

（6）
Digital Representation of Three－Dimensional Surfaces
by Triangulated Irregular Networks（TiN）．KeVIs）lu．
by

$$
1110=+n
$$

Thomas K．／Peucker．Robert J／Fowlew Jones J．／Littles，David M．Mank

Sinon Fraser Univeroity Burmaby，B．C．，Carada
1）T＝hnizal reptis
(15) Nandx4-リース-8:7。
with an introduction
provided by
Eors Do Zezalek Office of Raval Researen Arlington，VA， 22217 USA

$$
\text { (14) } T-1 x
$$

With 9 Eigures anc i aprendizes Approved for pubifc release；distribution unlimitad．

TECHNICAL REPORT NO LO RREVISED\} CONTRACT NOOO34－75－\｛－08B6 \｛NR 3A9－173\} OFFICE OF NAVAL RESEARCH，GEOGRAFHY PROGRAMS 2976
SECOND FRINTING 2977，THIRD PRINTING 2983

Address of the first author:
Dr. Thomes K. Pouciker Department of Geography Simon Fraser University Burnaby, British Columbia J5A 1S6 carada

Addreas of sponsoring agency:
Geograpiny Progzams
Office or Naval Rescarch Arlington, Virginia, 22217 USA
telephone: (202) 692-4125 autovon: 222-4125

TABLE OF CONTENTS

Page
Introduction 4
Brecutive Sumary 5
Collection of Abstracts 8
Preface 10
1.: General Features of the System 12
1.1: A Comparison of the TIN and Regular Grid via an Example 13
1.2: Quantification of the Comparison 18
1.3: Precision of the Regular Grid
(espectally DMA DIM's) 19
2.: Sampling Constraints and Methods of Preparation of Triangulated Irregular Networks (TiN) 21
2.11 Properties of Representational Methods 22
2.2: The Samping Theorem 22
2.3: Surface Storage by Polynomial Patch Systems. 23
2.4: What are Relevant Features 24
3.: Manual vs, Automated Techniques for the Creaition of TIN's; Intuition and Pattern Recognition 25
3.1: Manual Methods 26
3.2: A Maive Approach to Complete Automation or Trianguiation 27
3.3: Semi-Automated Techniques 29
3.4: Second Generation Automated Triangulation Techoiques 29

4.: Higher-Level Data Structures and

Topological Considerations 30
4.1: The Ridge and Channel Structure 31
4.2: Ertracting the Ridges and Channels iram a Regular Grid 32
4.3: Greysukn's Method for Characterizing Surface Geometry 38
5.: Applications of the Triangulated Irregular
Network 40
5.1: Coordinate Independence and Generalized Tracking 41
5.2: Data Display Routines 42
5.3: Classes of Applications 43
6.: Future Research 45
References 47
Appendices 51
Appendix I: Techndeal Reports, "Geographic Data Structures" Project 52
Appendx II: Computer Programs and Subprograms 55
Appendix III: Comparison of TII's and Grids for Estimating Geomorphometric Parameters. 58
Appendix IV: Triangulated Scan ine Coherence 60-63

INTRODUCTION
provided by
zans Dolezalek
Office of Neval Researein
consisting of
EXECUTIVE SUMMARY page 5
ABSTRACTS FOR CHAPTERS \downarrow TO 8
PREFACE 10
EXECUTIVE SUMMARY

If we have a good map, we can use it for many purposes. We pet an overview O: a landscape by just lookirg at it. We can use the contour lines to zet an impression of the topography of a region (the reijef), We can obtain a dif:erent view of the rellef oy deriving sets of vertical cross sections with height profiles, We can determine with same effort which connection between two points has the smailest maximum slove, we ray calculate which perts of a terrain remain invisible fram one or several look-out points. Considering each point of a ridge as the apex of an angle, one side points verticaily towawards into the earth. The points where the other sicie touches sround can be derived. They ine out a gart of a terrain which will be in shadow or quasi-shadow for a given "source." If a map contains reliable sub-rater botton contours, ve mey use it to lind out at which part or a long stretch of beach certain predetermined conditions of beach slope are maintained. . ee may derive skylines or horizons as seen not only from points at the surface but aiso from a pilot in an aircraft fying in some height over the terrain of the map. All these and many more procedures, which may have significance for a large host of civilian and rilitary problems, are possible; the quaiity of the result depending on the resolution and the accuracy of the map, - if we do zot have a map but can send an airplane out to investigate a certain terrain, the opposite task is given: we can transform what the pilot sees into a map; or we can get some answers to questions posed above directiy from the pilot in some form other than a map.

In most eases, such eerivations require much time, often very much time, if they are done by hand. In order to speed them up, machine processing is envisioned, and it is believed that as a base for it a digital presentation of the terrain will be necessary.
\therefore simiiar dizitai presentation may, then, be acivartageous aiso for scme purposes applyting relationships between three variables of any kinc, e.g., lakoratory resuits, environmental measuring results - all kinds of functions which cannot be expressed in a closed analytical form.

The basic question to be solved for the provision of such a aigitai presenjation of three-dimensional surfaces is given by the necessity to select a sfstem which requires a minimum amount of complier storage, machine time for tice acquisition of the digital presentation, and minimum computer :ine Sor any procedures to which that presentation may then be applied - as indicated by the listing of possibilities above and including the actian generation of a map or some other form of Alsplay,
dpparentiy, a regilar grid in Cartesian coordinates is the simplest apprcach. If we have the x, y, and z ralues of all points, we have the surface complejeiy assessed. The problem is that we never shail have aid points so that we tave to dectie how many we want to get. Tryig to implenent this, ve aurcicir_inc

out that with every cossibie seiection, we shaiz heve too many points in some cases and too few in others, and both cases wili generainj hapren within the same study area. Consequently, we both use more computer than would actually be necessary and do not obtain the ontimum sccurncy and resolution, why is this so: Because most of the reiations between three variables which cannot well be expressed by a closed anelytical icm, are or an irregular nature, It follows that an irreguiar system is better E゚: thar the Cartesian with its extreme regularity, while this is ciear, :t is by no means certain that such an irregular system riil not jose 'nsurmountable dificiculties of other kinds.

The content of the present document is dedicated to a demonstration that there are large difficulties, but that they can be overcome - with the result that the "Triangulated Irregular Network" anc the higher-level data structures which are derived in connection with ic, provide means to digitize three-dimensional suriaces in a significantly more economic zorm, calied the "Geographic Data Structure."

Tc convey a simplified concept about a possibility to epproach such a task, we may envision putting a horizontal triangle under a hilly or mountainous area of the earth's surface, and locate the highest point (e.g., hilitor) above it. We then get a triangular pyramid as the iirst rough approximation of the terrain. To refine it to a second approximation, we ask for the highest (or lowest) point above (below) each c : the three sices of that premid and in this way construct three additional triangular pyramics on the original one. For a third approximation, the same procedure is applied to the $3 \times 3=9$ sides of tie additional pyramids and so on, - The other apprcaci leading to the higher-level data structures mentioned above, starts from the natural leatures of the terrain, such as peaks, passes, and pits, ridges and channels, breaks in the slopes, etc. and uses them Ecr terrain presentation in a digital manner.

Ir section 5.3 .2. , it is stated that the structure developed by the ausiocrs is escecially well suited to be applied to systems which involve more than three dimensions. It is predicted that the gain in economy by usin. in inis structure is even increasing with the number of edmensions invoived.

The present decument has been written with the educated Iayman in mind who ass some knowiedge about computers and about digital carthography, but its essential contents shoura be understandable slso it that particular expertise is lacking. In its chapter 5 , applications of the systems to the general purposes 0: digitai modeling of three- or more dimensionel surfaces are discussed. The authors do not consider in detail applicetions to probiems in public ilife, civilian or military, whisk could be attacked by this method. That is iargeiv ieft to the imagination of the reader, in chapter 6, however, one special problem of particular interest to the
sponsoring agency of the $\mathrm{J} . \mathrm{S}$. government is briefig indicated: a Coastal Yodeling System.

A study of the collection of abstracts of the indiridual chapters which is following this Jxecutive Sumary gives information to decide on a more careful investigation of the whole cocument.

Woris is still in orogress. It has been demonstrated, bovever, that. the large potential of the new method is indeed existing as predicted, and no serious obstacles have been sound. mis new method, because of its potential to signilicantiy shorten ali types oi computer requirements, opens up new avenues in the fabrication and application of maps, indeed opens up a new Eleld - "carthographic technology," with practical applications even now hardiy predictable. It may also find revolutionary ways in the treatment of other three- or more iimensionai variajinns if jifsias, ミニcphysics, ciemistry, biology, and other ilelds.

For the expert who wants to read more on the new system, Appendix I provides a list of other reports, Aprendix II Iists the Programs and subroutines which have been developed so iar for this system. Appendices III and IV give some more technical details.

Abstracts for the Chapters 1 to 6

GHAPTER 1: GENERAL FEATURES OF THE SYSTEM
In order to lead the reader to a description of the new system, we start out with a comparison of it with the jamilior tepe of the rectangulare, regulare grid. In this way, specijic traits of the new system are easily recognized. After a general comparison using the New York Bight as the study object in section 1.1, that comparison is quantified by applying a method originally developed for another study crec in Eritish Columbia (section 1.2). Precision, of course, plays an essential role in each quantification; thus the precision of the sour:es for the data used is discussed in section 1.3. Eiere, information is provided on the accuracy requirements of gecgraphic maps used as sources for termain digitizing; and the fact inat digital jermain mocieis often are needlessiy redundiant is pointed out quantitatively.

CHAPTER E: SAMPLING CONSTRAINTS AND METHODS OF PREPARATION OF TRIANGULATED IRREGULAR NETUORKS

As pointed out in the preface, the maman approach" for termain description provides the possibility to delineate the most important features quickly and with little effort; the effort wizi increase if more ietaii (higher resolution) is wanted. Basically, the same applies to the Tricngulated Irregular Network method. This is to be discussed inter in this doccoment but will become clear only if we first negotiaje ine fact that the degrse of sophistication of the techniques applied in sconpling and triangulation will affect the aceumacy of the Trianeulated Irregular Network. That fact is discussed in this chapter 2. This involves a discussion on data sources vinich have been used in the content
of this and similar methods. At the end, the importance of filterine surface ietails with regerd to the ultimate use of the model is emplained.

CHAPTER 3: MANUAL VERSUS aUTOMATED TECHN=QUES FOR THE CREATION OF TRIANGULATED IRREGULAR NETUORKS: INTUITION AND PATTERN RECOGNITION

In this chapter 3, the basic description of ine Tricnguzated Irregular Network is concluded by a discussion of the varicus methods to construct the TIN frim other sources. Mornal, hybria and some still naive automated techniques and their essentiai capabilities are descrized.

GHAFTER 4: HIGHER LEVEL DATA STRUCTURES AND TOPOLOGIGAL CONSIDERATIONS

A "second" data structure is developed so-to-speak "on top" of the Triangulated Imegutar Vetwork. This is done because the TIN alone does not provide easy access to a data base - a proilem if the data base is large. - The second structure, basically a midge-and-channel structure, represents the surjace in its general fectures, and semes as a kind of airectory into the surface. It is discussed in this chapter 4 together with methods for the extraction of the surface features (ridges, channels; peaks, pits, passes; slopes, breaks, flats).

CHAPTER 5: APPLIGATIONS OF THE TRIANGULATED IRREGULAR NETHORKS

In this chapter 5, appiication of the total Gecgrapinic Data Structure (GDS) and/or of its parts, the Triangulated Irreguicer Vetwork (TIV) and the $\begin{aligned} & \text { igher Level Date Structures are discussed. Unaier "cpplication" is }\end{aligned}$ urcerstood an application for genera? purposes of digital modeling (inclucing extraction, calculation tasks, dispiay, eto.) of threedimensioncl surfaces. - The authors do not deal itith ary detailed deseription of problems in public life, civilian or militare, which can best be approached by iigital methods of this kind; only some hirits are given in this regard.

