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Digital quantum simulation, Trotter errors, and quantum

chaos of the kicked top
Lukas M. Sieberer 1,2*, Tobias Olsacher 1,2, Andreas Elben1,2, Markus Heyl3, Philipp Hauke4,5, Fritz Haake6 and Peter Zoller1,2

This work aims at giving Trotter errors in digital quantum simulation (DQS) of collective spin systems an interpretation in terms of
quantum chaos of the kicked top. In particular, for DQS of such systems, regular dynamics of the kicked top ensures convergence of
the Trotterized time evolution, while chaos in the top, which sets in above a sharp threshold value of the Trotter step size,
corresponds to the proliferation of Trotter errors. We show the possibility to analyze this phenomenology in a wide variety of
experimental realizations of the kicked top, ranging from single atomic spins to trapped-ion quantum simulators which implement
DQS of all-to-all interacting spin-1/2 systems. These platforms thus enable in-depth studies of Trotter errors and their relation to
signatures of quantum chaos, including the growth of out-of-time-ordered correlators.
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INTRODUCTION

In digital quantum simulation (DQS), unitary Hamiltonian evolu-
tion is decomposed into a sequence of quantum gates. A common
approach to achieve this decomposition utilizes Suzuki-Trotter
formulas1,2 to approximately factorize the time evolution opera-
tor.3–12 It is a fundamental conceptual question under which
conditions this “Trotterization” is a controlled approximation. A
recent numerical study13 by some of us found that Trotter errors in
DQS of generic many-body systems remain bounded below and
proliferate above a dynamical transition to many-body quantum
chaos.14 Motivated by these findings we revisit the kicked top, a
paradigmatic model of single-body quantum chaos.15 Resorting to
this well-studied model system allows us to gain insights into
Trotter errors in DQS of collective spin systems. Moreover, the
kicked top connects smoothly to a paradigmatic DQS of an Ising
chain with long-ranged power-law interactions.
The dynamics of the kicked top is described by the time-

dependent Hamiltonian

HðtÞ ¼ Hx þ τHz

X

n2Z
δðt � nτÞ; (1)

which combines precession of the spin of the top S around a fixed
axis, Hx= hxSx, with nonlinear “kicks” given by Hz ¼ JzS

2
z=ð2Sþ 1Þ,

which are applied periodically at times t= nτ for all n∈Z. Here, Sμ
with μ= x, y, z are quantum angular momentum operators. The
inverse spin size can be regarded as an effective Planck constant,
ħeff= 1/S,15 and in the limit S→∞, a semiclassical description of
the dynamics applies. Then, the precession of a classical top is only
slightly perturbed by weak kicks, whereas strong kicks cause the
top to tumble chaotically.15 This classical chaotic motion is
reflected in the spectrum of the Floquet operator (we set the
“true” Planck constant to unity, ħ= 1),

Uτ ¼ e�iHzτe�iHxτ ; (2)

which determines the evolution of a quantum kicked top during a
period of duration τ: In the chaotic regime of strong kicking, the
spectral statistics of Uτ is described by Dyson’s ensemble of

random orthogonal matrices.15 Indeed, it is a defining feature of
quantum chaotic systems that their spectral statistics are universal
and obey predictions from random-matrix theory (RMT).15 Among
the model systems of quantum chaos, the kicked top stands out
due to its extraordinary faithfulness to RMT. The discovery of this
property initiated a surge of theoretical studies. Recent develop-
ments,16–19 include proposals20 to diagnose chaos in the kicked
top by measuring out-of-time-ordered correlators, and the
discovery of critical quasienergy states.21 Experimentally, the
kicked top was realized as the spin of single Cesium atoms22 with
S= 3, as the collective spin of an ensemble of three super-
conducting qubits23 corresponding to S= 3/2, and very recently in
nuclear magnetic resonance (NMR) as a spin S= 1 composed of
two spin-1/2 nuclei.24 Novel experimental possibilities include
atomic species with high spin becoming available in labs such as
Dysprosium25 with S= 8 and Erbium26 with S= 19/2, and also the
spin S= 7/2 of 123Sb nuclei;26 implementations as collective spin
in quantum simulators of all-to-all coupled spin-1/2 with “flip-flop”
qubits,27 or trapped ions28,29 in which S≳ 50 can be realized; and
condensates of ultracold bosonic atoms30 corresponding to even
larger collective spins S on the order of several hundreds.
Formally, the dynamics of the kicked top, described by repeated

application of the Floquet operator Uτ in Eq. (2), is equivalent to
DQS of a system with Hamiltonian H= Hx+ Hz: in DQS, time
evolution is often “Trotterized”,1,2 i.e., the run-time t of a
simulation is split into n steps of duration t/n, and within each
step the time evolution operator is approximately factorized

UðtÞ ¼ e�iHt � e�iHz t=ne�iHx t=n
� �n

¼ Un
τ : (3)

We note that other ways of decomposing the time evolution
operator are being studied in the literature.31,32 Further, Trotter-
ization is not uniquely defined, and we discuss different schemes
in Methods. To establish the formal equivalence with a periodically
kicked system, in Eq. (3) we identified the Trotter step size with the
kicking period, τ= t/n. One of the main goals of DQS is to enable
studying the dynamics of quantum many-body systems in
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regimes where the growth of entanglement prohibits classical
simulations. A typical model system which is implemented in
trapped-ion quantum simulators4,10,11,28,29,33 is the Ising chain
described by

Hx ¼ hx
X

N

i¼1

Sxi ; Hz ¼ Jz;α
X

N

i<j¼1

Szi S
z
j

i � jj jα; (4)

with spin operators Sμi where μ= x, y, z and i= 1, … , N, and the
power-law coupling strength Jz,α. For such long-range interacting
systems, extensivity of the Hamiltonian is ensured by the Kac
prescription,34

Jz;α ¼ Jz=
1

N � 1

X

N

i<j¼1

1

i � jj jα

 !

: (5)

In the limit α→ 0, this model describes all-to-all interactions
between spins and becomes equivalent to the quantum kicked
top. In the opposite limit of nearest-neighbor interactions, α→∞,
and with the addition of a longitudinal field in Eq. (4), some of us
addressed in ref. 13 the crucial question of “Trotter errors”, i.e.,
errors in DQS due to the approximate factorization
e�iHτ � e�iHzτe�iHxτ . By performing extensive numerical simula-
tions, ref. 13 found that the Trotter error in observables such as the
magnetization exhibits threshold behavior as the Trotter step size
τ is changed. Below the threshold, the Trotter error admits a
perturbative expansion in τ, while it is uncontrolled above the
threshold. Ref. 13 attributed this behavior to a transition from
dynamical localization to a regime showing features of many-body
quantum chaos.
Studies of many-body quantum chaos14 typically have to resort

to numerics (see refs 35,36 for exceptions). In single-body quantum
chaos, on the other hand, sophisticated techniques have been
developed to establish deep connections to RMT even analytically.
To harness this knowledge, we first focus here on the all-to-all
interacting limit α→ 0 of the Hamiltonian Eq. (4). In this limit, the

collective spin S2 ¼ S2x þ S2y þ S2z with components Sμ ¼
PN

i¼1 S
μ
i

where μ= x, y, z becomes a constant of motion. Accordingly, the
2N-dimensional Hilbert space of a system of N spin-1/2 can be
decomposed into decoupled subspaces of fixed total spin S. In
each of these subspaces, the Trotterized dynamics (3) reproduces
the dynamics of a kicked top of size S. We focus specifically on the
subspace with maximal spin S= N/2, in which the Hamiltonians
given in Eq. (4) reduce to those in Eq. (1) (up to an inconsequential
additive shift of the total energy and a rescaling Jz→ 2(N+ 1)Jz/N
to accommodate usual conventions). The dimension D ¼ 2Sþ
1 ¼ N þ 1 of this subspace scales linearly with the number of
spins N. Chaotic motion of the kicked top is ergodic within this
subspace, and it does not explore the full many-body Hilbert
space of dimension 2N. In this regard, the kicked top does not
display many-body quantum chaos.
We show that in this setting nevertheless observables exhibit

