
Digital Signal Processing
and Applications with the
C6713 and C6416 DSK

Rulph Chassaing

Worcester Polytechnic Institute

A JOHN WILEY & SONS, INC., PUBLICATION

PR.qxd 10/7/04 3:15 PM Page iii

Innodata
0471704067.jpg

PR.qxd 10/7/04 3:15 PM Page iii

Digital Signal Processing
and Applications with the
C6713 and C6416 DSK

PR.qxd 10/7/04 3:15 PM Page i

TOPICS IN DIGITAL SIGNAL PROCESSING

C. S. BURRUS and T. W. PARKS: DFT/FFT AND CONVOLUTION

ALGORITHMS: THEORY AND IMPLEMENTATION

JOHN R. TREICHLER, C. RICHARD JOHNSON, JR., and MICHAEL G.

LARIMORE: THEORY AND DESIGN OF ADAPTIVE FILTERS

T. W. PARKS and C. S. BURRUS: DIGITAL FILTER DESIGN

RULPH CHASSAING and DARRELL W. HORNING: DIGITAL SIGNAL

PROCESSING WITH THE TMS320C25

RULPH CHASSAING: DIGITAL SIGNAL PROCESSING WITH C AND

THE TMS320C30

RULPH CHASSAING: DIGITAL SIGNAL PROCESSING LABORATORY

EXPERIMENTS USING C AND THE TMS320C31 DSK

RULPH CHASSAING: DSP APPLICATIONS USING C AND

THE TMS320C6x DSK

RULPH CHASSAING: DIGITAL SIGNAL PROCESSING AND APPLICATIONS

WITH THE C6713 AND C6416 DSK

PR.qxd 10/7/04 3:15 PM Page ii

Digital Signal Processing
and Applications with the
C6713 and C6416 DSK

Rulph Chassaing

Worcester Polytechnic Institute

A JOHN WILEY & SONS, INC., PUBLICATION

PR.qxd 10/7/04 3:15 PM Page iii

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or
fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:
Chassaing, Rulph.

Digital signal processing and applications with the C6713 and C6416 DSK / by Rulph Chassaing.
p. cm.

Includes bibliographical references and index.
ISBN 0-471-69007-4
1. Signal processing—Digital techniques. 2. Texas Instruments TMS320 series microprocessors.