CHAPTER b: FUTURE RESEARCH

In this document, tasks which are now being implemented are mentioned several times. Work in the near future will, of ccirse, concentrate on these. The next step is intended to bring the GDS closer to actual tinsk in the coastal envirorment i_{j} suitable bases for such tasks can je ficunci. It is assmed that as a result of fixther discussions - in particuiar scme based on tine content of cincpter 5 - fintiner development towaris speciforic appitations will ie required.

PREFACE

Abstract

Empression of relationsinios jetween 3 (or more) variailes in form of numbers of otiner mathematical empressions is a mociern recuirement for adequate forms of transmission, storage, display and calculation of yarious tupes of information, e.g., on terrain. A man describing a landscape is usirg an approach which is different from that used bu a machine transmitting a map of that landscape. A new sustem of digital roprosenitaition of three-dimensiona? surfaces is being described whicin attempts so combine the advantages of those two approaches. It tooks amplicajed at itirst glance but it is more economical than the systems now in use. In aditition to providing a better metnod to digitize gecgrapincal topograpiny, it can, in principie, be applied to any reiation betweer three yariables.

Simple (or complicated) mathematical relations between three (or =ore) variables are best stored in analytieal form by writing down in an equation what the function f in the relation $z=f(x, y)$ exactiy is. From that anaiytic storage graphical eisplays can be derived (manualiy or by computer) in several difierent forms; e.g. as a trily three-dimensional relief made of plaster, cardboard, etc., as a contour map, as a series of cross-section profiles, as a hologram, as a series of "pictures." Also, from the anaiytieal form, calculations can be zade to provide answers to specific questions, e.g. what are the maxima and minims of one rariable (e.g, height in tems of other variables e.g. location); the steepest slopes; the largest areas x, y with no variation in z larger than a given threshold; the whole surface area or the volume under a certain z value within a given x and y range, and so on.

If relations between three (or more) variables cannot be rep-esented with cesired accuracy by any analytical expressior, the storege, dispiay ard colculation problems become more severe, this is sometimes the case witi resuits of laboratory experiments, and is mostiy so with data from observations and measurements in the ifild, To give just one examele for tine iavzer case: the rariation in time of a temperature prodine in the atmosphere: $T=E(h, t)$.

The best known case is, of course, that of the zeographis suriace, the sopograpiny or crography of the Farth, Without forgetting gbout the wiser aspects indicated in the preceding paragraph, we siall concentrate in this document on these aspects of digital cartography, Naively, we hay envisior. two possible aperoaches to this problem. If a man stands on a mountaia and is asked to describe the tepography of what he sees through a telephone, he probably wili start saying that he sees - for example - three jarge gour.tains in such and.such directions and so and so distances, which have jhe height a, b, and c. If that information is sufficient for the iistener at
the other end of the teleghore line, our man has dene tis job. If it is not, he rill consinus oy saying, for example, inai between him and zounzai: A there is a hill and he will say where is is and how high and, is thas is wanted, which form $i t$ has. And so it goes on, until the listener hes ail the iffornation he needs. Let's cell this, for the =oment, the "numan approach."

The other approach re call the "grid spproach." It will probabiy te used sy somebody who has a contour anp in front of $\mathfrak{a i m}$ and has been given e, task to devise a machine which would transmit ali the information or a careriniy defined yart of the infomation contained in the gap via a teiegraph iine to enother machine which repaciuces the anp at the disiant iocation. liosi probebly, this an rould look at the map and then, deperding on the detain shown and the rosolution deemed necessarf, define basic distances $x_{n}-x_{n+1}$ and $y_{m}-y_{n+1}$, and then have the $z-$ values oi each of these gria points telegrajhed to the other aachine. Once the mesith-wtin of this juin has been detemined and tiee resolution for the $z-$ values resolved, there is oniy one set of infomation, indeperient of what the man using the dister: machine actuelly mants.

Obviousiy, both approaches have their acivantages and disacivartages. it is the purgose of this iccument to give a general cescrigtion of a new sisser which tries to teep the edvantages of toth the ":tana" and the "Evia" and to avcid tieiz tisacirantages. As night be ereeced; this is not an ess: task, and the description of the wori periomed to echieve i= is erem-hing but naive. It is, howerer, worthwhile because it turns out that rith tien nev system the actual operations of acqui-ins the data, of petformirg ceiculaticns witit them, and of displayirg the inaiomavion in razious zoms, are signiEicantiy less demanding in computer time and storage space - ard that is what counts.

In the followiss paraguriph, the new system is sumariay iescribed. The text of the cocument then reports on the system, discusses applisionins,
 to the geograpien sith scme experience in dizital =apying, Four apgeṅises, finally, list previous rejorts and eniarge on various aspects.

The Geograpitic Data Structure (or GDS) is a gecgumiticat inforatior, Eisまem
 and of most 0^{*} its marizulation rouitres. The jasis 0° ire struczime is a Triangulatei irreguian ieacri (

 into the first inta $\dot{\text { Ease }}$.

1. GENERAL FEATURES OF THE SYSTEM

1.1: A Comparison of the TII and Regular Grid Fia an Brample....................................... 13
i.2: Quantification of the Comparison 18
1.3: Precision of the Regular Gric (especiaily DMA DTM"s) 19

Abstract for Chapter 1

In order to lead the reader to a description of the new system, we start out with a comparison of it with the familiar type of the rectanguker, regular grid. In this way, specific traits of the new system are easily recognized. After a general somponison using the New York Bight as the study object in section 1.1, that comparison is quantified by applying a method originally developed for another study area in British Columbia (section 1.2). Frecision, of course, plays an essential role in each quantification; thus, the precision of the sources for the data used is discussed in section 1.3. Jere, information is provicied on the accuracy requirements of geographic maps used as sources for terrain digitizing; and the ficct that digital terrain models often are needlessly redurdort is pointed out quantitatively.

1: General Features of the System

1.1: A Comparison of the TIT and Regular Grid Fia an Examole

La order to visuaily test the "=eature" representation and recognityon capabilities of the GDS, we have taken as an example the topography of the sea floor near New York City (the"New York 3ight" area). We have represented this area by a regular square grid of 22 by 23 points (506 points, Figure 1), and jy a TIN of only 31 points (a i6.3 : i zatic; Figture 2). こ. ans been found (see section 1.2) that for some geomorphological measurements 14 points of a regular grid are needed instead of one point in the Triangulated Irregilar Network (III) to achieve the same accuracy (Mark, 1975). However, for an accurate representation of terrain features, the ratio has to be higher: The principal "feature" of this suriace, the Hudson submarine canyon, is clearly represented more adequately in the display based on the TMN. In a regular grid, a much higher density of points than the 22×23, would be needed to "capture" the capyon's soothly curving form. A comparison of the contour map of the tritangilated irregular networt (IIN) (figure 4) and the contours of the regular grid (figure 3) shows that the regular sampling regime of the grid creates pits, closed contours, alons the floor of the cenyon. These do not exist on the original map from which the data were taken. Also the regilar grid misses some of the shoreline :eatures such as Sandy Hook and Breezy Point. Furthermore, a regilar grid requires that the density be increased throughout the data area to the level required at the smallest ieature of interest. In the GDS (Geographical Data Structure), the sampling density is adapted to the local complexity of the surface. In the TIN system, each recorded point requires more storage space and premorocessing time, because the TIIT has to store the x and y coordinates of the point as well as the numbers (labels) of its neighbors, whereas the reguar grid oniy stores the z coordinate. Thus, the storage requirements of the TIN in this example sre about $5 / 8$ rather than $1 / 16$ ohose of the grid. Still, the TIN is clearly superior while requiring less storage.

Within the Geographic Data Stmacture, the sample points are organized into triamgular iscets which cover the study region. This constitutes the TiN, the Triangulated Irregilar Network. The surface-specific poicts, peaks, pits, passes, and points along signilicant breaks of slope form the core of the data points. Additional points are chosen so that the planar facets of the resulting triangles closely watch the terrain that is digitized (see section 3.1). The triangles are not explicitiy stored, rather the links between points on edges are stored. Storage by triangle requires for each

[^0]

겨굴 $3:$
Contour ep of the iludson Subantin Canyon in .Vev Yory 34ge, frot a segular, tectarguia grid.

 a Triangulated EsFeguin vetwork
triangle 3 pointers to adjacent triangles and 3 pointers so the component nodes, which is a total of 6 pointers per triangle. For a rriangulated surface composed of 7 yoints, of which 3 are en the boundery of the region, there are $2 \mathrm{~N}-(3+2)$ irtangles, :rom Iuler's =elation. Therefore, storage by triangle requires approximately 2 N pointers sor a data set with N points. In a TIT, the data structure stores for each point the labels of all points which are linked with the point by an edge of a triangle, clociwise from the ncreh. This organization defines the relarite locations of the sample joints and the seiangular facets. Specificaily, the set of points which are linked to a given point are termed its "neighbors" (?eucker and Chwtsman, 1975). Since the average number of neighbors per point in a TIT cannot exceed 6 (Feucker, 2973), the expected zumber of pointers in a $T \mathbb{N}$ of \mathbb{N} points is at most $6 \mathbb{N}$. Thus the representation method we have chosen, by links to nelghbors, is twice as space-efficient as storage by triangles.

Within the familiar format of the regular, rectangular gitd, the neighborLood relationship is expressed implicitiy in the structure of the erid itself. A point at position ($I, \bar{\prime}$) In the grid has orthogonal neighbors at ($I-1, j),(I, J-1),(I, j+1)$, and ($I+1, j)$, and diagonal neighbers at ($I-1, J-1$), $(I-1, J+1),(I+1, J-1)$ and ($I+1, J+1)$. This is a topological relation that captures the connections between the elements of the dizital terrain model (DMM). - Since the relative position of the points in the sample are zot determined by a given spectag as in the rectangular orid, the Mrfangulated Iregular Networis (MIM) does not suffer from a directionai bias (see section 5.0).

3.2: puantieisation of the Comparison

As Boebm (1967, p 414) so correctly pointed out, "one sanect tiscuss the relative erfisfemcies of tabuiar representation methods without reference to the problem being solved". The oniy ietailed study which ias quantitatively compared the gerformance of a TIN with cther representation gethods (specifically, regular grids) used as the "problem" the estimaticn of a selected set of geomorpicmetric messures. This work is reported in detail in Mark (2975), and rili be outinned brieriy here. The research invoived the estimation of topographic local relief (i), which is the lifeerence in elevation between the highest and lovest points in a terrain sampie; average iand siope (B), the mean jangent of surisce gradient (the pector of steepest ascent): and the "hypsometric integral" (I), a zeasure oi the relative land-anss roiome enclosed by the land siralace (reiated to arerage elevation). Six 7 by 7 idm study areas from dipeeriag verrain ifpes in southera British Columbla vere selected and digitized :rom topographic maps ($1: 50,000$ scaie; 100 soot contour intervai) using both 500 a grids (is by 15; 225 points) and TIN's (81 :0 242 points: mean=114). The number 01 points in the TII's was adapted acceritig to terman rariabilisy or "roughness". Each of the parnmeters meationed sbove vas estimated :or each a-ea ㄷ.cm each tata base, and aiso manuiny ircm the maps 13t-s "standard" anaijsis procedures. Table i (Appendix inI) sumarizes ihe


```
~a= lie Jwc:k
```

results, Slope (g), and to some extent the hypsometric integral (I), represent "average surface properties", and the point ratios ior these (14:1 and 8.4:1, respectively) may represent the overall average suriace precision. Local relief (\exists), however, depends on points more or less soinciaing wity the trie extreme points or the terrain, and as such represents the problem of recognizing vaileys, ridges, and other specieic features. The 287:1 point ratio ior this parameter agrees roughly with the risul impression of surface sesture recognition in the New Yoris Bight example, since a $287: 1$ ratio would involve grids roughiy 4 times as tense (i6 times as many points) as those ased. It was our pisual fmpression that such a density increase would be needed to properly portiray the Iudson sutmarine canjon.

