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Abstract. This paper studies the asymptotics of the variance fOf the
internal path length in a. symmetric digital search tree. The problem
was open up to now. We prove that COf the binary digital search tree the
variance is asymptolically equal 10 0.26600 ... · N + N6(1og2 N) where
N is the number of stored records and 6(:z:) is a. periodic function of
mean zero and a very small amplitude. This result implies that the
internal path length becomes asymplotically N ·log2 N with probability
one (i.e. almost surely). In our previous work we have argued that the
variance of the internal (external) path length is a good indicator how
well the digital trees are balanced. We shall show that the digitu..lsearcb
tree is the best balanced digital tree in the sense that a random shape
of this tree strongly resembles a shape of a complete tree. Therefore,
we conclude that a symmetric digital tree is a good candidate for a
dictionary structure, and a typical search time is asymptotically equal
to the optimal one for these type of structures. Finally, in order to prove
our result we had to solve a number of nontrivial problems concerning
analytic continuations and some others of numerical nature. In fact, our
results and techniques are motivated by the methodology introduced in
an influential paper by Flajolet and Sedgewick.

1. INTRODUCTION

Digital trees [21, !1J, [14J experience a new wave of interest due to
a number of novel applications in computer science and telecommu­
nications. For example, recent developments in the context of large
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ditional funding was available from AFOSR grant 90-0107, NSF grant CCR-890030S,
and grant ROI LMOS118 [rom the National Library of Medicine



external files and ideas derived from the dynamic hashing (virtual hash­
ing, dynamic hashing, extendible hashing) lead to the analysis of digital
t,ees [6J. [8]. [9]. [11]. [121, [19], [22]. [23], [24]. In telecommunica­
tions, recent developments in conflict resolution algorithms (16] have
also brought a new interest in digital trees. Some other applications are:
radix exchange sort, polynomial factorizations, simulation, Huffman's
algorithm, etc., [2]. 171, [14J.

The three primary digital tree search methods are: digital search
trees (DST), radiz search tries (shortly: tries), and Patricia tries [2],
[7], [14]. In all cases, a digital tree is built over a V-ary alphabet
A = {Wl"'" wv}. Records stored in a tree, say n of them, consist
of (possibly infinite) strings (keys) from A. A digital search tree (2], [4J
is a da.ta structure that leads to much improved worst case performance,
by making use of the digital properties of the key. The idea is to build a
structure consisting of nodes such that each node has a record contain­
ing a key and V links which point to subtrees. The branching policy on
a level, say k, is based on the k-th digit (element) of a key. For example,
if the k-th element of the key is Wl, then we go to the leftmost subtree;
if it is W2, we move to the next of the leftmost subtree, etc. However,
if keys are very long, then comparisons of keys at each level of the tree
might be quite costly. To avoid this, in the radix search trie we do not
store keys in the tree nodes (internal nodes), but rather store all the
keys in the external nodes of the tree. However, such a radix trie has an
annoying flaw: there is "one-way branching" which leads to the creation
of extra nodes in this tree. D.R.Morrison discovered a way to avoid this
problem in a data structure which he named the Patricia trie. In such a
tree, all nodes have branching degree greater than or equal to two. This
is achieved by collapsing one-way branches on internal nodes, that is,
by avoiding unary nodes (d. [14] and [24]). Note that the number of
internal nodes in the digital search tree and the Patricia trie are equal
to Nand N - V + I, respectively. This does not hold for radix search
tries. It can be proved that the average number of internal nodes is
larger than N, namely asymptotically NIH, where H is the entropy of
the alphabet.

In 1979, Fagin et al. [5] proposed extendible hashing as a fast access
method for dynamic files. In the original version of this method, radix
search trees have been used to access digital keys (records). In addition,
another procedure was used to balance the tree in order to achieve good
worst case performance. This restructuring generally changes the entire
tree and is rather an expensive operation (compare binary search trees
and AVL trees). So one may ask whether we need such a rebalancing
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procedure. To answer this question we must analyze a (random) shape
of digital trees, and decide whether this shape resembles the shape of a
complete tree [2] (the ultimate balanced tree). This problem led us to
investigate the depth of a node (search time) and the (external or inter­
nal) path length in digital trees. The average depth of a node for digital
trees has been studied in [6], [14], [22], [23J, [24], the variance in [9],
[22], [23J, [24J and limiting di,tribution' in [8J, [18], [19J. Tbe average
value of the (external or internal) path length is closely related to the
average depth of a node, but not the variance. The first attempt to com­
pute the variance was reported in [9], however, it turned out that the
variance of the depth was estimated, not the variance of the path length.
This was rectified by Kirschenhofer, Prodinger and Szpankowski in fll],
(12] who obtained the correct value for the variance in the symmetric
regular tries and Patricia tries, respectively (for asymmetric extensions
of these results see f8]). In this paper, we propose to evaluate the appro­
priate variance for the digital search trees, which was an open problem
up to now. It has to be stressed that the variance of the internal path
length in a digi tal search tree is the most difficult to estimate. This
was already seen in the paper by Flajolet and Sedgewick [6/ who estab­
lish an analytical methodology to analyze digital search trees (e.g., the
average depth of a node). In our paper in the process of establishing
the asymptotics of the internal path length we had to obtain some new
analytic continuations of functions, which are mainly based on the fa­
mous Euler's product identities. As in [9J and [10], to derive the final
results, namely to show the cancellation of the higher order asymptotics,
we had to appeal to the theory of modular functions (d. Section 3). In
addition, this problem possesses nontrivial numerical challenge. A very
preliminary version of this paper was presented at the IFIP Congress
[13J.

