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Abstract— In this paper we develop novel results on self triggering
control of nonlinear systems, subject to perturbations and actuation de-
lays. First, considering an unperturbed nonlinear system with bounded
actuation delays, we provide conditions that guarantee the existence
of a self triggering control strategy stabilizing the closed–loop system.
Then, considering parameter uncertainties, disturbances, and bounded
actuation delays, we provide conditions guaranteeing the existence of
a self triggering strategy, that keeps the state arbitrarily close to the
equilibrium point. In both cases, we provide a methodology for the
computation of the next execution time. We show on an example
the relevant benefits obtained with this approach, in terms of energy
consumption, with respect to control algorithms based on a constant
sampling, with a sensible reduction of the average sampling time.

Index Terms— Control over networks; Control under computation
constraints; Sensor networks.

I. INTRODUCTION

Wireless networked control systems are spatially distributed
control systems where the communication between sensors, actu-
ators, and computational units is supported by a shared wireless
communication network [7]. The use of wireless networked control
systems in industrial automation results in flexible architectures and
generally reduces installation, debugging, diagnostic and mainte-
nance costs with respect to wired networks. The main motivation
for studying such systems is the emerging use of wireless tech-
nologies in control systems, see e.g. [1], [15] and references therein.
Although wireless networks offer many advantages, communication
nodes generally consist of battery powered devices. For this reason,
when designing a control scheme closed on a wireless sensor
network, it is fundamental to adopt power aware control algorithms
to reduce power consumption. In other applications, the energy is
obtained from the environment, with a scavenging system, since it
is not possible to provide these wireless sensors with batteries. An
example of such a case is notably given by the so–called intelligent
(or smart) tires, equipped with sensors embedded in the tread, giving
information on pressure, road–tire friction, etc. [14], [11], [4]. In
this case the sensors are supplied by the energy provided by the
tire motion. It is clear that it is fundamental to trigger wireless
transmission only when necessary, to prevent energy shortage and,
possibly, to reduce the probability of information packet losses
during the transmission.

With the aim of addressing the above issues in the controller
design phase, self triggered control strategies have been introduced
in [19], where a heuristic rule is provided to self–trigger the next
execution time of a control task on the basis of the last measurement
of the state. In [9], [10], a robust self triggered strategy is proposed,
which guarantees that the L2 gain of a linear time invariant system
is kept under a given threshold. In [12] a self triggering strategy
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distributed over a wireless sensor network is proposed for linear
time invariant plants.

In [16] sufficient conditions for the existence of a stabilizing
event–triggered control strategy are given for non-linear systems.
In [3] the authors propose a self–triggered emulation of the event–
triggered control strategy proposed in [16]. In particular a method-
ology for the computation of the next execution time as a function
of the last sample is presented, under a homogeneity condition.

We extend the previous results in two directions. First, with
regard to asymptotic stability under digital self triggered control, we
propose a methodology for the computation of the next execution
time by replacing the homogeneity assumption with the requirement
that the nonlinear differential equations and the control law are Cℓ

functions, with ℓ sufficiently large. The digital control, ensuring
asymptotic stability, have been derived for unperturbed nonlinear
systems affected by bounded actuation delays, under the necessary
condition of existence of a continuous stabilizing control. With
respect to previous results [3], the approach proposed in this work
allows computing the stabilizing execution time sequence for a
broader class of systems. In a recent work in progress [17] a new
technique is developed to compute the next execution time for
smooth systems by exploiting the concept of isochronous manifolds.
Our technique is based on polynomial approximations of Lyapunov
functions, and therefore differs from the one developed in [17].

Second, we consider non–linear systems perturbed by norm–
bounded parameter uncertainties and disturbances, and affected by
bounded actuation delays. We prove that, under weaker conditions
than those used in [16], a self triggering strategy exists keeping
the state in a ”safe set” arbitrarily close to the equilibrium point.
To the best of the authors’ knowledge, this is the first work that
provides results on self-triggering control for non-linear systems
with uncertainties, disturbances and actuation delays.

Finally, we show on a significant example that the results
obtained introduce strong benefits in terms of energy consumption,
with respect to digital controls based on a constant sampling time,
by reducing the average sampling time.