1.3: Precision of the Regular Grid (especiaily DMA DMM's)

The source from raich height data are obtained is critical, since =o DTM can have a higher level of preciston than its source. Since most DTM's are currentiy compiled from topographic contour maps, it is in order to consider briefly the precision of such sources.

The accuracy standard for U.S. topographic maps requires that plotted points (including contcurs) must sppear within $2 / 50^{\prime \prime}$ (0.5 mm) of their true positions. If this represents a 90% confidence limit (and such a limit is explicitis stated for vertical accuracy of these maps), the root-meensquare (ras) borizontal error of a $1: 250,000$ map may be up to about 76 m (250 tr). Taking an average ground slope of 10% (see Wood and Snell, 2959), thts horizontal shift could result in a height rms erfor of 7.6 파 (25 ft). Mis is the verical accuracy standard for a point which appears to be actually on a contour, regardless of the contour intervai.

When estimating arbitrarily-iocated points from a contour map, interpolailon error zust aiso be considered. Fiere, the U.S. standard eails for 90% of points to be witain $1 / 2$ the contour interval (i) of their true heights (after the above horizontal shifu). Taking a 200 ft (30.5 m) contour intervai (a =sther conservative figure for the map series in question), the ?ms contribution of interpolation error would be $0.30:$, or 9.1 m (30 :t). The total map precision is thus the root-meansquare of these two values, or 12.9 in (39 ft). To 3 M derived from the U.S. $1: 250,000$ series couid correctiv ciain an average ceight precision less than this value (except for those derived from the very few maps with a contour interval less than $100 \approx$).

The height precision of a regular grid DMM depends upon the relation between the grid spacing and the characteristic wavelengths of the terrain (see yerrarovic, 29?2). This procedure breaks down the terrain into a series of

[^1]Fourier components, and relates these to the crid spacing (d). It is an over-simplification, but aevertheless a usefill approximation, to propose a innear relation between i and the error introduced by the grid spacing (see the samping theorem, below; see aiso Mark, 2975). A study which interpolated regular grids from ingtized sontours (Cottschaik and Neubauer, 1974) [as does the Defence Mapping Agency (DMA)] clatmed that a 50 m grid introduced a :ms height error of 3.5 II (presumably assuming the contour heights to be "accurate"). This, coupled with the innearity assumption abore, assumes that grid Fis erfor is approxtmately 7% of the grid spacing (for an interpolation aigorithm similar to the DMA's 1:250,000 JTM series), and to get the total JTM precision, this must be combined with the cortour beight accuracy (see above). If ve equate total grid precision to total map prectsion, we find that the gid spacing must be 4.29 times the contour interval. Any grid spacing less than this would clearly imply redundancy, since it would appear of being capable or giving a precision higher than that of the source map (which is impossible). The DMA grids have a grid spacing of 63.5 m ; this would be sufficiently dense to captire all the theoretical precision of a map with a contour interval of 50 ft or about 17 m (rare in the $1: 250,000$ series) have dai? the required spactes (hence 4 times as many points) for a 100 ft interval, and about one quarter the spacing (16 times as many points) as for the more typical 200 it interval. It may therefore be concluded that most of the DMA gitds are highly redundent in terms of apparent average height preciston. Maris (1975) found that one surfece-specific point in a TIN could "represent" about 14 grid points for estimating measures such as average slope (see above); atter removing grid redundancy, our TIN's should be able to represent $:: 250,000$ zap sheets with abcut 20,000 points, sumpared with some $41 / 2$ million points in the DMA grids.

Witin TIT DTM's, precision depencs upon how cioseiy the triangles aporoxinaze the surface (see Mark, 1975, p. 184; also Maris and Peuciker, 1975). This in turn depends upen the height accuracy of the points (see above), the spacing of the points (i.e., the "size" of the triangles), the selection of tine points (i.e. the sampling of the surtace), and the way in which they are connected (the triangulation). Of these, the last two seem to be the more important. More work is aeeded to quantify these relationships, which appear to vary with the triangilation procedure used (see below).

[^2]
2. SAMPLING CONSTRAINTS AND METHODS OF PREPARATION OF TRIANGULATED IRREGULAR NETWORKS (TIN)

2.1: Properties of Representational Methods 22
2.2: The Sampliag Theoren 22
2.3: Suneace Storage by Polymomial Patch Systams 23
2.4: What are Relevent Featires 21
Abstract for Chapter 2
As pointed out in the Preface, the "human approacin" for termain des-cription provides the possioility to deiineate the most important feaiuresquickiy and vitin little effort; the effort vill then increcse if moredetail (rigner resolution) is warted. Basically, the same appiies to theTriangulated Irregular Network method. This is to be discussed iater inthis docwnent but will become clear only if we first negotiate the factthat the degree of sophistication of the techoriques appliea in sampiingand miangulation will affect the accuracy of the Triangular IrregularMetwork. That fact is iiscussec in tinis chopter 2. This involves adiscussion on data sources which have been used in ine contest 0 this andsimitar methocis. At the end the importance of jilitering surjece detailswith regard to the ulivimate use of tise model is emplained.

2.: SAMPLING CONSTRAINTS AND METHODS OF PREPARATION OF TIN'S

Digital terrain models based on trianguiated irreginar networiks (ITI's) are not restricted to ang particilar source, scale, or method sor establishing the triangilated net. As will be outlined later, the local sampling densitf for data points is dependent upon the desired resolution for the digital terrain model and the local surface roughness. The sophistication of the sampling and triangulating techniques in recognizing the important features on the surface, however, has a direct erfect upon the efficiency of a triangiated irreguiar aetwork in accurately representing the surfece. We shali attempt to review the issues involved in the capture and structuring of data Por Digital Terrain Models in general and discuss the various data sources and techntques used by the authors of this report and the methods used by other researchers in the context of similar systems.

2.1: Proverties of Representational Methods

There are several properties which any technique for the representation of surpaces shouic have. These become critical when evaluating the performence of methods which purport to have advantages with respect to data compression and manipulative ease.

First, the method must, to within a specified accuracy, preserve any analjtic measures of surface behavior required by the purpose for which the model is created. Typical analytic measures might be average slope, everage height, and various other surface measures such as those used in the quantitative example above (section 1.2). Also in this category are the conventional measures of surface roughness.

Second, the technique shouli capture all of the relevant features ot the surface. That is, no relevant beharior of the surface should be lost due either to smoothing them away or to sampling errors. (This is equivaient to the "surface feature zecognition" groblem alluded to in section l.i, above).

Thiri, and perhaps of most reievance for data compression schemes, is the requirement that the representation technique be able to dieferentiate between the noise and the information in its data source. That is, the technique should be trane to input acise but at the same time be able to eliminate internal redundancy in the representation.

The pirst two criteria are not equivalent. For iliustrative purposes, let us'examine these problems in more detail.

2.2: The Samoling Theorem

According to Shannon's sampling theorem (Shanncn and iveaver, 194g) in erier
to detect the Fourier component rith wavelengh Lambda of a phencmenon distributed alogg some dimension, a sample spacing less than or equal to one hall Lambda is necessary, This theorem places an absol:ate lower bound on the number of observations necessary to represent a surface whose details are not aiready known. Once the modeler has decided on the upper bound on the size of phenomena which he is wiliing to let escape, he has also determined the maximum allowaile size of his sample specing, This is a general 工esult which cannot be avoided.

Sy making essumptions as to the continuity of the suriace and the continuity of some of its deritatives, the suriace may be smoothed between the sample points by any of a large selection of fitting techniaues. While these smoothing procedures may, by the theoretical validity of the assumptions behind then, refine the orerall orecision of some of the analytic measures of the surface, they will zocetheless be unable to Jetect peatures of size less than twice the characteristic sampling distance of the original iata -they do not add any new information to the model. Thus, these methods are not reaily very suitable for compressing the representation of arbiturrf data surfaces. By way of reiteration, let us repeat that the sampling theorem dictates the density necessary for regurar sampling, and that polygon interpciation routines cancot add any information aoout the surfoees this is not to say that the litting of sampled data points to theoretical modeis of surface behavior will not be able to predict features between data points; rather, in the absence of such a theory, curve iltting alone wili not yield additional informetion.

The sampling theorem implies that any efi:cient model of a suriace must start frcm s sampling dense enough to detect the shortest wavelength phenomena aeeded by the purposes 0: the model; any data sompression must start from this basis.

2.3: Surnace Storage by Poircomia? Patch Systems

One approach to data compression in the context of a poiynomia: patch system is that of Jancaitis (1975) and his associates, Their Weighting Tunction Intereoiation Techrique ('NTM) and its contouring program CONSAC have been used for data compression, smocthing, and dispiay of data digitized by the UNAMACE Scanner of the J.S. Anmy, They use a ieast squares procedure to fit a polymaial aperoximation of predeteminec deg-ee to a set of neighbors which are cemtered cn a set of predetermined sample points regularly elstributed over the model. They then interpolate these jatcies using a polyncmiai veighting scieme. Because of the jroblems in acing iesst squares ilts to bigher order polynomials, the originai patch approximations which are lit are "pianars" (that is, their equations have terms in XY es well as X and Y, but scne of higher orderi. To produce santinuitor in bctit elevajion acd tis :isst derivatives, the reighting poivnomiai is of thirc degree. The piane is covered by the groduct of the tirst degree apprcximatians
 iegree polynomiai patcì ss the ínai approximation.

This technique has more than a mul response to phenomena of wavelengin iess than twice tae patch size, but it stili toes not adequateiy represent them. The cause of this difficulty lies in the inct that the least squares procedure is oniy fitting a planer to the locai suriace. Anv phenomencn devtating Erom this form in tie region of approximation is regarded by the least squares process as an error or as notse; the efiects of which stould be minimized. This will be covered in more detail in a paper now Jeing prepared by ?owler. The authors of thet system (Jancattis, 9975 l have responded to this projiem oy designing an editor", a progerm which superimposes manuainy detected and defined eatures on the output of the polymemial patci model.

One must therefore taje one or three courses: one can surrender to the grorementioned problem gioba'ly and thus have to sicose a grid or patch size which will capture the shortest wavelengths desired. Alternatively, one could try to lit higher orier functions to patches (e.g. the Jancaitis technique of iitting cubic polynomiais, or locaiized Fourier transforms). Ferhaps the most viable technique, though, wouid be the use of a data compression technique which adaptively and localiy increases the sample dexsity in regions of high srequency. The triangulated irreguler network is one such approach.

2.4: What are Relevant Fegtures?

The definitions of "eelerant teature of the suriace" and of "adequate preservetion of the surface's: zeasurements" depend on the ultinate use ci the model and must be determined under consideration of that use.

