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ABSTRACT 

The digital core analysis of petrophysical properties replace the use of conventional core analysis 

by reducing the required time for investigation. Also, the ability to capture pore geometries and 

fluid behavior at the pore-scale improves the understanding of complex reservoir structures. In 

this work, 53 samples of 2D thin section petrographic images were used for analyses from the 

core plugs taken from the Buzurgan oil field. Each sample was impregnated with blue-dyed 

epoxy, thin sectioned and then was stained for discrimination of carbonate minerals. Each thin 

section has been described in detail and illustrated by photomicrographs. The studied samples 

include a variety of rock types. Packstone is the most common rock type observed followed by 

grainstone and packstone – wackestone. Floatstone and dolostone are noted rarely in the studied 

interval. However, the samples of thin section images are processed and digitized, utilizing 

MATLAB programming and image analysis software. The entire workflow of digital core 

analysis from image segmentation to petrophysical rock properties determination was 

performed. A focused has been made on determining effective and total porosity, absolute 

permeability, and irreducible water saturation. Absolute permeability is estimated with the 

Kozeny-Carman permeability correlation model and Timur-Coates permeability correlation 

model. Irreducible water saturation simply is derived from total and effective porosity. Also, 

some pore void characteristics, such as area and perimeter, were calculated. The results of 

Digital 2D image analysis have been compared to laboratory core measurements to investigate 

the reliability and restrictions of the digital image interpretation techniques.  
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INTRODUCTION 

The Mishrif Formation contains up to 40% of the Cretaceous oil reserves in Iraq, and about 30% 

of the total Iraqi oil reserves (Mohammed et al., 2020). Petrophysical properties like porosity, 

saturation, and permeability are essential reservoir rock properties used in the determination of 

hydrocarbon volume in place. Carbonate sediments and rocks are characterized by a wide range of 

physical parameters which are affected by variable deposition conditions and diagenesis processes 

(Al-Baldawi, 2020).  There are different methods to measure these properties such as core analysis, 

well log analysis and well testing. However, there can be uncertainties associated with core 

measurements, especially when laboratory conditions are ignored under which core measures 

made. Al-Mimar et al. (2018) used a gamma ray tool and geochemical data to distinguish facies 

associations in the studied succession. The stratigraphic succession was generally divided into 

eleven zones based on lithology and petrophysical properties. Four facies associations were 

distinguished by Abbas et al. (2020,) each of which represents a distinct depositional environment. 

Certain factors control the petrophysical properties of a reservoir such as; pore size distribution, 

grain size distribution, mineralogy and sorting, etc. To reduce some of these differences, digital 

image analysis of thin sections is presented as this alternative technique to analyze petrophysical 

properties. Digital image analysis can estimate total porosity, effective porosity, absolute 

permeability, irreducible water saturation, mineralogy, pore size distribution and sorting (Fens, 

2000; Heilbronner and Barrett, 2014; Lawrence and Jiang, 2017 and Varfolomeev et al., 2016). 

The studied interval comprises limestones and dolostone of the Middle Miocene Lower Fars 

Formation. The studied samples are dominantly Packstone, followed by grainstone, packstone, 

wackestone, rare floatstone and dolostone.  Historical digital image analysis techniques have 

established porosity from manual thresholding (Fens, 2000 and Zerabruk et al., 2017), which was 

somewhat subjective, so automated thresholding and clustering techniques were introduced in the 

current study. Absolute permeability is estimated with the Kozeny-Carman correlation (Carman, 

1937 and Dvorkin, 2009) and Timur-Coates (Coates and Dumanoir, 1973) correlation.  The current 

study aims to determine porosity, absolute permeability, and irreducible water saturation. 

Irreducible water saturation is simply derived from total and effective porosity. Hence, the 

determination of these properties from digital image analysis of the thin section can be termed as 

an indirect method. 
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MATERIALS AND METHODS 

General Information 

The Buzurgan oil field is located in the South-Eastern part of the Iraq, close to the Iran boundary, 

40 Km North East of Amara. The oil field was discovered in 1970, and in November 1976 its 

development was started. The oil field development was carried out by the General Organization 

of South Oil – Missan Oilfield. Buzurgan geological structure is composed of Tertiary and Upper 

Cretaceous deposits. Lower deposits were not penetrated. Stratigraphy description is made 

according to data, given in final geological reports for Buzurgan wells (Fig.1). Fifty-three (53) 

samples were selected for thin section as a part of the petrographic study, (Fig. 2). 