I. Title.

TK5102.9.C47422 2004
621.382¢2—dc22

2004050924

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

PR.qxd 10/7/04 3:15 PM Page iv

http://www.copyright.com

Contents

v

Preface xiii

List of Examples xvii

Programs/Files on Accompanying CD xxi

1 DSP Development System 1

1.1 Introduction 1

1.2 DSK Support Tools 2

1.2.1 DSK Board 3

1.2.2 TMS320C6713 Digital Signal Processor 5

1.3 Code Composer Studio 5

1.3.1 CCS Installation and Support 6

1.3.2 Useful Types of Files 7

1.4 Quick Test of DSK 7

1.5 Support Files 8

1.6 Programming Examples to Test the DSK Tools 9

1.7 Support Programs/Files Considerations 27

1.7.1 Initialization/Communication File 27

1.7.2 Vector File 30

1.7.3 Linker Command File 32

1.8 Compiler/Assembler/Linker Shell 33

1.8.1 Compiler 33

1.8.2 Assembler 34

1.8.3 Linker 34

PR.qxd 10/7/04 3:15 PM Page v

1.9 Assignments 35

References 36

2 Input and Output with the DSK 39

2.1 Introduction 39

2.2 TLV320AIC23 (AIC23) Onboard Stereo Codec for
Input and Output 40

2.3 Programming Examples Using C Code 42

2.4 Assignments 71

References 72

3 Architecture and Instruction Set of the C6x Processor 73

3.1 Introduction 73

3.2 TMS320C6x Architecture 75

3.3 Functional Units 76

3.4 Fetch and Execute Packets 79

3.5 Pipelining 79

3.6 Registers 81

3.7 Linear and Circular Addressing Modes 82

3.7.1 Indirect Addressing 82

3.7.2 Circular Addressing 82

3.8 TMS320C6x Instruction Set 84

3.8.1 Assembly Code Format 84

3.8.2 Types of Instructions 85

3.9 Assembler Directives 86

3.10 Linear Assembly 87

3.11 ASM Statement within C 88

3.12 C-Callable Assembly Function 89

3.13 Timers 89

3.14 Interrupts 89

3.14.1 Interrupt Control Registers 90

3.14.2 Interrupt Acknowledgment 91

3.15 Multichannel Buffered Serial Ports 92

3.16 Direct Memory Access 92

3.17 Memory Considerations 93

3.17.1 Data Allocation 93

3.17.2 Data Alignment 94

vi Contents

PR.qxd 10/7/04 3:15 PM Page vi

3.17.3 Pragma Directives 94

3.17.4 Memory Models 95

3.18 Fixed- and Floating-Point Format 95

3.18.1 Data Types 95

3.18.2 Floating-Point Format 96

3.18.3 Division 97

3.19 Code Improvement 97

3.19.1 Intrinsics 97

3.19.2 Trip Directive for Loop Count 98

3.19.3 Cross-Paths 98

3.19.4 Software Pipelining 98

3.20 Constraints 99

3.20.1 Memory Constraints 99

3.20.2 Cross-Path Constraints 99

3.20.3 Load/Store Constraints 100

3.20.4 Pipelining Effects with More Than One
EP within an FP 100

3.21 Programming Examples Using C, Assembly, and
Linear Assembly 101

3.22 Assignments 115

References 117

4 Finite Impulse Response Filters 119

4.1 Introduction to the z-Transform 119

4.1.1 Mapping from s-Plane to z-Plane 122

4.1.2 Difference Equations 123

4.2 Discrete Signals 124

4.3 FIR Filters 125

4.4 FIR Lattice Structure 127

4.5 FIR Implementation Using Fourier Series 131

4.6 Window Functions 135

4.6.1 Hamming Window 136

4.6.2 Hanning Window 136

4.6.3 Blackman Window 136

4.6.4 Kaiser Window 137

4.6.5 Computer-Aided Approximation 137

4.7 Programming Examples Using C and ASM Code 137

4.8 Assignments 173

References 174

Contents vii

PR.qxd 10/7/04 3:15 PM Page vii

5 Infinite Impulse Response Filters 177

5.1 Introduction 177

5.2 IIR Filter Structures 178

5.2.1 Direct Form I Structure 178

5.2.2 Direct Form II Structure 179

5.2.3 Direct Form II Transpose 181

5.2.4 Cascade Structure 182

5.2.5 Parallel Form Structure 183

5.2.6 Lattice Structure 185

5.3 Bilinear Transformation 190

5.3.1 BLT Design Procedure 191

5.4 Programming Examples Using C and ASM Code 192

5.5 Assignments 205

References 206

6 Fast Fourier Transform 208

6.1 Introduction 208

6.2 Development of the FFT Algorithm with Radix-2 209

6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 210

6.4 Decimation-in-Time FFT Algorithm with Radix-2 217

6.5 Bit Reversal for Unscrambling 221

6.6 Development of the FFT Algorithm with Radix-4 221

6.7 Inverse Fast Fourier Transform 224

6.8 Programming Examples 225

6.8.1 Fast Convolution 237

6.9 Assignments 245

References 247

7 Adaptive Filters 249

7.1 Introduction 249

7.2 Adaptive Structures 251

7.3 Adaptive Linear Combiner 254

7.4 Performance Function 257

7.5 Searching for the Minimum 259

7.6 Programming Examples for Noise Cancellation and
System Identification 262

References 282

viii Contents

PR.qxd 10/7/04 3:15 PM Page viii

8 Code Optimization 284

8.1 Introduction 284

8.2 Optimization Steps 285

8.2.1 Compiler Options 285

8.2.2 Intrinsic C Functions 286

8.3 Procedure for Code Optimization 286

8.4 Programming Examples Using Code Optimization Techniques 286

8.5 Software Pipelining for Code Optimization 293

8.5.1 Procedure for Hand-Coded Software Pipelining 293

8.5.2 Dependency Graph 294

8.5.3 Scheduling Table 295

8.6 Execution Cycles for Different Optimization Schemes 302

References 303

9 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic,
and LabVIEW 304

9.1 Introduction to DSP/BIOS 306

9.2 RTDX Using MATLAB to Provide Interface Between PC
and DSK 311

9.3 RTDX Using Visual C++ to Interface with DSK 321

9.4 RTDX Using Visual Basic to Provide Interface Between PC
and DSK 332

9.5 RTDX Using LabVIEW to Provide Interface Between PC
and DSK 335

Acknowledgments 342

References 342

10 DSP Applications and Student Projects 343

10.1 DTMF Detection Using Correlation, FFT, and
Goertzel Algorithm 343

10.1.1 Using a Correlation Scheme and Onboard LEDs for
Verifying Detection 345

10.1.2 Using RTDX with Visual C++ to Display Detected
DTMF Signals on the PC 348

