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DIGITAL SEARCH TREES AGAIN REVISITED:
THE INTERNAL PATH LENGTH PERSPECTIVE

PETER KIRSCHENHOFER}, HELMUT PRODINGERT,
AND
WOICIECH SZPANKOWSKI*

TDepartment of Algebra and Discrete Mathematics
Technical University of Vienna, Austria
and
*Department of Computer Science, Purdue University
West Lafayette,U.S.A.

Abstract. This paper studies the asymptoties of the variance for the
internal path length in a symmetric digital search tree. The problem
was open up to now. We prove that for the binary digital search tree Lhe
variance is asymptotically equal 1o 0.26600...- N + Né(logy N) where
N is the number of stored records and &(z) is a periodic function of
mean zero and a very small amplitude. This result implies that the
internal path length becomes asymplotically N -log, N with probability
one (i.e. almost surely). In our previous work we have argued that the
variance of the internal (external) path length is a good indicator how
well the digital trees are balanced. We shall show that the digital search
tree is the best balanced digital tree in the sense that a random shape
of this tree strongly resembles a shape of a complete tree, Therefore,
we conclude that a symmetric digital tree is a good candidate for a
dictionary structure, and a typical search time is asymptotically equal
to the optimal one for these type of structures. Finally, in order to prove
our result we had to solve a number of nontrivial Problems concerning
analytic conlinuations and some others of numerical nature. In fact, our
results and techniques are motivated by the methodelogy intreduced in
an influential paper by Flajolet and Sedgewick.

1. INTRODUCTION

Digital trees [2], [7], [14] experience a new wave of interest due to
a number of novel applications in computer science and telecommu-
nications. For example, recent developments in the context of large
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external files and ideas derived from the dynamic hashing (virtual hash-
ing, dynamic hashing, extendible hashing) lead to the analysis of digital
trees [6], 8], [9], {11}, [12}, {19], [22], [28], [24]. In telecommunica-
tions, recent developments in cornflict resolution algorithms {16] have
also brought a new interest in digital trees. Some other applications are:

radix exchange sort, polynomial factorizations, simulation, Huffman’s
algerithm, etc., [2], [7], [14]-

The three primary digital tree search methods are: digital search
irees (DST), radiz search tries (shortly: tries), and Patricia tries [2],
[7], [14]. In all cases, a digital tree is built over a V-ary alphabet
A = {wi,...,wy}. Records stored in a tree, say n of them, consist
of (possibly infinite) strings (keys) from A. A digital search tree (2], [4]
is a data structure that leads to much improved worst case performance,
by making use of the digital properties of the key. The idea is to build a
structure consisting of nodes such that each node has a record contain-
ing a key and V links which point to subtrees. The branching policy on
a level, say &, is based on the k-th digit (element) of a key. For example,
if the k-th element of the key is w,, then we go to the leftmost subtree;
if it is w2, we move to the next of the leftmost subtree, etc. However,
if keys are very long, then comparisons of keys at each level of the tree
might be quite costly. To avoid this, in the rediz search trie we do not
store keys in the tree nodes (internal nodes), but rather store all the
keys in the external nodes of the tree. However, such a radix trie has an
annoying flaw: there is "one-way branching” which leads to the creation
of extra nodes in this tree. D.R.Morrison discovered a way to avoid this
problem in a data structure which he named the Patricia trie. In such a
tree, all nodes have branching degree greater than or equal to two. This
is achieved by collapsing one-way branches on internal nodes, that is,
by avoiding unary nodes (¢f. [14] and [24|). Note that the number of
internal nodes in the digital search tree and the Patricia trie are equal
to N and N — V + 1, respectively. This does not hold for radix search
tries. It can be proved that the average number of internal nodes is
larger than N, namely asymptotically N/H, where H is the enrtropy of
the alphabet.