 

Fig. 1. Stratigraphic description of the Buzurgan oil field 
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Fig. 2.  Grainstone sample shows calcite cement (Cc) and intergranular porosity (Ig) 

The studied interval comprises limestones and dolostone of the Middle Miocene Lower Fars 

Formation of unit MB21. The studied samples are dominantly packstone, followed by grainstone, 

packstone, wackestone, rare floatstone and dolostone. Each sample was impregnated with blue-

dyed epoxy, thin sectioned and then was stained for discrimination of the carbonate minerals. The 

benefit of using blue epoxy is that it usually does not occur in rocks and occupies the pore space 

within the grains; hence, the detection of blue color allows analysis of sample porosity. The 

scanned image has a resolution of about ten𝜇m/pixel. This procedure of scanning and digitizing 

the image is called 'optical microscopy' and is of lower resolution as compared to digital images 

obtained from scanning electron microscopy. The advantage of the former is that it is a fast 

technique to get digital images and a disadvantage that pore sizes of less than ten𝜇m cannot 

quantitatively be resolved with optical microscopy. Digital images made of elements called pixels, 

which are the building blocks of an image.  The image width is the number of pixel columns (M), 

and the image height is the number of pixel rows (N) in the array. Each pixel has its intensity value 

or brightness. Black and white images only have intensity from the darkest gray (black) to lightest 

gray (white).  Color images, on the other hand, have intensity from the darkest and lightest of three 

different colors, red, green, and blue. Thus, the two most basic types of digital images, black and 

white (known as the binary image) and color images. Intensity values in the digital images are 
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defined by bits.  Bit depth (or color depth) represents the number of different colors that can be 

represented by a pixel depends on the number of bits per pixel (bpp). The pixel in the binary image 

can be either (0, black) or (1, white), representing the darker and brighter areas of the image, 

respectively, while pixel in RGB image are between 0-255 for each band, red, green, and blue.  

The main advantage of converting RGB image to binary image is that binary images are 

much easier to work within many operations, such as image segmentation processes and distinguish 

features of an image (Wilhelm and Mark, 2010). Binary images are often the result of segmentation 

where the pixels have been separated into two categories: the objects of interest (pores) and the 

background (grains or matrix). Binary images have special topological properties, which allow 

operations such as filling holes, removing edge objects, and rebuilding from two images. 

Color Analysis of Image Under Study 

Image color analysis is primarily an initial visual test of the image color. We start by segmenting 

the image into a luminosity-chromaticity (Lab) color space. In the Lab color system, layer (L) 

represents the luminosity and characteristics of the brightness of light produced by an image. In 

contrast, layer (a) is a layer of chromaticity showing where colors fall along the red-green axis, and 

layer (b) is also a layer of chromaticity showing where colors fall along the blue-yellow axis. All 

color information is contained in the layers (a) and (b). Fig. 3 shows that blue epoxy is standing out 

on the segmented image's blue component, layer (a), and layer (b). The pixel intensity histogram 

(scale 0-255) of these three images is shown in Fig. 4, and the required interest feature can be 

extracted by thresholding (cut-off) the histogram.  

As shown in Fig.4, the lighter part in the blue component image represents the pore space 

filled with blue epoxy, while the dark (black) part represents the rock matrix. Reverse this case, in 

layer 'a' and layer 'b' images, the lighter part of the image represents the rock matrix while the black 

or dark part represents the pore space. Analyzing fifty-three (53) digital image samples show that 

blue epoxy could be captured adequately by thresholding the blue component, layer 'a' and layer 

'b' of the segmented image, in our case the high number of red intensities implies the presence of 

blue color and therefore epoxy placed in pores. The blue part of the LAB color system only used 

to capture sample petrophysical properties. 

 

 

 



Iraqi Geological Journal         Tawfeeq and Al-Sudani        53 (2C), 2020: 34-55 

 39 

 
 

Fig. 3. Image segmentation into RGB space and Lab space (sample 18) 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Image histogram of the blue component, Layer 'a' and Layer 'b' (sample 18) 

Segmentation of Digital Image 

Segmentation is a crucial step in the image analysis process. The purpose of image segmentation 

is to partition the image into areas based on criteria for pixel values. In a binary image, only two 

types of regions coexist; the objects of interest (foreground) region represented the pore space and 



Iraqi Geological Journal         Tawfeeq and Al-Sudani        53 (2C), 2020: 34-55 

 40 

the remaining regions, called "backgrounds," which represented the rock matrix. Thresholding is 

the easiest way of segmenting the image using image histogram. Thresholding can be used to 

produce binary images from a grayscale image (Shapiro et al., 2002) (Fig. 5). 