the same threshold behavior as described in ref. 13 for a generic
many-body system. Moreover, we show that the threshold is
determined by the onset of quantum chaos in the kicked top.
While this implies that physical observables in DQS can remain
close to their “ideal” values, we find that the fidelity of the
simulated many-body quantum states drops sharply with time for
any nonzero Trotter step in large systems. In view of the variety of
possible experimental implementations of the kicked top listed
above, we determine requirements on system sizes and deco-
herence rates to observe the threshold behavior. It is an
interesting conceptual question whether in an ideal DQS Trotter
errors could be controlled up to arbitrarily long times and in the
thermodynamic limit in which N and hence S tend to infinity. For
collective spin models, we find that this is indeed the case.
Finally, we connect the results for collective spin systems to the

case of generic many-body systems.13 In particular, we explore the

influence of deformations of the kicked top to α > 0, where the
problem can no longer be solved on the basis of collective spin
operators. Instead, we resort to exact diagonalization of systems
up to N= 14, where we recover the essential features of the
kicked top. The threshold in Trotter errors persists over the entire
studied range 0 ≤ α ≤ 3 from all-to-all to dipolar interactions.

RESULTS

Trotter errors in DQS of collective spin systems

We consider two measures of Trotter errors: deviations of the
expectation values of physical observables13 and the fidelity of the
quantum state obtained in DQS. Interestingly, these measures
exhibit strikingly different behaviors.
We first compare the “magnetization”, i.e., the expectation value

of Sz, under Trotterized and ideal dynamics starting from a spin

coherent state θ;ϕj i ¼ eiθ Sx sinðϕÞ�Sy cosðϕÞð Þ S; Sz ¼ Sj i. Here, |S, Sz〉 is
an eigenstate of the spin z-component with eigenvalue S. The
magnetization error is defined as

ΔMðtÞ ¼ 1

S
hSzðtÞiτ � hSzðtÞi
� �

; (6)

where the expectation value 〈⋅〉τ is taken under Trotterized
dynamics with step size τ while 〈⋅〉 pertains to time evolution with
the target Hamiltonian H. The accumulated effect of Trotter errors
is quantified by the stroboscopic temporal average ΔMðtÞ ¼
1
nt

Pnt
n¼1 ΔMðnτÞ where nt ¼ t=τb c, which is shown in Fig. 1a.

For this figure and throughout the paper, we assume that

Hμ ¼ hμSμ þ JμS
2
μ=ð2Sþ 1Þ; (7)

for both μ= x and μ= z, with hx= 0.1Jz, Jx= 0.7Jz, and hz= 0.3Jz.
However, our results do not depend on the precise values of these
parameters (except for fine-tuned points of higher symmetry such
as hx= hz, Jx= Jz). As shown in the figure, after a characteristic
time of Jztth ≈ 25 for the spin size S= 50 and the above
parameters, the time-averaged magnetization error exhibits clear
threshold behavior: While Trotter errors remain small for Trotter
step sizes τ below a threshold value Jzτ* ≈ 2.5, errors become
significant for larger τ. A concrete experimental realization will also
suffer from other imperfections. However, the regimes of bounded
and uncontrolled Trotter errors can still be distinguished if tc > tth,
where tc is the coherence time. This is discussed further in
Discussion.
As detailed below, τ* determines the radius of convergence of

the Floquet–Magnus (FM) expansion for the effective Hamilto-
nian Hτ defined by Uτ ¼ e�iHττ (see ref. 16 for the FM expansion in
the context of the kicked top). The FM expansion is guaranteed
to converge always if the “driving frequency” Ω= 2π/τ exceeds
the time-averaged operator norm of the Hamiltonian, i.e.,
Ω\ 1

τ

R τ

0dt HðtÞk k.37 Intuitively, for such high driving frequencies,
the system cannot absorb energy from the drive and thus the
energy as measured by the expectation value of the time-
averaged Hamiltonian H= Hx+ Hz is conserved. The range of
values of the Trotter step τ in which this criterion applies
vanishes for large spin sizes S since HðtÞk k � S so that τ ≲ 1/S.
However, we find in DQS of collective spin systems that heating
is suppressed up to a Trotter step size τ* even for large values of
S. We quantify this absence of heating for τ < τ* by the
“simulation accuracy”13

QEðtÞ ¼
EτðtÞ � E0

ET¼1 � E0
; (8)

where Eτ(t)= 〈H(t)〉τ, and E0= 〈ψ0|H|ψ0〉 is the energy of the
initial state at t= 0. In QE(t), the energy increase is normalized
with respect to the difference between the energy of an infinite-
temperature state, ET¼1 ¼ trðHÞ=D, where D ¼ 2Sþ 1 is the
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Hilbert space dimension, and E0. A value of QE(t)= 1 thus
indicates heating to infinite temperature. Figure 1b shows the
finite-time average, QEðtÞ ¼ 1

nt

Pnt
n¼1 QEðnτÞ, which clearly exhi-

bits threshold behavior characterized by the same timescales tth
and τ* as the magnetization error.
These results demonstrate that few-body observables are quite

robust against Trotter errors for τ < τ*. This is in stark contrast to
the accuracy of the full unitary time-evolution operator: The
difference UðtÞ � Un

τ , which quantifies the error made in
the Trotterization in Eq. (3), grows at least linearly in both the
simulation time t= nτ and the system size N.38–41 Similarly, the
robustness of observables also does not extend to the quantum
state ψτðtÞj i ¼ Unt

τ ψ0j i obtained under Trotterized dynamics in
DQS. In Fig. 1c, we show stroboscopic temporal averages of the
fidelity FðtÞ, i.e., the absolute value of the overlap of |ψτ(t)〉 with
the ideal target state |ψ(t)〉= U(t)|ψ0〉

FðtÞ ¼ ψτðtÞjψðtÞh ij j: (9)

As illustrated in the figure, the temporal average FðtÞ approaches
the ideal value of FðtÞ ¼ 1 for τ→ 0, but drops sharply already for
Jzτ≪ 1, and in particular for Trotter step sizes which are much
smaller than the threshold value τ* identified above for the
magnetization error and the simulation accuracy. At this threshold
value, i.e., for τ ≈ τ*, there is another noticeable drop in FðtÞ.
However, also in the region below τ* the fidelity vanishes with
increasing system size as shown in Fig. 1f. For large system sizes,

the decay of the fidelity approaches FðtÞ � 1=
ffiffiffiffi

D
p

set by the
Hilbert space dimension D ¼ 2Sþ 1.42 Thus, there is no persistent
threshold behavior in the fidelity of the simulated quantum state.
In light of this fragility of the quantum state, the robustness of
local observables seems rather remarkable.
Thus far, we have focused on the temporal evolution of Trotter

errors and, in particular, on the dynamical buildup of a threshold
in physical observables. Notably, in collective spin systems, both
the infinite-time and thermodynamic limits are accessible. Figure
1d shows the infinite-time average of the magnetization error. The
data for S <∞ is obtained by exact diagonalization of the Floquet

operator Uτ. In the limit S→∞, the effective Planck constant
vanishes, ħeff= 1/S→ 0.15 Therefore, in the thermodynamic limit,
the spin components obey semiclassical stroboscopic evolution
equations as detailed in Methods. These evolution equations can
be iterated efficiently, and the long-time average for S→∞ shown
in Fig. 1d, e corresponds to n= 106 iterations. Fluctuations in the
data for ΔM decrease upon further increasing the number of
iterations.
As can be seen in Fig. 1d, the threshold behavior identified

above at finite times persists for t→∞. We note that the different
shapes of the curves for the magnetization error in Fig. 1a, d are
due to the different choice of the initial state, which is |θ, ϕ〉= |0,
0〉= |S, S〉 and |θ, ϕ〉= |0.25π, 0〉 in a and d, respectively. We
comment below on these state-dependent variations, also of the
threshold value τ* itself.
For small Trotter steps, the time-averaged magnetization error

admits a controlled expansion in powers of τ,

ΔM ¼ lim
n!1

1

n

X

n

n0¼1

ΔMðn0τÞ ¼ m1τ þm2τ
2 þ Oðτ3Þ: (10)