In 1979, Fagin et al. [3] proposed extendible hashing as a fast access
method for dynamic files. In the original version of this method, radix
search trees have been used to access digital keys (records). In addition,
another procedure was used to balance the tree in order to achieve good
worst case performance. This restructuring generally changes the entire
tree and is rather an expensive operation (compare binary search trees
and AVL trees). So one may ask whether we need such a rebalancing
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procedure. To answer this question we must analyze a (random) shape
of digital trees, and decide whether this shape resembles the shape of a
complete tree (2] (the ultimate balanced tree). This problem led us to
investigate the depth of a node (search time) and the (external or inter-
nal) path length in digital trees. The average depth of a node for digital
trees has been studied in (6], [14], (22], (28], [24], the veriance in (9],
[22], [23], [24] and limiting distributions in (8], (18], [19]. The average
value of the (external or internal) path length is closely related to the
average depth of a node, but not the variance. The first attempt to com-
pute the variance was reporied in [9], however, it turned out that the
variance of the depth was estimated, not the variance of the path length.
This was rectified by Kirschenhofer, Prodinger and Szpankowski in f11],
[12] who obtained the correct value for the variance in the symmetric
regular tries and Pairicia tries, respectively (for asymmetric extensions
of these results see {8]). In this paper, we propose to evaluate the appro-
priate variance for the digital search trees, which was an open problem
up to now. It has to be stressed that the variance of the internal path
length in a digital search tree is the most difficult to estimate. This
was already seen in the paper by Flajolet and Sedgewick [6] who estab-
lish an analytical methodology to analyze digital search trees (e.g., the
average depth of a node). In our paper in the process of establishing
the asymptotics of the internal path length we had to obtain some new
analytic continuations of functions, which are mainly based on the fa-
mous Kuler’s product identities. As in (8] and [10], to derive the final
results, namely to show the cancellation of the higher order asymptotics,
we had to appeal to the theory of modular functions (cf. Section 3). In
addition, this problem possesses nontrivial numerical challenge. A very
preliminary version of this paper was presented at the IFIP Congress
(13].

This paper is organized as follows. In the next section, we define our
model, establish the general methodology to attack the problem and
present our main results. In particular, we show that the variance of
the internal path length for the binary symmetric digital search tree is
0.26600...- N + N§(log, N) where N is the number of records and 6(z)
is a periodic function with a very small amplitude. This implies that
the internal path length converges almost surely to Nlog, N. Finally,
Section 3 contains proofs of our main results.

2. MAIN RESULTS

Let Dy be the family of digital search trees built from N records
with keys from a random stream of bits. A key consists of 0’s and 1’
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with equal probability of appearance. Let Ly denote the random vari-
able "internal path length” of trees in Dy and Fin(z) the corresponding
probability generating functions, i.e., the coefficient [z¥]Fn(z) of z* in
Fp(z) is the probability that a iree in Dy has internal path length equal
to k. Then the following recursion holds which is a direct consequence
of the definition:

N
Fyy = N Z o—N (If) Fk(Z)FN_.k(z), Fo(z) =1. (2.1)
k=0

The ezpectation {y is given by Iy = F},(1) and fulfills for ¥ > 0

N /N
_ I—NE : _
IN+1—N+2 P (k)!k, Io =0 (22)

This recursion may be solved explicitely by the use of ezponential gen-

erating functions. With L(z) = Yy IN:—;?, (2.2) translates into the
following functional differential equation

L'(z) = ze® + 2¢*/2 L(z/2).
By the substitution L(z) = e L{—z) we have the easier equation
L(z) ~ I'(z) = —z + 2L(z/2).

With f,(z) =3 fov—N, we find for N > 2
N>0 ’
IN=Qn-2, h=L=0

with the finite product

(o) (-D-(B) o

so that finally
N

=3 (f)(—l)“cak_z. (2.4)

k=2

The reader should note that an asymptotic evaluation of (2.4) is non
elementary due to the fact that terms of almost equal magnitude occur
with alternating signs. For this reason sophisticated methods from com-
plex analysis are needed to find the correct order of growth. An essential

step is the application of the following lemma from the calculus of finite
differences.



LEMMA 1. (cf. [14, p.1388], [17]). Let C be a path surrounding the
poinis 7,5 + 1,...,N and f(z) be analytic inside C and continuous on

C. Then
N 1
(~1)kF(k) = —— [ [V; 2] f(2)dz (2.5)
g (k) ( 27 L[ )

. - N—I.N!
with [N;Z] = :(-(:-i)}q_(:—_N—)

In our application f(z) is 2 meromorphic function that continues a
sequence f(k), e.g., 7 = 2 and f(k) = Qp_» in {2.4). Moving the
contour of integration, one can obtain the asymptotic expansion of the
alternating sum by Cauchy’s residue theorem, that is, for any real ¢
(2.5) becomes 3, . ; (M(-1)kF(k) = osiep, Res([N; 2] f (=) +O(N¢),
where the sum is taken over the set of poles P. different from 5hi+
1,...,N with real part larger than e.

We note that the function f(k) = Q,_; possesses the analytic con-
tinuation Q: = Qu/Q(277) where Q(2) = [[;5,(1 ~ t/2) [6]. Then,
applying a refinement of the technique of Flajolet and Sedgewick, we
can easily prove the following theorem (cf. Section 3).

‘THEOREM 2. The expectation Iy of the internal path length of digital
search trees built from N records fulfills

-1 1
In = Nlog, N + N[L—gz— + 5 — &+ 81(log, N)] +log, N
2.6)
29—-1 & (
2102 to-ea +62(logy N) + O(log N/N)

with v = 0.57721... (Euler’s constant) and a = Yo 1/(27 = 1)
= 1.60669. .., 61(z) and §2(z) are continuous periodic functions of pe-
riod 1, mean 0 and very small amplitude (< 10™%). For later use we
mention the Fourier expansion of §(z)

1 2kni .
5 = 1 _ 2k'rr:=- .
1{z) g2 kE#I‘ ( 1 log2) e (2.7)

where I'(z) is the gamma function [1].