 

Fig. 5. Threshold segmentation of the histogram 

Automatic thresholding is an excellent way to obtain pixel-encoded valuable data while 

minimizing background noise. There are many methods and techniques are used to digital segment 

image automatically. One of these methods is an image segmentation by K-mean clustering 

method. K-means clustering algorithm is developed by MacQueen (1967) and then by Hartigan 

and Wong (1979)). Clustering is a method to divide a set of data into a specific number of groups. 

Directly speaking, K- means clustering is an algorithm to classify or to group the objects based on 

attributes/features into K groups. K is a positive integer number. The grouping is done by 

minimizing the distances between data, and the corresponding cluster centroid K-means clustering 

aims to divide data into k clusters in which each data value belongs to the cluster with the closest 

mean (Sachin, 2010).  

 In Fig. 6 the function k-means partitions 'n' observations into 'k' number of mutually 

exclusive clusters and returns clusters indices assigned to each representation. It is an iterative 

process, and partitioning achieved in a way that data points within a cluster are as close to each 

other as possible and as distant from data points in different clusters. Each cluster is characterized 

by its centroid or center point. Fig. 7 shows the process of basic k-means implemented using 

MATLAB in this study. Using pixel labels, we can separate objects in the digital image by color, 

which will result in three images, as shown in Fig.8. A binary image created, which used to quantify 

petrophysical properties (porosity) from pixels count in the white region of the binarized image. 

The red boundary is marked around the captured pores to quality control, the results of image 

clustering and segmentation if it has obtained all the pores, as shown in Fig. 9. 
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Fig. 6. K-means logic to partition data points into clusters based on minimizing data points 

distance from the cluster centroid 

 

Fig. 7. K-means algorithm process implemented using MATLAB 
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Fig. 8. Digital image labeled by cluster index (Sample 4) 

In Lab scale, color information lies in 'a' and 'b' segments of the image, and this color 

information used to capture blue color epoxy associated with pore space, cluster (1) (Fig. 9). 

However, it can be observed from the captured cluster (1) image that the intensity of the blue color 

is not the same across all pores. Pore sizes are larger than pixel resolution of the image 

(macropores) appear bluer and lighter as compared to sub-resolution pores (micropores), which 

includes matrix effect in it. Luminosity (L) is used to further segment blue color into light blue 

easily visualize-able pores and dark blue sub-resolution pores, as shown in Fig.10. 

 

Fig. 9. Resulted binary image and captured pores (Sample 4) 
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Fig. 10. luminosity 'L' component applied to further partitioning the captured blue epoxy 

into dark and light blue 

RESULTS AND DISCUSSIONS 

Porosity from Digital Image Analysis 

The volume fraction of void spaces, i.e., non-rock space divided by the total volume of the sample 

is defined as porosity (Fens, 2000).  

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦	(𝜑) = 𝑃𝑜𝑟𝑒	𝑉𝑜𝑙𝑢𝑚𝑒
𝐵𝑢𝑙𝑘	𝑉𝑜𝑙𝑢𝑚𝑒 =

𝑉5𝑉6 (1) 

A digital image comprises pixels, which are the building blocks of an image. Hence, a pixel 

can be defined as the smallest unit of a digital image (Rudolf, 1999). Core thin section scanned 

images are used in the current study were typically cropped at 637x478 pixels (MxN pixel array), 

hence the total number of pixels in a sample is 304486 pixels. Core thin section samples consist of 

empty pore space filled with the blue liquid epoxy and solid grains comprising of different 

minerals, as shown in Fig.11.  

Through image segmentation techniques that will be discussed in detail previously, it is 

possible to extract regions associated with blue epoxy only, i.e., pore space. The number of pixels 

residing in pore space is cumulated and divided by the total number of pixels to get image porosity. 

The definition of porosity from image analysis is somewhat similar to Equation 1 but written in 

pixels term. 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦	(𝐼𝑚𝑎𝑔𝑒) = ∑𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑝𝑜𝑟𝑒	𝑠𝑝𝑎𝑐𝑒
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠 (2) 
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Fig. 11. Grainstone sample shows echinoderms (Each), primary intergranular pore space 

(Ig), dolomite cement (Dol-C) and dolomite rhomb (Dol) 

The digital image can be obtained from an optical microscopy technique or with electron 

microscopy scanning. The accuracy of porosity from image analysis is dependent upon its pixel's 

resolution. The analyzed samples have pixel resolution of about ten𝜇m, which means pore sizes 

larger than ten𝜇m accurately quantified with this technique, and a different interpretation technique 

used to quantify porosity associated with the pore sizes less than 10 𝜇m. Porosity has several 

terminologies, with each having a different meaning. Porosity may be defined as primary or 

secondary porosity, total or effective porosity, micro-meso-macroporosity, or isolated porosity, etc. 