The paper is organized as follows. In Section II, we illustrate the
mathematical model and the problem formulation. In Section III, we
derive results for the asymptotic stability of unperturbed systems,
while in Section IV we consider the safety problem of perturbed
systems. In Section V, we apply the obtained results to an example.
An extended version of this paper can be found in [21].

II. PROBLEM FORMULATION

Consider a generic nonlinear system

ẋ = f(x, u, µ, d) (1)

where x ∈ Dx ⊂ Rn, Dx a domain containing the origin, u ∈
Du ⊂ Rp, µ is a parameters uncertainty vector varying in a compact
set Dµ ⊂ Rr , with 0 ∈ Dµ, d is an external bounded disturbances
vector taking values in a compact set Dd ⊂ Rs, with 0 ∈ Dd. We
define the nominal system associated to the perturbed system (1)
by

ẋ = f0(x, u)
.
= f(x, u, 0, 0). (2)
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Given a state feedback control law κ : Dx → Du, the closed loop
perturbed system is

ẋ = f(x, κ(x), µ, d), (3)

and the closed loop nominal system is

ẋ = f0(x, κ(x)). (4)

We will denote by x(t), t ≥ t0, the solution of the closed loop
system (3) (or (4), according to the context), with initial condition
x0 = x(t0). It is well–known that if the origin of system (4)
is locally asymptotical stable for a certain feedback κ, and if
f0(x, κ(x)) ∈ Cℓ(Dx), ℓ > 1 integer, then there exists a Lyapunov
function V (x) of class C1(Dx) such that

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)
∂V (x)

∂x
f0(x, κ(x)) ≤ −α3(∥x∥)∥∥∥∥∂V (x)

∂x

∥∥∥∥ ≤ α4(∥x∥)

(5)

with α1, α2, α3, α4 ∈ K [20], [8], [6].
In the following definition, an invariant property is used to define

that a system is safe with respect to a given subset of the state space.

Definition 1: Given a state feedback control law κ, system (3) is
safe with respect to the set S ⊆ Dx for the time interval T ⊆ R+,
if x(t) ∈ S, ∀t ∈ T . ⋄

The feedback control signal u(t) = κ(x(t)) requires continuous
measurements of the state of the system. In this paper, we address
the stability and safety problems defined below, when the measure-
ments are performed at sampling instants tk, defining a sequence
I = {tk}k≥0, and the applied control signal is

uI(t) =

{
0 ∀t ∈ [t0, t0 +∆0)

κ(x(tk)) ∀t ∈ [tk +∆k, tk+1 +∆k+1), k ≥ 0

where {∆k}k≥0 is the sequence of actuation delays, due to the
transmission time from the sensor to the controller, the computation
time, and the transmission time from the controller to the actuator.
We assume that ∆k ∈ [0, tk+1 − tk), ∀k ≥ 0, which is a natural
requirement in practice.

Problem 1: (Stability problem) Given the nominal system (2),
and a stabilizing state feedback control law κ, determine

1. A minimum sampling time τmin > 0;

2. A function τs : Dx → [τmin,∞);

3. A maximum allowed delay ∆max > 0;

such that if the sequence of sampling instants I is inductively
defined by

tk+1 = tk + τs(x(tk)) (6)

and if the actuation delays are such that

∆k ∈ [0,∆max), ∀ k ≥ 0 (7)

then the origin of the closed loop system (4) with control input
signal uI(t) is asymptotically stable. ⋄

Problem 2: (Safety problem) Given the perturbed system (1), a
stabilizing state feedback control law κ, and an arbitrary safe set
Bδ = {x ∈ Rn | ∥x∥ < δ} ⊂ Dx, determine τmin, τs and ∆max

as defined in Problem 1) such that if I is inductively defined by (6)
and if ∆k satisfies (7), then the closed loop system (3) with control
input signal uI(t) is safe with respect to Bδ , for the time interval
[t0,∞). ⋄

In Problems 1 and 2, the function τs is used to determine the
next sampling instant as a function of the current measurement of
the system. We require that the time interval between two sampling
instants is lower bounded by a minimum sampling time τmin > 0,
in order to avoid undesired Zeno behaviors. We also require that
the system is robust with respect to actuation delays bounded by
∆max.