10.1.3 Using FFT and Onboard LEDs for
Verifying Detection 350

10.1.4 Using Goertzel Algorithm 350

10.2 Beat Detection Using Onboard LEDs 352

Contents ix

PR.qxd 10/7/04 3:15 PM Page ix

10.3 FIR with RTDX Using Visual C++ for Transfer of
Filter Coefficients 355

10.4 Radix-4 FFT with Frequency Domain Filtering 357

10.5 Radix-4 FFT with RTDX Using Visual C++ and MATLAB
for Plotting 357

10.6 Spectrum Display Through EMIF Using a Bank of 32 LEDs 360

10.7 Spectrum Display Through EMIF Using LCDs 364

10.8 Time-Frequency Analysis of Signals with Spectrogram 368

10.8.1 Simulation Using MATLAB 368

10.8.2 Spectrogram with RTDX Using MATLAB 370

10.8.3 Spectrogram with RTDX Using Visual C++ 372

10.9 Audio Effects (Echo and Reverb, Harmonics, and Distortion) 373

10.10 Voice Detection and Reverse Playback 375

10.11 Phase Shift Keying—BPSK Encoding and Decoding with PLL 377

10.11.1 BPSK Single-Board Transmitter/Receiver Simulation 377

10.11.2 BPSK Transmitter/Voice Encoder with
Real-Time Input 381

10.11.3 Phase-Locked Loop 383

10.11.4 BPSK Transmitter and Receiver with PLL 386

10.12 Binary Phase Shift Keying 390

10.13 Modulation Schemes—PAM and PSK 393

10.13.1 Pulse Amplitude Modulation 393

10.13.2 Phase-Shift Keying 396

10.14 Selectable IIR Filter and Scrambling Scheme Using
Onboard Switches 401

10.15 Convolutional Encoding and Viterbi Decoding 404

10.16 Speech Synthesis Using Linear Prediction of Speech Signals 414

10.17 Automatic Speaker Recognition 418

10.18 m-Law for Speech Companding 422

10.19 Voice Scrambler Using DMA and User Switches 423

10.20 SB-ADPCM Encoder/Decoder: Implementation of G.722
Audio Coding 423

10.21 Encryption Using the Data Encryption Standard Algorithm 425

10.22 Phase-Locked Loop 429

10.23 Miscellaneous Projects 430

10.23.1 Multirate Filter 431

10.23.2 Acoustic Direction Tracker 436

10.23.3 Neural Network for Signal Recognition 437

10.23.4 Adaptive Temporal Attenuator 441

x Contents

PR.qxd 10/7/04 3:15 PM Page x

10.23.5 FSK Modem 442

10.23.6 Image Processing 443

10.23.7 Filter Design and Implementation Using a
Modified Prony’s Method 444

10.23.8 PID Controller 444

10.23.9 Four-Channel Multiplexer for Fast Data
Acquisition 444

10.23.10 Video Line Rate Analysis 444

Acknowledgments 444

References 445

Appendix A TMS320C6x Instruction Set 450

A.1 Instructions for Fixed- and Floating-Point Operations 450

A.2 Instructions for Floating-Point Operations 450

References 450

Appendix B Registers for Circular Addressing and Interrupts 452

Reference 452

Appendix C Fixed-Point Considerations 455

C.1 Binary and Two’s-Complement Representation 455

C.2 Fractional Fixed-Point Representation 458

C.3 Multiplication 458

Reference 461

Appendix D MATLAB Support Tools 462

D.1 SPTool and FDATool for FIR Filter Design 462

D.2 SPTool and FDATool for IIR Filter Design 465

D.3 MATLAB for FIR Filter Design Using the Student Version 468

D.4 MATLAB for IIR Filter Design Using the Student Version 470

D.5 BLT Using MATLAB and Support Programs on CD 471

D.6 FFT and IFFT 477

References 478

Appendix E Additional Support Tools 479

E.1 Goldwave Shareware Utility as a Virtual Instrument 479

E.2 Filter Design Using DigiFilter 480

Contents xi

PR.qxd 10/7/04 3:15 PM Page xi

E.2.1 FIR Filter Design 480

E.2.2 IIR Filter Design 481

E.3 FIR Filter Design Using a Filter Development Package 482

E.3.1 Kaiser Window 482

E.3.2 Hamming Window 484

E.4 Visual Application Builder and LabVIEW 485

E.5 Alternative Input/Output 485

References 485

Appendix F Fast Hartley Transform 486

References 492

Appendix G Goertzel Algorithm 493

G.1 Design Considerations 493

References 496

Appendix H TMS320C6416 DSK 497

H.1 TMS320C64x Processor 497

H.2 Programming Examples Using the C6416 DSK 498

References 502

Appendix I TMS320C6711 DSK 503

Reference 503

Index 505

xii Contents

PR.qxd 10/7/04 3:15 PM Page xii

Preface

Digital signal processors, such as the TMS320 family of processors, are used in
a wide range of applications, such as in communications, controls, speech process-
ing, and so on. They are used in cellular phones, digital cameras, high-definition
television (HDTV), radio, fax transmission, modems, and other devices. These
devices have also found their way into the university classroom, where they provide
an economical way to introduce real-time digital signal processing (DSP) to the
student.

Texas Instruments introduced the TM320C6x processor, based on the very-long-
instruction-word (VLIW) architecture. This new architecture supports features that
facilitate the development of efficient high-level language compilers. Throughout
the book we refer to the C/C++ language simply as C.Although TMS320C6x/assem-
bly language can produce fast code, problems with documentation and maintenance
may exist. With the available C compiler, the programmer must “let the tools do the
work.” After that, if the programmer is not satisfied, Chapters 3 and 8 and the last
few examples in Chapter 4 can be very useful.

This book is intended primarily for senior undergraduate and first-year graduate
students in electrical and computer engineering and as a tutorial for the practicing
engineer. It is written with the conviction that the principles of DSP can best be
learned through interaction in a laboratory setting, where students can appreciate
the concepts of DSP through real-time implementation of experiments and projects.
The background assumed is a course in linear systems and some knowledge of C.

