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Abstract

This article describes the principles and major applications of digital
recording and numerical reconstruction of holograms (digital holography).

Digital holography became feasible since charged coupled devices
(CCDs) with suitable numbers and sizes of pixels and computers with
sufficient speed became available. The Fresnel or Fourier holograms are
recorded directly by the CCD and stored digitally. No film material
involving wet-chemical or other processing is necessary. The reconstruction
of the wavefield, which is done optically by illumination of a hologram, is
performed by numerical methods. The numerical reconstruction process is
based on the Fresnel-Kirchhoff integral, which describes the diffraction of
the reconstructing wave at the micro-structure of the hologram.

In the numerical reconstruction process not only the intensity, but also
the phase distribution of the stored wavefield can be computed from the
digital hologram. This offers new possibilities for a variety of applications.
Digital holography is applied to measure shape and surface deformation of
opaque bodies and refractive index fields within transparent media. Further
applications are imaging and microscopy, where it is advantageous to
refocus the area under investigation by numerical methods.

Keywords: digital holography, holographic interferometry

1. Introduction

Dennis Gabor [1-3] invented holography in 1948 as a method
for recording and reconstructing the amplitude and phase of a
wavefield. The word holography is derived from the Greek
words ‘holos’ meaning ‘whole’ or ‘entire’ and ‘graphein’
meaning ‘to write’.

A hologram is the photographically or otherwise recorded
interference pattern between a wavefield scattered from the
object and a coherent background, called the reference wave.
A hologram is usually recorded on a flat surface, but contains
information about the entire three-dimensional wavefield.

3 U Schnars works for AIRBUS Deutschland GmbH, but contributed to this
work as a private individual.
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This information is coded in the form of bright and dark
microinterferences, usually not visible for the human eye due
to the high spatial frequencies. The object wave can be
reconstructed by illuminating the hologram with the reference
wave again. This reconstructed wave is indistinguishable from
the original object wave. An observer sees a three-dimensional
image which exhibits all the effects of perspective and depth
of focus.

In the original set-up of Gabor the reference wave
and object wave are located along the axis normal to
the photographic plate.  This leads to a reconstructed
image superimposed by the bright reconstruction wave and
a second image, the so-called ‘twin image’. Significant
improvements of this in-line holography were made by Leith
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and Upatnieks [4, 5], who introduced an off-axis reference
wave. With their set-up the two images and the reconstruction
wave are spatially separated.

One major application of holography is holographic
interferometry (HI), developed in the late 1960s by Stetson and
Powell [6, 7] and others. With HI it became possible to map the
displacements of rough surfaces with an accuracy of a fraction
of a micrometre. It is also possible to make interferometric
comparisons of stored wavefronts that exist at different times.

The development of computer technology made it possible
to transfer either the recording process or the reconstruction
process into the computer. The first approach led to computer
generated holography (CGH), which allows us to generate
artificial holograms by numerical methods. These computer
generated holograms are then optically reconstructed. This
technique is not considered here: we refer the interested reader
to the literature, see, for example, [8—10].

Numerical hologram reconstruction was initiated by
Yaroslavskii et al [11-13] at the early 1970s.  They
sampled optically enlarged parts of in-line and Fourier
holograms recorded on a photographic plate. These digitized
‘conventional’ holograms were reconstructed numerically.
Onural and Scott [14-16] improved the reconstruction
algorithm and applied this method to particle measurement.
Haddad er al [73] described a holographic microscope based
on numerical reconstruction of Fourier holograms.

A big step forward was the development of direct
recording of Fresnel holograms with charged coupled devices
(CCDs) by Schnars and Jiiptner [17, 18]. This method now
enables full digital recording and processing of holograms,
without any photographic recording as an intermediate step.
Within the scope of this article digital sampling and numerical
hologram reconstruction is called digital holography.

Schnars and Jiiptner applied their method to interferome-
try and demonstrated that digital hologram reconstruction of-
fers much more possibilities than conventional (optical) pro-
cessing. The phases of the stored light waves can be calcu-
lated directly from the digital holograms, without generating
phase-shifted interferograms [19, 20]. Other methods of opti-
cal metrology, such as shearography or speckle photography,
can be derived numerically from digital holograms [21]. This
means that one can choose the interferometric technique (holo-
gram interferometry, shearography or other technique) after
hologram recording by mathematical methods.

The use of electronics devices, such as CCDs, for
the recording of interferograms was already established in
electronic speckle pattern interferometry (ESPI, also called
TV holography), discovered independently from each other
by Butters and Leendertz [22], Macovski et al [23] and
Schwomma [24]. In this method two speckle interferograms
are recorded at different states of the object under investigation.
The speckle patterns are subtracted electronically.  The
resulting fringe pattern has some similarities to that of
conventional or digital HI, but the main differences are the
speckle appearance of the fringes and the loss of phase in
the correlation process. The interference phase has to be
recovered with phase-shifting methods [26-28], requiring
additional experimental effort (phase-shifting unit). Digital
HI and ESPI are competing methods: the image subtraction
in ESPI is simpler than the numerical reconstruction of digital
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Figure 1. Hologram recording.

holography, but the information content of digital holograms is
higher. ESPI is not considered here: we refer to corresponding
articles [25, 29, 30].

Since the mid-1990s digital holography has been
modified, improved and applied to several measurement
tasks [31-97].

Important steps are:

e improvements in the experimental and
reconstruction algorithm [31-50],

e applications in deformation analysis and shape measure-
ment [51-55, 71, 111],

e the development of phase-shifting digital holography [56—
64],

e applications in imaging,
croscopy [65-70, 73, 104],

e measurement of refractive index distributions within
transparent media [72, 74, 75],

e applications in encrypting information [76, 77],

e the development of digital light-in-flight holography [78—
83],

e the development of comparative digital holography [84].

techniques

particle tracking and mi-

Recently it has been demonstrated how to reconstruct digital
holograms optically using a liquid crystal device (LCD) [84]
or a digital micromirror device (DMD) [98].