We mention in passing that the O(1)-term in (2.6) is slightly incorrect
in [14].



Now we turn to the analysis of the variance which is given by VarLy =
sn+Iin—1 with sy = F}i(1). From (2.1) we get the recurrence relation
(for N > 0; 50 = 0)

N /N
SNx1 =N22_Nz (k)lk+N(N—1)

k=0

w o Ny (2.8)
gl—-N Lly_p + 21N )
4 ;(k)mw g(k)

In order to find an explicit solution to this recurrence, we split it into 3
parts: sy = un + vy + wy, where

N

N

unar = 2N(Int — Ny +2'7N S (k)uk, N >0, up=0, (2.92)
k=0

N
N
un4 = N(N -1) +21_NZ (k)‘vk, N 20, v=0, (2.9b)
k=0

N (N N /N
wygr = 217N E (k)IkIN—k + 21N E (k)wk, N>0, ws=0.
k=0 k=0

(2.9¢)

All of the above recurrences, as well as the one for the average internal
path length (2.2), fall into the following general recurrence studied in
[23]. Let {z,.) be a sequence of numbers satisfying the following

T

—_n n
Tnil = ang1 + 2 Z (k)wk, n > 2, (2.10})
k=0

where (an) is any sequence of numbers. The solution of (2.10) depends
on the so called dinomial inverse relations that are defined as follows

in = g(—l)k (:)a.;, and g, = kz;(—l)" (:’) k.

The second equation justifies the name binomial inverse relations. For
more details, see Riordan (20]. A similar treatment as in the case of
(2.2) leads to the following explicit solution (for details see [23]).

6



LEMMA 3. Let ¢ = &1 = 0. Then the recurrence (2.10) possesses the
following solution

Zq = o + n(2y — T) — kz;(—nk (:) Bz (2.112)

where
n+1

Zp = Qn Z [&i — &ip1 — 0-1] /Qi-1 (2.11b)

=1

and Qy is defined in (2.3).

Using Lemma 3 we immediately solve our recurrences (2.9a) to (2.9¢).
In particular, one proves

. 1 j 2k
g = 2Qk.-2 +J_lej_1—;23_l 2k—2 _71(°
fOI‘L>3, 1:'.0 ='l11 =ﬁg=0 (2123.)
b= —4Qu_np, fork>3, Go=% =F =0 (2.12b)
and
) k—1 21—_‘,' 32 }
Wy = Qr—2 ; () Qj—2Qj-i-2,
j=4 i1 ;5 N\
for k > 5, Wy =--=wg =0 (2.12¢})

Of course, the "unhatted” solutions upy, vy and wy follow from the
binomial relations, as shown in (2.11a). It is also worth to mention that
the recurrence for vy is easy, and after simple algebra one proves

N = 4(‘3) — 4ly, (2.12d)

so0 that the treatment of 2 and wp remains to be done.

In principle uy and wy may be analyzed by making use of Lemma 1
and 3. However, it turns out to be a highly non trivial problem to find an
analytical continuation of ;. After lengthy and difficult computations
the residue calculus leads us to the following main result of this paper,
which is proved in the next section.
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THEOREM 4. The variance of the internal path length of digital search
trees built from N records becomes

VarLy = N - {C + é(log, N)} + O(log® N/N)

where C is a constant that can be expressed as

28 39 200wt 2
C=‘ﬁ‘z' bttt
Z 1) (k — 5)
k_
L o (k-}-l k(k — 1)(2% — 1)
2 L(1 —27™1)/2 -1 (—1)F+1
+ 5 Zbr"'l - - Z r+k
L% ( 1-—-2 3 Bk —1)(2r+k —1)

Z9'(3) - 2[6162]0 — 162]o
(2.13)

with L = ]0g2 o = E 2..1_1, ﬁ] = E (2,”1)2: r+l1 — ( 1)1-2 ( +)

n>l1
The fluctuating function 6(x) Is contmuous with period 1, mean zero
and |6(z)| < 107°, and |[§%]g] < 10719, [[6182)0] < 10710, Fmaﬂy, w(z)
is a function deﬁned as

£(z +2) £(z+3)

(2 +1)/Qemn = ~2Quoz + 5= + 22—

: . (2.14)
Y (E(;;I;J +%) _ E(;J_+_2))
iv2 Qz+J QJ‘
with Q: = Qm/Q(z_:}r where Q(t) = 1;11(1 - t/zi)r Qm = Q(l); and
_ b,-+1 Quo z 2 2z
f(z + 1) - ; Qr ’ Q(28—:—r-) ’ {2 - 1-— 21—:—1- - 1-— 22—:—r-

+2;( )2r+k 1_1}

Numerical evaluation of the constant C reveals that C = 0.26600... and
all five digits after the decimal point are significani. We should point

(2.15)
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out that in order to achieve the same accuracy in C one needs to run
the recurrence equations (2.9a)-(2.9¢) for N ~ 10°.