This expansion can be obtained analytically from the FM series for
the effective Hamiltonian by employing time-dependent pertur-
bation theory,13 which we generalize to arbitrary initial states in
the Supplementary Section 1. While we cannot justify the
truncation of the FM expansion underlying Eq. (10) with full
mathematical rigor, we take the excellent quantitative agreement
between Eq. (10) and the numerical data shown in Fig. 1d as
evidence that the scaling of the error predicted by truncating the
FM expansion is indeed correct. Our numerical findings indicate
that a fully rigorous justification of the analytical error estimate
can be given, perhaps similarly to the problem of simulating local
lattice Hamiltonians,40 where an integral representation of Trotter
errors for the full time evolution operator41 proved the correctness
of error estimates based on a truncation of the
Baker–Campbell–Hausdorff formula.39 Further, our findings sug-
gest that the radius of convergence of the expansion Eq. (10)
coincides with τ* and is finite.

Fig. 1 a, b Dynamical buildup of the Trotter-error threshold. For the chosen parameters, threshold behavior in a the magnetization error
ΔMðtÞ and b heating as quantified by QEðtÞ sets in at Jztth ≈ 25. The discontinuities in the curves pertaining to short times are due to the
rounding t=τb c to integer numbers of Trotter steps in the definition of the temporal averages. We chose S= 50 corresponding to recent
experiments with trapped ions.28,29 Smaller (larger) values of S result in a more rounded (sharper) threshold. c, f Absence of a sharp threshold
in the fidelity. In contrast to physical observables, the c time-averaged fidelity FðtÞ does not exhibit persistent threshold behavior as a
function of the Trotter step size τ. Instead, f the fidelity drops with increasing system size as � 1=

ffiffiffi

S
p

even for values of τ within the regular
regime. d, e Long-time averages of the d magnetization error ΔM and e heating as quantified by QE . Dotted lines represent results from
perturbation theory as explained in the main text. The data for S→∞ is obtained from the semiclassical equations of motion Eq. (31). For a–c,
f, the initial state is |θ, ϕ〉= |0, 0〉= |S, S〉, while in d, e the initial state is |θ, ϕ〉= |0.25π, 0〉
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Figure 1d shows data for spin sizes ranging form S= 8 to S→∞.
The smallest value shown, S= 8, is realized in experiments with
Dysprosium atoms,24 while S= 64 can be achieved in 1D4,33 or 2D
arrays of ions.29 A threshold in ΔM is visible over the entire range
of values of S. The value of τ* depends only very weakly on system
size, and crucially it remains finite even for S→∞. These
observations do not depend qualitatively on the choice of the
Hamiltonian parameters or the angles θ and ϕ specifying the
initial coherent spin state.
In Fig. 1e, we also show the long-time average QE of the

simulation accuracy QE(t) defined in Eq. (8). Clearly, heating is
suppressed to perturbatively small values, QE ¼ q1τ þ q2τ

2 þ Oðτ3Þ,
for Trotter steps up to the same threshold value τ* as for the
magnetization error, indicating a finite radius of convergence of
the FM expansion even for S→∞. As in the expansion for the
magnetization error in Eq. (10), the coefficients q1 and q2 can be
obtained analytically by time-dependent perturbation theory, see
the Supplementary Section 1.
The existence of controlled perturbative expansions for Trotter

errors of few-body observables up to comparatively large values
of the Trotter step size has profound practical implications for
DQS. First, to obtain accurate results for few-body observables in
DQS, one ideally would like to extrapolate from data at various
finite τ to the limit τ→ 0. Our results show that a controlled
extrapolation is possible from a wide range of values τ < τ* with
Jzτ* of order one, and is not restricted by the commonly expected
requirement Jzτ≪ 1.3 Second, the ability to retain controlled
Trotter errors with relatively large Trotter steps is highly beneficial
for current experimental efforts in DQS, as the reduced number of
required quantum gates mitigates the effects of imperfect gate
operations.13

The region of controlled Trotter errors at small Trotter step sizes
gives way to a proliferation of errors at τ > τ*. In particular, the
time-averaged simulation accuracy shown in Fig. 1e approaches
the maximum value of QE ¼ 1 with increasing spin size. In
Methods we show that this value is compatible with the
assumption that the Floquet operator Eq. (2) is a random unitary
matrix. In other words, the Trotterized dynamics becomes
completely unrelated to the ideal dynamics generated by the
target Hamiltonian H and in this sense universal. As we detail in

the following, this breakdown of Trotterization, which becomes
sharp for S→∞, marks the onset of quantum chaos.

Interpretation of the proliferation of Trotter errors as quantum
chaos

As we show in the following, the threshold behavior in the
magnetization error and the simulation accuracy can be traced
back to the transition from dynamical localization to quantum
chaos in the kicked top. Indeed, for strong kicking, which
corresponds to large Trotter steps τ, the kicked top is well-
known to exhibit quantum chaos.15 Then, statistical properties of
the eigenvectors and eigenvalues of the Floquet operator Eq. (2)
are faithful to RMT predictions. In the case of Hamiltonians Hx,z as
given in Eq. (7) with all coefficients hx,z and Jx,z different from zero,
the Floquet operator does not have any symmetries other than
time reversal.15 Thence, the relevant RMT ensemble is the circular
orthogonal ensemble (COE) of unitary and symmetric matrices.
Our first indicator of quantum chaos is connected to the

inverse-participation ratio (IPR) for a state |ψ0〉

IPRðjψ0iÞ ¼
X

D

m¼1

hψ0jϕmij j4; (11)

where {|ϕm〉}m denotes the eigenbasis of the Floquet operator Uτ.
We average the IPR over the basis of the target Hamiltonian {|ψn〉}n
and take its inverse to obtain the PR

PR ¼
X

D

n;m¼1

jhψnjϕmij4
 !�1

: (12)

In this definition, we rescaled the PR by a factor of 1=D so that it
assumes values between two limiting cases

PR ¼ D�1 fully localized;

1 fully delocalized:

(

(13)

A low PR, thus, indicates that the two eigenbases are very similar
(localization), whereas a high PR indicates equal absolute overlaps
between all the eigenstates (delocalization). We show the PR for
the kicked top in Fig. 2a. Similar to the Trotter errors discussed