2. Foundations of holography

2.1. Hologram recording and reconstruction

The general set-up for recording off-axis holograms is shown
in figure 1[99, 100]. Light with sufficient coherence length is
split into two partial waves by a beamsplitter (BS). One wave
illuminates the object, is scattered and reflected to the recording
medium, e.g. a photographic plate. The second wave, called
the reference wave, illuminates the plate directly. Both waves
are interfering. The interference pattern is recorded, e.g. by
chemical development of the photographic plate. The recorded
interference pattern is called a hologram.

The original object wave is reconstructed by illuminating
the hologram with the reference wave, figure 2. An observer
sees a virtual image, which is indistinguishable from the image
of the original object. The reconstructed image exhibits all the
effects of perspective and depth of focus.
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Figure 2. Hologram reconstruction.

The holographic process is described mathematically as
follows:

O(x,y) = o(x, y)exp(igo (x, y)) 2.D

is the complex amplitude of the object wave with real amplitude
o and phase ¢ and

R(x,y) =r(x,y)exp(igg(x, y)) 2.2
is the complex amplitude of the reference wave with real
amplitude r and phase ¢g.

Both waves interfere at the surface of the recording
medium. The intensity is calculated by

I(x,y) =10(x,y) + R(x, y)?
=(0(x,y)+R(x, y)(O(x,y) + R(x, y)*
= R(x, y)R*(x,y)+ O(x, y)O*(x, y)

+O0(x, y)R*(x, y) + R(x, y) 0" (x, y) (2.3)

where * denotes the conjugate complex. The amplitude
transmission /(x, y) of the developed photographic plate (or
any other recording media) is proportional to 7 (x, y):
h(x,y) =ho+Btl(x,y) 2.4
where B is a constant, 7 is the exposure time and /g is the
amplitude transmission of the unexposed plate. h(x,y) is
also called the hologram function. In digital holography using
CCDs as recording medium % can be neglected.
For hologram reconstruction the amplitude transmission
has to be multiplied with the complex amplitude of the
reconstruction (reference) wave:

R(x, y)h(x, y) = [ho + BT(r* + 0)IR(x, y)

+BTri0(x, y) + BTR*(x, y)O*(x, y). (2.3)

The first term on the right side of this equation is the reference
wave, multiplied by a factor. It represents the undiffracted
wave passing through the hologram (zero diffraction order).
The second term is the reconstructed object wave, forming the
virtual image. The factor 7+ only influences the brightness
of the image. The third term produces a distorted real image
of the object. For off-axis holography the virtual image, the
real image and the undiffracted wave are spatially separated.

2.2. Holographic interferometry

HI is an optical method to observe deformations of opaque
bodies or refractive index variations in transparent media,
e.g. fluids or gases. HI is a non-contact, non-destructive
method with very high sensitivity. Optical path changes up
to one hundredth of a wavelength are resolvable.

Two coherent wavefields, which are reflected from two
different states of the object, are interfering. This is achieved,
for example, in double-exposure holography by the recording
of two wavefields on a single photographic plate. The first
exposure represents the object in its initial state and the second
exposure represents the object in its loaded (e.g. deformed)
state. The hologram is reconstructed by illumination with
the reference wave. As a result of the superposition of
the two holographic recordings with slightly different object
waves only one image superimposed by interference fringes
is reconstructed. From this holographic interferogram the
observer can determine optical path changes due to the object
deformation or other effects.

In the real time technique the hologram is replaced,
after processing, in exactly the same position in which it
was recorded. When it is illuminated with the reference
wave, the reconstructed virtual image coincides with the
object. Interference patterns due to phase changes between
the holographically reconstructed initial object wave and the
actual object wave are observable in real time.

The following mathematical description is valid for the
double exposure and real time techniques. The complex
amplitude of the object wave in the initial state is

O1(x,y) = o(x, y) explip(x, y)] (2.6)
where o(x, y) is the real amplitude and ¢(x, y) is the phase of
the object wave.

Optical path changes due to deformations of the object
surface can be described by a variation of the phase from
¢ to ¢ + Ap. Ag is the difference between the initial and
actual phase, and is called the interference phase. The complex
amplitude of the actual object wave is therefore denoted by

Ox(x,y) = o(x, y)expli(p(x, y) + Ap(x, y)]. (2.7

The intensity of a holographic interference pattern is
described by the square of the sum of the complex amplitudes.
It is calculated as follows:

1(x,y) =101+ 02> = (01 + 02)(01 + 0r)*

= 20%(1 + cos(Ag)). (2.8)

Equation (2.8) describes the relation between the intensity
of the interference pattern and the interference phase, which
contains the information about the deformation.

It is not possible to calculate the interference phase
distribution correctly from one single fringe pattern, because
the cosine is an even function (cos 30° = cos —30°) and the
sign of the argument is not determined unequivocally. In most
practical cases distortions have to be considered in addition.
The interference pattern is superimposed by speckle noise
and the brightness of the pattern varies due to the profile of
the illuminating laser beam. Therefore several techniques
have been developed to determine the interference phase by
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Figure 3. Definition of the sensitivity vector.

recording additional information. The most commonly used
techniques are the various phase-shifting methods [100-102].
Three or more interferograms are reconstructed with mutual
phase shifts. The interference phase is calculated from these
phase-shifted intensity distributions.

The interference phase is the key to calculate quantities
representing the object under investigation. These are the
displacement vector field of the surface in the case of opaque
bodies or refractive index changes within transparent media.
A third application of HI is to measure the shape of bodies
(contouring). In the following we describe the application
of HI to measure surface displacements. For a detailed
description of the other applications we refer to the literature,
see, for example, [100].