In the following lemma we present an explicit formula for 1%'(3) that
is conventent for rumerical evaluations.

LEMMA 5. The following identity holds

21.5’(3) 2Qm
7 + Z 2JQJ Zar+IQr+j—2'

r>g
1 .
. S 1 _ o
) {_ Z otz _ ] (ZJ —27—4
n>l
-1 .
J+1 1
+2) ( b )2—“::1?1)
k=2
PR L A+2 21
(1 — 2_j_")2 (1 _ 21—j—r)2 L1—gl-j-r (2.16)
i+t 1 2 1y 1
_22 L artk—1 _ L Z A or+k __1
k=2
J+i
i+1
LZ( )Z(1+1) 2r+k+-_1)}
4yt £ +2)
k _
j>s 27Q; k»j+1 2 1
where .
@41 = 51 = (-1)27 (3, (2.17)
and _
11—
: 7+1
{U+2)= Z ( )Qa 2Qjmk-1 (2.18)
k=2

with Q defined in Theorem 4.

Before we proceed to the proof of our results, we first offer some
remarks and extensions.

Remark 2.19. The covariance analysis. Theorem 4 and our previous
result [0] and [23] provide asymptotics for the covariance between two
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different nodes in a digital search tree (DST). Let Dy be a depth of a
{randomly selected) node and let DE:P be the length of a path from the
root to the i-th node. Note that the internal path length Ly is defined
in terms of DE\? as Ly = S0 DS\?. Then

i=1

o] |-{rEioe}

t=1

VarLy = E{

and this implies

VarLy = NVar Dy +2 Y, Cov { D), D 1.
1551

The variance of the depth Var Dp for the symmetric DST was analyzed
in {9], and for the asymmetric one in [23}. In particular, it was proved
that for the binary symmetric Patricia Var Dy = 2.844.... Using The-
orem 4 and the above we find

2% Cov{ DY), D} = ~267.... N.
it
This also implies that the average value of

Cov{DY),D{P}is ~ —2.67.../N.

Note that the equivalent quantity for regular tries is approximately equal
to +0.84.../N [11] and for Patricia = —.63.-- /N [12].

Remark 2.20 The path length Ly converges almosi surely to Epl
Applying Theorem 4 it is not difficult to prove that Ly/ELy tends to
one almost surely (i.e., with probability one) as N — oo. Indeed, by
Chebyshev’s inequality one obtains

Var Ly
Pr{|LN/ELy —1| > €} € .
I'{l N/ N 1|_€}_ GQ(ELN)Q
But, by Theorem 4
Pr{|In/ELn—1|> e} < —= 0
r - —— — 0.
N of T 7 T éNlogy N
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This shows that Ly/ELy — 1 in probability as N — oo {21]. To prove
a stronger result, namely, that Ly/ELyn — 1 with probability one (i.e.,
almost surely) we apply the above and the Borel-Cantelli lemma [21),
and then show

> 0.266 ... & 1
z Pr{|Ln/ELn—1|> ¢} < E j < o0
N €2 et NloggN !

s0, by the Borel-Cantelli lemma Ly ~ ELy ~ Nlog, N with probability
one.

Remark 2.21. Comparison of digital irees. In order to select the best
digital tree one needs to compare different characteristics of digital trees,
namely regular tries, Patricia tries and Digital Search Trees (DST). The
table below contains four important parameters that are often used to
predict a random shape of these trees (cf. [8), [9], [11], [12], [14], [15],
(22], (23}, [24)).

ELy VarLy VarDy Cov(Dky,D3)
DST N(log, N —1.71) N-0.26 2.844 —267/N
TRIES N(log, N +1.33) N-4.35 3.507 +0.84/N

PATRICIA N(log, N +0.33) N-0.37 1.000 - 0.63/N

It can be seen from the table that the average external (internal) path
length is approximately the same for all three digital irees. However,
the variance of the depths and internal (external) path lengths differ
significantly. We also notice that the variance of the internal for DST
is smaller than the variance of the external path length for Patricia,
but the reverse holds true for the variance of the depth. Therefore, in
order to answer the question which digital tree is the best (balanced)
one needs to decide which parameter (depth or path length) carry more
useful information. This is discussed below.