Such differences shall be kept in mind while documenting porosity results. Core thin section 

samples used in the current study scanned with optical microscopy having a pixel resolution of 10 

𝜇m. So, substantial porosity may be residing in pore sizes of less than ten𝜇m, i.e., sub-resolution 

pores. Such sub-resolution pores were visually observe-able on thin-section images but with a 

mixed response of clay-silt matrix and porosity. A subjective adjustment factor used to extract the 

matrix effect from sub-resolution pores. In the current study, sub-resolution pores are defined as 

micro pores and pore sizes higher than ten𝜇m are defined as macro pores. Hence, the terminology 

of micro and macro pores porosity in the context of image analysis (scanned with optical 

microscopy) is used differently than their actual geological definitions. 

𝜑BCDEF = 𝐴 ∗ 𝜑CBIJK + 𝜑CDIJK = 𝜑MKMDN (3) 
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Where 'A' in Equation (3) stands for adjustment factor (0 and 1) to remove matrix effect from sub-

resolution pores, as a pixel representing pore size of less than 10 𝜇m may consist of both a grain 

and a pore. Ф𝑚𝑖𝑐𝑟𝑜 is micro pores porosity, and Ф𝑚𝑎𝑐𝑟𝑜 is macro pores porosity. The following two 

equations define the microporosity (Ф𝑚𝑖𝑐𝑟𝑜) and macroporosity (Ф𝑚𝑎𝑐𝑟𝑜) from image analysis 

presented in the current study; 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦	(𝑚𝑖𝑐𝑟𝑜) = ∑𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑚𝑖𝑐𝑟𝑜	𝑝𝑜𝑟𝑒𝑠
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠 (4) 

𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦	(𝑚𝑎𝑐𝑟𝑜) = ∑𝑝𝑖𝑥𝑒𝑙𝑠	𝑖𝑛	𝑚𝑎𝑐𝑟𝑜	𝑝𝑜𝑟𝑒
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙𝑠 (5) 

The segmentation algorithm clusters pixels automatically are divided into two groups: 

background (matrix) and foreground (pores). Thus, it is possible to extract regions associated with 

blue epoxy only, i.e., pore space. The number of pixels residing in each pore space is cumulated 

and divided by the total number of pixels to get image porosity. The area, perimeter, and diameter 

for every individual object (pore) calculated. After that, several macropores and micropores 

computed using two different methods, as explained above. Finally, macroporosity and 

microporosity are defined as ratio of macropores and micropores to the total number of pixels.  

Microporosity was adjusted by the factor 𝐴 = 0.75 to exclude matrix effect from micropores, and 

image porosity calculated using Equation (3). In all threshold methods, an adjustment factor was 

required for microporosity to remove the matrix effect. For the analyzed samples, the coefficient 

of 0.75 was required in equation 3 to achieve a good correlation between image-derived porosity 

and core porosity. The automatic method analyzed in the current study to estimate porosity is K-

means clustering. Three clusters used, and the cluster associated with blue color (epoxy) was 

further analyzed to determine porosity. Micro and macroporosity were differentiated based on 

luminosity (L) of the blue color, where light blue represents macropores and dark blue as 

micropores. Sample 1 was discarded in all results, as the blue color of the sample was not clear, 

hence porosity and other properties cannot calculate. It points to the limitation of the clustering 

technique, where blue color shall be present in pore space. Fig. 12 shows a comparison of porosity 

obtained from image analysis techniques compared to core porosity. Table 1 shows a comparison 

of porosity obtained by image analysis techniques compared to core porosity for some samples for 

the Middle Miocene Lower Fars Formation of unit MB21. 
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Fig. 12. Comparison of image-based total porosity using K-means clustering with core 

porosity 

Table 1. Image porosity analysis using K-Mean thresholding method for some selected 

samples used in this study 

 