Fig. 2 Signatures of quantum chaos: a Participation ratio Eq. (12) for the Floquet operator Uτ Eq. (2) (solid lines) and the symmetric Floquet
operator Uτ,s Eq. (14) (dashed lines). Horizontal lines pertain to RMT predictions obtained from Eqs. (21) and (22) for a system of size S= 512. b
Spectrum of the Floquet operator Uτ for S= 8 with regimes (i)–(iii) as explained in the main text. For comparison, the eigenphases of the ideal
time-evolution operator e−iHτ are shown as gray lines. c Averaged level spacing ratio Eq. (16). The horizontal lines in c correspond to COE
statistics (rCOE, dashed), and the value rH is obtained from the time-averaged Hamiltonian H= Hx+ Hz for S= 8 (dash-dotted). Panels a–c
consistently indicate a quantum chaos threshold in the dynamics of the quantum top, which lies at the core of the proliferation of Trotter
errors. d–f Poincaré sections obtained from the semiclassical equations of motion (31) are shown for Trotter steps Jzτ= 0.25, 0.75, 1.5,
respectively. Depending on the Trotter step size, trajectories which emanate from initial states marked by the colored dots are regular or
chaotic. This is reflected in the simulation accuracy QE shown in g. The simulation accuracy is averaged over the first 106 recursion steps
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above, the PR exhibits a steep increase at a critical value of the
Trotter step size τ. However, we would like to emphasize a crucial
difference between the PR and Trotter errors of observables: The
threshold value τ* for Trotter errors depends on the initial state of
the time evolution as illustrated Fig. 1a, b, d, e. On the other hand,
the PR as defined in Eq. (12) contains an average over the entire
eigenbasis of the target Hamiltonian, and consequently it is a
“global” rather than a state-dependent and thus “local”measure of
the onset of chaos. We discuss this distinction in more detail
below.
In Fig. 2a, two sets of curves are displayed: Solid lines pertain to

the PR calculated with eigenvectors |ϕm〉 of the Floquet operator
Uτ given in Eq. (2); dashed lines correspond to a symmetric Floquet
operator

Uτ;s ¼ e�iHxτ=2e�iHzτe�iHxτ=2; (14)

which realizes a higher-order Trotter decomposition as explained
in Methods, and is related to the Floquet operator Uτ in Eq. (2) by a
unitary transformation

Uτ ¼ QyUτ;sQ; Q ¼ e�iHxτ=2: (15)

In the chaotic regime of large Trotter steps, the PR obtained from
the Floquet operator Uτ Eq. (2) assumes the value predicted for the
CUE of RMT, see Eq. (21). On the other hand, the symmetric
Floquet operator Uτ,s yields a value of the PR that matches the COE
prediction obtained from Eq. (22). This difference can be under-
stood by noting that since the Floquet opreator Uτ,s is symmetric,
Uτ;s ¼ UT

τ;s, it can be regarded as an element of the COE. The PR
Eq. (12) probes the statistics of eigenvectors of the Floquet
operator Uτ,s, and in the chaotic regime it approaches the RMT
prediction. As we explain in Methods, the RMT prediction is
obtained by taking an average over the ensemble of eigenvectors
of random matrices of the COE, i.e., unit-norm vectors with real
components. Uτ,s is related to the non-symmetric Floquet operator
Uτ by the unitary transformation given in Eq. (15). Since a unitary
transformation does not affect the spectrum of an operator, both
Uτ and Uτ,s exhibit the same level statistics in the chaotic regime
which we discuss in more detail below. However, as shown in Fig.
2a, the unitary transformation Q strongly affects the PR. Indeed,
our results for the PR corresponding to Uτ indicate that applying Q
to the ensemble of eigenvectors corresponding to the COE yields
an ensemble of vectors that resembles the one of the CUE, which
is comprised of unit-norm vectors with complex components.
At small Trotter steps, the PR does not assume the lowest

possible value �1=D ¼ 1=ð2Sþ 1Þ ¼ 1=ðN þ 1Þ. Instead, it
appears to converge to a finite value, which indicates that even
in this localized regime the basis states |ψm〉 of H are spread out
over �D Floquet states |ϕm〉. This is similar to the many-body case
considered in ref. 13 and further below, where for small τ an
exponential number of Floquet states is required to represent
generic states, but with an exponent that is smaller than the
maximal possible one.
Signatures of the transition to chaos can also be found in the

spectrum σ(Uτ) of the Floquet operator. The eigenphases {θn}n of
the unitary operator Uτ are defined through σðUτÞ ¼ feiθngn and
are shown in Fig. 2b for a system with S= 8. Already by visual
inspection of the figure, three regimes can be distinguished: (i) In
the region of very small τ, the eigenphases of the Floquet operator
Uτ coincide with the phases corresponding to the ideal time-
evolution operator over one Trotter step, e−iHτ, which are shown
as gray lines in the figure. (ii) In the second regime, the phases
start to wind around the interval [−π, π]. This leads to level
crossings, which, however, are avoided ones with only very narrow
gaps. (iii) A dramatic change can be observed in the third regime,
where phase repulsion becomes strongly pronounced, which
indicates significant overlaps between the respective eigenstates.

A quantitative one-parameter measure of the degree of phase
repulsion is given by the average adjacent phase spacing ratio r.43

In terms of the phase spacings δn= θn+1− θn, the average
spacing ratio is defined through

rn ¼
minðδn; δnþ1Þ
maxðδn; δnþ1Þ

; r ¼ 1

D
X

D

n¼1

rn; (16)

where D ¼ 2Sþ 1 denotes the dimension of the Hilbert space.
The phase spacing ratio takes universal values for distinct
ensembles of random matrices: In the absence of correlations
between the eigenphases, which corresponds to Poissonian
statistics of the adjacent phase spacings, the phase spacing ratio
is given by rPOI ¼ 2 lnð2Þ � 1 � 0:39; in contrast, the repulsion
between eigenphases of random matrices sampled from the COE
is reflected in a higher universal value of the adjacent phase
spacing ratio, rCOE= 0.5996(1).44 For the Floquet operator Uτ in Eq.
(2), the adjacent phase spacing ratio is shown in Fig. 2c. Again,
three regimes can be distinguished: in a region of size ~1/S in
which the spectral width of the target Hamiltonian H is smaller
than Ω= 2π/τ, r is determined by the spectral statistics of H. The
corresponding value of r depends on the spin size S and does not
assume any of the universal ones given above. This is not
surprising: It is well-known that quantum systems with time-
independent Hamiltonians that have classical counterparts with
only one degree of freedom exhibit nonuniversal level statis-
tics.14,15 This is the case, in particular, for the considered spin
systems, where the expectation values of the collective spin
operators span a two-dimensional phase space corresponding to a
single degree of freedom in the classical limit. Indeed, for a
classical top S with spin components Sx,y,z, the dynamics is
restricted to the surface of a sphere, S2 ¼ S2x þ S2y þ S2z , and can be
parameterized in terms of the polar and azimuthal angles θ and ϕ,
respectively, which span the two-dimensional phase space (θ,
ϕ)∈ [0, π) × [0, 2π). In the second regime in Fig. 2c, the
eigenphases θn of the Floquet operator wind around the unit
circle. As shown in the previous section, for values of τ up to Jzτ≲
2, the dynamics is well-captured by the time-independent
effective Hamiltonian Hτ obtained in the FM expansion. For the
average phase spacing ratio we find r ≈ 0.26 in this regime. This
non-universal value depends on the choice of parameters hx,z and
Jx,z. Finally, for large values of τ, the adjacent phase spacing ratio
assumes the universal value predicted by RMT for the COE.
We note that while the behavior of few-body observables

considered above is exactly analogous to the phenomenology of
generic (short-range interacting) many-body systems,13 here we
find a crucial difference: even in the dynamically localized regime,
the time-evolution operator of an interacting many-body system
displays COE phase statistics.45 Therefore, the statistics of the
eigenphases of the Floquet operator does not allow one to
distinguish between localized and many-body chaotic regimes.
The PR and the adjacent gap ratio include averages over the