Remark 2.22. Whick digital iree is balanced the best? A complete
binary tree [2] is the ultimately best balanced tree. Therefore, any tree
with a good balance property should have the average depth (external
pathlength) equal to log, N+O(1) (resp. Nlog, N+O(N)), and a small
variance. Such a property is highly desired since then one can expect
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that a typical search time for a key is approximately equal to the average
depth. This was already said in Remark 2.17, nevertheless we might be
interested in a relative comparison between different trees that satisfy
the above vague criterion. One may ask which digital tree is balanced the
best. To solve this problem we must determine which parameter from
the table above is the most suited for such an analysis. We first notice

that the covariance Cov {DE\?, D(,f;}} for Patricia and digital search tree

1s negalively correlated. This means, that DE.:F) < EDpy and DE\? > EDpn
also tend to occur together. Thus, for negatively correlated random
variables DE\}) and DE-{,J, if one is large, the other is likely to be small.
This indicates a good balance property for a tree. Note, that in the

regular tries Cov D(i),D(j) ~ 0.84/N > 0 and DY and DY in that
NoYN N N

case are positively correlated. This means that Df.:;) is large, then D_(,f;)
is likely to be large, too.

So finally the problem under consideration boils down to a choice bet-
ween the variance of the depth or the variance of the internal {external)
path length. In [12] we have argued that for tries (regular or Patricia)
the external path length is a better measure of the balance property for
a tree. This argument can be made even more convincing for digital
search trees. Consider 2 DST that is completely balanced. Then, since
keys are stored in internal nodes the variance of the depth is positive no
matter how balanced the tree is. But, the variance of the internal path
length is zero for such an instance. This leads to an obvious conclusion
that the variance of the path length should be considered as a criterion
for the balance property. Then, one finds out from the table above that
digital search trees are the best balanced digital trees.

3. ANALYSIS

As we have already pointed out in Section 2, it is a nontrivial problem
to find appropriate analytic continuations for the sequences of values
f(k) that occur in alternating sums (2.5). In order to illustrate our
approach, we start with the easiest case, namely the evaluation of the
expectation {. From (2.4) we know

N

N
Iy = Z (k)(—l)qu_z.
k=2
As in [6] we may rewrite f(k) = Qr—3 as
Qoo
T QY
12



where

Qz) = H (1 — i) and Qo = Q(1). {(3.1)

2:‘
i>1

Therefore we have the analytic continuation

Qoo

f(z) = oy

(3.2)

The main contribution to { is given by Res([V; 2]f(2); 2 = 1). We have
withu=2-1—-0

[N; 2] ~ %(1 +u(Hy-1 — 1))

and

Q) " Iu

(remember L = log 2), since

“=(§§)W

Qoo ~L (l-l-Lu(%-a))

(3.3)

z=1

Therefore
N 1
Res([V;2]f(z)iz = 1) = = (HN_1 —1+L(; - o).

Using the well known asymptotics for the harmonic numbers Hy_; we
get the contribution (from z = 1)

1 1
N1032N+N(1——+——a) __1‘"+0(11V)' (3.4)

Besides z = 1 we have with the same real part 1 the simple poles z; =
1+ 22 ke Z, k5 0 with

1
Res([N; z|f(z);2z = zk) = [N;z)- T
so that we get the contribution

e (zr — 1)sz"-'_1P(—-zk)
A oL

+O(N="%).  (3.5)
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The reader should take notice of the fact that the first term in (3.5)
gives the Fourier coefficients of §;(z) in Theorem 1.

The next relevant pole is z = 0 and yields a contribution of
T

3
log, N + Tt~ (3.6)

The poles z = z; — 1 yield a periodic contribution of order N? and so
on.

Collecting all contributions gives the expansion (2.6) in Theorem 2.

Next we focus our attention on the asympiotics of uyy. In order to
find an appropriate analytic continuation of #; we rewrite the sums
appearing in (2.12a) as follows:

k

; 1 1
25T =T X g

-2
=1 i1

k-2 . . .
i j -2+
21‘—1_;2:'—1_22::-2“_1'

iz

iz1

g

=1

Ny

Thus we may continue ¢, via the function

ﬁ(z)=2q—‘“[4+a—z !

Q(22~=} L pz=2+] _ ]
-
_ ’-12 y ) (3.7)
_? =z — j I
_.22:'—1 +Z2:—2+J‘—1 =2 |
Jzl izl

Now the main contribution to uy i Lemma 1 originates from a second
order pole of (N;z]é(z) in z = 2. Further contributions that are ne-
cessary for the evaluation of the variance come from first order poles

inz=2+ 2?:', k # 0, a third order pole in z = 1 as well as second

order poles in 2 =1 + 2—’}:-'1', k # 0. Collecting all the above mentioned
contributions we end up with the following expansion of v (§;(z) stands
in all following formulas for a continuous periodic function of period 1

and mean zero).
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LEMMA 6.
uy ~ 4N%log, N
4(v—1
0 (M0 o g )

9 —
— Nlog; N +2Nlog, N - (—-L—’Y+8+a+ﬁ4(log2 N))

2 2
¥ 4y 12y 20y w 4 10 2«
N({-L1. L =L - ———=_
+ ( L2+L2+ L + L 6L L? L L

133 2
—a*+ B —-1la—26, + - T 8s(log, N)) + O(log™ N)

withfi= > _W‘ L, @, B, as in Theorem 4.
E>1

As already mentioned in Section 2,

v *—4N :¥)
N = 2 Ny

so that the asymplolics of vy are given by

vy ~2N% —4aNlog, N
(3.8)

+4N( —1+a-— E+E 81(log, N)) + O(log N).