There are lessons to be Leenmec Ircm the vorid ot sonventicrai cartograpicy. For instance, aeronautical charts are typlcaily made at relatively mai: scaie because afraraft zavigation purcoses have littie need cor detailed tovography. They do inciude, however, subancements of the torogreyin in the detailed attention dadd to the location c " prominent towers, cab=e spans, and redio beacons. At the other extreme are tie site pians drawr Por ciril engineering purposes in which every ietail of tie site may be located to within a iev sentimeters. Nauticai chams for coestai regicns Hay contain rery detailed bathymetric detail but oniy crude representations of the landforms inland. The coastilne itself, though, is eninancec tirough the inclusion of the land-based aids to navigation and extra detail at particulerly ilstinguishable ieatures such as cli:is, towers, rocks, and wreciss, The manual cartographer, knowing the scale and the purposes for which his map is intended, thus enkances those details important for that use and deletes non-pertinent jetail. Iixerise, the designer of an sutumeted terrsin model shouid consider the purposes e: the model and shouia consider the use of iliters which win treat insismiIfcset detail as zoise.
3. MANUAL VS, AUTOMATED TECHNIQUES FOR THE CREATION OF TIM'S: INTUITION AND PATTERN RECOGNITION.
3.1: Mamal Methods 26
3.2: A Jaive Aporoach to Complete Automation of Trianguiation $2 ?$
3.3: Semi-Automated Sechniques 29
3.4: Second Generation Automated Triangulation Techniques 29
ABstract to Chapter 3

In this Chapter, the basic description on the Mrioncuiated Irmegular Networt method is conclucied by a discussion on the various metrocis to obtain the ITH from other sources. Mamal, hyirid and scme stili raive aitomated tecinioues and their essential appabiiities are descriEed.

3.: MANUAL VS, AUTCMATED TECHNIQUES FOR THE CREATION of TIN"S: INTUITION AND PATTERN RECOGNITION

3.1 Manual Methods

Manual selection of the points and links which constitute the triangular networs is one of the most obvious and accessible methods of creating a mir. Bestdes the surface specizic zoints and lines, other points and edges must be chosen so that the resultiag triangiar Iacets in tie network :it plasar or nearly plenar regions. Once the surface has been covered with these triangies, the TIN is converted to mackine readable :orm, This metzed relies upon tize inteligigence and tmage processing abilities of the manual digitizer to decide what constitutes a feature of interest and what constitutes an adequate representation of the form of the surface for analytic purposes. Because of the extremely high performance of human operators in image processing tasks, our manual digitizations remain the standard by which to evaluate other more automated methods.

Manual sampling and triangulation tecaniques are currentiy used in a production ortented terrain modeling system: W.E. Gates and Associates (1974), in the ADAPM system, use a manual method in whica the triangulation of the topographic surface is compared with the original surface as well as the surfaces of other data items for the same area. It is recursirely tuned until each triangie represents a suificiently planar region in each dimension of a mutivariate data space, This aata base is then used as the basis for a model of hydrologic systems. Because of the feedback berween the modei and the user, areas which have been sound to be inadequately digitized to begin With rey be refized to a jore detailed trianguar get rithout affecting the digitization of the remainder of the model. Thus, this process tnoures that phenomena of inigh spatial frequency will be captured while minimizlng redundancy in areas of low Fequency.

It skould be noted that existing contour maps and their mechine readable equiraients are secondary data sources. As such, the digitization of terrain zodels from these sources will necessarily zropagate the errors in these sources (described above, section i.3). To miminize this problan, it would be preferable to use primary data sources in constructing a system. Since nost of the recent topographic data is in the form of aerial stereo imagery and is complied by buman operators, manual sampling and trianguation is conceptualiy leasible by outtitting a stereo plotter with a real time stereo display of the triangulated net supertmposed upon the sterso model.

[^3]
3.2 A Naive Approac: to Complete Automation of Iriarguiation

dt the opposite extreme from the use of the humar image processor is the sreation of the trianguiazad surface Erom a set of arbitrariij sampied zoints on the surfece. In fact, the zoints may not be reglly samplecin z zruiy random fashion, but as Ear as the triangulation aljori=hm is conaerned, they appear to be. Methods of this type have only the coordinates or the points from which to work. This paraligm for triangulation is zonceptualiy simple and has been used in rarious forms by us and by. other researchers.

Because the only infommation needed for each dava point is its coorinnates, the input data can come :rom a very wide variety of sources with reiativeiy litこie data preparetion. This rather biind approach is the only availabie zethod when data sources such as well logs, bathymetria soundings, or truly random samoles contain only the cooriinates of the points. In other cases, it is simply convenient to ignore at this state any additional information one may have.

The concept of this approach is that some triangulation procedure is to digest the collection of unconnected sample points and by one of several algorithms connectuem into a "good" trianguiation. In this mporoach, the triangulation produces no further compaction of the dava. Ail iava points are used. Frurthermore, there is no reference to tine differing information content of the data points, nor is there any consideration or the fact that some subsets of the points are representations of features or the surface, and therefore have an implied sonnectivity. In that sense this approach is naive.

We must define what we mean oy 3 " gcod" iriangilavion. Jrimately, the evaluation of a triangulation as "good" must be that it best represerus the surface using some fixed amount of resouraes, or that it acequateny represents the surface with a minimal amoun oi storage. Joth af these ariteria rely on a comperison of the nodel with the original surface. Jecause tils aporoech to triangulation joes not bare the zeans to zaice jins comparison, since the oniy data a;a."able are the sample jo: wis, some other, internal jefinition of a "good" triarsuiation is necessary to eraluate these algoritims. 3y the same reasontig, it is improoable that this metioc wili jroduce a "good" triangulation in the wider sense of fidelity to =ie surface, especiaily when compared to the nore sophisticated teciriques.

The minimum weight triangulation chooses the triangies so that the total length of the edges in the graph is minimized. In this aiaulation, oriy the projections of the points on the $x-y$ plane are considered, so the resulting triangles do not necessarily correspord to the sirience. this mproach has been proposed by some authors to produce ar "optinai" Eri-
 To the minimization of edge lengtin, for mone of tiese autions ans zroposec any reason why this trianguaation is good for the representazion of sirfazes.

Ai-hough some gizorithms have purporeed to ezeinientio solve ine minimum weigint triangulation groolim, it jas been demonstrated inat none of the proposed alyorithms actuaing produce ninimu zotai edge length (Mark and jtieers, i 776). Because the oniy zigoritim known $=0$ woric is the tota: enueration of the triangulations and because there is no good aryumert تor the "ootimality" of the minimum weight triengriation, we have sbancionea tine minimum weight criterion as a riable aiterative.

One of the methods which was thought oy some authors to be 3 minimum reight triangulation is known as the "Thiessen", "Yoronoi", or proximal poljgon method (Peucker, 1973). As in the minimum weight nethod, the "miessen" technique considers only the $x-y$ coordinates of the sample points. Mais method constructs the graph of thiessen (or Voronoi or proximai) joljgens so that all points within a polygon centered on a jata point are closer to that point than to any other data point. These polygons uniquely tile the plane and are of special importance in the field of spatial analjsis. The dual of the greph of proximal polygons is groven to be a friangulation, except for "degenerate" cases which can be removed by arbitrary inininitesimal perturbations. Because of the regularity of the proximal polygons, the corresponding triangulation is also very regular.

In addition to producing regular triangles, the Thiessen method is somputationaily attractire. The "Proximel Polygon" criterion is a completely local test. It is geometrically equivalent to tests as to whetier a giren point is within a specified sircle and to the test of whether or not the sum of the opposite angles of a convex quadrilateral is greater or iess than 180 degrees. Such computational simplicity means that the Thiessen Triangulation can be done extremely efficiently. We (Brassel and Fowler, in prep.) have developed a program whose running time increases with N to the three halves power, where N is the number of data points. Shamos (1975) has recently demonstrated an algorivim which an sriangulate in orcier of $N \log (M)$ Jime ard which can join pre-trianziated regions in tine proportional to the number of points on the common boundary. Aiso, tiae
 digital terrain model system based upon a Thiesser Eriangulatior of arjirrary data points (3aunuber et 21, 1975).

There have been other digital terrain systems and sontouring programs winai: appiy naire triansulations (ARCON, IVGE; 3runiker, iこ72). The =riansiiatior aizorithms used in these systems, however, do no seem to be as wei: sor:ceived or as well behaved as the mhiessen methoc.

The thiessen triangulation seems to be the best of those ajgorithms wicic: ise only the coordinates of the data zoints. wan there is additionai iaformation available, eitiner in the form of a linguinstic description of the surface, e.g. that a certain line of points define a "stream" or "shoreline," or in the form of redundant information which is not to be included into the triangulation, then other technigues, among then semialtomatic ones, may better serre the purnose.

2．3：Semi－AuTomated Tesinnigues

 manual feedback into the triarginazion process．En most zases tixs means Ghe ranual identir゙isation of fegtures and psetio－features or the sureace．

Our surrently preierted technique for trianculazion is just suci a semi－ automated method．In the manual iigitization piase ine ieatures ofi interest are tagged as they are digitized．The points are then jassed to m Fiesser triangulation routine and are viangulared winout megarifor the fearures． The resulting triangulation is then edited to restore the desired ieatures． The resson for splitting the fegture restoration fram the triargulation is that the triangulation without sonstrains is so wein bearave Methods for including the features in the triangulation are jetng investigajed．

This tamily of techniques an use mechacized sources of data acquisizion， particularly along the lines of photogrametria instrimentaiion．Iather than track along contour lines，the operator of a stereo plotter can sreate a linguistic description of the suri゙ace．淢 can vraci along＝ijge lines，channei innes，oreaks or slope and can then fill in intermediam joints．

A related technique to the digitization of high intormation concent feariures which should be preserred under a triangulation operation is the digitiaation of relatirely low－information content pseudo－features which shoula aiso be preserved．An extreme variation on this tecinique is tie tigitization or sontours and subsequent triangulation（Kepocel，1975）．Because aontcur Ifnes have the property tirat they bisect the plare into inside arci ouvside regions，the resulting iriangulation routine can be extremely fast．in－ fortunately，because contour lines are zot a rery efincient zeaiod oí surfece zepresertation，the resulting triangulation is similarly ineifinient． This technique appears to be nore suitei to intervolation when one aireacy has contours．

3．4：Second Jereration Au－omatec Trignaination Secinioues
 with the ranual techriques．That is，they procuce gooc ：ideiizy moproduc－ zicrs of the surface and gre tioeretore superior to tie naive zecinicues oi automazed triangulation．They jo，howerer，need se presence of a inmar． operator．This need for manual labor nay evertuaily jandicap the nybrij
 mated triangulation should be used in those cases．If we use the naire －eciniques，then we will probabiy have to sacrisize some of the data som－ pression effiziency of TIV＇s by inciuding redundant data points into ine triargulation to betier tesine Eeatures of injerest．There is therefore
 ard Ereserre the surface－specizic lines．the linst step，the recagnizien． is iescribed in the following enapter．

4. HIGHER-LEVEL DATA STRUCTURES AND TOPOLOGICAL cons IDERATIONS

十, 2: Zntracting ihe ?.idges and Channeis from a
Begriar Grid. ..
4.3: Greysulch's Mettod :or Charncterizing Surface

A.5strect to Chapter 4

A "second" data structure is developed sc-to-speak "on top" of ine rrianoulated Imegulon ivetwori. This is Jone becouse the TTV alone does rot provide easu access to a data base - a problem i_{j} the case is large.