This paper is organized as follows. In the next section, we define our
model, establish the general methodology to attack the problem and
present our main results. In particular, we show that the variance of
the internal path length for the binary .symmetric digital search tree is
0.26600 .... N +N 5(log2 N) where N is the number of records and 6(:c)
is a periodic function with a very small amplitude. This implies that
the internal path length converges almo.st surely to Nlog2 N. Finally,
Section 3 contains proofs of our main results.

2. MAIN RESULTS

Let 'DN be the family of digital search trees buill from N records
with keys from a random stream of bits. A key consists of D's and l's
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with equal probability of appearance. Let LN denote the random vari­
able "internal path length" of trees in 'PN and FN(Z) the corresponding
probability generating functions, i.e., the coefficient [zk]FN(Z) of zk in
FN(Z) is the probability that a tree in 'PN has internal path length equal
to k. Then the following recursion holds which is a direct consequence
of the definition:

Fo(z) = 1.

N

FN+l = zN (; 2-N (~)Fk(Z)FN_k(Z),

The e~peetation iN is given by 1N = FJ...,(l) and fulfills for N ~ 0

(2.1)

10 = a (2.2)

This recursion may be solved explicitely by the use of e~ponentiai gen­

"erating functions. With L(z) = l:N>O iN~!, (2.2) translates into the
following functional differential equatIOn

L'(z) = ze' + 2e'I'L(z/2).

By the substitution L(z) = e=L( -z) we have the easier equation

L(z) - L'(z) = -z + 2£(z/2).

. . "
With L(z) = L 1N~! we find for N ~ 2

N2:0

iN = QN-2,

with the finite product

(2.3)

(2.4)

so that finally

IN ~ t, G)(-I)kQk-'.

The reader should note that an asymptotic evaluation of (2.4) is non
elementary due to the fact that terms of almost equal magnitude occur
with alternating signs. For this reason sophisticated methods from com­
plex analysis are needed to find the correct order of growth. An essential
step is the application of the following lemma from the calculus of finite
differences.
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LEMMA 1. (cf. [14, p.138], [17]). Let C be a path surrounding the
points i,i + 1, ... , N and f(z) be analytic inside C and continuous on
C. Then

L G)(-1)'f(k) = -2~i l[N;zlJ(z)dz (2.5)
k~j c

. ( l)N- 1N!
mth {N;z] = :(:-1)... (: N).

In our application f(z) is a meromorphic function that continues a
sequence f(k), e.g., i = 2 and f(k) = Qk-2 in (2.4). Moving the
contour of integration, one can obtain the asymptotic expansion of the
alternating sum by Cauchy's residue theorem, that is, for any real c
(2.5) become. l:k>; (';')( -1)' f(k) = l:';EP< Res aN; z;]f(z,)) +O(N'),
where the sum is-taken over the set of poles Pc different from i,i +
1

"
,., N with real part larger than c.

We note that the function f(k) = Qk-2 possesses the analytic con­
t;nuat;on Q, = Q~/Q(Z-') whe" Q(t) = [1,,(1 - t/2') [6J. Then,
applying a refinement of the technique of Flajolet and Sedgewick, we
can easily prove the following theorem (d. Section 3).