entire set of eigenstates and eigenphases of the Floquet operator
Uτ in Eq. (2). Hence, they pertain to “global” properties of the
dynamics, and show that at large Trotter step sizes the Floquet
operator is faithful to RMT—a hallmark of single-body quantum
chaos. In contrast, the magnetization error and the simulation
accuracy discussed above measure Trotter errors in the time
evolution starting from a single initial state. Therefore, they yield a
more “local” measure of irregularity in the dynamics, and indeed
we found that the value τ* of the threshold in Trotter errors
depends on the initial state. To explain this initial-state
dependence, we consider again the semiclassical limit of the
top. From the stroboscopic Heisenberg equations for the spin-
components of the top, we obtain in the semiclassical limit the
Poincaré sections shown in Fig. 2d–f. Regimes of regular and
chaotic dynamics coexist in the classical phase space, and their
relative weight is tuned by the Trotter step size τ. This coexistence
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is reflected in the initial-state dependence of τ* in the thermo-
dynamic limit as can be seen in Fig. 2g, where we show the
simulation accuracy for trajectories which emanate from the initial
states marked by colored dots in Fig. 2d–f. Note that for our choice
of parameters hx,z and Jx,z, states pertaining to θ∈ {0, π} are
particularly stable whereas states around θ � π

2 are generally more
sensitive.
The signatures of chaos discussed so far show clearly that the

proliferation of Trotter errors is a concomitant effect of the
transition from regular to chaotic dynamics in the kicked top.
However, in contrast to Trotter errors, in experiments these
signatures are not directly accessible. We proceed to discuss how
chaos is quantified by out-of-time-ordered correlation functions
(OTOCs) which, as we show in the Supplementary Section 2, can
be measured in experimental realizations of the kicked top.

Signatures of dynamical localization and quantum chaos in out-of-
time-ordered correlators

A hallmark of chaotic dynamics in classical systems is the butterfly
effect, which is caused by extreme sensitivity to initial conditions:
In a chaotic system, two trajectories that emanate from nearby
points in phase space deviate from each other exponentially fast.
The rate entering this exponential, which is called the Lyapunov
exponent, is a quantitative measure of chaos.
A generalization of these concepts to the quantum domain can

be given in terms of OTOCs.46–48 The “infinite-temperature” OTOC
for two initially commuting operators V and W is defined as

CðtÞ ¼ 1

D tr ½WðtÞ; V �j j2
� �

; (17)

where D is the Hilbert space dimension, and the Heisenberg
operator WðtÞ ¼ UðtÞyWUðtÞ is evolved unitarily with U(t). Here,
we consider a single spin S with Trotterized dynamics, for which
the Hilbert space dimension is D ¼ 2Sþ 1 and we evaluate C(t)
stroboscopically at multiples of the Trotter step such that t= nτ
and WðnτÞ ¼ Uny

τ WUn
τ . In certain highly chaotic systems,47–49 the

OTOC exhibits an extended period of exponential growth, and the
growth rate serves as a quantum analog of the classical Lyapunov
exponent. Moreover, the infinite-time limiting value of the OTOC is
maximal if the time-evolution operator U(t) is faithful to an
ensemble of RMT.50 Due to its properties as a diagnostic of chaos,
the OTOC has gained a lot of attention recently in a wide range of
physical contexts including high-energy, condensed matter, and
AMO physics.20,29,47–49,51,52 In experimental realizations of the
kicked top, the OTOC could be accessed through a recently
introduced scheme which is based on correlations between
randomized measurements53 and has already been demonstrated
in NMR.54 We give details on the experimental requirements in the
Supplementary Section 2.
As we show in the following, in the kicked top, both the short-

time growth as well as the long-time saturation of the OTOC are

indicative of the transition from dynamical localization to chaos.
This is illustrated in Fig. 3, which shows the infinite-temperature
OTOC (17) with unitary V ¼ e�iφSz and Hermitian W= Sz—a
particular choice of operators that facilitates the measurement
of C(t)20,29,53,55–59 as also discussed in the Supplementary Section
2. However, we note that for the value φ= 10−4 shown in Fig. 3,

the OTOC reduces to the form CðtÞ ¼ � φ2

D trð½SzðtÞ; Sz�2Þ þ Oðφ4Þ.
The growth of the OTOC is depicted in Fig. 3a. As expected in a

chaotic system, for large Trotter step sizes the OTOC grows
exponentially, CðtÞ � eλJz t .51,60 This exponential growth extends
up to the Ehrenfest time tE � lnð�heffÞj j, where the effective Planck
constant is determined by the spin size, ħeff= 1/S.15 For times t
beyond the Ehrenfest time tE, the OTOC saturates at a value C(t)=
CCOE that is compatible with replacing the time-evolution operator
in Eq. (17) by a random unitary matrix drawn from the COE as
shown in Methods.
The behavior of the OTOC is markedly different in the regular

regime. In particular, for the smallest nonzero Trotter step size
Jzτ= 0.73 shown in Fig. 3a, the OTOC is essentially indis-
tinguishable from evolution under U(t)= e−iHt with the target
Hamiltonian H= Hx+ Hz, which is labeled as Jzτ= 0 in the
figure. From a short-time expansion of the time evolution
operator as e−iHt= 1− iHt+ O(t2) it follows immediately that at
very short times the OTOC grows algebraically, C(t) ~ t2. The
algebraic behavior persists approximately up to a time Jzt of
order one. Then, the OTOC grows exponentially also in the
regular regime. Similar behavior, i.e., exponential growth of the
OTOC in a (classically) regular parameter regime, was recently
discussed in ref. 52 for the kicked rotor. However, there are two
key differences between the regular and chaotic regimes: (i) in
the regular regime, the exponential growth gives way to much
slower growth at late times, and eventually saturates at a value
below CCOE as shown in Fig. 3b; (ii) moreover, the growth rate λ,
which we extract from the numerical data in the region of
exponential growth, assumes a constant but weakly system-size
dependent value in the regular regime as shown in Fig. 3c. In
contrast, it rises sharply upon increasing the Trotter step size τ
beyond the threshold to chaotic dynamics.
In Fig. 3, we show data for spin sizes S= 256,512,1024. These

rather large system sizes allow us to determine the growth rate λ
very accurately due to the large Ehrenfest time tE � lnðSÞ.
However, we found (see Supplementary Section 2) that the two
regimes in the dependence of λ on the Trotter step size—λ ≈
const. in the regular regime and strong increase of λ with τ in the
chaotic regime—can be clearly distinguished also in systems with
S≳ 50 as in recent measurements of OTOCs with trapped ions.29

The kicked top as a limit of long-range interacting spin chains

In the previous sections, we discussed extensively the kicked top
as an ideal model system for the study of fundamental questions