The relation between the measured interference phase and
the displacement vector field d (x, y, z) of the object surface
under investigation is given by the following equation [100, p
72], [103]:

21 - - 27 = -
Ap(x,y) = Td(x, v, 2)(b—s) = Td(x, y.2)S (29

where b and § are unit vectors in the illumination and
observation directions, see figure 3. The vector S is called
the sensitivity vector. The sensitivity vector is defined only
by the geometry of the holographic arrangement. It gives
the direction in which the set-up has maximum sensitivity.
At each point we measure the projection of the displacement
vector onto the sensitivity vector. Equation (2.9) is the basis
of all quantitative measurements of the deformation of opaque
bodies.

In the general case of a three-dimensional deformation
field equation (2.9) contains the three components of d as
unknown parameters. In this case three interferograms of the
same surface with linear independent sensitivity vectors are
necessary to determine the displacement. In many practical
cases it is not the three-dimensional displacement field, but the
deformation perpendicular to the surface, which is of interest.
In this case an optimized set-up with parallel illumination and
observation direction is used (5 = (0,0, 2)). The component
d, is then calculated from the interference phase by

A
d, = Ap—

o (2.10)

A phase variation of 27t corresponds to a deformation of 1 /2.
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Figure 4. Digital holography: (a) recording, (b) reconstruction.

3. Digital holography

3.1. General principles

A general set-up for digital recording of off-axis holograms
is shown in figure 4 [18]. A plane reference wave and the
wave reflected from the object are interfering at the surface
of a CCD. The resulting hologram is electronically recorded
and stored. The object is, in general, a three-dimensional body
with diffusely reflecting surface, located at a distance d from
the CCD.

In optical reconstruction the virtual image appears at the
position of the original object and the real image is formed also
at a distance d, but in the opposite direction from the CCD, see
figure 4(b).

The diffraction of a light wave at an aperture (in this case
a hologram) which is fastened perpendicular to the incoming
beam is described by the Fresnel-Kirchhoff integral [105, p
266]:

exp(—i3tp)

rem=y [ [ heorenE2l
—o0 J—00 P
x (3 +1cosf)dxdy (3.1)

with

p=y@ =2+ (y—m?+d

where h(x, y) is again the hologram function and p is the
distance between a point in the hologram plane and a point
in the reconstruction plane, see figure 5. The angle 0 is also
defined in figure 5. For a plane reference wave R(x,y) is
simply given by the real amplitude:

(3.2)

R=r+i0=r. (3.3)

The diffraction pattern is calculated at a distance d behind
the CCD plane, which means it reconstructs the complex
amplitude in the plane of the real image.

Equation (3.1) is the basis for numerical hologram
reconstruction. Because the reconstructed wavefield I'(€, n)
is a complex function, both the intensity as well as the phase
can be calculated [19]. This is in contrast to the case of optical
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hologram reconstruction, in which only the intensity is made Numerical

visible. This interesting property of digital holography is used
in digital HI, see section 4.

There are a few slightly different formulae of the Fresnel—
Kirchhoff integral in the literature, which differ, for example,
by the sign of the argument of the exponential function
(exp(+i...) instead of exp(—i...)). However, with the ‘+’
sign as well the same expressions result for the intensity and
magnitude of the interference phase used in digital HI.

The set-up of figure 4 is often used in digital holography,
because a plane wave propagating perpendicularly to the
surface of the CCD can be easily arranged in the laboratory.
Another advantage is that for this geometry the reconstructed
real image has no geometrical distortions (this can be derived
from the holographic imaging equations, see, for example,
[100, pp 45-8]). Other recording geometries are discussed
in section 3.6.

3.2. Reconstruction by the Fresnel transformation

3.2.1. Fresnel approximation. For x and y values as well as
for & and n values which are small compared to the distance d
between the reconstruction plane and the CCD expression (3.2)
can be replaced by the first terms of the Taylor series:

LE-t -0 1E -0 -0Y

—d
p 2d 2d 8 PE
2 2
%d+($ X) +(n y) (3.4)
2d 2d

with the additional approximation cos # & 1, and by replacing
the dominator in (3.1) by d the following expression results:

i ) [T [T Ree v
mexp —IT ﬁwﬁw (-x9y) (x’y)

x GXP[—i;—d((S -+ - y)Z)] dxdy.

& n =

(3.5)

If we carry out the multiplications in the argument of the
exponential under the integral we get

i _~2_7T T2 2
d exp( 1)\ d)exp[ lkd@ +7 )]
<[ [ R(x,ym(x,y)exp[—if—d(x?+y2>]

._l( )
X i &+ .
exp . x&+yn)|dxdy

NGRS

(3.6)

lens

—
_
==
— /
Aﬁ///

Virtual image

Image plane
d d

Figure 6. Reconstruction of the virtual image.

This equation is called the Fresnel approximation or Fresnel
transformation. It enables reconstruction of the wavefield in a
plane behind the hologram, in this case in the plane of the real
image. The intensity is calculated by squaring

1. ) =ITE P 3.7
The phase is calculated by
_ Im[I"(§, )]
¢(&,n) = arctan 7Re[l’($, D] (3.8)

where Re denotes the real part and Im the imaginary part.

Reconstruction of the virtual image is also possible by
introducing the imaging properties of a lens into the numerical
reconstruction process [20, pp 35-6]. This lens corresponds
to the eye lens of an observer watching through an optically
reconstructed hologram. In the simplest case this lens is
located directly behind the hologram, figure 6. The imaging
properties of a lens with focal distance f are considered by a
complex factor [99, p 259]

_ T2 2
L(x,y)= exp|:1)\f(x +y )]. 3.9)

For a magnification of 1 a focal distance of f = d/2 has
to be used. The complex amplitude in the image plane is then
calculated by

i 2 LT, o
I'E,n = 77 &P —1707 exp[—lm(f +n9)]
<[ R(x,y)L(xm)h(my)exp[—if—d(xZ+y2)}
2
X exp[lg(xé + yn)i| dxdy
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(E +7 )]

= LT 2 2
X /;oo /;oo R(x, y)h(x,y) exp|:+1)Ld(x +y )]

|:’2—7T( + )]d d (3.10)
X exp 1Ad x&+yn) [dxdy. .