Most chapters begin with a theoretical discussion, followed by representative
examples that provide the necessary background to perform the concluding exper-
iments. There are a total of 105 programming examples, most using C code, with a
few in assembly and linear assembly code. A list of these examples appears on page
xvii. A total of 22 students’ projects are also discussed. These projects cover a wide

xiii

PR.qxd 10/7/04 3:15 PM Page xiii

range of applications in filtering, spectrum analysis, modulation techniques, speech
processing, and so on.

Programming examples are included throughout the text. This can be useful to
the reader who is familiar with both DSP and C programming but who is not nec-
essarily an expert in both. Many assignments are included at the end of Chapters
1–6.

This book can be used in the following ways:

1. For a DSP course with a laboratory component, using parts of Chapters 1–9.
If needed, the book can be supplemented with some additional theoretical
materials, since its emphasis is on the practical aspects of DSP. It is possible
to cover Chapter 7 on adaptive filtering following Chapter 4 on finite impulse
response (FIR) filtering (since there is only one example in Chapter 7 that
uses materials from Chapter 5). It is my conviction that adaptive filtering
should be incorporated into an undergraduate course in DSP.

2. For a laboratory course using many of the examples and experiments from
Chapters 1–7 and Chapter 9. The beginning of the semester can be devoted
to short programming examples and experiments and the remainder of the
semester for a final project. The wide range of sample projects (for both
undergraduate and graduate students) discussed in Chapter 10 can be very
valuable.

3. For a senior undergraduate or first-year graduate design project course using
selected materials from Chapters 1–10.

4. For the practicing engineer as a tutorial and reference, and for workshops and
seminars, using selected materials throughout the book.

In Chapter 1 we introduce the tools through three programming examples. These
tools include the powerful Code Composer Studio (CCS) provided with the
TMS320C6713 DSP starter kit (DSK). It is essential to perform these examples
before proceeding to subsequent chapters.They illustrate the capabilities of CCS for
debugging, plotting in both the time and frequency domains, and other matters.
Appendix H contains several programming examples using the TMS320C6416 DSK.

In Chapter 2 we illustrate input and output (I/O) with the AIC23 stereo codec
on the DSK board through many programming examples. Chapter 3 covers the
architecture and the instructions available for the TMS320C6x processor. Special
instructions and assembler directives that are useful in DSP are discussed. Pro-
gramming examples using both assembly and linear assembly are included in this
chapter.

In Chapter 4 we introduce the z-transform and discuss FIR filters and the effect
of window functions on these filters. Chapter 5 covers infinite impulse response
(IIR) filters. Programming examples to implement real-time FIR and IIR filters are
included. Appendix D illustrates MATLAB for the design of FIR and IIR filters.

Chapter 6 covers the development of the fast Fourier transform (FFT). Pro-
gramming examples on FFT are included using both radix-2 and radix-4 FFT. In

xiv Preface

PR.qxd 10/7/04 3:15 PM Page xiv

Chapter 7 we demonstrate the usefulness of the adaptive filter for a number of appli-
cations with least mean squares (LMS). Programming examples are included to
illustrate the gradual cancellation of noise or system identification. Students have
been very receptive to applications in adaptive filtering. Chapter 8 illustrates tech-
niques for code optimization.

In Chapter 9 we introduce DSP/BIOS and discuss a number of schemes (Visual
C++, MATLAB, etc.) for real-time data transfer (RTDX) and communication
between the PC and the DSK.

Chapter 10 discusses a total of 22 projects implemented by undergraduate and
graduate students. They cover a wide range of DSP applications in filtering, spec-
trum analysis, modulation schemes, speech processing, and so on.

A CD is included with this book and contains all the programs discussed. See
page xxi for a list of the folders that contain the support files for the examples and
projects.

Over the last 10 years, faculty members from over 200 institutions have taken my
workshops on “DSP and Applications.” Many of these workshops were supported
by grants from the National Science Foundation (NSF) and, subsequently, by Texas
Instruments. I am thankful to NSF, Texas Instruments, and the participating faculty
members for their encouragement and feedback. I am grateful to Dr. Donald Reay
of Heriot-Watt University, who contributed several examples during his review of
my previous book based on the TMS320C6711 DSK. I appreciate the many sug-
gestions made by Dr. Mounir Boukadoum of the University of Quebec, Dr.
Subramaniam Ganesan from Oakland University, and Dr. David Kozel from Purdue
University at Calumet. I also thank Dr. Darrell Horning of the University of New
Haven, with whom I coauthored my first book, Digital Signal Processing with the
TMS320C25, for introducing me to “book writing.” I thank al the students at Roger
Williams University, the University of Massachusetts at Dartmouth, and Worcester
Polytechnic Institute (WPI) who have taken my real-time DSP and senior design
project courses, based on the TMS320 processors, over the last 20 years. The con-
tribution of Aghogho Obi, from WPI, is very much appreciated.

The continued support of many people from Texas Instruments is also very much
appreciated: Cathy Wicks and Christina Peterson, in particular, have been very sup-
portive of this book.

Special appreciation: The laboratory assistance of Walter J. Gomes III in several
workshops and during the development of many examples has been invaluable. His
contribution is appreciated.