Fig. 3 Signatures of quantum chaos in OTOCs. a Short-time growth of the infinite-temperature OTOC Eq. (17) and b infinite-time average C. In
the chaotic regime, the exponential growth of C(t) saturates to the COE value obtained from Eq. (25). The infinite-time average C follows from
Eqs. (26) and (27). c Growth rate λ for the range of times in a during which the OTOC grows exponentially. The rate λ is extracted from the data
by a fit to CðtÞ ¼ aeλJz t � b, where a, b, and λ are fit parameters. Error bars correspond to the fitting error. In the regular regime, the growth rate
takes a value that is independent of the Trotter step size τ and agrees with the value at Jzτ= 0, which we obtained from the ideal evolution
with the time-averaged Hamiltonian. For Trotter step sizes in the chaotic region, the growth rate increases with τ
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of both DQS and the associated quantum chaos threshold. Now,
we explore to which extent our observations persist under natural
deformations of the Hamiltonian in experimentally relevant
settings. For this purpose, we consider Ising chains with
algebraically decaying instead of all-to-all interactions, which
exhibit a direct realization in trapped-ion quantum compu-
ters.4,10,11,28,29,33 Specifically, we study a kicked spin chain as
defined in Eqs. (4) and (5). By tuning the exponent α, the long-
range Ising model allows us to smoothly interpolate between the
two paradigmatic model systems of the infinite-range kicked top
studied above and the nearest-neighbor Ising chain, reached at
α→ 0 and α→∞, respectively. Motivated by realistic trapped-ion
experiments, we consider open boundary conditions. For the
numerical data shown in what follows, we choose hx/Jz= 1/4, but
the main picture does not change for different parameter sets. We
use a Lanczos algorithm with full reorthogonalization to
propagate the initial state ψ0j i ¼ �N

i¼1 "j i over up to 2 × 104

periods. For the quantities shown below we perform a temporal
average over all periods.
As explained above, the many-body Hilbert space of N spin-1/2

can be decomposed into subspaces with fixed total spin S. The
initial state |ψ0〉 given above belongs to the subspace of maximal
spin S= N/2, and for α→ 0 the dynamics is restricted to this
subspace. That is, for α→ 0 the Trotterized dynamics of the spin
chain as defined in Eqs. (4) and (5) becomes equivalent to the
kicked top Eq. (1) with S= N/2 and a rescaling of the parameter Jz
as pointed out above. On the other hand, for non-zero values of α,
the dynamics explores the 2N-dimensional many-body
Hilbert space.
In Fig. 4a, we plot the numerically obtained data for the

simulation accuracy QE defined in Eq. (8) in the long-time limit as a
function of Trotter step τ and interaction exponent α for a fixed
system size N= 14. To clearly illustrate how the kicked top is
approached in the limit α→ 0, Fig. 4d shows cuts through the
same data for six values of the exponent α form α= 0 to α= 2. For

small τ, we find that the properties observed already with the

kicked top extend to α > 0. Specifically, QE is small with QE ¼
q2τ

2 þ Oðτ3Þ (the first-order term vanishes for the initial state
ψ0j i ¼ �N

i¼1 "j i). Upon increasing the Trotter step for α≲ 1/4,

however, QE does not reach the value QE ! 1 expected in the
quantum chaotic regime. We attribute this to the small number
N= 14 of simulated spins and consequently to large finite-size
corrections. This agrees also with our observations in Fig. 1e for

the kicked top at α= 0, where significant finite-size effects in QE

appear (note also the different choice of initial state and
Hamiltonian parameters in Fig. 1e). Instead, for α≳ 1/4, we find
a clear crossover from a perturbative regime at small Trotter steps
τ, implying controllable Trotter errors, to a many-body quantum

chaotic region with QE ! 1. Except for the range 0 ≤ α≲ 1/4, the
influence of the interaction exponent α on the simulation accuracy
is only minor in that also the crossover region only shifts slightly
upon varying α.
A similar picture emerges from the IPR defined in Eq. (11), which

measures the localization properties of the state |ψ0〉 in the
eigenbasis {|ϕm〉}m of the Floquet operator. For α > 0, the
accessible Hilbert space grows exponentially with the number of
spins, D ¼ 2N . To account for this exponential dependence, we
introduce the rate function λIPR ¼ lnðIPRÞ=N.13 In Fig. 4b, we show
the ratio λIPR=λD, where λD ¼ lnð2Þð1� 3=NÞ. This value incorpo-
rates leading-order finite-size corrections as follows: On the one
hand the system obeys both an inversion as well as Ising Z2

symmetry, such that D ¼ 2N�2; On the other hand, RMT allows us
to estimate the IPR in an ergodic phase as IPR � 2=D for D ! 1,
see Methods. Combining these two results we obtain the value of
λD given above. We note that here we restrict ourselves to
comparing the IPR obtained for the initial state |ψ0〉 to the RMT
prediction for the CUE Eq. (21). As discussed above, we expect that
a symmetrized Floquet operator yields an IPR that is consistent
with the COE result (22).

Fig. 4 Many-body quantum chaos threshold in a kicked long-range Ising model with algebraically decaying interactions set by the interaction
exponent α for a spin chain of N= 14 lattice sites. a Long-time average of the simulation accuracy QE as a function of the Trotter step size τ
and α. b Rate function λIPR of the inverse-participation ratio normalized with respect to the maximally reachable value λD in a fully quantum
chaotic case. c Long-time limit of the time-averaged magnetization error ΔM. Although finite-size corrections are significant for 0 < α≲ 1/4, a
clear quantum-chaos threshold can be discerned that coincides with the proliferation of Trotter errors on local observables. Panels d–f show
cuts for the data presented in a–c for fixed values of α. The quantities shown illustrate clearly the smooth crossover from many-body quantum
chaos at finite α to the single-body chaos of the kicked top at α= 0. In e, a sharp threshold is visible in the IPR even at small α. For the larger
values of α shown in b the rate function λIPR is the appropriate measure of localization vs. delocalization over an exponentially large
Hilbert space
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The rate function λIPR essentially reproduces the observations
from the simulation accuracy in the range 0 < α ≤ 3 with only
slight modifications, which we again attribute to finite-size
corrections. The case α close to α= 0, however, deserves a more
detailed discussion. While a system at α= 0 with total spin S= N/2
can access only D ¼ 2Sþ 1 ¼ N þ 1 quantum states in the Hilbert
space, with any infinitesimal deviation from α= 0 this number
grows to D ¼ 2N . For a system with finite N as we consider here,
however, we expect that the effective behavior of D has to
interpolate from the polynomial dependence at α= 0 to the
exponential dependence in N upon increasing α. This opens up a
crossover window at small α, whose size diminishes for larger N
and where the rate function λIPR exhibits strong finite-size
corrections, as is also visible in Fig. 4b. Within the crossover
window, the threshold to chaos is nevertheless clearly visible if
instead of the rate function λIPR one considers the IPR Eq. (11)
itself. This is illustrated in Fig. 4e, which is based on the same data
as panel 4b and shows cuts for several small values of α. Beyond
the crossover window, the rate function shown in Fig. 4b
reproduces the observations from the simulation accuracy, while
the crossover region from quantum localized to chaotic appears
slightly broader.
The previous considerations provide numerical evidence for a

quantum many-body chaos transition in the Trotterized time
evolution. For completeness, we now aim to confirm our general
arguments on controllable Trotter errors by studying also the
long-time limit of a local observable, namely the magnetization M
as done also for the kicked top. Our numerical data for the time-
averaged magnetization error Eq. (6) is shown in Fig. 4c. Again, we
observe two different regimes depending on the Trotter step τ.
Compared to the simulation accuracy and the IPR in Fig. 4b, the
crossover region appears much sharper, which is also reflected in
the cuts through the data shown in Fig. 4f. The overall behavior
remains similar: delocalization of the time-evolved state in Hilbert
space implies an error ΔM of order one as we find across a wide
region in the α–τ plane. For small values of τ instead, ΔM is
perturbatively small and Trotter errors remain controllable.
Overall, this analysis suggests that a continuous deformation of

the kicked top Hamiltonian to algebraically decaying interactions
does not influence our general observations in the previous parts
of the manuscript, while only details such as the location of the
quantum many-body chaos threshold can exhibit slight modifica-
tions. The present study of the regime 0 ≤ α ≤ 3 in combination
with the results of ref. 13, which considered a short-range
interacting system corresponding to the limit α→∞, indicate that
the transition to chaos is a generic phenomenon with broad
relevance for DQS.