Compared with (3.6) only the sign of the argument of the first
exponential function in the integral changes.

3.2.2.  Discrete Fresnel transformation. For digitization
of the Fresnel transform (3.6) we introduce the following
substitutions [13]:

(3.11)

Herewith (3.6) becomes

L, pn) =

x/;,o /;oo R(x,y)h(x,y)exp[_if_d(xz+y2)]

x expli2m (xv + yu)]dx dy.

—dexp[ iTAd(V? + 1 )]

(3.12)

The factor exp(—i2m /Ad) is omitted, since it only affects
the overall phase. It has no effect on the intensity and
interference phase of digital HI.

A comparison of (3.12) with the definition of the two-
dimensional Fourier transform shows that the Fresnel approx-
imation is, up to a spherical phase factor, the inverse Fourier
transformation of R(x, y)h(x, y) exp[—im/Ad (x> + y?)]:

C'v,n) = ;dexp[ iTAd(V? + u?)]

”_I{R(x y)h(x, y)exp[—l (x2 +y2)]} (3.13)

The function I" can be digitized if the hologram function
h(x,y) is sampled on a rectangular raster of N x N points,
with steps Ax and Ay along the coordinates. Ax and Ay are
the distances between neighbouring pixels on the CCD in the
horizontal and vertical directions. With these discrete values
the integrals of (3.12) are converted to finite sums:

I'm,n) = —dexp[ imad(m>Av? + n>Au?))
N—1N-1
xRk, Dhk, l)expl:—l—(szx +12Ay? )]
k=0 1=0

x exp[i2m (kAxmAv + [ AynAp)] 3.14)

form=0,1,..., N—1;n=0,1,...,N — 1.
According to the theory of Fourier transform among Ax,
Ay and Av, Ap the following relation exists [106]:

1 1
Ay = ——; Ap = ——. 3.15
" Nax H="Nay (.15
After re-substitution:
rd rd
AE = ——; Anp=——. (3.16)
N Ax NAy
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Figure 7. Digital hologram.

With the use of these equations (3.14) converts to

. m2 I’l2
2 p[_lﬂd<N2Ax2 " NZAy2>]
—1N-1
X Rk, Dh(k, l)exp[—l—(szx +12Ay? )]
k =0

xexp|i2r| — + —
N N

This is the discrete Fresnel transform. The matrix
I' is calculated by multiplying R(k,!) with h(k,l) and
exp[—in/(Ad) (k> Ax*> +?Ay*)] and applying an inverse
discrete Fourier transform to the product. The calculation is
done most effectively using the fast Fourier transform (FFT)
algorithm. The factor in front of the sum is only affecting the
phase and can be neglected for most applications.

A typical digital hologram is shown in figure 7. The
hologram is recorded with the geometry of figure 4. The object
is placed d = 1.054 m from the CCD array of 1024 x 1024
pixels with pixel size Ax = Ay = 6.8 um. The wavelength
is 632.8 nm. The numerical reconstruction, according to (3.6)
resp. (3.17), is demonstrated in figure 8. A real image of the
cube used as the object is noticeable. The bright square in the
centre is the undiffracted reconstruction wave (zero order) and
corresponds to the first term of the right side of (2.5). Because
of the off-axis geometry the image is spatially separated from
the zero-order term. The virtual image is out of focus in this
reconstruction.

An interesting property of holography is that every part of
a hologram contains the information about the entire object.
This is demonstrated in figures 9 and 10, where only 512 x 512
pixels and 256 x 256 pixels are used for reconstruction. The
reduction of the pixel number leads to a reduction of the
resolution of the reconstructed image. This corresponds to
an increase in speckle size due to aperture reduction in optical
hologram reconstruction.

I'(m,n) =

2

Il
<)

(3.17)
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Figure 8. Numerical intensity reconstruction.

Figure 9. Reconstruction with only 512 x 512 pixels.

According to (3.16) the pixel distances in the reconstructed
image, A§ and An, are different from those of the hologram
matrix. At first sight it seems to lose (or gain) resolution
by applying the numerical Fresnel transform. On closer
examination one recognizes that (3.16) corresponds to the
diffraction limited resolution of optical systems: the hologram
is the aperture of the optical system with side length N Ax.
According to the theory of diffraction at a distance d behind
the hologram a diffraction pattern develops. A& = Ad/N Ax
is therefore the diameter of the Airy disk (or speckle diameter)
in the plane of the reconstructed image, which limits the
resolution. This can be regarded as the ‘automatic scaling’
algorithm, setting the resolution of the image reconstructed by
a discrete Fresnel transform always to the physical limit.

Figure 10. Reconstruction with only 256 x 256 pixels.

3.3. Reconstruction by the convolution approach

The direct numerical processing of the Fresnel-Kirchhoff
integral (3.1) is time consuming. For numerical processing
an equivalent formulation is much more suitable. This
formulation makes use of the convolution theorem and is called
the ‘convolution approach’ within the scope of this article. The
mathematics is well known since the early days of holography.
To our knowledge Demetrakopoulos and Mittra [107] first
applied this way of processing for numerical reconstruction
of suboptical holograms. Later this approach was applied to
optical holography [43]. Following this work the diffraction
formula (3.1) is a superposition integral:

r@,n):/ / hx, Y)R(. y)gE. 0. x. y) dx dy

(3.18)
where the impulse response g(x, y, &, n) is given by

g, n,x,y) = iexp[’izTﬂ\/dz +(x =82+ —n?]
A \/d2+(x7§)2+(y777)2
(3.19)

where again the approximation cosf ~ 1 is used.