Rulph Chassaing
Chassaing@msn.com

Chassaing@ece.wpi.edu

Preface xv

PR.qxd 10/7/04 3:15 PM Page xv

PR.qxd 10/7/04 3:15 PM Page xvi

List of Examples

xvii

1.1 Sine Generation Using Eight Points with DIP Switch Control 9

1.2 Generation of the Sinusoid and Plotting with CCS 19

1.3 Dot Product of Two Arrays 22

2.1 Loop Program Using Interrupt 43

2.2 Loop Program Using Polling 45

2.3 Stereo Input and Stereo Output 46

2.4 Sine Generation with Two Sliders for Amplitude and
Frequency Control 48

2.5 Loop Program with Input Data Stored in Memory 50

2.6 Loop with Data in a Buffer Printed to a File 52

2.7 Square-Wave Generation Using a Lookup Table 53

2.8 Ramp Generation Using a Lookup Table 54

2.9 Ramp Generation without a Lookup Table 55

2.10 Echo 56

2.11 Echo with Control for Different Effects 57

2.12 Sine Generation with Table Values Generated within the Program 59

2.13 Sine Generation with a Table Created by MATLAB 60

2.14 Amplitude Modulation 62

2.15 Sweep Sinusoid Using a Table with 8000 Points 63

2.16 Pseudorandom Noise Sequence Generation 65

2.17 Sine Generation with Dip Switch Control 66

2.18 Use of External Memory to Record Voice 67

2.19 Use of Flash Memory—Programming the Onboard Flash 69

3.1 Efficient Dot Product 102

3.2 Sum of n + (n - 1) + (n - 2) + . . . + 1, Using C Calling an
Assembly Function 103

PR.qxd 10/7/04 3:15 PM Page xvii

xviii List of Examples

3.3 Factorial of a Number Using C Calling an Assembly Function 104

3.4 32-bit Pseudorandom Noise Generation Using C Calling an
Assembly Function 105

3.5 Code Detection Using C Calling an ASM Function 107

3.6 Dot Product Using Assembly Program Calling an Assembly Function 109

3.7 Dot Product Using C Function Calling a Linear Assembly Function 112

3.8 Factorial Using C Calling a Linear Assembly Function 114

4.1 FIR Filter Implementation: Bandstop and Bandpass 139

4.2 Effects on Voice Using Three FIR Lowpass Filters 144

4.3 Implementation of Four Different Filters: Lowpass, Highpass,
Bandpass, and Bandstop 147

4.4 FIR Implementation with a Pseudorandom Noise Sequence as
Input to a Filter 148

4.5 FIR Filter with Internally Generated Pseudorandom Noise as Input
to a Filter and Output Stored in Memory 151

4.6 Two Notch Filters to Recover Corrupted Input Voice 154

4.7 FIR Implementation Using Four Different Methods 156

4.8 Voice Scrambling Using Filtering and Modulation 158

4.9 Illustration of Aliasing Effects with Down-Sampling 161

4.10 Implementation of an Inverse FIR Filter 163

4.11 FIR Implementation Using C Calling an ASM Function 164

4.12 FIR Implementation Using C Calling a Faster ASM Function 167

4.13 FIR Implementation Using C Calling an ASM Function with a
Circular Buffer 168

4.14 FIR Implementation Using C Calling an ASM Function with a
Circular Buffer in External Memory 172

5.1 IIR Filter Implementation Using Second-Order Stages in Cascade 192

5.2 Generation of Two Tones Using Two Second-Order Difference
Equations 196

5.3 Sine Generation Using a Difference Equation 199

5.4 Generation of a Swept Sinusoid Using a Difference Equation 200

5.5 IIR Inverse Filter 202

5.6 Sine Generation Using a Difference Equation with C Calling an
ASM Function 205

6.1 DFT of a Sequence of Real Numbers with Output from the CCS
Window 225

6.2 FFT of a Real-Time Input Signal Using an FFT Function in C 227

6.3 FFT of a Sinusoidal Signal from a Table Using TI’s C-Callable
Optimized FFT Function 229

PR.qxd 10/7/04 3:15 PM Page xviii

List of Examples xix

6.4 FFT of Real-Time Input Using TI’s C-Callable Optimized Radix-2
FFT Function 232

6.5 Radix-4 FFT of Input from a Lookup Table Using TI’s C-Callable
Optimized FFT Function 234

6.6 Radix-4 FFT of Real-Time Input Using TI’s C-Callable Optimized
FFT Function 236

6.7 Fast Convolution With Overlap-Add for FIR Implementation Using
TI’s Floating-Point FFT Functions 237

6.8 Fast Convolution with Overlap-Add Simulation for FIR
Implementation Using a C-Coded FFT Function 241

6.9 Graphic Equalizer 242

7.1 Adaptive Filter Using C Code Compiled with Borland C/C++ 262

7.2 Adaptive Filter for Sinusoidal Noise Cancellation 265

7.3 Adaptive FIR Filter for Noise Cancellation Using External Inputs 267

7.4 Adaptive FIR Filter for System ID of a Fixed FIR as an
Unknown System 270

7.5 Adaptive FIR for System ID of a Fixed FIR as an Unknown System
with Weights of an Adaptive Filter Initialized as an FIR Bandpass 272