Sample No 
Depth PHI_Core Macropores Micropores Phi Macro Phi Micro 

Pore Type 
meter fraction Pixel2 Pixel2 fraction fraction 

3 3914.09 0.097 15720.72 14365.58 0.0516 0.0472 dissolution 

4 3915.4 0.201 55820.16 4118.598 0.1833 0.0135 intergranular 

8 3919.22 0.173 30076.16 22270.44 0.0988 0.0731 dissolution 

11 3922.08 0.213 31013.3 32809.16 0.1019 0.1078 intergranular 

18 3929.49 0.189 26614.972 30533.16 0.0874 0.1003 dissolution 

20 3941.09 0.2 28139.73 29903.88 0.0924 0.0982 Dissolution 

25 3946.13 0.158 26996.28 18119.544 0.0887 0.0595 Intercrystalline  

26 3947.09 0.155 23538.3 21733.3 0.0773 0.0714 Mouldic 

28 3949.08 0.195 37216.42 26965.58 0.1222 0.0886 Dissolution 

31 3952.05 0.199 28124.72 34574.58 0.0924 0.1136 intergranular 

35 3956.17 0.142 27567.29 16562.29 0.0905 0.0544 Mouldic 

37 3958.04 0.184 25862.57 29778.44 0.0849 0.0978 Mouldic 

41 3962.1 0.184 37887.31 15991.15 0.1244 0.0525 Mouldic 

46 3967.13 0.147 15692.44 26107.02 0.0515 0.0857 Dissolution 

52 3973.09 0.139 18584.44 19431.58 0.0610 0.0638 Mouldic 

53 3974.07 0.156 18390.87 24962.16 0.0604 0.0820 Mouldic 
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Permeability Prediction from Digital Image Analysis 

Permeability is the dynamic property of reservoir rock and measures the ease at which a fluid can 

flow through the rock. Darcy law states that the flow rate of a single-phase fluid through a porous 

media is proportional to the permeability of the rock and effective pressure gradient, and is 

inversely proportional to fluid viscosity. Permeability has units of milli-Darcy. Permeability is a 

function of the connectivity of pores, pore throats, and grain size. For the clastic reservoir, a general 

assumption is bigger the pore size, more significant the grains and pore throats (Al-Sudani, 2014).  

This assumption may not be valid for carbonate reservoirs as their matrix framework is usually not 

granular. Over the years, several correlations have been developed to determine permeability from 

logs, and most of them are function of porosity, e.g., Coates equation and Wyllie-Rose method 

(Tawfeeq et al., 2020). Some correlations are suited for clastic reservoirs, while others for 

carbonate reservoirs or fracture permeability. Dry gas (air, N2 or He) permeability from cores is 

determined from Darcy Law; 

𝑄 = −𝐴	𝐾𝜇
∆𝑃
𝐿  (6) 

Where 𝑄 is the flow rate, 𝐾 is permeability, Δ𝑃 (P1-P2) is a pressure drop, 𝐿 is path length, 

and 𝜇 is dynamic viscosity. Permeability from a thin section is derived similarly as for the logs 

where correlations used as a function of porosity. It believed such correlations are suitable when 

porosity is granular, and the assumption that pore size distribution is proportional to grain size 

distribution. Kozeny-Carmen permeability model and Timur-Coates permeability studied in 

current work. Josef Kozeny and Philip Carman (Carman,1937 and Dvorkin, 2009) developed a 

correlation that expresses permeability as a function of porosity and specific surface area. The 

general form of Kozeny-Carman equation to determine permeability given as; 

𝐾TKUFVWXYDJCDV = (𝜑MKMDN)Z𝐶K𝑆]  (7) 

Where 𝐶𝑜 is Kozeny-Carman constant and is approximately '5' (Allen et al., 2000 and 

Zerabruk et al., 2017) the specific surface area exponent '𝑥' as shown in the equation. Still, this 

value can be adjusted to achieve a better correlation between image-based permeability and the 

'ground truth' derived from direct measurements such as core permeability. Specific surface area 

or surface to volume ratio approximated by the ratio of pore perimeter to the pore area. Perimeter 

and area of each pore (i) are outputs of binary image analysis as; 
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𝑆B = 𝑃𝑜𝑟𝑒	𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟
𝑃𝑜𝑟𝑒	𝐴𝑟𝑒𝑎  (8) 

The specific area of the analyzed sample approximated as the average specific area of all pores. 