THEOREM 2. The expectation IN of the internal path length of digital
search trees built from N records fulfills

7 - 1 1
IN = Nlog, N + N[-/- + - -" + ,,(log, N)J + log, N

og2 2
27 - 1 5

+ I +--,,+,,(log,N)+O(logN/N)2og2 2

(2.6)

with "'I = 0.57721 ... (Euler's constant) and a = L:n>1 1/(2n - 1)
= 1.60669 ... , 81 (:z:) and 8'2(:Z:) are continuous periodic fun-ctions of pe­
riod 1, mean 0 and very small amplitude « 10-6

). For later use we
mention the Fourier expansion of 81 (:z:)

'( ) _ 1 '" ( 2k,'i) 'h'zol:Z:---L,..r-1---e .
log 2 log 2

'¢O

where r(:z:) is the gamma function [1].

(2.7)

We m~ntion in passing that the 0(1 )-term in (2.6) is slightly incorrect
;n [14J.
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(2.8)

Now we turn to the analYlJis of the variance which is given by Var LN =
,sN+lN-l~ with,sN = FJ,:r(l). From (2.1) we get the recurrence relation
(for N 2: 0; So ~ 0)

'N+, = N22- wf. (~) I, + N(N -1)
k=O

+ 2,-N t, (~)I'IN_' + 2'-N t, (~)".

Tn order to find an explicit solution to this recurrence, we split it into 3
parts: ,sN = UN + VN + WN, where

'-N';' (N)UN+l = 2N(IN+l - N) + 2 ~ k uk, N ;::: 0, Uo = 0, (2.9a)

N

VN+l=N(N-1)+2'-NL(~)V', N2:0, vo=O,
k=o

(2.9b)

N;::: 0, Wo = o.

(2.9c)

All of the above recurrences, as well as the one for the average internal
path length (2.2), fall into the following general recurrence studied in
[23J. Let (xn) be a sequence of numbers satisfying the following

n 2: 2, (2.10)

where (an) is any sequence of numbers. The solution of (2.10) depends
on the so called binomial inverlJe relations that are defined as follows

The second equation justifies the name binomial inverse relations. For
more details, see Riordan [20J. A similar treatment as in the case of
(2.2) leads to the following explicit solution (for details see [231).
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LEMMA 3. Let Xo = :1:1 = o. Then the recurrence (2.10) possesses the
following solution

where
n+'

in = Qn L [a, - a,+, - ad /Q,-,
;=1

and Qn is defined in (2.3).

(2.11.)

(2.11b)

Using Lemma 3 we immediately solve our recurrences (2.9a) to (2.9c).
In particular, one proves

. {k-' 1 ,-, j 2k}
Uk = 2Qk_2 4 + ?= 2i _ 1 - ~ 2i _ 1 - 2k 2 _ 1 '

]=1 ]=1

for k ;::: 3, (2.12.)

.nd

fork;:::3, (2.12b)

for k ;::: 5, WO=···=W4=O (2.12c)

Of course, the "unhatted" solutions UN, vN and WN follow from the
binomial relations, as shown in (2.11a). It is also worth to mention that
the recurrence for VN is easy, and after simple algebra one proves

(2.12d)

so that the treatment of UN and WN remains to be done.

In principle UN and WN may be analyzed by making use of Lemma 1
and 3. However, it turns out to be a highly non trivial problem to find an
analytical continuation of Wk. After lengthy and difficult computations
the residue calculus leads us to the following main result of this paper,
which is proved in the next section.
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THEOREM 4. The variance of the internal path length of digital search
trees built from N records becomes

Var LN = N . {G + 8(10g, N)} + O(log' N/N)

where C is a constant that can be expressed as

28 39 20 11"2 2
G ~ -- - - -2111 + - + - +-

3L4 L2L'L'
2 (_I)k+1 (k - 5)

- L L (k + I)k(k -1)(2' -1)
k?3

~"b (£(1- 2-'-+1)/2 -1 _ "
+ L Li '1'+1 I 2-'1' 6 k(k

r?l k?2

+ ~W'(3) - 2[8, 8,10 -18iJo

(_1)'+1
1)(2'-+'

(2.13)

with L = log2, a = L 2n~1' [31 = L (2P j

l)2' br+1 = (_lt2-Ct1
).

n?l i?l
The fluctuating function 5(x) is continuous with period 1, mean zero
and 18(x)1 ~ 10-', and 1[8iJoi ~ 10-10 , [[8,8,Jol ~ 10-10 . Finally, w(z)
is a function defined as

_ «z + 2) «z + 3)
w(z + l)/Q>;._l = -2Qaoz + 2>;.Q>;. + 2.1:+1Q>;.+1

+" «(z+i+2) _ W+ 2))
L. 2'+JQ+" 2JQ"·>2 >;. J JJ_

(2.14)

with Q, = Q=/Q(2-'), where Q(I) = n (1 - 1/2'), Q= = Q(I), and
i?l

2z

(2.15)

Numerical evaluation of the constant C reveals that C = 0.26600 ... and
all five digits after the decimal point are significant. We should point

8



out that in order to achieve the same accuracy in C one needs to run
the recurrence equations (2.9a)-(2.9c) for N '" 106 .