7.6 Adaptive FIR for System ID of Fixed IIR as an Unknown System 275

7.7 Adaptive Predictor for Cancellation of Narrowband Interference
Added to a Desired Wideband Signal 275

7.8 Adaptive Predictor for Cancellation of Narrowband Interference
Added to a Desired Wideband Signal Using External Inputs 280

8.1 Sum of Products with Word-Wide Data Access for Fixed-Point
Implementation Using C Code 287

8.2 Separate Sum of Products with C Intrinsic Functions
Using C Code 288

8.3 Sum of Products with Word-Wide Access for Fixed-Point
Implementation Using Linear ASM Code 288

8.4 Sum of Products with Double-Word Load for Floating-Point
Implementation Using Linear ASM Code 289

8.5 Dot Product with No Parallel Instructions for Fixed-Point
Implementation Using ASM Code 289

8.6 Dot Product with Parallel Instructions for Fixed-Point
Implementation Using ASM Code 290

8.7 Two Sums of Products with Word-Wide (32-Bit) Data for Fixed-Point
Implementation Using ASM Code 290

8.8 Dot Product with No Parallel Instructions for Floating-Point
Implementation Using ASM Code 291

8.9 Dot Product with Parallel Instructions for Floating-Point
Implementation Using ASM Code 292

PR.qxd 10/7/04 3:15 PM Page xix

8.10 Two Sums of Products with Double-Word-Wide (64-Bit) Data for
Floating-Point Implementation Using ASM Code 292

8.11 Dot Product Using Software Pipelining for a Fixed-Point
Implementation 297

8.12 Dot Product Using Software Pipelining for a Floating-Point
Implementation 299

9.1 Sine Generation with DIP Switch Control through DSP/BIOS 306

9.2 Blinking of LEDs at Different Rates Using DSP/BIOS 309

9.3 Sine Generation Using BIOS to Set Up Interrupt INT11 310

9.4 MATLAB–DSK Interface Using RTDX 311

9.5 MATLAB–DSK Interface Using RTDX, with MATLAB For FFT
and Plotting 314

9.6 MATLAB–DSK Interface Using RTDX For FIR Filter
Implementation 317

9.7 Visual C++–DSK Interface Using RTDX for Amplitude Control of
the Sine Wave 321

9.8 Visual C++–DSK Interface Using RTDX, with MATLAB Functions
for FFT and Plotting 327

9.9 Visual Basic–DSK Interface Using RTDX for Amplitude Control of
a Sine Wave 332

9.10 Visual Basic–DSK Interface Using RTDX for Amplitude Control of
Output in a Loop Program 334

9.11 LabVIEW–DSK Interface Using RTDX for FIR Filtering 336

9.12 LabVIEW–DSK Interface Using RTDX for Controlling the Gain of
a Generated Sinusoid 339

9.13 LabVIEW–DSK Interface Using RTDX for Controlling the Amplitude
of a Generated Sinusoid with Real-Time Output from the DSK 341

D.1 SPTool and FDATool for FIR Filter Design 462

D.2 SPTool and FDATool for IIR Filter Design 465

D.3 FIR Filter Design Using MATLAB’s Student Version 468

D.4 Multiband FIR Filter Design Using MATLAB 469

D.5 IIR Filter Design Using MATLAB’s Student Version 470

H.1 Sine Generation with DIP Switch Control Using the C6416 DSK 498

H.2 Loop Program Using the C6416 DSK 499

H.3 FIR/IIR Implementation Using the C6416 DSK 499

H.4 FFT with C-Coded FFT Function Using the C6416 DSK 500

H.5 Adaptive FIR Filter Implementation Using the C6416 DSK 501

H.6 DTMF Implementation on the C6416 DSK Using the Goertzel
Algorithm and the FFT, With RTDX Using Visual C++ 501

I.1 Loop Program Using the C6711 DSK 503

xx List of Examples

PR.qxd 10/7/04 3:15 PM Page xx

Programs/Files on Accompanying CD

A list of the folders included on the accompanying CD is shown below. The folders
contain the programs/files for the examples/projects covered in the book.

xxi

PR.qxd 10/7/04 3:15 PM Page xxi

PR.qxd 10/7/04 3:15 PM Page xxii

1
DSP Development System

1

• Testing the software and hardware tools with Code Composer Studio
• Use of the TMS320C6713 DSK
• Programming examples to test the tools

Chapter 1 introduces several tools available for digital signal processing (DSP).
These tools include the popular Code Composer Studio (CCS), which provides an
integrated development environment (IDE), and the DSP starter kit (DSK) with
the TMS320C6713 floating-point processor onboard and complete support for input
and output.Three examples illustrate both the software and hardware tools included
with the DSK. It is strongly suggested that you review these three examples before
proceeding to subsequent chapters.