𝑆 = 1
𝑁`𝑆B (9) 

The unit of a specific area is 1/pixel and converted into units of 1/m by knowing that 1 pixel = 10 

𝜇m. Hence, the dimension of permeability from equation 7 will be m2 and converted to mD unit 

by using the conversion factor of 1 m2 = 1.01 x 1015 mD. The Kozeny empirical constant "Co" 

depends on pore shapes and can be calculated from porosity using a model with intersecting 

circular tubes (Mortensen et al., 1998): 

𝐶K = a4 cos f13 𝑐𝑜𝑠Xh i𝜑
8k
𝜋Z − 1m +

4
3𝜋n + 4o

Xh
 (10) 

Permeability (absolute) in this current study was analyzed with the Kozeny-Carman 

correlation, as established in this section. The correlation is applied to porosity results from the K-

means clustering method. Fig. 13 shows the permeability from image analysis compared against 

core permeability (K_core). In Kozeny-Carman equation 7, the constant 𝐶𝑜	 is	calculated using 

equation 10, and exponent '𝑥' value for the specific surface area tuned to achieve better correlative 

factor "R2 values". The value of 2.75 is used for '𝑥' in the cross plot below instead of the default 

value of 2. Table 2 summarizes permeability prediction results from digital image analysis using 

the Kozeny-Carman correlation for some samples. The core porosity and core permeability are 

taken from conventional core analysis report for Buzurgan oil field for well BU-22. 

 
 

 

Fig. 13. Absolute permeability estimates from thin section image analysis using Kozeny-

Carman permeability correlations 
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Table 2. Absolute permeability estimates of thin section samples by using Kozeny-Carman 

correlations 

Sample ID 
Depth(m) PHI_Core K_Core SSA PHI_Image 

Co 
K_Image 

meter Fraction md 1/m fraction M.D. 

2 3913.09 0.078 2 12083.1104 0.0481 0.1831 3.6522 

4 3915.4 0.201 2712 4827.9321 0.1935 0.2061 2628.9955 

9 3920.17 0.18 5.8 41446.8289 0.1572 0.2008 3.9149 

12 3923.09 0.173 2.5 41444.1668 0.1267 0.1963 2.0975 

13 3924.13 0.191 5.1 32458.1307 0.1525 0.2002 7.0259 

16 3927.07 0.184 3.2 44804.1517 0.1473 0.1994 2.6203 

21 3942.18 0.199 5.7 38902.3291 0.1579 0.2009 4.7170 

23 3944.17 0.145 3.83 33828.0767 0.0945 0.1913 1.5633 

26 3947.09 0.155 4.9 33168.0937 0.1308 0.1969 4.2480 

32 3953.1 0.225 37 20975.3200 0.1821 0.2044 38.8719 

35 3956.17 0.142 8.2 31989.4993 0.1313 0.1970 4.7441 

40 3961.21 0.195 12 28513.7889 0.1585 0.2010 11.2184 

45 3966.07 0.213 5.7 46639.2665 0.1657 0.2021 3.2944 

46 3967.13 0.147 1.3 45776.6367 0.1158 0.1947 1.2299 

49 3970.28 0.167 2 38100.5886 0.1297 0.1968 2.8271 

50 3971.08 0.12 0.72 41670.1263 0.0944 0.1913 0.8764 

51 3972.04 0.128 1.7 42525.8168 0.0941 0.1912 0.8223 

52 3973.09 0.139 1.8 44744.4920 0.1089 0.1936 1.0939 

53 3974.07 0.156 1.4 46568.3197 0.1219 0.1956 1.3601 
 

 

Timur-Coates permeability equation is a correlation-based and determined experimentally 

by comparing NMR (nuclear magnetic resonance) permeability estimate against core permeability. 

This correlation relates permeability to total porosity and to the ratio of pores that will contribute 

to permeability to the pores that will not contribute to permeability (Allen, 2000; Coates and 

Dumanoir, 1973). 

𝐾MBCqJXYKDMFr = 10000 i(𝑎	(𝜑MKMDN)t ∗ i 𝜑uJFF	uNqBv	5KJKrBMW𝜑tKqVv	uNqBv	5KJKrBMWm
I
m (11) 

Where 𝑎, 𝑏 and 𝑐 are constants with default values of 1,4 and 2 respectively. Equation 11 can 

be used to estimate permeability from image analysis based on the assumption that free fluid 

porosity is related to macropores and bound fluid porosity to micropores. The Equation outputs 

permeability in units of M.D. In Fig. 14, permeability from image analysis is compared against 

core permeability (K-core). The default values of constants and exponents in equation12 were 

tuned to achieve better R2 values. In the context of image analysis, Equation 11 is re-written as; 

𝐾MBCqJXYKDMFr = 10000 w(𝑎	(𝜑MKMDN)t ∗ w𝜑CDIJK𝜑CBIJKx
Ix (12) 
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For Timur-Coates permeability (equation 12), pre-multiplier 'a' value of 1.2 was used instead of 1, 

while exponents (b = 3.9) and (c = 1.8) were used instead of their default values. Table 3 

summarizes permeability results from digital image analysis using the Timur-Coates correlation  