The most challenging task is to find an appropriate analyiic continuation
of w(z).
From (2.12¢) we have

. £ +1)
= - 1 3.9
Wry1 = —Qk- 3-—24 2G4 (3.9)
with _
i—2 -
i+1)= Z (i) Qi—2Qj—2—i. (3.10)

i=2

For the following the reader should note that £(5 4 1) ~ @227, We start
by rewriting (3.9) in the following manner:
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With 9(7 +1) = £(7 + 1) — Q2,27 we have

k ) 2 oj
_ We4a Z {7+ 1)+ Q%2

Qk 1 25—1@:‘—1
sl +1) ai+1)
;2’_1@23—-1 J;l 27-1Q;.q
1 1 1 1
() 5 )
(; Qi-1 Qoo j;l Qj-1 Qo
+ 2Q 0k — 3).
(3.11)
Therefore

W41 =Qk—1[ 2Om(L_3)+Z7?(J+iL+2) Zn(;+2

Jtk 7
7o VFEQiuk > 27Q;

(2 (-a) (&2

Since all involved series are now absolutely convergent, we may add them
term by term and get

. Ek+2)  E(k+3
Bis = Quos [ - 20w+ £5E 04T

Ek+i+2) i+2)
+Z( 25+iQuy;  29Q; )]

i>2

From this, the representation for w(z + 1) as in (2.14) is immediate,
provided we have an appropriate interpretation for £(z + 1). This will
be our next goal. The following well-known partition identities of Euler
are our basic tool:

tﬂ
H e t2"“) Z); on (3.12)
and
Q) =] (1 - 2%) = anpat" (3.13)
n>l n>0
with

u+1)

a1 = (-1)"27("1)/Q,.

16



Using (3.2) and (3.12) we have

SN Qo Qu
N +1)= !2 (L) 0(22—%) Q(2++-N)

-y oo > (Nerenr,

where the innermost sum is now
—i —\N _ 9—iN _ o—iN _ —i(N—-1}—j _ —i—j(N-1)
(27 +27%) 2 2 N2 N2 .

The last expression for {(N + 1) is symmetric in 7 and j. However,
it turns out that for the purpose of finding an analytic contiruation
Ti,j)o should be rewritten as — 3. . +2 Tﬁ-:)u Writing j =7+ h in

—

the second sum we get

j=i

Q% oi2—
N +1)=—(2V —2-2N) ) Z=9i-M)
i>0 Vi
2

LR>0

Q% i 2=N)oh(1-N)
—2ZQ°° 2 2

(A0 Qi+n

— 9N z igi(z—N)zh(z—N)
i@itn
i,h2>0

(3.14)

In expression (3.14) N can be replaced by z, yielding a meromorphic
function, since all series converge uniformly. However, we are able to
simphify €(z + 1) in the following way. Consider for example the last
term in (3.14):

o5 Z _Qe ottmz-n) _ o, ) QeQ(2 ") (ira)e—2)

k>0 ‘Q1+h i,h>0 Ql

which is by Euler’s identity (3.13)

=2z Z: Qri1 Z Q_°°(2—r+2—: 2(2_,-4.2 =

r>0 i>g k>0
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and by Euler’s identity {3.12)

1
=2z Z Ci'--,-+1 3—z—r 2—z—7"
o (2 ) 1-2

Rewriting the other terms from (3.14) in a similar way, especially using

@ty -t =3 ()

E>2
for the second term, we finally get (2.15).

Our next task is to investigate the poles of [N; z]Jw(z) different from
z=35,6,...,N.

From (3.11) we see that #%(4) = w(3) = 0 (observe that £(4) = 0), so
that the first poles occur with real part 2. In order to determine the
residues of [N z]w(z) in z = 2 resp. z = 1 we need the local behaviour
of #(z). Because of (2.14) this behaviour will depend on the behaviour
of #(z) := £(2}/2°72Q.~2 near z = 2,3,... . From (2.15) we see that
£(z) has second order poles for z = 2 and z = 3 and is analytic for
z =4,5,---. Since {N; z]Q._, has already a second order pole for z = 1,
it will be necessary to expand ¢(z) near z = 2,3,... up to the linear
terms. In particular, the reader should note that all the derivatives o'(z)
for z = 4,5,... will occur in Res([N;z}#(z);z = 1). This is the main
reason that the constant C in the final result is rather a complicated
one.