By choosing the next sampling instant tk+1 as a function of the
current measurement at time tk, we perform sampling only when
needed for guaranteeing asymptotic stability or safety. The aim is
to obtain a sequence of sampling instants I with the property that
the inter–sampling time tk+1 − tk is as large as possible, in order
to reduce transmission power of the sensing and actuation data
transmissions, and to reduce the CPU effort due to the computation
of the control. In this paper we do not address the problem of the
optimality of the solution: such a requirement can be taken into
account by considering appropriate cost functions.

III. SELF TRIGGERED STABILIZING CONTROL

The results developed in this Section are based on the following
assumption, analogous to the assumptions used in [16].

Assumption 1: Assume that
1. f0 ∈ Cℓ(Dx × Du), with ℓ a positive integer sufficiently

large;
2. There exists a nonempty set U of state feedback laws

κ : Dx → Du, such that κ ∈ Cℓ(Dx) and the origin of (4)
is asymptotically stable, with region of attraction a certain
compact Ω ⊂ Dx;

3. The functions α3, α4 ∈ K in (5) are such that α−1
3 , α4 are

Lipschitz. ⋄

The assumption of existence of a stabilizing control (i.e. non-
emptiness of the set U) is not restrictive, since if the nominal
system cannot be stabilized using continuous time measurement
and actuation, then it is clear that the nominal system cannot be
stabilized using a digital control with zero–order holders. The main
limitation of Assumption 1, and those used in [16], is the Lipschitz
condition on α−1

3 (·) and α4(·). We will show how to weaken this
assumption in Section IV, which will be devoted to safety control.
However, note that the conditions of Assumption 1 are weaker than
those used in [3] (homogeneity of the closed loop dynamics).

Theorem 1: Let us consider the nominal system (2). Under As-
sumption 1, there exist a state feedback control law κ, a minimum
sampling time τmin > 0, a function τs : Dx → [τmin,∞) and a
maximum delay ∆max > 0, such that if I is inductively defined
by (6), and ∆k satisfies (7), then the origin of the closed loop
system (4) with control uI(t) is asymptotically stable. ⋄

Proof: Let us first prove the result for ∆k = 0. Since U is not
empty, by Assumption 1, we pick a state feedback control law
κ ∈ U . Since f0(x, κ(x)) ∈ Cℓ(Dx) with ℓ > 1, there exists a
Lyapunov candidate (5). Let us choose r > 0 such that the ball
Br = {x ∈ Ω | ∥x∥ ≤ r} ⊂ Ω. For xk ∈ Br ,

V̇ =
∂V

∂x
f0(x, κ(xk)) =

∂V

∂x
f0(x, κ(x))

+
∂V

∂x

(
f0(x, κ(xk))− f0(x, κ(x))

)
≤ −α3(∥x∥) + α4(∥x∥)∥dh∥

(8)

where

dh = f0(x(t), κ(x(tk)))− f0(x(t), κ(x(t)))

is the perturbation due to the holding.
Under Assumption 1, there exists a δk > 0 such that ẋ =

f(x, κ(xk)) has a unique solution over [tk, tk+δk]. Hence, we can
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expand the components dh,i of dh in Taylor series. Let us consider
the ith component dh,i, i = 1, · · · , n, of the n–dimensional vector
dh. One can expand each component in Taylor series with respect
to t ∈ [tk, tk + δk], on the right of tk, up to the 2nd term, with the
Lagrange remainder of the 3rd term [18]

dh,i = φ1,i(xk)(t− tk) + φ2,i(x̄i, xk)(t− tk)
2 (9)

where

φ1,i(xk) =
d+dh,i
dt

∣∣∣∣
x(t)=xk

φ2,i(x̄i, xk) =
1

2

d2
+dh,i
dt2

∣∣∣∣
x(t)=x̄i

where
dn
+(·)
dtn

denotes the n–th right derivative. According to Taylor
theorem with the Lagrange remainder, there exists t̄i ∈ [tk, t], with
x̄i = x(t̄i), i = 1, · · · , n, such that the equality (9) holds. Hence,

∥dh∥ ≤ ∥φ1(xk)∥(t− tk) + ∥φ2(x̄, xk)∥(t− tk)
2

where x̄
.
= (x̄1, · · · , x̄n) and

φ1(xk)
.
=

(
φ1,1(xk), · · · , φ1,n(xk)

)T

φ2(x̄, xk)
.
=

(
φ2,1(x̄1, xk), · · · , φ2,n(x̄n, xk)

)T

.