 

Fig. 14. Absolute permeability estimates from thin section image analysis using Timur-

Coates permeability correlations 

 

Table 3. Absolute permeability estimates of thin section by using Timur-Coates correlations 

Sample 

ID 

Depth PHI_Core K_Core PHI_Macro PHI_Micro PHI_Total K_Image 

meter Fraction md Fraction Fraction Fraction MD 

3 3914.09 0.097 0.97 0.0516 0.0472 0.0870 1.0329 

4 3915.4 0.201 2712 0.1833 0.0135 0.1935 2161.0023 

8 3919.22 0.173 19 0.0988 0.0731 0.1536 13.8470 

11 3922.08 0.213 14 0.1019 0.1078 0.1827 14.3110 

14 3925.14 0.192 5 0.0845 0.1009 0.1602 6.8997 

17 3928.04 0.194 3.7 0.0738 0.1122 0.1579 4.2192 

22 3943.11 0.146 4.1 0.0775 0.0507 0.1155 5.6956 

25 3946.13 0.158 8.5 0.0887 0.0595 0.1333 9.4976 

26 3947.09 0.155 4.9 0.0773 0.0714 0.1308 4.9752 

34 3955.1 0.178 4.2 0.0759 0.0835 0.1385 4.5334 

35 3956.17 0.142 8.2 0.0905 0.0544 0.1313 10.9428 

39 3960.19 0.217 14 0.1028 0.1047 0.1814 14.9167 

41 3962.1 0.184 54 0.1244 0.0525 0.1638 48.9226 

42 3963.08 0.242 54 0.1297 0.0827 0.1917 42.9828 

43 3964.08 0.224 23 0.1132 0.0995 0.1878 22.2486 

46 3967.13 0.147 1.3 0.0515 0.0857 0.1158 1.0724 

47 3968.1 0.147 0.77 0.0513 0.0696 0.1035 0.9967 

48 3969.26 0.17 4.6 0.0815 0.0828 0.1436 6.0273 

49 3970.28 0.167 2 0.0743 0.0739 0.1297 4.2002 

50 3971.08 0.12 0.72 0.0576 0.0490 0.0944 1.6099 

51 3972.04 0.128 1.7 0.0601 0.0454 0.0941 1.9753 

52 3973.09 0.139 1.8 0.0610 0.0638 0.1089 1.9441 

53 3974.07 0.156 1.4 0.0604 0.0820 0.1219 1.8861 
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Irreducible Water Saturations from Digital Image  

Saturation defined as pore volume occupied by a fluid. In the case of an oil-bearing water-wet 

reservoir, there will be a portion of pore space occupied by water and the rest by oil. Water 

saturation (𝑆𝑤) can be defined as (Ali et al., 2019 and Najmuldeen et al., 2020); 

𝑆z = 𝑝𝑜𝑟𝑒	𝑣𝑜𝑙𝑢𝑚𝑒	𝑜𝑐𝑐𝑝𝑖𝑒𝑑	𝑏𝑦	𝑤𝑎𝑡𝑒𝑟
𝑝𝑜𝑟𝑒	𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑉z𝑉5  (13) 

Irreducible water saturation from the core is determined with special-core-analysis (SCAL) 

experiments, centrifuge or mercury-injection capillary pressure, and relative permeability profiles. 

Only the nuclear magnetic resonance (NMR) log can estimate irreducible water saturation. It 

assumes that bound fluid porosity will not contribute to flow. For a water-wet reservoir, bound 

fluid porosity is pore volume occupied by water that will not flow and is equivalent to irreducible 

water saturation (Aytekin, 1968; Zhi-Qiang Mao et al., 2013 and Baouche et al., 2017); 

𝑆zBJJ,~�� = 𝐵𝑜𝑢𝑛𝑑	𝑓𝑙𝑢𝑖𝑑	𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦
𝑇𝑜𝑡𝑎𝑙	𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦  (14) 

NMR porosity is equivalent to total porosity in oil and water-bearing reservoirs. But for gas and 

very light oil-bearing reservoirs, NMR porosity needs correction for the hydrogen index effect of 

giving total porosity. Irreducible water saturation from image analysis derived in the same way as 

in equation 14. Microporosity from image analysis is equivalent to NMR bound fluid porosity as; 

𝑆zBJJ,BCDEF = 𝑀𝑖𝑐𝑟𝑜	𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦
𝑇𝑜𝑡𝑎𝑙	𝑖𝑚𝑎𝑔𝑒	𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (15) 

