).

55. Sekara, V. & Lehmann, S. The strength of friendship ties in proximity sensor
data. PLoS ONE 9, e100915 (2014).

56. Chu, D. K. et al. Physical distancing, face masks, and eye protection to prevent
person-to-person transmission of sars-cov-2 and covid-19: a systematic review
and meta-analysis. Lancet 395, 1973–1987 (2020).

57. Rader, B. et al. Mask-wearing and control of sars-cov-2 transmission in the
usa: a cross-sectional study. Lancet Digital Health (2021).

58. Klompas, M., Morris, C. A., Sinclair, J., Pearson, M. & Shenoy, E. S. Universal
masking in hospitals in the covid-19 era. N. England J. Med. 382, e63 (2020).

59. Greenhalgh, T., Schmid, M. B., Czypionka, T., Bassler, D. & Gruer, L. Face
masks for the public during the covid-19 crisis. BMJ 369, m1435 (2020).

60. Mones, E., Stopczynski, A., Pentland, A. S., Hupert, N. & Lehmann, S.
Optimizing targeted vaccination across cyber-physical networks: an empirically
based mathematical simulation study. J. Royal Soc. Interface 15, 20170783 (2018).

61. Cattuto, C. et al. Dynamics of person-to-person interactions from distributed
RFID sensor networks. PLoS ONE 5, 1–9 (2010).

62. Le Conseil Général de l’Economie, de l’Industrie, de l’Energie et des
Technologies (CGE), l’Autorité de Régulation des Communications
Electroniques et des Postes (ARCEP) et l’Agence du numérique. Barométre du
numérique 2019. https://www.credoc.fr/publications/barometre-du-
numerique-2019 (2019).

63. Statista.de. Anzahl der Downloads der Corona-Warn-App über den Apple
App Store und den Google Play Store in Deutschland von Juni bis November
2020. https://de.statista.com/statistik/daten/studie/1125951/umfrage/
downloads-der-corona-warn-app/ (2020).

64. Cellan-Jones, R. & Kelion, L. Coronavirus: The great contact-tracing apps
mystery. BBC News. https://www.bbc.com/news/technology-53485569 (2020).

65. Healthtech. How the NHS COVID-19 app is making the most of cutting-edge
global technology. https://healthtech.blog.gov.uk/2020/10/29/how-the-nhs-
covid-19-app-is-making-the-most-of-cutting-edge-global-technology/ (2020).

66. ImmuniApp. The numbers of immuni. https://github.com/immuni-app/
immuni-documentation (2020).

67. Naous, D., Bonner, M., Humbert, M. & Legner, C. Towards mass adoption of
contact tracing apps–learning from users’ preferences to improve app design.
Preprint at https://arxiv.org/abs/2011.12329 (2020).

68. Morley, J., Cowls, J., Taddeo, M. & Floridi, L. Ethical guidelines for covid-19
tracing apps. Nature 582, 29–31 (2020).

69. Leith, D. J & Farrell, S. Coronavirus contact tracing app privacy: What data is
shared by the singapore opentrace app? In International Conference on
Security and Privacy in Communication Systems, 80–96 (Springer, 2020).

70. Leith, D. J. & Farrell, S. Contact tracing app privacy: what data is shared by
europe’s gaen contact tracing apps. Testing Apps for COVID-19 Tracing
(TACT) (2020).

71. European Centre for Disease Prevention and Control. Contact tracing: Public
health management of persons, including healthcare workers, having had

contact with covid-19 cases in the european union. https://www.ecdc.europa.
eu/sites/default/files/documents/covid-19-public-health-management-
contact-novel-coronavirus-cases-EU.pdf.

72. Cencetti, G., Longa, A., Pigani, E. & Santin, G. Digital proximity tracing on
empirical contact networks for pandemic control. Repository
“DigitalContactTracing”, https://doi.org/10.5281/zenodo.4485740 (2021).

Acknowledgements
The authors would like to thank Esteban Moro, Alex Sandy Pentland, and Fabio
Pianesi for early discussions and useful comments, Stefano Merler for the feedback on
the design of the infectiousness parameters for COVID-19, and Valentina Marziano,
Lorenzo Lucchini, and Luisa Andreis for the discussion and general support. This
study was partially supported by the ANR project DATAREDUX (ANR-19-CE46-
0008-01) to A.B. C.C. acknowledges partial support from the Lagrange Project of ISI
Foundation funded by CRT Foundation, and from the EU Horizon 2020 grants
EPIPOSE (SC1-PHE-CORONAVIRUS-2020) and PERISCOPE (SC1-PHE-COR-
ONAVIRUS-2020-2C).

Author contributions
G.C, G.S., and B.L. conceived the idea. G.C., G.S., A.L., and E.P performed the analytical
calculations and numerical computations. All the authors contributed to research design,
analytical development, critical revisions, and wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21809-w.

Correspondence and requests for materials should be addressed to B.L.

Peer review information Nature Communications thanks Vedran Sekara and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21809-w

12 NATURE COMMUNICATIONS |         (2021) 12:1655 | https://doi.org/10.1038/s41467-021-21809-w |www.nature.com/naturecommunications

https://www.credoc.�fr/publications/barometre-du-numerique-2019
https://www.credoc.�fr/publications/barometre-du-numerique-2019
https://de.statista.com/statistik/daten/studie/1125951/umfrage/downloads-der-corona-warn-app/
https://de.statista.com/statistik/daten/studie/1125951/umfrage/downloads-der-corona-warn-app/
https://www.bbc.com/news/technology-53485569
https://healthtech.blog.gov.uk/2020/10/29/how-the-nhs-covid-19-app-is-making-the-most-of-cutting-edge-global-technology/
https://healthtech.blog.gov.uk/2020/10/29/how-the-nhs-covid-19-app-is-making-the-most-of-cutting-edge-global-technology/
https://github.com/immuni-app/immuni-documentation
https://github.com/immuni-app/immuni-documentation
https://arxiv.org/abs/2011.12329
https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-public-health-management-contact-novel-coronavirus-cases-EU.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-public-health-management-contact-novel-coronavirus-cases-EU.pdf
https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-public-health-management-contact-novel-coronavirus-cases-EU.pdf
https://doi.org/10.5281/zenodo.4485740
https://doi.org/10.1038/s41467-021-21809-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Digital proximity tracing on empirical contact networks for pandemic control
	Outline placeholder
	B1

	Results
	A modeling framework for DCT on empirical contact networks
	Tracing efficiency based on empirical contact data
	How infectiousness depends on duration and proximity
	Design of appropriate policies
	Digital tracing enables containment for moderate reproductive numbers
	Any effective containment comes at a cost

	Discussion
	Policies for DCT: implications and constraints
	DCT: insights and limitations

	Methods
	Spreading and tracing on the real network
	Aggregation and parameter estimation

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