Let us consider the level set ΩV (xk), and define

M1(xk)
.
= ∥φ1(xk)∥, M2(xk)

.
= max

x̄∈ΩV (xk)

∥φ2(x̄, xk)∥.

Since f, κ ∈ Cℓ and ΩV (xk) is compact, then M1(xk) is finite for
any xk ∈ ΩV (xk), and M2(xk) ∈ R+ exists and is finite for any
xk ∈ ΩV (xk).

Let us now check that there exists a time interval [tk, tk+1 <
tk + δk] such that

α4(∥x∥)∥dh∥ ≤ ϑα3(∥x∥) (10)

is satisfied for a fixed ϑ ∈ (0, 1). In fact, (10) is satisfied if

α−1
3

(
ϑ−1α4(∥x∥)

(
M1(xk)(t− tk) +M2(xk)(t− tk)

2)) ≤ ∥x∥.

Since α−1
3 and α4 are Lipschitz, then equation (10) is satisfied if

ϑ−1L
α−1
3

Lα4∥x∥
(
M1(xk)(t− tk) +M2(xk)(t− tk)

2) ≤ ∥x∥

where L
α−1
3

> 0 and Lα4 > 0 are the Lipschitz constants
respectively of α−1

3 and α4. The above equation directly implies
that (10) is satisfied if

M1(xk)(t− tk) +M2(xk)(t− tk)
2 ≤ ϑL−1

α−1
3

L−1
α4

. (11)

If we define

τs(xk)
.
= max

{
t− tk | equation (11) is satisfied

for each t− tk ∈ [0, τs(xk)]
}

τmin
.
= min

xk∈ΩV (xk)

{
τs(xk)

}
and we choose tk+1 = tk+τs(xk), then V̇ (t) ≤ −(1−ϑ)α3(∥x∥)
for all t ∈ [tk, tk+1] and for all k ≥ 0. This implies that the origin is
asymptotically stable. Equation (11) is a second degree inequality
in the form a(xk)y

2 + by ≤ c, where a(xk), b are non-negative
and upper bounded for each xk ∈ Dx, and c is strictly positive and
upper bounded. This trivially implies that τs(xk) is strictly positive
for each xk ∈ ΩV (xk), and thus τmin is strictly positive as well.
This completes the proof for ∆k = 0.

We now solve the problem for ∆k > 0. Following the same
reasoning as above, for t ≥ tk +∆k

V̇ (t) =
∂V

∂x
f0(x(t), κ(xk)) =

∂V

∂x
f0(x, κ(x))

+
∂V

∂x

(
f0(x(t), κ(x(tk +∆k)))− f0(x, κ(x))

)
+

∂V

∂x

(
f0(x(t), κ(xk))− f0(x(t), κ(x(tk +∆k)))

)
≤ −α3(∥x∥) + α4(∥x∥)∥dh∥+ α4(∥x∥)∥d∆k∥

where

dh = f0(x(t), κ(x(tk +∆k)))− f0(x, κ(x))

d∆k = f0(x(t), κ(xk))− f0(x(t), κ(x(tk +∆k)))

are the perturbation due to the holding and to the actuation delay.
Since also the solution x(t) is Lipschitz, as well as f0 and κ

∥d∆k∥ ≤ M3∆k, M3 = Lf0LκLx

where Lf0 , Lκ, Lx are the Lipschitz constants of f0, κ, x.
Proceeding for dh as in the previous case, we conclude that (10) is
satisfied if

M1(xk)(t− tk)+M2(xk)(t− tk)
2+M3∆k ≤ ϑL−1

α−1
3

L−1
α4

(12)

Let ϑ = ϑ1 + ϑ2, with ϑ1, ϑ2 ∈ (0, 1) and ϑ1 + ϑ2 < 1. We can
rewrite equation (12) as follows

M1(xk)(t− tk) +M2(xk)(t− tk)
2

+M3∆k ≤ ϑ1L
−1

α−1
3

L−1
α4

+ ϑ2L
−1

α−1
3

L−1
α4

.
(13)