DISCUSSION

In the field of quantum chaos, it is well-known that the kicked top
exhibits a transition from regular to chaotic dynamics upon
increasing the kicking strength, and the signatures of this
transition, e.g., in the spectral statistics of the Floquet operator,
are well-understood. Our work connects these results to and
highlights their fundamental importance for the seemingly
remote field of quantum information science. Namely, we show
that the transition to chaos becomes manifest in sharp threshold
behavior of Trotter errors of few-body observables in DQS of
collective spin systems. Contrary to the difference between the
ideal and the Trotterized time-evolution operator, which is often
used as a measure for Trotter errors in DQS and which grows at
best linearly with simulation time,38–41 Trotter errors of observa-
bles remain controlled and constant up to arbitrarily long times. A
quantitatively accurate description of these Trotter errors is
provided in the regular regime by the FM expansion—even up
to Trotter step sizes for which one would expect the FM expansion

to diverge37. In the chaotic regime, the kicked top is well-known to
be faithful to RMT.15

It is worthwhile to emphasize again the distinction between
single-particle and many-body quantum chaos, which is central to
the results obtained in this work. On one hand, the quantum
kicked top has emerged as a paradigmatic model for single-
particle quantum chaos upon increasing the kicking strength. In
the semiclassical limit, the problem becomes chaotic in the
classical sense of exponentially diverging trajectories upon slightly
perturbing initial conditions. From a quantum many-body
perspective, however, the kicked top is an integrable and
therefore non-ergodic system, because its dynamics is restricted
to a N+ 1-dimensional subspace of the 2N-dimensional many-
body Hilbert space. In this regard, the kicked top is also a rather
peculiar system for DQS, which aims at simulating quantum many-
body chaotic dynamics in regimes in which the growth of
entanglement prohibits efficient classical simulations. Neverthe-
less, in this work we show that the phenomenology of Trotter
errors in this particular DQS is analogous to the behavior found in
a generic many-body system in ref. 13, can be explained in terms
of quantum chaos in the kicked top, and is smoothly connected
to “true” quantum many-body systems described by Eq. (4) with
α > 0.
We note that for small α > 0 it is not yet fully understoood

whether the long-range deformation in Eq. (4) becomes ergodic.
In the kicked top, i.e., for α= 0, threshold behavior persists even in
the thermodynamic limit and up to arbitrarily long times. On the
other hand, in generic many-body systems such as the Ising chain
Eq. (4) with sufficiently large α, recent works argued that in the
thermodynamic limit periodic driving will always lead to indefinite
heating with the simulation accuracy Eq. (8) QE→ 1,45,61,62 while
heating can be strongly suppressed with QE < 1 during a
prethermal regime.63–67 This regime persists up to a time scale
which grows exponentially with the driving frequency, and has
recently been observed experimentally.68 It is an interesting
question for future studies how the above scenarios are
connected upon tuning α. Irrespective of this question, the fact
that the heating time scale is infinite in the kicked top and can be
made arbitrarily large in generic short-range interacting systems
implies that DQS experiments are not limited by Trotter errors but
rather by extrinsic error sources such as qubit decoherence. We
emphasize that this conclusion is not restricted to all-to-all
interacting systems. Rather, we expect it to hold generically for
a large class of model systems which are relevant for DQS.
Our theoretical predictions concerning Trotter errors and the

onset of quantum chaos can be tested experimentally in a variety
of different systems ranging from single atomic spins24,25 to
quantum simulators of interacting spin-1/2 systems.4–12,33 A first
experimental requirement is the ability to engineer nonlinear spin
Hamiltonians with time-dependent coefficients. Moreover, in any
experimental realization, decoherence will eventually wash out
the threshold shown in Fig. 1: experimental imperfections such as
technical noise or coupling of the system to its environment will
lead to further heating and drive the system towards a featureless
infinite-temperature state. In such a state, expectation values of
observables become independent of the Trotter step size and the
sharp threshold is destroyed. Therefore, the decoherence time tc
should be longer than the time scale tth it takes to build up the
threshold. For the parameters chosen in Fig. 1, this requirement is
Jztth ≈ 25 < Jztc and can be met in current experiments. (To name
an example, ref. 29 achieved Jz on the order of several kHz and
thus nearly two orders of magnitude larger than the decoherence
rate 1/tc of several ten Hz). It is an intriguing prospect to
experimentally connect the threshold in Trotter errors to quantum
chaos by measuring the growth rate and saturation value of
the OTOC.
To summarize, in this work, we connect the well-studied

quantum chaos of the kicked top with Trotter errors in DQS of
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collective spin systems. Our approach of harnessing the available
knowledge on the kicked top, which is a paradigmatic model of
single-body quantum chaos, is complementary to the numerical
study of the connection between Trotter errors in DQS of generic
many-body systems and many-body quantum chaos presented in
ref. 13

METHODS

Higher-order Trotterization
In this work, we exploit the formal equivalence of the dynamics of the
kicked top which is determined by the Floquet operator given in Eq. (2),
and the Trotterized dynamics in DQS of collective spin systems as
described by Eq. (3). For a given target Hamiltonian H= Hx+ Hz which is
composed of two noncommuting pieces Hx,z, Trotterization is not unique.
In the following, we briefly discuss different Trotterization schemes, and
how they affect our conclusions concerning Trotter errors and
quantum chaos.
Trotterization of the unitary time evolution operator U(t)= e−iHt with

H= Hx+ Hz is carried out in two steps: first, the simulation time t is divided
into n Trotter steps of duration τ= t/n

UðtÞ ¼ e�iHt ¼ e�iHt=n
� �n

: (18)

Second, within a Trotter step of size τ, the exponential e−iHτ of the
Hamiltonian H is approximated by a product of exponentials of Hx and Hz

alone. This approximation introduces an error of order τm, where m can be
increased by working with more elaborate factorizations.69 Eq. (3)
corresponds to the lowest-order decomposition with m= 1, and a first
improvement can be obtained by symmetrization

e�iHτ ¼ e�iHxτe�iHzτ þ OðτÞ; (19)

e�iHτ ¼ e�iHxτ=2e�iHzτe�iHx τ=2 þ Oðτ2Þ: (20)

We emphasize that the given error bounds O(τm) pertain to the full time
evolution operator. In contrast, as shown in this work for collective spin
systems and in ref. 13 for a generic many-body system, Trotter errors of
few-body observables remain bounded even at long times, i.e., after
repeated application of the evolution operators in Eqs. (19) and (20)
corresponding to elementary Trotter steps. However, it is an interesting
question for future studies how the threshold behavior in Trotter errors of
few-body observables and the quantum chaos properties discussed in
Results are affected by higher-order Trotterization. Notably, already going
from the first-order formula Eq. (19) to the second-order formula Eq. (20)
leads to a significant qualitative difference in the PR Eq. (12) shown in Fig.
2a. This is discussed in detail in Results.