1.1 INTRODUCTION

Digital signal processors such as the TMS320C6x (C6x) family of processors are like
fast special-purpose microprocessors with a specialized type of architecture and an
instruction set appropriate for signal processing. The C6x notation is used to desig-
nate a member of Texas Instruments’ (TI) TMS320C6000 family of digital signal
processors. The architecture of the C6x digital signal processor is very well suited
for numerically intensive calculations. Based on a very-long-instruction-word
(VLIW) architecture, the C6x is considered to be TI’s most powerful processor.

Digital signal processors are used for a wide range of applications, from com-
munications and controls to speech and image processing. The general-purpose

Digital Signal Processing and Applications with the C6713 and C6416 DSK By Rulph Chassaing
ISBN 0-471-69007-4 Copyright © 2005 by John Wiley & Sons, Inc.

ch01.qxd 10/7/04 3:20 PM Page 1

digital signal processor is dominated by applications in communications (cellular).
Applications embedded digital signal processors are dominated by consumer prod-
ucts. They are found in cellular phones, fax/modems, disk drives, radio, printers,
hearing aids, MP3 players, high-definition television (HDTV), digital cameras, and
so on. These processors have become the products of choice for a number of con-
sumer applications, since they have become very cost-effective.They can handle dif-
ferent tasks, since they can be reprogrammed readily for a different application.
DSP techniques have been very successful because of the development of low-cost
software and hardware support. For example, modems and speech recognition can
be less expensive using DSP techniques.

DSP processors are concerned primarily with real-time signal processing. Real-
time processing requires the processing to keep pace with some external event,
whereas non-real-time processing has no such timing constraint. The external event
to keep pace with is usually the analog input. Whereas analog-based systems with
discrete electronic components such as resistors can be more sensitive to tempera-
ture changes, DSP-based systems are less affected by environmental conditions.
DSP processors enjoy the advantages of microprocessors. They are easy to use,
flexible, and economical.

A number of books and articles address the importance of digital signal proces-
sors for a number of applications [1–22]. Various technologies have been used for
real-time processing, from fiberoptics for very high frequency to DSPs very suitable
for the audio-frequency range. Common applications using these processors have
been for frequencies from 0 to 96kHz. Speech can be sampled at 8kHz (the rate at
which samples are acquired), which implies that each value sampled is acquired at
a rate of 1/(8kHz) or 0.125ms. A commonly used sample rate of a compact disk is
44.1kHz. Analog/digital (A/D)-based boards in the megahertz sampling rate range
are currently available.

The basic system consists of an analog-to-digital converter (ADC) to capture an
input signal. The resulting digital representation of the captured signal is then
processed by a digital signal processor such as the C6x and then output through a
digital-to-analog converter (DAC). Also included within the basic system are a
special input filter for anti-aliasing to eliminate erroneous signals and an output
filter to smooth or reconstruct the processed output signal.

1.2 DSK SUPPORT TOOLS

Most of the work presented in this book involves the design of a program to imple-
ment a DSP application. To perform the experiments, the following tools are used:

1. TI’s DSP starter kit (DSK). The DSK package includes:

(a) Code Composer Studio (CCS), which provides the necessary software
support tools. CCS provides an integrated development environment
(IDE), bringing together the C compiler, assembler, linker, debugger, and
so on.

2 DSP Development System

ch01.qxd 10/7/04 3:20 PM Page 2

DSK Support Tools 3

(b) A board, shown in Figure 1.1, that contains the TMS320C6713 (C6713)
floating-point digital signal processor as well as a 32-bit stereo codec for
input and output (I/O) support.

(c) A universal synchronous bus (USB) cable that connects the DSK board
to a PC.

(d) A 5V power supply for the DSK board.

2. An IBM-compatible PC. The DSK board connects to the USB port of the PC
through the USB cable included with the DSK package.

3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is
optional. Shareware utilities are available that utilize the PC and a sound card
to create a virtual instrument such as an oscilloscope, a function generator, or
a spectrum analyzer.

All the files/programs listed and discussed in this book (except some student
project files in Chapter 10) are included on the accompanying CD. Most of the
examples (with some minor modifications) can also run on the fixed-point C6416-
based DSK. See Appendix H for the appropriate support files along with five illus-
trative examples. Reference 1 contains examples implemented on the C6711-based
DSK (which has been discontinued). A list of all the examples is given on pages
xv–xviii.

1.2.1 DSK Board

The DSK package is powerful, yet relatively inexpensive ($395), with the necessary
hardware and software support tools for real-time signal processing [23–43]. It is a
complete DSP system.The DSK board, with an approximate size of 5 ¥ 8 in., includes
the C6713 floating-point digital signal processor and a 32-bit stereo codec
TLV320AIC23 (AIC23) for input and output.

The onboard codec AIC23 [37] uses a sigma–delta technology that provides ADC
and DAC. It connects to a 12-MHz system clock. Variable sampling rates from 8 to
96kHz can be set readily.

A daughter card expansion is also provided on the DSK board. Two 80-pin con-
nectors provide for external peripheral and external memory interfaces.Two project
examples in Chapter 10 illustrate the use of the external memory interface (EMIF)
with light-emitting diodes (LEDs) and liquid-crystal displays (LCDs) for spectrum
display.