In the following lemma we present an explicit formula for w'(3) that
is convenient for numerical. evaluations.

LEMMA 5. The following identity holds

2W}3) ~ _ 2~~ +I: 2i~ _I: "eH Qe+i-'-
i~2 ) r2::0

.{- L 2n+r+~+2 -1 . (2i+
1

- 2j - 4
n~1

+2~ C:1)2eH\ -J
2 2j + 2 2 1

+ (1 - 2 i e)' + (1 _ 2' i e)' - L 1 _ 2' i e (2.16)

;+1 (j + 1) 1 2~ (j + 1) 1
- 2 t; k zr+k 1 _ 1 + L~ k zr+k _ 1

2;+1 (j+1) (-I)'}
+ L {;, k ~ (i + 1)(2e+>+' 1)

"W+2)" 1
+ L.., 2iQ- L.., 2'-1

i~3 ) k2::i+l

where

(2.17)

and

W + 2) = I:C:1) Qk-,Qi-'-l
k=2

with Qk defined in Theorem 4.

(2.18)

Before we proceed to the proof of our results, we first offer some
remarks and extensions.

Remark 2.19. The covariance analysis. Theorem 4 and our previous
result [9) and [23J provide asymptotics for the covariance between two
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different nodes in a digital search tree (DST). Let D N be a depth of a

(randomly selected) node and let D~) be the length of a path from the
root to the i-th node. Note that the internal. path length LN is defined
. f D(;) L "N D(;) ThIn terms a N as N = L",=l N . en

and this implies

VarLN = NVarDN + 2LCov{D~).DW}.
i#j

The variance of the depth Var D N for the symmetric DST was analyzed
in [9J, and for the asymmetric one in [23]. In particular, it was proved
that for the binary symmetric Patricia Var D N = 2.844···. Using The­
orem 4 and the above we find

'\' {(;) (j)}2 LJ COy D N ,DN = -2.67 ... · N.
iy';j

This also implies that the average value of

C {D(;) D(j)l . INov N, N IS "" -2.67... .

Note that the equivalent quantity for regular tries is approximately equal
to +0.84 ... IN [l1J and for Patricia = -.63 .. · IN [12J.

Remark 2.20 The path length LN converge.s almost surely to EN!
Applying Theorem 4 it is not difficult to prove that LNIELN tends to
one almost surely (i.e., with probability one) as N -> 00. Indeed, by
Chebyshev's inequality one obtains

But, by Theorem 4
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This shows that LN/ELN -+ 1 in probability as N -+ co [21J. To prove
a stronger result, namely, that LN/ELN -+ 1 with probability one (i.e.,
almost surely) we apply the above and the Borel-Cantelli lemma [21),
and then show

~ 0.266··· ~ 1
L..., Pr{ILN/ELN -11 ~ ,} " , L..., , < 00,
N=1 f N=1 N log2 N

so, by the Borel-Cantellilemma L N ....., ELN '" Nlog2 N with probability
one.

Remark 2.21. Comparison of digital trees. In order to select the best
digital tree one needs to compare different characteristics of digital trees,
namely regular tries, Patricia tries and Digital Search Trees (DST). The
table below contains four important parameters that are often used to
predict a random shape of these trees (c!. [6], [91, [11], [12), [14), [15],
[221, [23J, [241).

ELN VarLN VarDN Cov(D}y.D~)

DST N(log, N -1.71) N ·0.26 2.844 - 2.67/N
TRIES N(log, N + 1.33) N ·4.35 3.507 + 0.84/N
PATRICIA N(log, N + 0.33) N ·0.37 1.000 - 0.63/N

It can be seen from the table that the average external (internal) path
length is approximately the same for all three digital trees. However,
the variance of the depths and internal. (external) path lengths differ
significantly. We also notice that the variance of the internal for DST
is smaller than the variance of the external path length for Patricia,
bu t the reverse holds true for the variance of the depth. Therefore, in
order to answer the question which digital tree is the best (balanced)
one needs to decide which parameter (depth or path length) carry more
useful information. This is discussed below.