We start with the expansion of o(z) about z = 3. Let u = z — 3; then
we find {from (2.15) after laborious computations:

a(3+u)~—i+%(ﬁ—i)

L2u2 L L2
+ gj+5 2’32+2zl_‘";1_( 1,_22_r)
1')2
- (-212—8% -2 a0+ 2 2 (3.15)
+ ;1_’*; {1—3L+L§2i1_1+(12__;:i)2

2L —1 ol =21 21-TF,
_ _ D,
t I o 1--2—=";2=—1"'(1—2-r)2+ 1})
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where

)k
Z (k+ 1).&(1.: ~1)(2k - 1)’

k>2

=32 [(1 +27%) 2 log(1 4+ 27%) — 2"‘] ,
L0

= Z 2R(1 + 2782 log?(1 + 27h),
k>0

o= [(1+27") log(1 +27) - 2"*],
h>0

Dy =) 2M1=") [(1 +27"log(1 +27M) - 2-"].

R0

The constant in the u’-term can be simplified according to the re-
markable identity

b

r>1

) Z (23 = a+ 4. (3.16)

For the proof of (3.16) we observe that the left-hand side equals

Zar+1Qr—1 -2 Z @rt17 Q:—-1

r>1 r>1

Using (3.12) and (3.13) this expression becomes

>oQeQE-1) -2 @) (QE ) -1)

i>0 ik>0

- (S ee- 1)) ~ S5 +1) (@) 1)

i>0 i>0

= —E?-2E, - B,




Now we observe

5=t (85~ =ml = () |

B, = 2im; [(3(3)’ a —1/32)2]

-3 (%) | -2

2
and get the right-hand side of (3.16).

and

The expansion of ¢(z) about z = 2 reads with u = z — 2:

4 1 /2 2
o(24u)~ ﬁ+“(f+ﬁ)

+ u° (_? -7- E(c‘,'.H-CG) +2E3)

L 55 Cs Cr
1 — — — — A — — —
+u (6 5 ac, 7 + C 7

+2 _;’“ - { r2+1—~2L
;(1—2‘ a-2) (3.17)

r—2
1 L-1
L -
r—2

1 1 1
+ L - .
((1—2—r)2 1—2-r ;2_1

21—r' 1 r—2 1
+ (1—21-r)2 T ] —2gl-r .Z 2 — 1)})

=1

where
Co=» 2" {(1+27")log(1 +27%) —27%],
A0
Cs =Y 21 +2 M) log?(1 + 27H),
E>0
Co=) [(1+27M)log(1 +27%) —274],
k>0
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=Y (1 +27)log*(1 +27)

A0
Do =) 2*=" (1 4 27%)log(1 4 274) — 274,
B0
b,-+1 1 1
Es_z(l—zl-f)(l—z - ( 1-2—" 1—21-'")'

r>2

For later simplifications we note that

2 3 28,
—E(C.;+C‘5) ——8+E—T (3.18)
and
Es=2—a—8, (3.19)

where (3.18) follows from the expansion of the logarithm and (3.19) by
partial fraction decomposition and rearrangements of the sums.

We finally note that
Cs+C7 = Ca. (320)

Next we discuss o(z) for z close to j = 4,5, -

o(j +u) ~ a(5)

+ ﬁ: (E (7) — L&E(F) + Lé(H) Z 2k—+J2—) :

k>1
(3.21)
From (3.21)
(oG +w)~ o))
i>a
§'G) - LE()
~ u(z 2§—2QJ : (3.22a}
£0) 1
L; P72Q50 5 Z 2k+i=2 1)'
From (2.14) we find that the last expression equals
©(2%'(3) + 2Q o) (3.22b)
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where %'(3) may be computed from (2.15) to get the constant from
Lemma 5.

Regarding (3.15), (3.17) and (3.222) we find that [V; z](z) has third
order poles in z = 2 and z = 1, and second order poles in z; = 2 + 2'}:’",

k€ed,z+#0,as well asin z; — 1.

Our local expansions allow (after some lengthy but straightforward
computations) to find the following asymptotic behaviour of wy:

LEMMA 7.
27,2 2 2 2y
wy = N“logy N + N“log, N - —3—E+-f—2cr+66(logzN)
s 2¢ 3y 207 [
2 — - — o — — — — —
+ N (3+a +3a+ T "I T 7
2 2 4w 2y
trtmtEtan T +57(10g2N))

T
+3Nlogi N + Nlog, N - (—3—3—6a~¥+53(10g2}\’))

Y G Kot
6L L I Iz

w2 6 2 (1)1 (k - 5)
totE f; (& + Dk(k — 1)(2% - 1)

2 L(1—2"mtYY/2 -1 —1)+H1
+ber+1 ( )/ _ (1)

— 9-r W — rhk _
= 1= L HE— 1) )

2
+ 7Y (3) + éo(log, N)) + O ( N
with L, e, 8,br11 as in Theorem 4 resp. Lemma 6 and > from (3.15).