Equation (13) implies that the stability condition (10) holds if

M1(xk)(t− tk) +M2(xk)(t− tk)
2 ≤ ϑ1L

−1

α−1
3

L−1
α4

, (14)

and
∆k ≤ (1− ϑ2)M

−1
3 L−1

α−1
3

L−1
α4

. (15)

Defining

τ ′
s(xk)

.
= max

{
t− tk | equation (14) is satisfied

for each t− tk ∈ [0, τ ′
s(xk)]

}
τmin

.
= min

xk∈ΩV (xk)

{
τ ′
s(xk)

}
∆max

.
= min

{
(1− ϑ2)M

−1
3 L−1

α−1
3

L−1
α4

, τmin

}
τs(xk)

.
= τ ′

s(xk)−∆max

and if we choose tk+1 = tk + τs(xk), then V̇ (t) ≤ −(1 −
ϑ)α3(∥x∥) for all t ∈ [tk +∆k, tk+1 +∆k+1] and for all k > 0.
This ensures the asymptotic stability of the origin. As discussed
above, τs(xk) is strictly positive for each xk ∈ ΩV (xk), and thus
τmin and ∆max are strictly positive as well. This completes the
proof. �

Remark 1: The choice of ϑ1 and ϑ2 establishes in an intuitive
way the tradeoff between allowance of larger inter–sampling times
(ϑ1), and robustness to larger actuation delays (ϑ2).

Remark 2: When applying the self triggering rule defined in the
above Theorem in a real scenario, it is necessary to solve the on-
line computation of the next sampling time for each time instant tk.
This computation corresponds to solving a second degree equality,
and is thus acceptable in an embedded system. On the contrary,
the computation of M1(xk) and M2(xk) can be performed off-
line. However, it might be difficult to compute in a closed form
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M2(xk) = max
x̄∈ΩV (xk)

∥φ2(x̄, xk)∥ as a function of xk. In this case,

we can define

M2
.
= max

x̄,xk∈ΩV (xk)

∥φ2(x̄, xk)∥

and use it in Equation 11 to compute the next sampling time.
The above Remarks also apply to Theorems 2 and 3 in following

Sections.

IV. SELF TRIGGERED SAFETY CONTROL

The main limitation of the results developed in Section III is the
Lipschitz continuity assumption of α−1

3 (·) and α4(·). The following
example shows that even exponentially stabilizable systems do not
always satisfy this assumption.

Example 1: Consider the system ẋ = Ax + Bu + f(x, u) =
f0(x, u) with

f0(x, u) =

(
−x1 + x2 + x2

1

(1 + x1)u

)
.

Let u = κ(x) = −x2 ∈ U . Consider the Lyapunov candidate
V (x) = xTPx, with P solution of the Lyapunov equation PAc +

AT
c P = −Q, with Q = 2I and Ac =

(
−1 1
0 −1

)
. Since P =(

2 1
1 3

)
, then λP

min
∼= 1.382 and λP

max
∼= 3.618 denote respectively

the minimum and the maximum eigenvalue of P . For ∥x∥ ≤ 2/3,
the time derivative of V satisfies

V̇ = −∥x∥2Q + 2|x1|3 + 3|x1|x2
2

≤ −2x2
1 − 2x2

2 + 2(2/3)x2
1 + 3(2/3)x2

2 ≤ −1

2
∥x∥2

thus the origin is locally exponentially stable, with α1(∥x∥) =
λP
min∥x∥2, α2(∥x∥) = λP

max∥x∥2, α3(∥x∥) = ∥x∥2/2, and
α4(∥x∥) = λP

max∥x∥. It is clear that Assumption 1 is not satisfied,
since α−1

3 (·) is not Lipschitz. For this reason, we can not imply
the existence of a stabilizing self triggering strategy. ⋄

The main problem is that, if α−1
3 (·) is not Lipschitz, the next

sampling time τs(xk) goes to zero as xk approaches the equilibrium
point, and this might generate Zeno behaviors. In this Section,
without the Lipschitz assumption on α−1

3 (·) ∈ K, we will show
that

1. For the unperturbed system (2), it is possible to keep the state
arbitrarily close to the equilibrium point by applying a self
triggering strategy;

2. For the perturbed system (1), it is possible to keep the state
in a δ boundary of the equilibrium point if the disturbance
norm is upper bounded by a class K function ν(δ).