Remark 2.22. Which digital tree i.5 balanced the be.st? A complete
binary tree [2J is the ultimately best balanced tree. Therefore, any tree
with a good balance property should have the average depth (external
path length) equal to log, N +0(1) (resp. Nlog, N +O(N)) , and a small
variance. Such a property is highly desired since then one can expect
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that a typical search time for a key is approximately equal to the average
depth. This was already said in Remark 2.17, nevertheless we might be
interested in a relative comparison between different trees that satisfy
the above vague criterion. One may ask which digital tree is balanced the
best. To solve this problem we must determine which parameter from
the table above is the most suited for such an analysis. We first notice

that the covariance Cov { Dc;), DW} for Patricia and digital search tree

is negatively correlated. This means, that D~ < EDN and D~) > EDN
also tend to occur together. Thus, for negatively correlated random
variables D~) and DW, if one is large, the other is likely to be small.
This indicates a good balance property for a tree. Note, that in the

regular tries Cov {D~), DW} '" O.84/N > 0 and D~) and DW in that

case are positively correlated. This means that DW is large, then DW
is likely to be large, too.

So finally the problem under consideration boils down to a choice bet­
ween the variance of the depth or the variance of the internal (external)
path length. In [12] we have argued that for tries (regular or Patricia)
the external path length is a better measure of the balance property for
a tree. This argument can be made even more convincing for digital
search trees. Consider a DST that is completely balanced. Then, since
keys are stored in internal nodes the variance of the depth is positive no
matter how balanced the tree is. But, the variance of the internal. path
length is zero for such an instance. This leads to an obvious conclusion
that the variance of the path length should be considered as a criterion
for the balance property. Then, one finds out from the table above that
digital search trees are the best balanced digital trees.

3. ANALYSIS

As we have already pointed out in Section 2, it is a nontrivial. problem
to find appropriate analytic continuations for the sequences of values
f(k) that occur in alternating sums (2.5). In order to illustrate our
approach, we start with the easiest case, namely the evaluation of the
expectation IN. From (2.4) we know

IN = t, G) (-IJ'Qk-2-

As in [6] we may rewrite f(k) = Qk-2 as

Q Q=
,-, = Q(2' ')'
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where
and Q= = Q(I). (3.1)

Therefore we have the analytic continuation

(3.2)

The main contribution to IN is given by Res([N;zlf(z)jz = 1). We have
with 1L = Z - 1 --+ a

N
IN;z] - -(1 +U(HN_l -1))

u

and

(remember L = log 2), since

(3.3)

Therefore

Res([N;z]J(z); z ~ 1) = ~ (HN-l -1 + L(~ - a)).
Using the well known asymptotics for the harmonic numbers HN-l we
get the contribution (from z = 1)

(
, 1 1 ) 1 (1 )Nlog N+N ---+--a --+0 -

2 L L 2 2L N' (3.4)

Besides z = 1 we have with the same real part 1 the simple poles Z/c =
1 + 2k7ri k E Z k....L a with

L ' 'T

1
Res([N; z]J(z); z = z.) = IN; z.J . L'

so that we get the contribution
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The reader should take notice of the fact that the first term in (3.5)
gives the Fourier coefficients of (h(x) in Theorem 1.

The next relevant pole is z = 0 and yields a contribution of

(3.6)

The poles Z = Zk - 1 yield a periodic contribution of order NO and so
OD.

Collecting all contributions gives the expansion (2.6) in Theorem 2.

Next we focus our attention on the asymptotic", of 'UN. In order to
find an appropriate analytic continuation of th we rewrite the sums
appearing in (2.12a) as follows:

1.:-2

2: 2i ~ 1 = a - L ~27'--';-2~"'''·-----=-1 •
i=l i2:1

1.-2 j j k-2+j
I: 2i _ 1 = 2: 2i _ 1 - L 2/0 Hi - 1 .
i=l i2:.1 i2:1

Thus we may continue Uk via the function

• 2Q~ [ '" 1
u(z) = Q(22 ,) 4 + '" - L., 2' Hi_l

,»

'" j '" z-2+j 2Z]
- L..J 2i _ 1 + LJ 2'" Hi - 1 - 2'" 2 - 1 .

i2:1 i2:1

(3.7)

Now the main contribution to UN in Lemma 1 originates from a second
order pole of [Njz]u(z) in z = 2. Further contributions that are ne­
cessary for the evaluation of the variance come from first order poles
in Z = 2 + 2~'I!i, k t- 0, a third order pole in z = 1 as well as second
order poles in Z = 1 + 2~"'i 1 k #: o. Collecting all the above mentioned
contributions we end up with the following expansion of UN (6i (x) stands
in all following formulas for a continuous periodic function of period 1
and mean zero).
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LEMMA 6.