[t remains to combine the previous results to get an asymptotic ex-

pansion for
VarLy = uy + oy -+ wy + Iy — I (3.23)

We start with an important observation concerning leading terms
formed by periodic fluctuations of mean zero.
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Let us assume that, at any stage, we are able to prove
Var Iy = &y9(log, N) - N¥log” N + Ry (3.24)

where 630(2) is continuous and periodic with period 1 and mean zero
and Ry = o(N*#log” N). We claim that 8;¢(x) must vanish identically
under these conditions:

Let us assume §)9(z) # 0. Then, since §;9(z) is continuous with mean
0, there esists an € > 0 and an interval, say [e,b} C [0,1], such that
510(z) < —e for z & [a,b]. Since log, N is dense modulo 1, Var Ly
would be negative for an infinity of values, an obvious contradiction.

In other words: From (3.24) we may deduce that
Var Ly ~ Rp, N — o0, (3.25)

so that, in order to prove that VarLy = O(N) we need not collect
explicitely the fluctuating contributions of mean zero.

Observing these comments we easily find that all terms of order
N?log® N, N?log N, Nlog> N and Nlog in Var Ly cancel. The co-
efficient of N? is of a more delicate nature. The reader should note
carefully that the coefficient of N? in I3}, will contain the square § of
the periodic fluctuation &, from Theorem 2 and that the mean [6%]q of &7
will nof be zero. Therefore we have to extract this term to end up with
a fluctuation of mean zero and get for the coefficient of N2 in Var Ly
the expression

Iz + 62 I I 1 [62]0 + 611(log, N). (3.26)

LEMMA 8.

The following Lemma is crucial now:
1
631 = 7 >

iy |12
(- 15)

k30
1 2 1 3, 47
"I TI T

SKETCH OF PROOF!: The proof heavily relies on the following two series

1 A full proof of Lemma 8 is long and difficult and included in [10).
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transformation results due to Ramanujan. The first one is

N-1
a N —C(2N+ D+ "2;
k>1
—2N -1
=(-a)""N —((ZN +1) + Z po T (3.27)
k>l

N4+1 B B
_ 22N Z (_ k D2k 2N+2—2k aN+1..kﬁk
(2k) (2N + 2 — 2k)!

Here and in the next identity, @ and 8 have to be positive numbers with
aff = 7%, {(s) is the Riemann (—function; N has to be a positive integer
and By indicates the n-th Bernoulli number defined by

z z"
es —1 =ZB“§

n>0

The second identity used in the proof is

2 @ L(ez‘*" 1°g°‘ ' 12
k>1
(3.28)

_ 1, B
Z L(ezﬁk ~gleeft 3

In fact, (3.28) is equivalent to a transformation result on Dedekind’s
n-function (compare [3])

7}(“.'_) = em‘r/lz ]:[ (1 N ez':rin-r) , %(T) > 0, (3_29)
n>l1
namely
2=2)=(=ir n(r),  8(r) >0 (3.30)

(This is a special instance of Dedekind’s famous result on the behaviour
of 7 under a transformation of the modular group.)

The consequences of Lemma 8 are twofold. On the one hand, we find
from (3.26) that the N*-term in Var Ly cancels, so that Var Ly = O(N).
On the other hand we may use the identity to express 8; by the other
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terms occurring in Lemma 8, including [§%]¢ which yields the final form
of the constant C' in Theorem 2. [§182]o is the mean of §;(z)62(z), orig-
inating from %, which has to be extracted to end up with a fluctnation
8(z) of mean zero.

We would like to point out some final remarks concerning this analysis:

i) The occurrence of the finite products Q. gives rise to use results
from the theory of partitions, especially Euler’s product identities (3.12)
and (3.13).

ii) A periodic fluctuation §;(z) which has mean zero and very small
amplitude may be safely neglected for practical purposes as long as we
are only interested in the ezpeciation. In order to establish the correct
order of the variance it is of vital importance to study the behaviour of
61(x), especially the mean of §2(z).

iii) The predicted value 0.26600...- N matches perfectly with the
values obtained by computer simulations.

iv) As we have mentioned in the Introduction, with this paper we have
finally achieved very good information on the average case behaviour of
Tries, Patricia Tries and Digital Search Trees in the symmetric case (i.e.
we start from 0, 1-sequences which contain 0 and 1 with equal probabil-
ity}. Nevertheless the methods of this paper do not seem to be confined
to this instance: indeed we hope that sharp results for the asymmetric
case may also be established with a similar technical apparatus.

Acknowledgement: The authors would like to thank R.F.Tichy for
some helpful remarks.
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