The results developed in this section are based on the following.

Assumption 2: Assume that f0 ∈ Cℓ(Dx×Du), with ℓ a positive
integer sufficiently large. Assume that there exists a nonempty set
U of state feedback laws κ : Dx → Du, such that κ ∈ Cℓ(Dx) and
the origin of the system (4) is asymptotically stable. ⋄

A. Unperturbed Systems
The following theorem states that, if a system is asymptotically

stabilizable using a continuous time state feedback control law,
then it is always possible to keep the state arbitrarily close to the
equilibrium point by applying a digital self triggering strategy. Note
that, in order to guarantee that the state is arbitrarily close to the
equilibrium point, we need the stabilizability assumption.

Theorem 2: Given the nominal system (2) and a safe set Bδ , δ >
0, under Assumption 2 there exist a state feedback control law κ, a

minimum sampling time τmin > 0, a function τs : Dx → [τmin,∞)
and a maximum allowed actuation delay ∆max > 0, such that if I
is inductively defined by tk+1 = tk+τs(x(tk)), if ∆k ∈ [0,∆max)
for each k ≥ 0, and if the system is safe before applying the state
feedback control law

x(t) ∈ Bδ, ∀t ∈ [t0, t0 +∆0],

then the closed loop system (4) with control input signal uI(t) is
safe with respect to Bδ , for the time interval [t0,∞).

B. Perturbed Systems
A generic system (1), subject to disturbances and parameter

variations, can be seen as the nominal system (2), perturbed by
the term

g(x, u, µ, d) = f(x, u, µ, d)− f0(x, u)
.
= dg. (16)

Hence, (1) can be rewritten as follows

ẋ = f0(x, u) + g(x, u, µ, d). (17)

Definition 2: Under Assumption 2, and given the perturbed sys-
tem (1) and a safe set Bδ , δ > 0, we define the perturbation (16)
δ–admissible if there exists a state feedback control law κ ∈ U
and a constant ϑg ∈ (0, 1) such that the function g(x, κ(x0), µ, d)
satisfies

max
x,xk∈Bδ
d∈Dd
µ∈Dµ

∥g(x, κ(xk), µ, d)∥≤ϑg

α3

(
α−1
2

(
α1(δ)

))
α4(δ)

.
=ν(δ)

(18)
with α1, α2, α3, α4 as in (5). ⋄

The δ–admissible perturbations are those for which the safety
problem with respect to a ball Bδ can be solved using continu-
ous time measurement and actuation. If a perturbation is not δ–
admissible, safety with respect to Bδ is clearly not achievable using
sampled measurements and actuations. Note that in condition (2)
the expression of ν(δ) can be explicitly computed.

The following theorem states that, if a system is asymptotically
stabilizable using a continuous time state feedback control law and
the perturbation is δ–admissible, then it is possible to keep the state
in a boundary Bδ of the equilibrium point by applying a digital self
triggering strategy.

Theorem 3: Given the perturbed system (1) and a safe set Bδ ,
δ > 0, under Assumption 2 and for any δ–admissible perturba-
tion (16), there exist a state feedback control law κ, a minimum
sampling time τmin > 0, a function τs : Dx → [τmin,∞) and a
maximum allowed actuation delay ∆max > 0, such that if I is
inductively defined by tk+1 = tk + τs(x(tk)), if ∆k ∈ [0,∆max)
for each k ≥ 0, and if the system is safe before applying the state
feedback control law

x(t) ∈ Bδ, ∀t ∈ [t0, t0 +∆0]

then the closed loop system (3) with control input signal uI(t) is
safe with respect to Bδ , for the time interval [t0 +∆0,∞). ⋄

Theorems 2 and 3 prove the existence of a self triggering strategy
characterized by the time sequence I = {tk}k≥0, with tk ≥ τmin >
0 for each k ≥ 0, such that the closed loop system satisfies a given
safety specification. Moreover, they provide a formula to explicitly
compute the next sampling time tk+1 as a function of the state
x(tk) at time tk.