Equation (3.19) shows that the linear system characterized
by g(&,n,x,y) = g —x,n—y) is space-invariant: the
superposition integral is a convolution. This allows the
application of the convolution theorem, which states that the
Fourier transform of the convolution of 4 - R with g is the
product of the individual transforms J{AR} and J{g}. So
I"(&, n) can be calculated by first Fourier transforming /4 - R,
then multiplying with the Fourier transform of g, and taking an
inverse Fourier transform of this product. The whole process
requires all three Fourier transforms, which are effectively
carried out using the FFT algorithm.

The numerical realization of the impulse response
function is

RI1
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jexp[ i a2+ (k= 4 ax+ (1 - §)ar2]
skh =73 2 2 -
Ja+ (k=2 ax + (1 - )’ay
(3.20)
The shift of the coordinates by N /2 is on symmetry reasons.
In short notation the reconstruction into the real image
plane is

L& =3¢ R -3}

The Fourier transform of g(k,[) can be calculated and
expressed analytically:

(3.21)

Gn,m)
N2Ax2\2 N2Ay2\2
e |2 \/I_W"* R
A N2Ax? N2Ay?
(3.22)

This saves one Fourier transform for reconstruction:

TE n=3"3* R)-G}. (3.23)
For the reconstruction of the virtual image a lens
transmission factor according to (3.9) has to be considered:
rE =" -R-L)-G}. (3.24)
The convolution approach can be applied also to the
Fresnel approximation [43].
The pixel sizes of the images reconstructed by the
convolution approach are equal to that of the hologram:
AE = Ax; An = Ay. (3.25)
The pixel sizes of the reconstruction are therefore
different from those of the Fresnel approximation (3.16).
Reconstruction of holograms by the convolution approach
result indeed in images with more or less pixels per unit length
than those reconstructed by the Fresnel transform. However,
the image resolution does not change due to the physical limits
discussed at the end of section 3.2.2. The convolution approach
is advantageously applied to reconstruct in-line holograms
from particle distributions within transparent media. In this
case the scale of the reconstructions should be the same for
all reconstruction distances in order to localize particles or
bubbles within the object volume.

3.4. Suppression of the DC term

The bright square in the centre of figure 8 is the undiffracted
reconstruction wave. This zero-order or DC term disturbs the
image, because it covers all object parts lying behind. Methods
have been developed therefore to suppress this term [44].

To understand the cause of this DC term we consider
the hologram formation according to (2.3). The equation
is rewritten by inserting the definitions of R and O and
multiplying the terms:

1(x, y) = r(x, y)*+0(x, y)*+2r(x, y)o(x, y) cos(po — ¢r).
(3.26)

The first two terms lead to the DC term in the
reconstruction process. The third term is statistically varying
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between +2ro from pixel to pixel in the CCD. The average
intensity of all pixels of the hologram matrix is

=
=

1
Iy = —

5 I(kAx,lAy)

(3.27)

~
Il
<)

i

Il
o

r? + 0> now can be suppressed by subtracting this average
intensity 7, from the hologram:

I'(kAx,IAy) = I(kAx,IAy) — L, (kAx,IAy)  (3.28)

fork=0,..., N—1;/=0,...,N — 1.

The reconstruction of I’ results in an image free of the
zero order.

Instead of subtracting the average intensity it is also
possible to filter the hologram matrix by a high-pass with low
cut-off frequency [44].

Another method for suppressing the DC term is to measure
the intensities of the reference wave and object wave separately.
However, this requires greater experimental effort due to the
additional measurements required.

3.5. Spatial frequency limitation

The light-sensitive material used to record holograms must
resolve the interference pattern resulting from superposition
of the waves scattered from all object points and the reference
wave. The maximum spatial frequency, which has to be
resolved, is determined by the maximum angle 6,,,x between

these waves [108]:
2 Gmax
n .
A 2

fmax = —si (329)

Photographic emulsions used in optical holography have
resolutions up to 5000 linepairs per millimetre (Lp mm™").
With these materials, holograms with angles between the
reference and the object wave of up to 180° can be recorded.
However, the distance between neighbouring pixels of a CCD
is only of the order of Ax ~ 10 um. The corresponding
maximum resolvable spatial frequency calculated by

1

fmax = E

(3.30)
is therefore of the order of 50 Lp mm™!. According to (3.29)
the maximum angle between the reference and object wave is
therefore limited to a few degrees. In this case the sine function
in (3.29) can be approximated by the argument

gmax

T

(3.31)

fmax ~

3.6. Recording set-ups

Typical set-ups used in digital holography are shown in
figure 11. In figure 11(a) a plane reference wave according
to (3.3) is used, which propagates perpendicularly to the CCD.
The object is located unsymmetrical with respect to the centre
line. This set-up is very simple, but the space occupied by
the object is not used effectively. In figure 11(b) the plane
reference wave is coupled into the set-up via a beamsplitter.
This allows us to position the object symmetrically. Ata given
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Figure 11. Recording set-ups.

distance d objects with larger dimensions can be recorded.
However, the DC term is in the centre of the reconstructed
image and has to be suppressed by the procedure described in
section 3.4.

In figure 11(c) the reference wave impinges onto the CCD
under an angle «. The reference wave is described by

2
R =exp —1szma .

Figure 11(d) is called lensless Fourier holography. It has
been realized also in digital holography [39]. The point source
of the spherical reference wave is located in the plane of the
object:

R exp(—izT”,/(d2 +x2+ yz))
- V(d? +x2+y?2)

1 2
~ 7 exp<—i7nd) exp(—i;—d(x2 + y2)>.

Again the Fresnel approximation is used for the square
root. Inserting this expression into the reconstruction formula
for the virtual image (3.10) leads to the following equation:

(3.32)

(3.33)

LE.n = CeXP[—if—d(%‘z + 772)] I h(x, )} (334)

where C is a complex constant. A lensless Fourier hologram is
therefore reconstructed by a Fourier transform. The effect of
the spherical phase factor associated with the Fresnel transform
is eliminated by the use of a spherical reference wave with the
same curvature.