UN '" 4N2 10g2 N

+N' (4(')';1) -6-4a+53 (]Og,N))

, (2 -, )- Nlog, N + 2Nlog, N· --r;- + 8 + a + 5,(log, N)

+ N(- j2 + 4-y + 12j + 2aj _ ~ _ ~ _ 10 _ 20:
L'L'L L6L'L'LL

, 133) 0- a + f3 - lla - 2f31 + 6 + 5,(log, N) + O(log- N)

with f3 = :E (2,11)2' L, 0:, /31 as in Theorem 4.
k:2:1

As already mentioned in Section 2,

so that the asymptotics of UN are given by

UN ..... 2N2 - 4Nlog2 N

+ 4N ( -1 + a - i + -E - 5, (log, N)) + O(log N).
(3.8)

The most challenging task is to find an appropriate analytic continuation
of';;(z).

From (2.12c) we have

with

,
_ " W+1)

Wk+l = -Qk-l LJ 2i IQ.
i=4. ]-1

(3.9)

(3.10)

For the following the reader should note that ((j +1) ,..... Q~2i. We start
by rewriting (3.9) in the following manner:
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With ~(j +1) = W + 1) - Q~2; we have

_ Wk+l = t 11(i +. 1) + Q~2j
Qk-l i=4. 21 lQj_l

~" ~(j+l) _ " ~(j+l)
LJ 2i-1Q. LJ 2i-1Q.
">4 ]-1 ">k+l ]-1J_ J_

+2Q~ (~(Q:_, - Q~) -;~, (Q~' - Q~))
+ 2Q~(k - 3).

(3.11)
Therefore

" = Q [_ 20 (k _ 3) " ~(j + k + 2) _ " ~(j + 2)
Wk+l 1=-1 wOO + L 2i+kQ. L.. 2i Q.

j~O J+k ;'2:3 J

Since all involved series are now absolutely convergent, we may add them
term by term and get

" [ «k + 2) «k + 3)
Wk+l = Qk-l - 2Q=k + 21=Qk + 2k+ 1Qk+l

" ({(k + j + 2) _W + 2))]
+L- Zk+iQ,+' 2iQ. .

;>2 1 )

From this, the representation for w(z + 1) as in (2.14) is immediate,
provided we have an appropriate interpretation for {(z + 1). This will
be our next goal. The following well-known partition identities of Euler
are our basic tool:

(3.12)

and

(3.13)

with
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Using (3.2) and (3.12) we have

where the innermost sum is now

The last expression for {(N + 1) is symmetric in i and j. However,
it turns out that for the purpose of finding an analytic continuation
Li,i:2:o should be rewritten as - Li=i +2 Li~i:2:O. Writing j = i + h in
the second sum we get

f,(N + 1) = _(ZN - Z - ZN) I: Q~Z;('-N)
i:2:0 Qi

+ Z I: Q~ Z'(2-N)Zh [(1 + Z-h)N - 1 - NZ-h]
;,11.>0 Q;Qi+h.

- 2 L Q~ 2;(2-N)2h.(1-N)

.,1..:2:0 QiQ.+h.

- 2N L Q~ 2;(2-N)2h.(2-N)

i,h.~O QiQi+h.

(3.14)

In expression (3.14) N can be replaced by z, yielding a meromorphic
function, since aU series converge uniformly. However, we are able to
simplify {( z + 1) in the following way. Consider for example the last
term in (3.14):

which is by Euler's identity (3.13)

17



and by Euler's identity (3.12)

Rewriting the other terms from (3.14) in a similar way, especially using

(1 +Tk
)' -1 - zTk = :L G)Tkk

k~2

for the second term, we finally get (2.15).

Our next task is to investigate the poles of [N; zJw(z) different from
z = 5,6, ... ,N.

From (3.11) we 'ee th.t ';;(4) = ';;(3) = 0 (ob,erve th.t ~(4) = 0), '0

that the first poles occur with real part 2. In order to determine the
residues of IN; zJw(z) in z = 2 resp. z = 1 we need the local behaviour
of w(z). Because of (2.14) this behaviour will depend on the behaviour
of a(z) := ~(Z)/2=-2Q=_2 near z = 2,3, .... From (2.15) we see that
{(z) has second order poles for z = 2 and z = 3 and is analytic for
z = 4,5, .... Since {N; zjQ=_2 has already a second order pole for z = I,
it will be necessary to expand a(z) near z = 2,3, ... up to the linear
terms. In particular, the reader should note that all the derivatives a'(z)
for z = 4,5, ... will occur in Res([N;zjw(z);z = 1). This is the main
reason that the constant C in the final result is rather a complicated
one.