Although the simulation results illustrated in Section V show
strong benefits of the proposed self triggering strategy with respect
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to controllers based on constant sampling, the sequence I might
be conservative, in the sense that longer sampling times might
be determined, because of the approximations used in the proof.
A trivial way to obtain a less conservative sequence I without
introducing more restricting assumptions is the use of Taylor
expansions of order higher than 2.

V. AN EXAMPLE OF APPLICATION OF THE DIGITAL SELF

TRIGGERED ROBUST CONTROL

Consider the system defined in Example 1. As already shown,
we can not imply the existence of a stabilizing self triggering
strategy. However, since Assumption 2 holds, Theorem 2 implies the
existence of a self triggering strategy that guarantees safety for an
arbitrary small neighborhood of the equilibrium point. In particular,
since the origin of the system is locally exponentially stabilizable
for ∥x∥ ≤ 2/3, we define the safe set Bδ with δ = 10−4 < 2/3.
We performed simulations using Matlab, with initial condition
x0 = (10−5, 10−5)T ∈ Bδ .
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Fig. 1. Continuous control: x1 (solid), x2 (dashed) vs time

In Figure 1, the closed loop behavior is illustrated when a
continuous time control law is used. The closed loop system is
asymptotically stable.
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Fig. 2. Digital control with constant sampling time of 2.1 s: (a) x1; (b) x2

vs time

In Figure 2, the closed loop behavior is illustrated when a discrete
time control law with constant sampling time of 2.1 s is used. The
closed loop system is unstable.
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Fig. 3. Self triggering control with ϑ1 = 0.99 and ∆k = 0 ms: (a) x1;
(b) x2 vs time
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Fig. 4. Sequence of sampling instants I = {tk}k≥0 [s] with ϑ1 = 0.99
and ∆k = 0 ms.

In Figure 3, the closed loop behavior is illustrated when the
proposed self triggering control algorithm is used, with ϑ1 = 0.99
and with no actuation delay, namely ∆k = 0 for each k ≥ 0 .
The closed loop system is not asymptotically stable, but is safe
with respect to Bδ for the time interval [t0,∞). It is interesting
to remark that the average sampling time is 6.2 s, i.e. more than
295% longer than the constant sampling time of 2.1 s that yields
an unstable control loop. Thus, using the proposed self triggering
control algorithm, we achieve safety reducing of more than 295%
the battery energy consumption, with respect to an unstable control
strategy with constant sampling. However, since we have chosen
ϑ1 = 0.99, we can only guarantee robustness with respect to
actuation delays bounded by ∆max = 0.17 ms.

In Figure 5, the closed loop behavior is illustrated when the
proposed self triggering control algorithm law is used, with ϑ1 =
0.5 and with actuation delay ∆k = ∆max = 9 ms for each
k ≥ 0. The closed loop system is not asymptotically stable,
but is still safe with respect to Bδ for the time interval [t0,∞).
However, since we have chosen ϑ1 = 0.5 in order to be robust
with respect to actuation delays, the average sampling time 3 s is
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Fig. 5. Self triggering control with ϑ1 = 0.5 and ∆k = 9 ms: (a) x1;
(b) x2 vs time
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Fig. 6. Sequence of sampling instants I = {tk}k≥0 [s] with ϑ1 = 0.5
and ∆k = 9 ms

more conservative with respect to the case ϑ1 = 0.99. However,
the average sampling time is almost 50% longer than the constant
sampling time of 2.1 s, that yields an unstable control loop. Thus,
using the proposed self triggering control algorithm, we achieve
safety reducing of almost 50% the battery energy consumption, with
respect to an unstable control strategy with constant sampling, while
guaranteeing robustness with respect to actuation delays bounded
by ∆max = 9 ms.

VI. CONCLUSIONS

We have developed novel results on self triggering control for the
asymptotic stability of unperturbed nonlinear systems, affected by
bounded actuation delays, and for the safety problem, for nonlinear
systems perturbed by norm–bounded parameter uncertainties and
disturbances, and affected by bounded actuation delays. We have
provided a methodology for the computation of the next execution
time in both cases. We have showed on a simple case study that
the proposed results provide strong benefits in terms of energy
consumption, with respect to digital controls based on constant
samplings, by reducing the average sampling times. As a next step

of this research line, we aim to tackle more complex case studies,
and obtain results for less conservative sampling time sequences.
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