If objects with dimensions larger than a few centimetres
are be recorded by CCDs, the recording distance d increases
up to several metres. This is not feasible in practice.
Therefore set-ups have been developed which reduce the
object angle in order to make the spatial frequency spectrum
resolvable [32, 109]. An example of such a set-up is shown in
figure 12. A divergent lens is positioned between the object and
the target. This lens generates a reduced virtual image of the
object in a distance d’. The object wavefield is not recorded,
but rather that of the reduced virtual image. The reference
wave is superimposed by a beamsplitter.

3.7. Phase-shifting digital holography

The amplitude and phase of a light wave can be reconstructed
from a single hologram by the methods described in the
preceding sections. A completely different approach has been
proposed by Skarman [56, 57]. He used a phase-shifting
algorithm to calculate the initial phase and therefore the
complex amplitude in a certain plane, e.g. the image plane
or any other plane. With this initial complex amplitude it is
possible to calculate the wave field in any other plane using the
Fresnel-Kirchhoff integral. Later this phase-shifting digital
holography was improved and applied to opaque objects by
Yamaguchi et al [58-60, 62—-64].

The principal arrangement for phase-shifting digital
holography is shown in figure 13. The object wave and
reference wave are interfering at the surface of a CCD.
The reference wave is guided via a mirror mounted on a
piezoelectric transducer (PZT). With this PZT the phase of
the reference wave can be shifted stepwise. The principle of
phase-shifting interferometry is to record several (at least three)
interferograms with mutual phase shifts. The object phase ¢
is then calculated from these phase-shifted interferograms. We
will not repeat here the various phase-shifting algorithms, but
refer the reader to the literature, see, for example, [100]. The
real amplitude o(x, y) of the object wave can be measured from
the intensity by blocking the reference wave.

As a result the complex amplitude

21
O(x,y) = ol(x, y)GXp<+lT§00(x, y)) (3.35)
of the object wave is determined in the recording (x, y) plane.

Now we can use the Fresnel-Kirchhoff integral to
calculate the complex amplitude in any other plane. An image
of the object is calculated by introducing an artificial lens with
f = d/2 according to (3.9) at the recording plane. With the
Fresnel approximation the complex amplitude in the image
plane is then calculated by

_ LT 2 2
F(&,n)_Cexp[ lkd@ +77)]

X /;C: /;C: O(X,)’)L(x,y)exp[_if_d(xz+y2):|

2% (xé + yn) | dxd
XexP_]Ad x&+yn)|dxdy

=Cexp_—i1<52+n2>} [ [

L Ad —00 J —00

[, 2

X exp _+1m(x +y )] exp[lm(xé + yn)i| dx dy.
(3.36)

O(x,y)
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Figure 13. Phase-shifting digital holography.

The advantage of phase-shifting digital holography is
that the reconstructed image is free from the zero-order term
and from the conjugate image. However, the price for this
achievement is the higher technical effort: phase-shifted
interferograms have to be generated, restricting the method
to slowly varying phenomena with constant phase during the
recording cycle.

4. Digital holographic interferometry

4.1. Deformation measurement

In conventional HI two waves, scattered from an object in
different states, are superimposed. The resulting holographic
interferogram carries information about the phase change
between the waves in the form of dark and bright fringes.
However, as described in section 2.2, the interference phase
cannot be extracted unequivocally from a single interferogram.
The interference phase is usually calculated from three or more
phase-shifted interferograms by a phase-shifting algorithm.
This requires additional experimental effort.

In digital holography a completely different way of
processing is possible [19]. In each state of the object a
digital hologram is recorded. Instead of superimposing these
holograms as in conventional HI using photographic plates, the
digital holograms are reconstructed separately according to the
theory of section 3. From the resulting complex amplitudes
I'1 (€, n) and ', (&, n) the phases are calculated:

ImTIy (&, n)

4.1
ReT' (&, n) @D

@1(§, n) = arctan
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ImTI» (&, n)
Rel (&, 1)

The index 1 denotes the first (undeformed) state and the
index 2 is for the second (deformed) state. In (4.1) and (4.2) the
phase takes values between —r and 7, the principal values of
the arctan function. The interference phase is now calculated
directly by subtraction:

Ap = Q1 — @2
01— @2+ 27

@2(€, n) = arctan 4.2)

if o1 > ¢

. (4.3)
if o1 < 2.

This equation permits the calculation of the interference
phase directly from the digital holograms. The generation and
evaluation of an interferogram is not necessary.

An example of digital HI is shown in figure 14. The
upper left and upper right figures show two digital holograms,
recorded at different states. Between the two recordings the
knight has been tilted by a small amount. Each hologram
is reconstructed separately by a numerical Fresnel transform.
The reconstructed phases according to (4.1) and (4.2) are
depicted in the two figures of the middle row. The phases
vary randomly due to the surface roughness of the object.
Subtraction of the phases according to (4.3) results in the
interference phase, lower left figure.

The interference phase is indefinite to an additive multiple
of 2. The information about the additive constant is already
lost in the holographic interferometric process. This is not a
consequence of digital HI, but is valid for all interferometric
methods using wavelength as a length unit. To convert
the interference phase modulo 27 into a continual phase
distribution, one can apply the standard phase unwrapping
algorithm developed for conventional HI or ESPI. These phase
unwrapping procedures are therefore not repeated here, instead
we refer to textbooks (see, for example, [100, pp 161-70]). The
unwrapped phase image of the example is shown in the lower
right picture of figure 14. This plot corresponds to the object
displacement, because the sensitivity vector is nearly constant
and perpendicular over the whole surface.