The second structure, basicaliy a ridge-andi-channei structure, represents the suricac in its genernt "eqtures, ard semves as a Kind of directory into the surnce. It is discussed in tinis inceser 4 together vitin methocis for the entraction of the surjace features (ridges, cincmels; peaks, pits, passes; siopes, jreaks, Fats)s

4．：HIGHER－LEVEL DATA STRUCTURES AND TOPOLOGICAL CONSIDERATIONS

Abstract

Altrough the simple IIN data structure describec acove seems to be eごicient in zerns of storage sapacitf and other consiierations，i＝joes not provide easy access to the jata base，which can be rery large．．It is For this reason that we gre develooing the＂second＂data structura botin to represent the gereral structure of tiee surface anc to serve as a iirec－ tory into the suriace（see Tfaizz，jor6）．The こirst step in the sreation of this second data structure is to ind tine ridges，siannels and oreaks of slope；i．e．，the＂surface－specific＂lines．

4．1：The Ridge and Ohannel Structure

Deaks，diss and passes form the major portion of the set of surface specific points．Peaks are points that are relatire maxima，i．e．，bigher Fian all sirrounding neighbors．Pits，likewise，are relatire minima． Between any two adjoining jeaks we an draw a line on the surface that connects the two peaks，following the path at the bighest altitude．This is a ridge．Sinilarly，channeis sonnect adioining pits along patins of lowest aliftude．Passes are points at the junction of ridge and anannel lines．These ridges and channels connect the peaiks and pits into a network． Warntz（1960）has described these networks，finding that each pass has exactiy two ridges（and two channels）emanating from iJ．In his interere－ tation，the ridges bound watersheds，and the shannels bound hilis．fowerer， for the purposes of topograpinia generalization，one annot jetermine the こati： 0 Ehese lines from the dizital terrain nodel zione．forntz＇s sur－ Éace specisic lines can cross areas of litごe or no relief．On jhe gener fand，we sun detarmine the innes of topographic siznisicance wish will characterize the surface．These mat not zully connect into a networis but zive instead a grapin structure that forms the＂jackbore＂of the surface．

This grapi of maxina and minina characterizes the variation of tiee siriace in \exists hizhly generzlized ranner．The resuiting intormation serves as 3 skel气ton of rital joints for ise in automatic rriangulation or semi－añomatec methods，as descrioed in section 3．2，and is usefil in geplisations süch as in hill－shading（3rassel，lof4），contouring，and as a general airo： in：o the suriace．

[^4]
To :rreste a Tan Erom a gridded zmh, it is rizal io rerain tie zoinis aiong
 facers. Because of the prevalence $0:$ tine regular zridded DM, we aave
 from the grids. The Jeconique marins all jhose points in the grid whin are jossiole ridge (channel) poines. Ther using jaitem recognition techniques, the marised joints are linked together to form the ridze and chanel 3raph, and the peaks, gi=s and jasses are zecognized as jie sonnection joints in the graph.

Peucker and Douslas (1975) ourlined automati= methods exrracting ridge and channel information. One of their two approaches has iJs origin in ibe *oris of Jreysukh (i566), see for jhis section 4.3, below. In their other method, they process the grid using the coservation thas the joints on a ridge (channel) are never reached as the lowest (inighest) neizhoor of points in the DTM. Since this method is "local," i.e., only the three neighoors to the right of and below (south of) each point are examined, this process is relatively cheat. We have extended this technicue =o search the grid and extract the total network.

To explain this method, we shall concentrate, in the sollowing, on the extraction of the ridges. Basically, the same methods are applied Zor the channels but then the calculation groceeds upwards instead of downwards, and vice versa. Initially every point and its three neighbors to the right and celow are examined. The point among them at the steepest siope downward is marked. When scanning is completed, all points that are not marked are ridge candidates. Then a separate procedure is invoked to cornect inese points into ridzes and discover the sonrections mmong them.

Although ridges are lines at naximum ieight from peais to jass and ther to another peak, the technique we use starts at passes and limbs 00 a peak. (Starting at a peak and trarersing the unmarked yoints as zaximu height causes the line to circle the peak). All unmerked points are examined in order to find one whish is lower than ary unmarkec points among its eizht neighbors and not already assigned to a ridge. This is mariked as a pass. From this point we search to zind its highest marisec reighoor, sontinuing until we sind a point higher than ali its unmarked neizibors, a jear, or a joint already in a ridge. In the latter case, the ridge being constructed is connected to the existing ridge, and the swo ridges are merged is tife new ridge connects at the start of the existing ridge.

[^5] ：idje line and the geaks ard jasses gre ijscovered．Enort rijzes acrnecing
 points soour ine sctuai ridges．ds incinated acora，tie inaneis aro ：ound
 and ioined if they are the same or a neighioning point．In inis inshion the majorizy of the lines are interzonnected．
 Yalley，a nourcainous region in 3rizish Joiumia．The sirfiace was modeied by a TIN．For zesting of the ridge Eisiding aigorizin a 36 by 36 reg＇iar马゙it was zanualiy dizi＝ized from the sourne contour jap．ine same gap fom wich tie ITN ras digizized．The ritge jrapi derired from this Erid is skown in figure σ ；the passes are symbcized by aircles and the peaks by x＇3．Fizure 7 shows the channel sraph for ine area；iere x^{\prime} s denc：e pits． Eigure 3 shows the ridge ard shamel network，with peaks as x＇s，pits as cireles，and passes as paired triangles．

4．3：Greysukh＇s Methoc Sor Yharacterizing Surface Eemetry

Another method for sharacterizing surface gecmetry at a point is to examine the configuration of the terrain ground that point；jreysukh（iN6ó）described a method Sor achieving this．Jriefly，the heights of tie iand sursiace at its intersections with a rertical sylinder sentered at the joint are graphed against the angle from an（arbitrary）origin．This forms the＂characteristic＂ curre of the landform．Figure 9 shows the contours associated with several landforms and the characteristic curres derived from them．The confinuration of the characteristic，partizulariy the number of extrems and tieir zositions relatire to the beight of the cantral poinc，differs with rarying surface geometry，and can be used to describe the geomorphomerry of ine iam zentered at tine joine in guestion．Thero are tieoretianliy ar initinite number of Histinct characteristics，but shose with nore tian． urlizeij to occir，grovided jhe radius of the iyinder is zot too large． This still leares tiree possible curres with one meximum，$\overline{\text { mith }}$ ive，and
 sinpler ones and zone ot the E nore scmplex ones．This ia：さer zasio sontaizs suci．aommonly－ocouring forns as channel（ravine，course）innations and ridse（cape，jiride）Junc－iors．I＝the oriy work we know of whitit tas apeliec jreysuk：＇s ijeas to surtiace ̇eature recognizicn Jeuciser and Jcheias．
 tiree others（represenving llat，ard concare ard zorvex jeeairs of sispe）．
 istic curres，these lardforms are important surface fotures．

[^6]

Figne

Fingure 6:
The radges extracted iroo contorr anp (ingure 5)

Pagure 7:

Mgure 3:

 of his zetiod oo jerrain reoresented by zoints winiz are not suriace-specizin
 or cinannel withou being cenvered on its exis, a misieading sharacteristiz nay resui= which Jreysukh called "distorted." This efiect is procaciy ore of the reasons wiv Peucker anc Jouglas's stid~oased epproaci was largely "not satisiring" (1975, 2 383).

A subroutine (RNSK: has been writuan to lassiay a point invo the appropriate one of the $\div 6$ Greysuri-oyee sodes, the 3 additions of Peucker and Souglas, or \bar{j} other classes for more complex points. when friski was apolied to regular srics, problems simijer to Peucirer and Douglas's arose. In a "groverly-rriargilated" ITN jased or suriace-specizisa poines, however, distortion should not occur, and the sinaracteristics should inithroily rethect surfece geometry. (Indeed, we have found IRYSKH to be userul in testing triarguiations, since jistorted characteristics due to incorrect triang:lation can usually be readili detected oy visual somparison with the sontours).

Briefly, then, if surface features are acequately represented in a DM, Jreysukin's method will be useful for identifying them for further processing. If the points do not correctiy represent the features (and this will generaliy be the case for surface-random coints, including regular srics), Jreysuki's method will be of little use in surface feature recognition.

[^7]5. APPLICATIONS OF THE TRIANGULATED
IRREGULAR NETWORK
5.1: Coordinate Independence and Generaiized Tracking $\angle i$
5.2: Data Displey Routizes $\therefore 2$
5.3: Classes of Appieations -3

Abstract to Chacter 5

In this sircpter 5, application $0^{\text {F }}$ the total Geograpinic Data Structure (GDS) analor of its parts, the Triorgulated Irregular Networi (mTV) ard the iigher ievel Data Stmuctures are discussed. Under "sppiication" is understood an application for genernl jumoses of digital modeling (including extraction, calculation tasks, dispiau, etc.l of inreecimensional surfaces.

The outrors do not deal witik aru detailed description of proolems in puolic lif'e, siviiian or miititury, wnicn con best be aproccined ju ingital metnods of tinis kind; only some nints are given in tinis regcra.

5. APPLICATIONS OF THE TRIANGULATED IRREGULAR NETWORK

Because the relstive number of elements (points and regions) is iow, and the topclogical connections among them are easizy accessible, rany of the routine tasks of a digital terrain model can be zerformed eficiently on a TIV. At present several component modules ior a surface modeling system have been ieveloped. Contouring and rapic creation of profiles are completed, and several others described below are now being implemented. Fundamental to many ol these apolications is the process of tracking, following a path described by a set of parameters on the cocrinate axes.

5.1: Coordinate Independence and Genergizod macicing

The class of tracking processes is one of the most common operations performed on digital terrain models and in other computer grophic systems for representing 3 dimensional surfaces. Scanning along the rows, columns, or either set of diagonals in a regular grid shows up as a subproblem of the production of block dlagrams (SMMV, ASPEX, VIZWBLOK), terrain shading, and video display. Because of the coordinete dependence of the regian grid, these four directions are usually the only ones for which most systems can produce scans cheaply. The ccordinate indepencence of the TIN aliows one to produce scans in anv arbitrary direction. it is that coordinate independence which allows general threedimensicnal computer graphics systems with data structures based upon planar iacet polyhedra (of which the TIN is a special case) to routinely perform rapld scan conversion for the video display of the object being modeled. Using methods borfowed from such systems, a scan line converter (Appendix IV) bas been implemented to construct parallel relief lines for block diagrams, proiiling and conversion of TIN's to regular gridded format.

In a coordinate-dependent system, the production 0 contours is a distinctly different process from the production of scans. in a coordizateindependent system, contouring and scanning are just speciai instances of a more general tracking process.

The problem of the general tracising process can be stated as :ojows. Given a metric space (0.8 . the model space) and scme parameterized anction, produce the set of intersections of the model with tie function ior a set of discrete values of the parameter. For instance, it the fanction is $X-k \times S=0, k=$ the integers, then the genereiized scanning process wili produce a set of scans parailel to the x axis at spacing S. Similarly, if the function is $2-\dot{x} \times s=0$ then the result will be the set of eleva. tion contours of the model. As is usual with special cases, optimized programs heve deen written within the TIN system vo produce rectiainear

[^8]scans and contour maps, Because of the coordinate independence, it is possible to perform transformations tnto coordinate systems tr whain a special scaaring prodien lecemes equivaient to one of these optimized special csses. An example is the prodaction of 360 degree horizon proilles by transforming tnto a sphericel coordinate system centered on the observer, Other problems, however, such as the simulation of an aircrąt borne scanning devtce preducing a set ot parabolic profiles along the tract of the atrcraft are not so amenabie to thet process and require the groduction of a specialized tracking system. ire have written such a generalized tracitiag prognam for the TIN.

5.2: Data Disolay Routines

A contourtng program, BiRONM, has been ieveloped using the tracking methods iacilitated by the TIN's structure. This routine was utilized to produce the diagrams shown in Figures 4 and 5 . Its capabilities include rotation of the map coordinates, independent scaing aiong the x and y axes, dariening of the index contours, and Iabeing of soecific rap :eatures. Currentiy, the possibility of smoothing the contours by using higher order titerpolation methods on the surface is under investigation (see section 5.3 (e)), as is the potential of labeling the contours, Research on the structure of surfaces which we have done, has led to an automatic method of determining the nesting of contours from the ridge and channel networt. This inlormation can speed the construction of contour maps by eliminating both the need to search for starting points along contours and the need to sheck each element as to whether or not it las been srossed aireedy. In its present state, TRIKONL produces maps raptdiy by taking adrantage of the explicit topoiogy of the min to mininize the mount of searaing performec. Because zhe surace represented by the TIN has much less elements than a reguiar oith oi the same precision, TRIKONT also is much faster in compariscn to a EFid based contcuring program. The three-dimensicnal bloci diagrams of NTN's in this report were produced by using rrofiles extracted by the scam iine converter (see Appendix IV) and then plotted by the program ASPMX (Laboratory :or Computer Graphins, Jarpari ̈aiversify, -976). A threedinensional representation progeam which uses the triangular facets to depict the sirface is now in the implenentation stage (see section 5.3 (d) !