RMT predictions for the IPR, observables, and OTOCs
For large Trotter step sizes τ, the Floquet operator Eq. (2) is faithful to the
COE of RMT. This is demonstrated in Results, where we consider the PR and
eigenphase-spacing statistics, cf. Fig. 2. However, also the results for the
long-time averages of magnetization error and the simulation accuracy
presented in Results, as well as steady-state saturation of OTOCs, are
indicative of the RMT properties of the Floquet operator. Here, we derive
RMT predictions for these quantities.
RMT predictions for the IPR defined in Eq. (11) can be obtained by

averaging the overlap |〈ψ0|ϕm〉|
4 over the distribution of eigenvectors |ϕm〉

of random matrices drawn from the appropriate ensemble. In particular,
the components of eigenvectors of random matrices sampled from the
CUE are distributed uniformly on the unit sphere in C

D, while for the COE
the components of eigenvectors can be assumed real and thus lie on the
the unit sphere in R

D.15 Averages over these eigenvector distributions can
be performed by explicitly parameterizing unit-norm eigenvectors in terms
of spherical coordinates and carrying out the resulting integrals as
discussed for the CUE in ref. 70. These averages yield the same result for all
states |ϕm〉 with m ¼ 1; ¼ ;D and also do not depend on the reference
state |ψ0〉. We note that for the COE, |ψ0〉 should be chosen to have real
components. This is indeed the case for the eigenstates |ψn〉 of the target
Hamiltonian which we consider in Eq. (12), if they are expanded in the

basis of eigenstates of Jz. We find

IPRCUE ¼
2

Dþ 1
; (21)

IPRCOE ¼
3

Dþ 2
: (22)

The RMT predictions for the PR as defined in Eq. (12) follow from the above
results for the IPR as PR ¼ 1=ðD IPRÞ, and are shown in Fig. 2a.
With regard to the simulation accuracy QE defined in Eq. (8), the long-

time average value of QE ¼ 1 which is reached in the chaotic regime as
shown in Fig. 1b, e, indicates that the temporal average of the energy
Eτ(t)= 〈H(t)〉τ is equivalent to taking the expectation value of H in an
infinite-temperature state, i.e., ET¼1 ¼ trðHÞ=D. As we show now, the same
result is predicted by RMT. To this end, we replace in Eq. (8) the nt-th power
of Floquet operator, Unt

τ with nt ¼ t=τb c, by QyUQ, where Q is given in Eq.
(15) and U is a random unitary matrix from the COE. As discussed in Results,
the COE is comprised of symmetric matrices, and the unitary transformation
Q acts to symmetrize the Floquet operator Uτ. Then, the average over U∈

COE, which we denote by [⋯]COE in the following, yields71

ECOE ¼ ψ0jQyUyQHQyUQjψ0

� �	 


COE

¼ 1
Dþ1 trðHÞ þ ψ0jQy~HTQjψ0

� �� �

� 1
D trðHÞ ¼ ET¼1 for D ! 1;

(23)

where ~H ¼ QHQy. Hence, we obtain the RMT prediction for the simulation
accuracy in the chaotic regime, QCOE= (ECOE− E0)/(ET=∞− E0) ~ 1 for
D ! 1.
Similarly, Fig. 3a, b shows that at late times the OTOC C(t) Eq. (17)

approaches a value CCOE which as we explain in the following can also be
obtained by taking an average over the COE. First, we consider the COE
average of the OTOC F(t) defined as

FðtÞ ¼ 1

D tr WðtÞyVyWðtÞV
� �

; (24)

where WðtÞ ¼ Unty
τ WUnt

τ and nt ¼ t=τb c. We assume trðWÞ ¼ 0 and
Vy ¼ V�1 , which is satisfied for W= Sz and V ¼ e�iφSz shown in Fig. 3. As
above, we replace Unt

τ by QyUQ, and by taking the average over U∈ COE
we find

FCOE ¼ 1
ND

Dþ 2ð Þ tr ~V ~W�~Vy ~WT
� ��	

þtr ~V ~WT ~Vy ~W�� �

þ jtr ~V
� �

j2tr ~W ~Wy� �

�

� Dþ 4ð Þtr ~W2
� �

� jtr ~V ~WT
� �

j2 � jtr ~V ~W�� �

j2

� Dþ 1ð Þ tr ~V
� �

tr ~Vy ~WT ~W�� �

þ tr ~Vy� �

tr ~V ~W� ~WT
� �� �


;

(25)

where N D ¼ D2 Dþ 1ð Þ D þ 3ð Þ; ~W ¼ QWQy, and ~V ¼ QVQy . To relate F(t)
Eq. (24) to the squared commutator in Eq. (17), we note that for W= Sz we
obtain trðW2Þ=D ¼ S Sþ 1ð Þ=3, which yields

CðtÞ ¼ 2
S Sþ 1ð Þ

3
� ReðFðtÞÞ

� �

: (26)

This relation holds at all times t and, in particular, it allows us to express the
COE average CCOE in terms of FCOE given in Eq. (25). Moreover, the infinite-
time average C shown in Fig. 3 can be obtained in terms of the
corresponding average F of F(t), which reads

F ¼ 1

D
X

D

m;n¼1

1

1þ δm;n
WmmV

y
mnWnnVnm þWmnV

y
nnWnmVmm

� �

; (27)

where Wnm= 〈ϕn|W|ϕm〉 etc. and the vectors |ϕn〉 with n ¼ 1; ¼ ;D form
an eigenbasis of the Floquet operator. Figure 3 shows that the RMT
expression CCOE of the OTOC agrees with the temporal average obtained
from Eq. (27) in the chaotic regime and beyond the Ehrenfest time tE.

The semiclassical limit of the kicked top
As pointed out above, in the kicked top, the role of an effective Planck
constant is played by the inverse spin size, ħeff= 1/S. Hence, if the kicked
top is realized as the collective spin of a system of N spin-1/2 such that S=
N/2, the thermodynamic limit N→∞ coincides with the semiclassical limit
ħeff→ 0. In this limit, the spin S obeys stroboscopic evolution equations
that can be obtained from the Heisenberg equations of motion for the spin
components Sx,y,z by introducing rescaled variables

X ¼ Sx=S; Y ¼ Sy=S; Z ¼ Sz=S; (28)
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and subsequently taking the limit S→∞. In this limit, the commutators [X,
Y] etc. vanish, and X, Y, and Z become effectively classical variables.
The stroboscopic evolution equations of the spin operators in the

Heisenberg picture are determined by

Siðt þ τÞ ¼ Uy
τSiðtÞUτ for i 2 fx; y; zg: (29)

To evaluate the right-hand side of this equation, we use relations such as72

eiτFðSz ÞSþe
�iτFðSzÞ ¼ Sþe

iτf ðSzÞ; (30)

where f(Sz)= F(Sz+ 1)− F(Sz), and which holds for any analytic function F
and pairs of operators Sz and S+= Sx+ iSy that obey [Sz, S+]= S+. We thus
arrive at

Xðt þ τÞ ¼ Re eiτhz XðtÞ þ iRe ðYðtÞ þ iZðtÞÞeiτhxeiJxXðtÞτ
� �	 


e
Jz τ
2 Im ðYðtÞþiZðtÞÞeiτhx eiJx XðtÞτð Þ� �

;

Yðt þ τÞ ¼ Im eiτhz XðtÞ þ iRe ðYðtÞ þ iZðtÞÞeiτhxeiJxXðtÞτ
� �	 


e
Jz τ
2 Im ðYðtÞþiZðtÞÞeiτhx eiJx XðtÞτð Þ� �

;

Zðt þ τÞ ¼ Im ðYðtÞ þ iZðtÞÞeiτhxeiJxXðtÞτ
� �

:

(31)

To obtain the simulation accuracy Eq. (8) in the limit S→∞, we iterate the
semiclassical evolution Eq. (31) and insert the resulting values of the spin
components as per Eq. (28) in the target Hamiltonian H= Hx+ Hz, which
we interpret as a function of the classical variables Sx,y,z. This yields Eτ(t).
The energy ET=∞ at infinite temperature is obtained by averaging H over
the classical phase space, i.e., a sphere of radius S. Finally, E0 is the energy
of the initial spin configuration.
The magnetization error Eq. (6) can be obtained similarly: In the

semiclassical limit, 〈Sz(t)〉τ in Eq. (6) can be replaced by SZ(t), where Z(t) is
evolved with Eq. (31); To find 〈Sz(t)〉, we again interpret H as a classical
Hamiltonian and integrate the corresponding Hamiltonian evolution
equations up to the time t.73
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