An application of digital HI is the measurement of
transient deformations due to impact loading [32, 109],
because only one single recording is necessary in each
deformation state. As an example, we present the transient
deformation field of a plate made of fibre-reinforced material.
The dimensions of the plate are 12 cm x 18 cm. Therefore
the optical set-up of figure 14 is used for hologram recording
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Figure 14. Digital HI (from [110]).

in order to reduce the spatial frequencies. A pneumatically
accelerated steel ball hits the plate and causes a transient
deformation. Two holograms are recorded: the first exposure
takes place before the impact, when the plate is at rest.
The second hologram is recorded a few microseconds after
the impact. The holograms are recorded by a pulsed ruby
laser with a pulse duration of about 30 ns. The second
hologram recording is triggered by a photoelectric barrier,
which generates the start signal for the laser after the ball has
crossed. As a typical result, the interference phase modulo 27
and the unwrapped phase are shown in figures 15 and 16. The
unwrapped phase corresponds to the deformation field 5 us
after the impact.

4.2. Shape measurement

HI can produce an image of a three-dimensional object
modulated by a fringe pattern corresponding to contours of
constant elevation with respect to a reference plane [99, p 246].
The shape of the object is determined by these contour fringes
and by the geometry of the recording set-up. Holographic
contour fringes can be generated either by changing the
recording wavelength (two-wavelength method), by varying
the refractive index of the medium of light propagation
(two-refractive index method) or by changing the angle of
illumination.

18 cm

Figure 16. Unwrapped phase, corresponding to deformation 5 s
after the impact.

For shape measurement by the two-wavelength method
two holograms are recorded with different wavelengths A; and
Az. In conventional HI both holograms are recorded on a single
photographic plate. Both holograms are now reconstructed by
one wavelength, e.g. A;. Therefore two images of the object
are generated. The image recorded and reconstructed by A; is
an exact duplicate of the original object surface. The image
which has been recorded with A, but is reconstructed with A,,
is slightly shifted in observation direction with respect to the
original surface. These two reconstructed images interfere.
For the special case of parallel illumination and observation
directions which do not vary across the surface the following
equation results for the height steps between neighbouring
fringes:

AlAg A
AH= —"—=—.
20 — Ap| 2
This equation is valid for small wavelength differences. The
expression

4.4)

= Mk (4.5)
(A1 — Az
is called the synthetic or equivalent wavelength.
The concept of two-wavelength contouring has been
introduced also into digital holography [20, pp 59-60],
[39, 71]. Two holograms are recorded with A; and X, and
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stored electronically. In contrast to conventional HI using
photographic plates, both holograms can be reconstructed
separately by the correct wavelengths, according to the theory
of section 3. From the resulting complex amplitudes I";; (£, n)
and IM;» (€, n) the phases are calculated:

B Im T, (6. )

PG = arctan g oF e (4.6)
B Im Ty, 1)

@.2(§, n) = arctan ReT ) S 4.7

As for deformation analysis the phase difference is now
calculated directly by subtraction:

Pr1 — Pr2
Ap =
{ ©i1 — Qa2+ 21

if o1 = @10

) 4.8)
if o1 < @ao.

This phase map is equivalent to the phase distribution of a
hologram recorded with the synthetic wavelength A. A 2x
phase jump corresponds to a height step of A /2.

One advantage of digital holography contouring is that
both holograms are reconstructed with the correct wavelength.
Distortions resulting from hologram reconstruction with a
different wavelength than the recording wavelength, as in
optical contouring, are therefore avoided. The other advantage
is that the phase map according to (4.8) is calculated directly
from the holograms, without generating an interference
pattern.  Recently digital holographic contouring with a
wavelength difference of AL = 25 nm, corresponding to a
synthetic wavelength of A = 10 um and a depth resolution of
0.5 um (1/20 period), has been demonstrated [112].

A modified contouring approach, which is referred
to as multiwavelength or wavelength scanning contouring,
is to use more than two illumination wavelengths to
eliminate ambiguities inherent to modulo 27 phase
distributions [53, 86, 90, 111]. The advantage of this technique
is that it can also be used with objects that have phase steps or
isolated object areas.

4.3. Measurement of refractive index variations

Another application of digital HI is the measurement of
refractive index variations within transparent media [72, 74].
Effects that influence the refractive index can be investigated
by this method. These effects are, for example, temperature
gradients in fluids or concentration variations in crystal growth
experiments.

A refractive index change in a transparent medium leads
to a change of the optical path length and thereby to an
interference phase between two light waves passing the
medium before and after the change. The interference phase
due to refractive index variations is given by [99, p 217]

b

27
Ap(x,y) = - [n(x,y,2) —noldz (4.9)

I

where no is the refractive index of the medium under
observation in its initial, unperturbed state and n(x, y, z) is
the final refractive index distribution. The light passes the
medium in the z direction and the integration is taken along
the propagation direction. Equation (4.9) is valid for small

R96

Laser

N

Phase
object

CCD

Figure 17. Recording set-up for transparent phase objects.

refractive index gradients, where the light rays propagate along
straight lines. The simplest case is that of a two-dimensional
phase object with no variation of refractive index in the z
direction. In this case the refractive index distribution n(x, y)
can be calculated directly from (4.9). In the general case
of a refractive index varying also in the z direction (4.9)
cannot be solved without further information about the process.
However, in many practical experiments only two-dimensional
phase objects have to be considered.

Figure 17 shows a set-up used in digital HI. The expanded
laser beam is divided into reference and object beams. The
object passes the transparent phase object and illuminates the
CCD. The reference beam impinges directly on the CCD.
Both beams interfere and the hologram is digitally recorded.
The set-up is very similar to a conventional Mach—Zehnder
interferometer. The difference is that the interference figure
is here interpreted as a hologram, which can be reconstructed
with the theory of section 3. Therefore all features of digital
holography, like direct access to the phase or numerical re-
focusing, are available.

As for deformation analysis two digital holograms are
recorded. The first exposure takes place before, and the second
after, the refractive index change. These digital holograms
are reconstructed numerically. From the resulting complex
amplitudes I'y(£, n) and T'»(&, n) the phases are calculated
by (4.1) and (4.2). Finally the interference phase is calculated
by subtracting according to (4.3).