We start with the expansion of a(z) about z = 3. Let u = z - 3; then
we find from (2.15) after laborious computations:

(1- 1

(3.15)

18



where
(-1)'

(3, ~ 2L (k + I)k(k _ 1)(2' _ 1)'
k;:::2

c, ~ L 2'[(1 + T')'log(I +T') - 2-'],
h~o

C, = L 2'(1 + T')'log'(1 + 2-'),
h;:::O

C, = L [(1 + 2-')'log(I + 2-') - T'],
h~O

D"., = L 2'('-") [(1 + T')'log(I + 2-') - T'].
h;:::O

The constant in the uO-term can be simplified according to the re­
markable identity

For the proof of (3.16) we observe that the left-hand side equals

Using (3.12) and (3.13) this expression becomes

L Q(T;) (Q(2-;) -I) - 2 L Q(T;) (QW;-') -1)
;;:::0 i.k;:::o

(3.16)

where and
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Now we observe

E - lim [Q~ _ 1 ] __ (Q~)'
,- ,_, Q(t) 1-t/2 - Q(t) =-a

t=l

and

E -2lim [(Q~)'_ 1/2 ]
,- ,-, Q(t) (1- t/2)'

1 (Q~)"
= -2 Q(t)

t=l

and get the right-hand side of (3.16).

The expansion of O'(z) about z = 2 reads with tL = z - 2:

0(2 +u) _ --+- +!:. (~+ 2-)L-1L2 tL L L2

+u' (_136-1-~(G,+G,)+2E3)
,(L 55 Cs G7+ tL '6 - (3 - 3C4 - L + C6 - L

'" b"H {+ 2 L... (1 _ 2'-")(1 _ 2 ") D"., + 1 - 2L (3.17)
r~2

r-2 1 L-l

+ L L 2' _ 1 + 1 _ 2' "
i=1

(
1 1 "-, 1

+L - "'--(I - 2 ")' 1 - 2 "L... 2' - 1
.=1

2'-" 1 "-, 1 )})
+ (1 - 21 rF - 1 - 21- r f; 2 i -1

where
G, = L2' [(1 + 2-')log(1 + 2-') _ 2-'],

h.~O

G, = L 2'(1 +T') log'(l +2-'),
h~o

G, = L [(1 + 2-')log(1 +T') - 2-'] ,
h~O
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c, = 2)1 + T h
) log'(l + T h ),

h~O

D••, = I: 2h
(1-") [(1 + T h ) log(l + 2-h ) _ 2-hJ ,

h;:::O

E - '" b....
,

(1 _ 1 _ 1 )
3 - L. (1 _ 2' ")(1 _ 2 ") 1 _ 2-" 1 _ 2'-" .

r2::2

For later simplifications we note that

2 3 2~,
--(C,+C,)~-8+---

L L L

and

(3.18)

(3.19)

where (3.18) follows from the expansion of the logarithm and (3.19) by
partial fraction decomposition and rearrangements of the sums.

We finally note that

Next we discuss a(z) for z close to j = 4,5, ....

o-(j + u) - o-(j)

(3.20)

+ 72'~''~~'--;_-, (e'(j) - LW) + LW) I: 2'+; \ _1) .
.1:2::1

(3.21)

_u('" e'(j) - LW)
LJ 21 2Q._,
">4 1,-

L '" W) '" 1 )LJ 2i 2Q"_2 6 21::+i- 2 -1 .
j2:4 J k?::l

From (2.14) we find that the last expression equals

u(2w'(3} + 2Q~)

21
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where w'(3) may be computed from (2.15) to get the constant from
Lemma 5.

Regarding (3.15), (3.17) and (3.22a) we find that [N;z]w(z) has third
order poles in z = 2 and z = 1, and second order poles in Zk = 2 + 2~1ri,

k E Z, Z f:. 0, as well as in Zk - 1.

Our local expansions allow (after some lengthy but straightforward
computations) to find the following asymptotic behaviour of WN:

LEMMA 7.

" , (22""( )WN = N log, N +N log, N· -3 - "j, + L - 2", + ,,(log, N)

,(1" 20: 3, 2a:, f32+ N 3+ ",- + 3", + L - L - L - L

221'211'2 2, )
+ £ + L' + L' + 6L' - L' + ,,(log, N)

, ( 7 10""( )+ 3Nlog, N + Nlog, N· - £ - 3 - 6", - L + ,,(log, N)

+ N(-22 _ 41 + {3, _ 3""( _ 7""(
6£ £ £ £'

70: 2 60:, 3,2+ 2", - {3 + - + 3", - - + -
£ £ L'

,,' 6 2 (_l)"+l(k - 5)
+ 2£' + L' - £ L (k + l)k(k - 1)(2" - 1)

k~3

2 (£(1-2-.+1)/2-1 (_1),+1)
+"j,Lb.+1 1-2. -L k(k-l)(2.+k-l)

r~l k~2

2 ) (lOg' N)+ "j,w'(3) + ,,(log,N) +0 N

with L, a:,f3,b r + 1 as ill Theorem 4 resp. Lemma 6 and f32 from (3.15).