5.3: Classes of Aoplications

Beyond the gresent use in data display, the GDS has considerable applicability to various prodiems invoiving analysis of three-cimensional iara. The problens, as we see then, iail tato several ilasses:
a) Recresentation of Srreral Surfaces on the Seme Sempie ?oints. The

-2
relative storage eiptciency of the IT increases is several z-velues are stored at each point. When two sets of z-values are used in a reguiar grid system, the required storase doubles. In the gDS, the storagespace increase is only 10 per cent for the inst additional set of vaiues and the relative amount of increase decinaes as more values are edded at each sample point. Thus, the data structure is advantageous for hending stratigraphic data, as obtained from rell-logs, and oceanogrephic data gathered at dieferest depths, such as water temperature, salinity readings or measures of turbidity. Much vork on such subsurface data has, to date, interpolated from ireguiar points to regular grids; the GDS can handle such data directly.
b) Generailzation and Anairsis of Fopography. Surface data in the form of a TIT can be processed in a simple manner to extract the ridge and channel network (see section 4.1) much more easily than data from regular grids because the suriace definition is unambiguous. The resulting information is useful in analytic hill-shading (3rassel, 1974) and watershed analysis for basin hydrology. Current research is directed toward utilizing the surface netvork in generalization of surface data, as in change of scale for cartographic applicetions.
c) Mathematical Manipulations of the Surface. Civil engineering appiications involving volumetric calculation, such as cut and fill, benepit from the reduction of the muber of data elements processed when using the GDS. In deteraining the profile along a roadbed, or efnding crosssections along a given track, both the eelatively small number of data items in the GDS and the lack of directional bias in the TIT promote efficient processing.
d) Three-dimensional Representation, Raciation Input and Visibility. The techniques developed in semputer sraphics (Nemmen and Sproull, 1973) for depicting objects constructed of planar iacets are applicable also to surfaces represented by TIT's. In particular, the problem of drawing tine surface as seen from a given viewing point is susceptibie to soiution by such techniques. In ali methods for produciag a threedinensionai frawing With hidden lines removed, the crucial step is handiing the objects in a certain order, those eiements ciosest to the Viever Eirst. Jecause the triangular iacets sf the TIN are contiguous and non-overiapping, a simple sorting of the nodes in the dataset surfices to produce the proper order for processiag. The decision as to whether a given edge is visible is then straightforvard, involving oniy a test of that edge against the upper edge of the region already hidden, termed the horizon. The process inind the outlines of both the visible and invisible regions. Lineal iestures, such as roads and railways, and areal features, such as land-use types, can be easily constructed, by intersecting the plan layout of the risible regions with the layouts of the features. The sections of the inneal and

[^9]areal festures within can be drawn with no further testiag.
By transforning the coordinates of the elements of the GDS to the aporopriate polar coordinates, the same techrique can be utilized 00 lisd the regions of the surface risible from a given joint. Besides the possibility of fast production of zedar maps, this procedure findis use in the areas of the proper iocation of fire lookout towers and the situation of facilitiles whain are eresores, such as jowerinne towers. The apoliceJion module to produce representations of the surface is now being tmplemented, and its extemsion to visibility is soon to be done. This method also ylelds "skyiine" information, for detemining radiation input, Whieh bears directiy on problems of glacial melt and besin hydrology. Young (1973) describes a set of routines to produce these data from a regular srid. We believe the method described above can obtain these data more efifciently from the TIT.
e) Modeling of Dyeamic Behavior on Surisces. The Triangular Irregriar Hetworls, or as it is scmettmes called, the Irregular Triangle Grid (Dahlquist and Bjoerci, 1974, D. 322), has been successiully used in the :ieid of contimum mechanics. Finite element methods for the solution or differential equations are often formulated using vriangulated aetworks of irregulariy spaced points rery stmilar to the TIH, In some apolications it may be advantageous for us to incorcorsie the higher order interpolation techniques used in innite element methocs. In the modeling oi systems with a dymamic component, such as soastal regions, the compatibiaity of the TIN wtin the EInite elamer Icrmaiation of the dyamic problen allows this very powerfil and efilcient jechaicue to be employed. Among the areas in which these formulations vould be very advartageous in oceenography and mocieligg of soestai regions, are jrediction of tijes, changes in salinity, turbidity or algal concentration, and representation o: the behavior of eent土ruous reriates co the suresce.

[^10]
6. FUTURE RESEARCH

Abstract to Chaoter í

In tinis iocument, tasks which are now being implemented, are mentioned several times. Nork in the near future witi, of course, concentrate on these. The newt step is intended to Ering tire GDS cioser to actual tasks in the coastal environment if suitable bases for such tasks can be found. It is assrmed that as a result of further discussions - in particular some based on tine content of chapter 5-further develoment toukeds specific applications will be required.

6. FUTLUE RESEARCH

In our future research, our Eirst priorivij will be to complete those aspects of the work outlined above wich are not yet fully refined. This will include methods for automatically extracting ITN's :rom zore "conventional" deta sets such as regular zrids. The new thrust of our work will be to combine this three-dimensional structure with a planar polygon overlay system in order to produce a comprehensive Coastal Kodeling System for modeling and monitoring rarious characteristics of near-shore areas. Our approach is to assume that a geographic infornacion system For polygonal lata exists and san be ecguired relatírely aesily. Ey taking this tack we can concentrate on constructing those components oi the integrated system which involre the TIN, and the TIV's relationship with polygonal systems. Cthers hare in the past and will in the future concern themselves with the polygon data bases, for example the Urban jeometric تieurisitic, UGR, (Schumacher, 1972), the Natural Resource Inventory System, NRIS (Raytheon Company, 1973), ZOLITRT (Chrisman and Little, 1974), and regional land used systems from the Australian organization CSIRO (CoOk, 1O75). Common to all of the polygon basec analyses is a topologically oriented method of data storage which stores the boundaries of the regions. We have chosen to use the POLCNRT structure as a rorking nodel of the data structure for polygons since it can be converted to many of the others. The interiace between the IIN and poljgon structires consists of several modules to create polygons from the TIV (contouring), aggregate triangular facets to form polygons (clustering of faces of similar slope azimuth), and produce the intersection of a polygon networic with the IIN. This list is by no means exhaustire, for there are as many interfaces as there ars subsystems in each model. The modules described in section 5.3 form a core of routines for derelopmert oi the Teographic Data Structure to a full-blown coastal zodeling system. ire Esel that the development of an integrated geographic information system based or the soncepts of the TII and a topologicality structured polygonai system wiil offer many practiaal and theoretical advantages unavailabie from present systems.

[^11]REFERENCES

REFERENCES

Ar＝on，-760 ，in sutomatic sontouring grogram．April， $1 \% 68$.
Baukuber，ミ．，Erlacher，V．，2nd jünther，ミ．，エラ75，＂A programing system for the manipolation of iigital terrain nodels＂（in jermar）． 3：－dmessung und Lurtbilewesen，$+3: 104-107$ ．

Boehm，3．＂～．，1767，Zabular representations of multirariate fincrions－－ With applications so zoposraphic modeling．Assoc．Comp．Machinery， 22nd Yat．Zocs．，Proc．，$\rightarrow 03-15$ ．

Brassel，K．，1974，A model of automatic hill－shadding．Americen Cartographer，1（1）．

Brassel，K．，and Fowler，3．J．，in prep．，Selineation of Thiessen polygons for large sets of data points．Submitted to Jeograpaical Analysis．

3runker， $3 ., 1972$ ，＂Automatic plotting of contour maps，＂（in Verman）．Un－ pub．Dr．Ing．thesis，Technische \＃ochschule，Darnstadt．

Chrisman，N．and Little，J．，1974，DoLrRT Users Manual，Laboratorf for Computer Graphics and Spatial Analysis，Cambridge，Massachusetts．

Focirane，D．，1374，＂Cartographic display operations on surface daca collected in an irregular structure．＂Unpub．M．A．Thesis，Sinon Fraser ：．，Burnaby，Canada．

Cook，3．G．，A Computer Data Bank in a Regional Iand Jise Study，Proceecings of Third Austrelian Corierence on Jrban and Regional Planning Information Systems，Newcastle，Australia，November 1975.

Dainquist，j．，2nd 3joercis，A．，こラT＇t，Vumerical Kethocis．Englewooc こiEziss， New jersey：Rrentice－：̈all．

Fowler，R．J．，in prep．，Larmonic aralysis of intergolation and trerc surface methods．בsper in preparation．
jates，N．E．and Assoc．，Inc．，A land based modeinag system for water quality nanagement studies，Report for Firgiaia Zlectric and Jower，iJnt．


```
    Zeografinceskaye İćc: こ02-110. Irmaslated in Scviet ieograpiry:
    Zeviews ard Eranslations, I:67, シ:\37-i49.
```

Jancaitis，J．R．，İ75，Modeling ard Zontouring Erreguiar Surfaces Subject to Constraints．Final Report，Contract ESS－2325－iOI．r5，$\because .3$. Am Irgineering Iovograpaic Jabcratories，For，Jelvoir，Vinginia．

Z̈ppel，Z．，İ75，Approximati－g somplex suriaces by triangulation of

Maisarovic，3．，1772，Enormation transt゚er in reconstriction of iava Erom sampled points．Shotogrametria，28：1：1－130．

Mart，D．M．，IV75，Computer analysis of topograyiny：a comparison of terrain storage zethods．jeograriska Annaier，57A：179－138．

Mark，D．M．，Little，J．J．，and Kirkpatrick，D．J．，1076，On minimum spanning trees and tiee minimum weight triangulation．Jech．Repori ＂

Mark．D．M．，and Peucker，I．K．，197ラ，Discussion of N．E：IIewizer：

Newman，w．，and Sproull，R．，1973，Principles of interactire こomputer Jraphias．New Iork：McGraw－Eill．

Eoucker，J．K．，1073，Jeographic data structures．Zrosress Rect．aiter
 Simon Fraser $\because .$, Zurraoy，3．こ．，Janada．

Eacker，T．K．，and Chrisman，N．，19F5，Cartograpiic data structures． im．こartograpier，2：シシーテ́g．

 Computer jrapinics and Imaje 3rocessing， $4: 375-307$ ．

Raytieon Company，$i \neq 73$ ，The development of a najurai resource inت゙ormetion system．Volumes 1－4，Rajtheon Company，wayland．Massachuserts．
 Systems Lab．，Massaciusetts Inst．Of Iesinolocf，Eamioridge，MA．

Shamos，M．and B゙oey，2．，＂Closest point proolems，＂Ióth Annual Symposium on Joundations of Compueer Science，Jniv．of Caliefornia，Serikeiey， Ocち．13－15，1075，IESE（1975），151－162．
 Urbana：University of Mininois．

Narntz，$\pi ., i=66$ ，The topology of a socio－economic terrain and spatial flows．Regional Science Association，Papers，17：47－6́1．

Warkins，J．S．，1970，A real time risible surface ajgorithm．Computer Science Dept．，「inir，of iJtah，UTECH－csc－70－101，June 1070.
 analysis I：relief，slope，and dissection on inch－to－the－mile maps in the United States．Tech．Rept．EP－112，Quartermasters Research and Engineering Command，U．S．Arny．

Young，J．J．，1973，A computer program to describe terrain characteristics of a drainage basin．Tech．Sull．，76，Inland Naters Directorace， Environment Janada，Ottawa．