In the reconstruction of holograms recorded by the set-up
of figure 17 the undiffracted reference wave, the real image and
the virtual image are superimposed. This overlapping disturbs
the image. The undiffracted reference wave can be suppressed
by filtering with the methods discussed in section 3.4. The
overlapping of the unwanted twin image (either the virtual
image, if one focuses on the real image, or vice versa) can be
avoided by slightly tilting one of the interfering waves. In this
case the images are spatially separated.

The interferometer of figure 17 is sensitive to local
disturbances due to imperfections in optical components or
dust particles. The influence of these disturbances can be
minimized if a diffusing screen is placed in front of or behind
the phase object. In this case the unfocused twin image appears
only as a diffuse background in the images, which does not
disturb the evaluation. In addition, if a diffuser is introduced,
tilting of the interfering waves is not necessary for image
separation. A disadvantage of using a diffuser is the generation
of speckles due to the rough surface.
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Figure 18. Interference phase modulo 27 of a liquid system
(from [74]).
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Figure 19. Digital holographic microscope.

In figure 18 a typical interference modulo 277 image of a
transparent phase object is shown. The holograms are recorded
with the set-up of figure 17 (without diffuser). The object
volume consists of a droplet of toluene, which is introduced
into the water/acetone liquid phase. The refractive index
changes are caused by a concentration gradient, which is
induced by the mass transfer of acetone into the droplet.

5. Digital holographic microscopy

Another application of digital holography is microscopy,
where the depth of focus is very limited due to the high
magnification. The investigation of a three-dimensional object
with microscopic resolution requires certain refocusing steps.
Digital holography offers the possibility to focus on different
object layers by numerical methods. In addition, the images
are free of aberrations due to the imperfections of optical
lenses. Fundamental work in the field of digital holographic
microscopy has been done by Haddad et al [73].

In order to obtain a high lateral resolution A in the
reconstructed image the object has to be placed near to the
CCD. The necessary distance can be estimated by (3.16). With
a pixel size of Ax = 10 pum, a wavelength of A = 500 nm,

1000 x 1000 pixels and a required resolution of A§ = 1 uma
distance of d = 2 cmresults*. However, at such short distances
the Fresnel approximation is no longer valid. The convolution
approach has to be applied. On the other hand, the resolution
of an image calculated by this approach is determined by the
pixel size of the CCD, see (3.25). Typical pixel sizes for high
resolution cameras are in the range of 10 um x 10 um, too
low for microscopy. Therefore the reconstruction procedure
has to be modified [104].

The lateral magnification of the holographic reconstruc-
tion can be derived from the holographic imaging equations.
The lateral magnification of the reconstructed virtual image
is [99, p 25]

M = [l + ih 4 5.1
where d, and d/ describe the distances between the source
point of a spherical reference wave and the hologram plane in
the recording and reconstruction process, respectively. A, and
A, are the wavelengths for recording and reconstruction. The
reconstruction distance d’, i.e. the position of the reconstructed
image, can be calculated by

f=[1+21_izyﬁ
d —ad dor

If the same reference wavefront is used for recording and
reconstruction it follows that d’ = d. Note that d, d’, dr and
dr' are always counted positive in this work.

Magnification can be introduced by changing the
wavelength or position of the source point of the reference
wave in the reconstruction process. In digital holography the
magnification can be easily introduced by changing d’. If the
desired magnification factor is determined the reconstruction
distance can be calculated using (5.1) and (5.2) with A} = A;:

(5.2)

d =dM. (5.3)

The magnification can be introduced by placing the source
point of the reference wave at a distance

(5.4)

The reference wave is now described by

.272- 7. !/ !
R(x,y) = exp<—17\/d,2 P a2+ (y — y,)2> 5.5)

where (x/, y., —d/) is the position of the reference source point
in the reconstruction process.

A set-up for digital holographic microscopy is shown in
figure 19. The object is illuminated in transmission and the
spherical reference wave is coupled to the set-up via a semi-
transparent mirror. Reference and object waves are guided via
optical fibres. A digital hologram of a USAF target recorded
with this set-up is shown in figure 20. The corresponding
intensity reconstruction is depicted in figure 21. The resolution
is about 2.2 um. We want to emphasize that, due to the
change of the reference source point in the reconstruction
process, aberrations are introduced, which limit the achievable
resolution.

4 This is only an estimate, since equation (3.16) is not valid at short distances.
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Figure 20. Digital hologram (from [104]).

Phase-shifting digital holography has also been applied
to microscopy [59, 60, 63]. In this case an ordinary
microscope is used for image generation. The reference wave
is superimposed in the image plane. After generation of the
initial phase by phase-shifting, as described in section 3.7, one
can focus on other planes by numerical methods. The quality
of the refocused images can be improved if a source of partial
spatial coherence is used for hologram recording [61].

6. Concluding remarks

Digital holography has been established as an important
scientific tool for applications in imaging, microscopy,
interferometry and other optical disciplines. The method is
characterized by the following features:

e No wet-chemical or other processing of holograms.

e From one digital hologram different object planes
can be reconstructed by numerical methods (numerical
focusing).

e Lensless imaging, i.e. no aberrations by imaging devices.

e Direct phase reconstruction, i.e. phase differences in
HI can be calculated directly from holograms, without
interferogram generation and processing.

Digital HI is a competing technique to electronic speckle
pattern interferometry. ESPI has been used for many years
in real time, i.e. the recording speed is only limited by the
frame rate of the recording device (CCD). In contrast to ESPI,
digital holography needs time for running the reconstruction
algorithm. However, the reconstruction time has been reduced
drastically in recent years due to the progress in computer
technology. Digital holograms with 1000 x 1000 pixels can
nowadays be reconstructed almost in real time. It may be
expected therefore that the acceptance of digital holography
will increase in the future.
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Figure 21. Numerical reconstruction with microscopic resolution.
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