It remains to combine the previous results to get an asymptotic ex­
pansion for

(3.23)

We start with an important observation concerning leading terms
formed by periodic fluctuations of mean zero.

22



Let us assume that, at any stage, we are able to prove

Var LN = ~lO(log, N) . N" log" N + RN (3.24)

where 010(X) is continuous and periodic with period 1 and mean zero
and RN = o(Nfllog" N). We claim that 010(X) must vanish identically
under these conditions:

Let us assume 010(X):;t. D. Then, since 010(:Z:) is continuous with mean
0, there esists an /0 > 0 and an interval, say [a,b] ~ [D,I}, such that
010(:Z:) < -/0 for x E [a,b]. Since log2N is dense modulo 1, VarLN
would be negative for an infinity of values, an obvious contradiction.

In other words: From (3.24) we may deduce that

N--+oo, (3.25)

so that, in order to prove that Var LN = O(N) we need not collect
explicitely the fluctuating contributions of mean zero.

Observing these comments we easily find that all terms of order
N 2 log2 N, N 2 log N, N log2 N and N log N in Var L N cancel. The co­
efficient of N2 is of a more delicate nature. The reader should note
carefully that the coefficient of N 2 in liv will contain the square oi of
the periodic fluctuation 01 from Theorem 2 and that the mean [oilo of oi
will not be zero. Therefore we have to extract this term to end up with
a fluctuation of mean zero and get for the coefficient of N 2 in Var LN

the expression

1 71"2 1 f32 47 2- + - - - - - - - - [~ 10 + ~u(log N)L2 6L2 L L 12 1 2·

The following Lemma is crucial now:

LEMMA 8. , 1"'1 ( 2bci) I'[~llo = L' ~ r -1- log2

1 11"2 1 f32 47
= L' + 6L' - L - L - 12·

(3.26)

SKETCH OF PROOF}: The proof heavily relies on the following two series

1A full proof of Lemma. 8 is long and difficult a.nd included in (1 0J-
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transformation results due to Ramanujan. The first one is

(3.27)

Here and in the next identity, a and f3 have to be positive numbers with
a/3 = 71"2, ((8) is the Riemann'-function; N has to be a positive integer
and Bn indicates the n-th Bernoulli number defined by

The second identity used in the proof is

L 1 1 a
-;-;-,;-:-0:-""" - -log a + ­
k(e2• k -1) 4 12

k?:l

" 1 1 fJ
= L., k(e2Pk -1) - ;;logfJ + 12'

k;?l

(3.28)

In fact, (3.28) is equivalent to a transformation result on Dedekind's
7]-function (compare [3])

namely

7](1") = e.7riTj12 II (1 - e27rinT),

n?:l

(3.29)

(3.30)

(This is a special instance of Dedekind's famous result on the behaviour
of 7] under a transformation of the modular group.)

The consequences of Lemma 8 are twofold. On the one hand, we find
from (3.26) that the N 2-termin Var LN cancels, so that Var L N = O(N).
On the other hand we may use the identity to express /32 by the other
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terms occurring in Lemma 8, including [8iJo which yields the final form
of the constant C in Theorem 2. [8182 ]0 is the mean of 81 (z)82 (z), orig­
inating from l~, which has to be extracted to end up with a fluctuation
8(z) of mean zero.

We would like to point out some final remarks concerning this analysis:

i) The occurrence of the finite products Qk gives rise to use results
from the theory of partition$, especially Euler's product identities (3.12)
and (3.13).

ii) A periodic fluctuation 81 (z) which has mean zero and very small
amplitude may be safely neglected for practical purposes as long as we
are only interested in the ezpeetation. In order to establish the correct
order of the variance it is of vital importance to study the behaviour of
01(X), especially the mean of 8i(x).

iii) The predicted value 0.26600 .... N matches perfectly with the
values obtained by computer simulations.

iv) As we have mentioned in the Introduction, with this paper we have
finally achieved very good information on the average case behaviour of
Tries, Patricia Tries and Digital Search Trees in the symmetric case (i.e.
we start from 0, I-sequences which contain 0 and 1 with equal probabil­
ity). Nevertheless the methods of this paper do not seem to be confined
to this instance: indeed we hope that sharp results for the asymmetric
case may also be established with a similar technical apparatus.

Acknowledgement: The authors would like to thank R.F.Tichy for
some helpful remarks.
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