Irreducible water saturation from thin section can be calculated from microporosity and image total 

porosity numbers populated in Table 4 and by using equation 15. It is observed that using the above 

equation yields an over-estimating of water saturation values by approximately twice the core 

saturation value. So that equation 15 has been modified to be; 

𝑆zBJJ,BCDEF = 1
2

𝑀𝑖𝑐𝑟𝑜	𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦
𝑇𝑜𝑡𝑎𝑙	𝑖𝑚𝑎𝑔𝑒	𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 (16) 

A comparison of irreducible water saturation between thin sections and core saturation is shown in 

Fig.15 and Table 4. The studied samples are described and illustrated in this study include a variety 

of rock types. The studied interval comprises limestones and dolostone of the Middle Miocene 

Lower Fars Formation. The studied samples are dominantly packstone, followed by grainstone, 

packstone, wackestone, rare floatstone and dolostone. Packstone is the most common rock type 

observed followed by grainstone, packstone and wackestone. Floatstone and dolostone are noted 
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rarely in the studied interval. Reservoir quality ranges from poor to good with matrix and 

cementation as the porosity and permeability controls. 

 

Fig. 15.  Irreducible water saturation estimates from thin section image analysis 

 

Table 4. Irreducible water saturation estimates of thin section samples 

 

CONCLUSIONS 

Digital thin section image analysis is presented as an alternate technique to evaluate petrophysical 

rock properties. The histogram thresholding established method had the element of subjectivity in 

it where the threshold on pixel intensity histogram had to be manually adjusted till the analyst is 

visually satisfied that pore space is adequately captured. This visual analysis was challenging, as 

optically scanned images used in the current study had a pixel resolution of 10𝜇m/pixel, and there 

were a significant number of pores with size less than the pixel resolution. In another study, 
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regression equations used to achieve a good correlation of petrophysical properties between image 

analysis and routine core analysis data. These adjustments and regression lost the predictive power 

of image analysis. K-means clustering introduced as an automatic technique where analysts only 

need to define the number of clusters. For optically scanned images used in the current study, three 

clusters were analyzed as optimum to extract pore space from the matrix. Thin sections image 

porosity using the clustering technique showed a good match with core porosity, with the additional 

benefit that workflow is now automated. Moreover, clusters can predict threshold values if it 

desired to make image interpretation with a thresholding technique. In the current study, porosity 

is the main petrophysical property determined from thin section images. Permeability estimated as 

a function of porosity, and it also showed an acceptable match with core permeability. Some scatter 

on permeability correlation was observed, which could be explained that permeability is a dynamic 

property, and we tried to estimate it from the 2D image. Nevertheless, the interpretation is useful 

to identify permeable layers. The predictive power of clustering based thin section image analysis 

is encouraging, as it can be applied on vastly available drill cuttings as a secondary means of 

porosity and permeability data. However, for the wells where conventional core data is not 

available or possible, petrophysical properties can be determined from thin section images for its 

integration with well logs interpretation to reduce uncertainties. Some limitations to thin section 

image analysis were also observed. For optically scanned images, pore sizes less than ten𝜇m have 

a mixed response of matrix and porosity. A subjective but a single adjustment factor was required 

to remove the matrix effect from such pores for all analyzed samples. This is equally applicable 

for both clustering and manual thresholding techniques. Clustering analyzes porosity from pore 

filling blue epoxy, i.e., a blue cluster, it was observed that clustering over-estimates porosity if blue 

color is also present as a matrix color. Such a situation will be equally challenging for manual 

thresholding and hence, can be concluded as a general limitation of thin section image analysis. 
 

NOMENCLATURE 

𝜑 = porosity 

Vp = pore volume 

Vb = Bulk volume 𝜑BCDEF = porosity derived from digital image 

𝜑CBIJK = microporosity derived from digital image 𝜑CDIJK = macroporosity derived from digital image 

PHI_Core = porosity derived from core sample 

Q = flow rate 
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K = permeability 

Δ𝑃 = pressure drop 

L = path or sample length 𝜇 = dynamic viscosity 𝐶𝑜 = Kozeny-Carman constant 

X = specific surface area exponent 

Si = SSA = specific surface area 𝑎, 𝑏 and 𝑐 = constants of Timur-Coates permeability equation 

NMR = nuclear magnetic resonance log 

Sw = water saturation 

Swirr = irreducible water saturation 

Vw = volume of water 𝑆zBJJ,BCDEF = irreducible water saturation derived from digital image 
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