The DSK board includes 16MB (megabytes) of synchronous dynamic random
access memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors
on the board provide input and output: MIC IN for microphone input, LINE IN for
line input, LINE OUT for line output, and HEADPHONE for a headphone output
(multiplexed with line output). The status of the four user dip switches on the
DSK board can be read from a program and provides the user with a feedback
control interface.The DSK operates at 225MHz.Also onboard the DSK are voltage

ch01.qxd 10/7/04 3:20 PM Page 3

4 DSP Development System

(a)

(b)

FIGURE 1.1. TMS320C6713-based DSK board: (a) board; (b) diagram. (Courtesy of Texas
Instruments)

ch01.qxd 10/7/04 3:20 PM Page 4

regulators that provide 1.26V for the C6713 core and 3.3V for its memory and
peripherals.

Appendix H illustrates a DSK based on the fixed-point processor C6416.

1.2.2 TMS320C6713 Digital Signal Processor

The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well
suited for numerically intensive algorithms. The internal program memory is struc-
tured so that a total of eight instructions can be fetched every cycle. For example,
with a clock rate of 225MHz, the C6713 is capable of fetching eight 32-bit instruc-
tions every 1/(225MHz) or 4.44ns.

Features of the C6713 include 264kB of internal memory (8kB as L1P and L1D
Cache and 256kB as L2 memory shared between program and data space), eight
functional or execution units composed of six arithmetic-logic units (ALUs) and
two multiplier units, a 32-bit address bus to address 4GB (gigabytes), and two sets
of 32-bit general-purpose registers.

The C67xx (such as the C6701, C6711, and C6713) belong to the family of the
C6x floating-point processors, whereas the C62xx and C64xx belong to the family
of the C6x fixed-point processors. The C6713 is capable of both fixed- and floating-
point processing. The architecture and instruction set of the C6713 are discussed in
Chapter 3.

1.3 CODE COMPOSER STUDIO

CCS provides an IDE to incorporate the software tools. CCS includes tools for code
generation, such as a C compiler, an assembler, and a linker. It has graphical capa-
bilities and supports real-time debugging. It provides an easy-to-use software tool
to build and debug programs.

The C compiler compiles a C source program with extension .c to produce an
assembly source file with extension.asm. The assembler assembles an.asm source
file to produce a machine language object file with extension.obj. The linker com-
bines object files and object libraries as input to produce an executable file with
extension.out. This executable file represents a linked common object file format
(COFF), popular in Unix-based systems and adopted by several makers of digital
signal processors [25]. This executable file can be loaded and run directly on the
C6713 processor. Chapter 3 introduces the linear assembly source file with exten-
sion .sa, which is a cross between C and assembly code. A linear optimizer opti-
mizes this source file to create an assembly file with extension .asm (similar to the
task of the C compiler).

To create an application project, one can “add” the appropriate files to the
project. Compiler/linker options can readily be specified. A number of debugging
features are available, including setting breakpoints and watching variables; viewing
memory, registers, and mixed C and assembly code; graphing results; and monitor-

Code Composer Studio 5

ch01.qxd 10/7/04 3:20 PM Page 5

ing execution time. One can step through a program in different ways (step into,
over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX)
(Chapter 9). RTDX allows for data exchange between the host PC and the target
DSK, as well as analysis in real time without stopping the target. Key statistics and
performance can be monitored in real time. Through the joint team action group
(JTAG), communication with on-chip emulation support occurs to control and
monitor program execution. The C6713 DSK board includes a JTAG interface
through the USB port.

1.3.1 CCS Installation and Support

Use the USB cable to connect the DSK board to the USB port on the PC. Use the
5-V power supply included with the DSK package to connect to the +5-V power
connector on the DSK to turn it on. Install CCS with the CD-ROM included with
the DSK, preferably using the c:\C6713 structure (in lieu of c:\ti as the default).

The CCS icon should be on the desktop as “C6713DSK CCS” and is used to
launch CCS.The code generation tools (C compiler, assembler, linker) are used with
CCS version 2.x.

CCS provides useful documentations included with the DSK package on the
following (see the Help icon):

1. Code generation tools (compiler, assembler, linker, etc.)

2. Tutorials on CCS, compiler, RTDX

3. DSP instructions and registers

4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on.

An extensive amount of support material (pdf files) is included with CCS. There
are also examples included with CCS within the folder c:\C6713\examples.
They illustrate the board and chip support library files, DSP/BIOS, and so on. CCS
Version 2.x was used to build and test the examples included in this book.A number
of files included in the following subfolders/directories within c:\C6713 (suggested
structure during CCS installation) can be very useful:

1. myprojects: a folder supplied only for your projects. All the folders in the
accompanying book CD should be placed within this subdirectory.

2. bin: contains many utilities.

3. docs: contains documentation and manuals.

4. c6000\cgtools: contains code generation tools.

5. c6000\RTDX: contains support files for real-time data transfer.

6. c6000\bios: contains support files for DSP/BIOS.

7. examples: contains examples included with CCS.

8. tutorial: contains additional examples supplied with CCS.

6 DSP Development System

ch01.qxd 10/7/04 3:20 PM Page 6