APPENDICES

Appendix I :	Technical Reports, "Geographic Data
Appendix İ:	Computer Programs and Subprograms 汹
Appendix III:	Comparison of TIN's and Grids Cor Estinating Gecmorphometric Parameters..... $\begin{gathered} \\ \varepsilon\end{gathered}$
Appendix IV:	Triangulated Scan Line Coherence.......... $00-63$

APPENBIX1
TEGHNIGAL REPORTS SUBMITTED UNDER THIS TGEOGRAPHIC dATA STRUCTURES" pROJECT

APPENDIX I: Tecinical Reports, "Feographic Zata Structures" Project

i. Feucker, T.I., 1973, Geographic data structures. Erogress Rept. after Year Cae (Tech. Rept. \#1), ONR Contract \ddagger NOOO14-73-~-0109, Dept. Geogr., Simon Preser U., Burnady, 3. C., Canaca,
2. Cochrane, J., 2974, "Cartographic display operations on suriace data collected in an irregurar structure." ünpub. M.A. Thesiss, Sinon Freser U., Burnaid, Caneda.
3. Merts, D.M., 197't, "A somparisoc of computer-besed veruain storage methods with respect to the evaluation of certain geomorphometric messures," Unpub, M.A. Thesis, U. Zritish Columbia, Vancouver, Canada.
4. Peucker, T.K., and Chrismen, X., 1975, Cartographic data structures. Am. Cartographer, 2:55-69.
5. Mark, J.M., -975, Computer analysis of topography: a comparison of terrain storage methods. Geograíiska Annaier, 57A:179-188.
6. Peucker, T.K., 9975, Computer camography and the structure of its algoritims. forid Cartogrephy, in press,
T. Peuciser, T.K., 1976, A theory of the cartographic iine. Int. Yearbook for Cartography, in press.
8. Mark, D,M, Little, J.J., and Kirkpatrick, D.G., I976, On minimum spaning trees and the minimum reight trienguation. Tech. Rept. 48, ONR Contract N00014-75-~-0886.
9. Brasse1, K., and Fowler, RoJ., in Srep., Delineation of Thiessen polygons :or large sets or data yoints, Submitted to Geogrephiea: Analysis.

$$
A P F E N D I X I I
$$

COMPUTER PROGRAMS AND SUE-PROGRAMS

APOENDIS II: Computer Programs and Suberogrems.

Note: All programs are written in gr I, except where indicated.
DATA SMRUCTURE PRIMITITES
AUNFLG - Allocstes and initializes the facility for ilagging directed edges in the trianguated zetwork.

RSNFLG - Reset the neighbor liag vector.
SEMNFLG - Set a given edge Ing to a given vaiue.
TSMNHG - Test an edge flag.
COORDS - Returns tine x, y, and z coordinates of a node in the network.
CONEXT - Finds the next clockwise neighbor of a given node relative to a specipied direction.

NEXT - Finds the next clociwise neighbor of a given node relative to another neighbor of that node.

LAST - Returns the next counterclockwise neighbor of a given node relative to anotier aeighbor of that node.

SEIUP - Initializes the data base iacilities.
ISEMUP - Initializes the data base iacilities and produces a stractured IIsting of the networt.

DATA BASE MAINTENANCE RCUMITES
ERUTE - the brute Porce batch editor.
TRIFIX - Completes the border of a triangilated net and areates a data base ille containing that network.

GRAPH - Converts the data base to a format raacabie by FORTRAN programs.
TRINGB - Produces a IN From a set of triangles. FCRTRAN.
STENZ - Reads a trianginated net irom a card Eile and initiaiizes an internal representation of that net.

TREANGTATTON PROGRAMS

TRIAP - Produces a triangilation of irreginariv sampled points by successiveiy adding points to the triangulation.
 HIESSI - Eroduces 3 triangiation using the Thiessen criterion.

DISFTAY ATD ATAIYSTS PROGRAMS
TRIKONT - Produces contour maps.
ISCFTOT - Produces isoline maps of arbitramy functions of the coorinates of the nodes.

FROMAP - Eroduces alock iiagrams directiy Irom the triangulated net.
TRIPI - PIots the trianglated net.
SURFER - Displays the TIN three-dimensiocaliv as triangular facevs, remoring jidden Iines.

SHADE - Depicts the reifef on the TTN using shading in the Swiss manner. The input consists of the TIN, the normals, and the second daia structure.

SCANER - Finds the intersections of a set of paraliel lines with the TM. تese intersections can be passed to GRIDDR.

GRDDR - Takes as input a list of irregulariy spaced vaiues along a line snd inneariy interpoigtes reginariv spaced vaiues, used riti the SCATNER.

הMS - Calculates the root mean square error between Fo joidded data sets, using their zoint by point difference.
 two lises.

TRINORM - Calsulates the zormals to all the triangies in the Nan. OutEut Vectors can be either zormaized or unormalized.

SLCPE - Calculates the naxinu slope :or every triangie from the norma vectors.
 the area, ising the normais as input.

```
VEXS - Determines at an edge whether slopes are ivivergent, convergent,
    or neither.
GREY - Produces a isst of slopes to meighboring points for each joiat
    in the TIT.
RTDGE - Ulses the metheds described in section i. 1to extract the ridges
        and channels from regnlarly gridded topographic data.
TRIDGE - Uses the methods described in section 4.1 to extract the
        ridges and ehannels for the TIN. Outgut is the set of edges
        for each of the ridges and caannels.
CLSTPM - Finds the node closest to a given point.
RNORTE - Produces a computationally cheap surrogate for the compass
    bearing angle between two points.
AREA2 and AREA3 - Return the area of a triangie in space and the area
                    projected or the x, y-plane.
PSLICE - Finds the intersection of a line segment with an infinite line,
        if such an intersection exists.
RTH~NI - Determines whether a point lies in the left or right baifplanes
        defined by a given directed line segment.
EWRANG - Sets the parameters (the Juler angles) for rotations in three
        dumensiocs.
FRROT - Perform the Euier rotation on a point.
gUNSNP - A much modisied variation on the quicksort aigoritim.
TMMER - Returns the processor time left in the current job step.
```

$$
A P P E N D I X I I I
$$

COMPARISON OF TRIANGULATED IRREGULAR NETUORK'S AND REGULAR GRIDS FOR ESTIMATING GEOMORPHOMETRIC PARAMETERS

APPMVIT III: Comparison of TnI's and Grids Por Estimating Geomorphometric Parameters

root-mean-scuare errors:

15×15 万FIds

Parameter		
$\ddot{\because}$	5	$=$
42.4	0.053	0.015
3.3	0.019	0.007
$12.9: 1$	$2.8: 1$	$2.1: 1$

Characteristics of regular grids theoreticaliy required* to produce the the same prectisfon as the TINTs
d (metres) $39179 \quad 234$
size
$181 \times 18140 \times 40 \quad 31 \times 31$
number of points
$32,761 \quad 1,600$
961
Ratios to IIN's (114 points):

number of points	$287: 1$	$14: 1$	$8.4: 1$
digitization time	$55: 1$	$2.7: 1$	$1.6: 1$
storage space	$29: 1$	$1.4: 1$	$0.9: 1$

* assuming a linear relation between grid spacing and grid precision.
triangulated scan line coherence

APPETDIX 77: Fianguiated Scan Jine Coherence

The power of the 9 IIT data scheme is evident in anaiysis of the structure of tervain, especially where the proximity or connectedness of zeatures is important. The triangular structure is also efficient for simple tasis. For display, as for video, it is important to be able to produce a set of parallel scans through the model as efficiently as possibie. These scans, each of which is a set of intersections with the ediges of the triangular facets, siso can be interpolated to produce a regular grid of points. Creating these scan lines is called scan eonversion. The epficiency of a scan converter is directiy related to how erficientiy one can trace the path of a line through the TIN.

For a large class of problems, one wants to be able 00 determine which triangles a given line intersects. The line may consist of a group of connected segments, such as a roadvay, or a straight line, as in scan ines. The case for scan lines is simpler, since the line can be inagined as infinite, so that simple evaluation of the equation of the line determines intersection, Once it has been determined that the scan tntersects a side of a triangle then it is obvious that it must intersect one of the other two sides or the point shared by both sides. Using this observation a scheme has been devised to follow the path of a ine through the triangilated surface. This process, SEARCHNET, is described more sully in the year one report (?eucker et al., 1973; Cochrane, 1974). This method is last, checking less than twice as many links as the number of Itnks : ound to intersect.

The searciner traciing process has itself been implemented by members of the profect for a scan converter; however, by using the property of scan Inine coherence the process can be speeded up. Scan line coberence is the property that "adjacent scan lines appear very similar" (Newman and Sproull, 1973). In our context this means that if the distance between scan lines is less than the average length of the iinks then it can be expected that several inks intersected by a scan line will also intersect the next. Upon finding that a given link is intersected by a scan ine it is possible to predict how many further scans will intercept that linis. Watkins (1970) implemented a hidden-1ine aigorithm for Fideo display using a scheme whereby each intersection of a line with an edge is stored as an x, y, z value, together with the increment in x, y, z by wisch it is expected to change by the aext ine, and the number of scans that the link will further intersect. The sckeme for scanning the triangular irregular gidd is quite similar.

The links which intercept the first scan must be Sound by the SEARCENE: procedure. For each intersection a record is stored as follows:

```
OM- the x, y, z soordinates or the intersection;
ЈEX, \EIY, DELZ - the increments in x, y, z which mi`. be
added to TYZ to calcuiate 隹 intersection
For the following scsm inme:
MUMSC - the number of Sureher scans which the link wi=% cross;
IAIL - the node at the far end of the link.
```

These are stored in a singiy linked inst. On succeeding iines, the iist or intersections is exemined and JUMSC for each inink is tested. In it is greater than or equal to i then DELX, DELY, DELZ are added to the XIT ralues and these new vaiues replace XVZ. MMSC $\pm s$ then de:remented by 1. The values for $X Y$ are then placed in the isst of intersections for that scan.

If IUMSC is less than 1 then TAII :or that entry is added to a list of Pailed liniss and the entry removed fram the interseciion list. Folinowing the discorery of a failed link other links for which JUMSC is less than 1 are added to the fail list until a link which crosses the scan is :ound or the scan exits from the model area. Then these noces are used by the SEARCENET procedure to find links emanating from them which cross the scan. SEARCENET will start at the last linik whin crossed the gresent line and ind links crossing until it either encounters the edge of the area or a link already found. These intersections are added to the scar Iist and to the list of future intersections. If the edge of the model was not encountersd then processing contimues on the link list. The method thus repairs the intersection list on the go as gaps appear when a scan line passes beyond a link. The method combines a fast searcining technique with a bookkeeping technique that eliminates rediscovering information which can easily be predicted,

The speed of the aigorithm is unairected by the direction of the scans relative to the coordinate axes of the TIN, since there is no implied directionality, A innk once crossed need never be searched for again. In a TIN of N points there are $3(\mathrm{~N}-1)$-a edges, where 3 is the number 22 points on the boundary of the nodel. Let E be $3(N-1)-3$. Jetring ? be the cost of discovering a crossing edge, then the cost ior ali ite in-xs is $R \times E$. Let I be the average length of the links in the TIN. The expected iength of the links projected eerpendicular te the scan lines is: PDXI/4. If the distance between scans is M then the expected number of ifmes a link will be crossed is $3=X I /(L X M)=$ I. wie can now write the total cost for the scan conversion, letting $C O$ stand zor startup cost and I be the cost per intersection:

$$
\text { Cost }=0+3 \times 2+I \times E \times I
$$

$2 r$
Cose $=00+3 x E+\operatorname{XxE}(9=\times L) /(1 \times M)$

For a particular T IN where the length of the links in the airection perpend゙cular to scanntug is D, M an be expressed as a anction of the sumber of scans X ：

$$
M=D / X
$$

So cost can be mewritten：
Cost $=C 0+R X E+\operatorname{IXEX}($ PIYT $) \times X /(4 \sim D)$
Thus cost per scan IIne decreases lineariy with the number of scans． Some test results foilow：

Time to Produce X Scans in Seconds
X

Points	36	71	241	281	561
31	.07	.11	.145	.25	.45
85	.19	.26	.35	.52	.83
279	.53	.64	.82	1.00	1.43

```
Bor references quatec i- this mpperdix see the gererai iis= ci゙ reごererces
    on page 47-50)
```



```
    UEEICE OF NAVAL RESEARCH 2 EOPIES
    GEOGRAPMY PROGRAMS
    CODE
        462
        ARLINGTON, VIRGINIA 22217
    DEFENSE ODCUMENTATION CENTER 12 COPIES
    CAMERON STATION
    ALEXANDRIA, VIRGINIA 22314
    DIRECTOR, NAVAL RESEARCH LAR 6 COPIES
    ATTENTION TECHNICAL INFORMATION OFFICER
    WASHINGTON. D. C. 20375
    DIRECTOR
    UFFICE OF NAVAL RESEARCH BRANCH OFFICE
    1030 EAST GREEN STREET
    OASADENA. CALIFORNIA 91101
    D!RECTOR
    OFFICE OF NAVAL RESEARCH GRANCH OFFICE
    219 SOUTH DEARBORN STREET
    CHICAGO. ILLINOIS 60604
DIRECTOR
OFFICE OF NAYAL RESEARCM BRANCH OEFICE
    495 SUMMER STREET
    BOSTON, MASSACHUSETTS 02210
    COMMANOING OFFICER
    OFFICE OF NAVAL RESEARCH BRANCH OFFICE
    80X 39
    FPO NEW YORK 09510
CHIEF OF NAVAL RESEARCH
ASST. FOR MARINE CORPS MATTERS
    CODE 10OM
OFFICE OF NAVAL RESEARCH
WASHINGTON. O. C. 22217
CHIEF UF NAVAL RESEARCA
    OCEAN SCIENCE AND TECHNOLOGY GROUP
    CODE 49O
    OFFICE UF NAVAL RESEARCH
    WASHINGTON, D. C. 22217
    OFFICE OF NAVAL RESEARCH
    OPERATIUNAL APPLICATIONS DIVISION
    CODE 2OO
    ARLINGTUNE YIRGINIA 22217
    OFFICE OF NAVAL RESEARCH
    SCIENTIFIC LIAISON OFFICER
    SCRIPPS INSTITUTION OF OCEANOGRAPHY
    LA JOLLA, CALIFORNIA 92038
```

```
UIRECTOR, NAVAL RESEARCH LABORATORY
ATTN IIBRARY, CDDE 26?8
    WASHINGTON, D.C. 20375
    CUMMANIDER
NAYAL DCEANOGRAPMIC DEFIEE
    ATTN. LIGRARY CDOE lgON
WASHINGTONE D.C.C. 20374
NAVAL OREANOGRAPHIC OFFICE
    COOE 300l
WASHINGTON, O.C.C.20374
CHIEF OF NAVAL OPERATIONS
    OP 987P1
OEPARTMENT OF THE NAVY
WASHINGTON. D. C. 20350
    OCEANOGRAPHER OF THE NAVY
    HOFFMAN II BUILDING
    2OO STOVALL STREET
\triangleLEXANORIA, VIRGINIA 22322
NAVAL ACADEMY LIBRARY
    U. S. NAVAL ACAOEMY
    \triangleNNAPOLIS, MARYLAND 21402
COMMANOING OFFICER
    NAVAL CUASTAL SYSTEMS LABORATORY
    PANAMA CITY, FLORIOA 32401
LIARARIAN
    NAVAL INTELLIGENCE
    SUPPORT CENTER
    43O1 SUITLAND RDAD
WASHINGTON, D.C. 20390
OFFICER IN CHARGE
    ENVIRONMENTAL PREDICTION
gESEARCH FACILITY
    NAVAL POST GRADUATE SCHOOL
    MONTEREY, CALIFORNIA 93940
    COMMANOING GENERAL
    MARINE CORPS DEVELOPMENT AND
    EDURATIUNAI COMMANO
    OUANTICO, VIRGINIA 22134
    UR.A.L. SLAFKDSKY
    SCIENTIFIC AOVISOR
    commandant of the marine corps (cooe ax)
    WASHINCTON, D.C. 2038D
    OEEENSE INTELL_GENGE ACEYGY
    01AAP-10A
    WASHINGTON, O.C. 2O3O1
```

```
OIRECTUR
OEFENSE MAPPING TOPOGRAPHIC CENTER
ATTN# CODE 502OO
W\triangleSHINGTONE D. Ce 20315
CUMMANOING OFFICER
U.S. \triangleRMY ENGINEERING
TOPOGRAPHIC LABORATORY
ATTN: ETL-ST
FORT BELVUIR, VIRGINIA 22060
CHIEF, WAVE OYNAMICS OIYISION
    USAE-WES
P.O. ROX 631
    VICKSRURG, MISSISSIPPI 39180
    NATIONAL OCEANOGRAPHIC DATA
CENTER 20764
    ENVIRONMENTAL DATA SERVICES
    NOAA
    WASHINGTON, D. C. 20235
    CENTRAL INTELLIGENCE AGENCY
    ATTENTION OCR/DO-PUBLICATIONS
    WASHINGTON, D.C. 20505
    OR MARK M. MACOMBER
    \triangleOVANCED TECHNOLOGY DIVISION
    DEFENSE MAPPING AGENCY
NAVAL ORSERVATORY
    WASHINGTUN, D. C. 20390
MINISTERIALDIREKTOR OK.F. WEVER
RUEIFO
bundesminISTERIUM dER vERTEIOIGUNG
HAROTHOEHE
D-5300 RUNN. WEST GERMANY
ORERREGIERUNGSRAT DR. JAEGER
QUE/FO
    GUNUESMINISTERIUM DER VERTEIOIGUNG
    HARDTHUEHE
    D-5300 RONN, WEST GERMANY
TMR TAGE STRARUP ESTARLISMMENT
OSTERRROGADES KASERNE
OK-2100 KOBENHAVN O, DENMARK
IR.M. W. VAN GATENBERG,
OIJDE WAALSDORPER WEG 63, DEN HAAT,
NETHERLANOS
```

DR. GORDON E. CARLSON UNIVERSITY OF MISSOURI
DEPARTMENT OF ELECTRICAI ENGINEERING ROLLA, MISSOURI 65401
COASTAL STUDIES INSTITUTE
LOUISIANA STATE UNIVERSITY BATUN ROUGE, LOUISIANA 70803
TETRA TECH, INC. 630 NORTH ROSEMEAD BOULEVARO
OR. WILLIAM S. GAITHER DEAN, COLLEGE OF MARINE STVOIES
RORINSON HALL UNIVERSITY OF DELAHARE
OR. AENNO M. BRENNINKMEYER, S. J. DEPT. UF GEOLOGY ANO GEOPHYSIES
BOSTON COLLEGE CHESTNUT HILL. MASSACHUSETTS 02167
JPL-CALTECH
MAIL STUP 183-501
$\begin{aligned} & 4800 \text { OAK GROVE DRIVE } \\ & \text { PASADENA. CALIFORNIA } 91103 \\ & \hline \end{aligned}$
RENNSSELAER POLYTECHNIC INSTITUTE TROY. NEw YURK 12181
MR FRED THUMSON
enviroinmental research institute P.C. Rila hla
DR.J. \triangle. DRACUP ENYIROMMENTAI OYNAMIES, INGA 1609 WESTWOUD ADULEVARD, SUITE 202 LOS AMGELES, CALIFORNIA 90024

SUE/FC 3A
suncesminsegiou jea ventioncung
PCSTEAC: 161
0-5300 30:m
FED. FEPUBITC OF GERMNY
2R. A. 500
ARN RESENECH OFEICE
RESEARC: TRINGE ?ARS, MCRTM CAROIINA, 27709

DR. GECRG NTAUSEraERCR
AIR FCRCE OFFICE OF SCIENTIFIC RESEABCA
DTRECTORATE OF ELECTRONLC AND SOITD STATE SCIENCES
3īg 410
BCLITNG AIR FORCE EASE

- HASHENGION, D.C:; 20332

DE. M.M. ANDREN:
DIRECTORATE CF MAMEMATICAL AND INFCRMATICN SCIENCZ
AIR FCRCE GFFICE OF SCIENTFIC RESEARCH

WASEINGOON, D.C., 20332
JR. I. JAYACLANDRAN
CODE 431
CFFICE CF MATAL RESEARCH
ARINGOCN, TRGINA, 22217
2F, zCEERT"シ. LUNDEGARD
$\operatorname{coDe} 430$
CFFICE OF MATAL RESEARC:

- AFITNGTN, MRGITA, 22217

MR. MAENE: こENICOFG
OOLE -3?
OFETCE OE MATA RESEAEC:

CODE 439
ofice of vivai amserrcia
ATLINGTCN, MRGINA, 222i7

- 2r. REMEM KOme

TOE

TCET EEVVCZ, TOMTH, $220 \in 0$

22． 20 BOMOTA

20DEse

NATA ：

amimginir Tacina， 20360

Nivai tie zisems comman
ЗCOM 773，UTFERSCN PTAZA 3IDG． 1

ALIEGGON，TACINA， 20360
JR．ミTjina sRODSK
CODE 32
oficez of mathi gesenace：
AFIIVGOON，TERGILA， 22217
PROF．DR．SC：OEMMKR＊

2ET：
VEMERiANDS
PGCF．DR．Z．

ONITESATATMCNEN
う－zCCC NTEMCNT
NEST－GENNV

： BC 987：1
FOCM 30772

wisenyomon zc 20350

MCF 986
2CCM ラĆćć

WASHIVGEN IC 20350
CDR．A．A．FECRE
YCP 986 F

(Initiai Disurioution Eist, yage 7)

- DR. SHEPE SCCDMAN

VAVAL CCEAN RESEARCI NND DEVEIOFMENT ACTITIT
NATEONAI SPACE ECEHOLOCY LNEORTFOREE-
BAY ST. -OUIS, MTSSISSIPDI, 39520

DR. M.E.RTNGENBACK

NATIONA: CCEAN SURVEY
3DLG. 2, AOOM 112
RCCKVIIEE, MARIAND, 20852

- Dr EPAUE EETEK
U.S. GEOLGGCAL SURVEY
---SGNRTSE VIEIET JRIVE
RESTON, VIEGINIA, 22070

	-minchssem
\%	
	为
	(enemen

E8

[^0]: GDS: Geographic Data Stracture (see last paragraph of the Preface). TIV: Irlangulated Iregular Jetworic

[^1]: SM: Ingital Terrain Model, see near end of section i.i, ajove

[^2]: DMA: Defonse Mapoing Agency (Washington, D.C. USA)
 DTM: Digitai Terrain Model
 TIV: Trianglated Irregular Network

[^3]: Tis : 3riargiazjec Inreginar .etwork

[^4]: IT：：Triangulated Irregilan ．．e twork

[^5]: DTM: Digital Terrain Mocel
 IIN: Intargian Irregular Network

[^6]: IT：：Triengicated IEregina：Netwcrk

[^7]: TrN : Triangulated Inreghar Vetwork 2M : Digitai Terrain Model

[^8]: II: : Triargiiaiad Imeegiar vetwcrik

[^9]: GDS : Geographic Data Structure, consisting of the Triangulated Irregular Network plus the Hizher Level Structures

[^10]:

[^11]: İ. : Triangiiated Inreguiar VeJwork

