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Preface

Digital signal processors, such as the TMS320 family of processors, are used in 
a wide range of applications, such as in communications, controls, speech process-
ing, and so on. They are used in cellular phones, digital cameras, high-definition 
television (HDTV), radio, fax transmission, modems, and other devices. These
devices have also found their way into the university classroom, where they provide
an economical way to introduce real-time digital signal processing (DSP) to the
student.

Texas Instruments introduced the TM320C6x processor, based on the very-long-
instruction-word (VLIW) architecture. This new architecture supports features that
facilitate the development of efficient high-level language compilers. Throughout
the book we refer to the C/C++ language simply as C.Although TMS320C6x/assem-
bly language can produce fast code, problems with documentation and maintenance
may exist. With the available C compiler, the programmer must “let the tools do the
work.” After that, if the programmer is not satisfied, Chapters 3 and 8 and the last
few examples in Chapter 4 can be very useful.

This book is intended primarily for senior undergraduate and first-year graduate
students in electrical and computer engineering and as a tutorial for the practicing
engineer. It is written with the conviction that the principles of DSP can best be
learned through interaction in a laboratory setting, where students can appreciate
the concepts of DSP through real-time implementation of experiments and projects.
The background assumed is a course in linear systems and some knowledge of C.

Most chapters begin with a theoretical discussion, followed by representative
examples that provide the necessary background to perform the concluding exper-
iments. There are a total of 105 programming examples, most using C code, with a
few in assembly and linear assembly code. A list of these examples appears on page
xvii. A total of 22 students’ projects are also discussed. These projects cover a wide

xiii
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range of applications in filtering, spectrum analysis, modulation techniques, speech
processing, and so on.

Programming examples are included throughout the text. This can be useful to
the reader who is familiar with both DSP and C programming but who is not nec-
essarily an expert in both. Many assignments are included at the end of Chapters
1–6.

This book can be used in the following ways:

1. For a DSP course with a laboratory component, using parts of Chapters 1–9.
If needed, the book can be supplemented with some additional theoretical
materials, since its emphasis is on the practical aspects of DSP. It is possible
to cover Chapter 7 on adaptive filtering following Chapter 4 on finite impulse
response (FIR) filtering (since there is only one example in Chapter 7 that
uses materials from Chapter 5). It is my conviction that adaptive filtering
should be incorporated into an undergraduate course in DSP.

2. For a laboratory course using many of the examples and experiments from
Chapters 1–7 and Chapter 9. The beginning of the semester can be devoted
to short programming examples and experiments and the remainder of the
semester for a final project. The wide range of sample projects (for both 
undergraduate and graduate students) discussed in Chapter 10 can be very
valuable.

3. For a senior undergraduate or first-year graduate design project course using
selected materials from Chapters 1–10.

4. For the practicing engineer as a tutorial and reference, and for workshops and
seminars, using selected materials throughout the book.

In Chapter 1 we introduce the tools through three programming examples. These
tools include the powerful Code Composer Studio (CCS) provided with the
TMS320C6713 DSP starter kit (DSK). It is essential to perform these examples
before proceeding to subsequent chapters.They illustrate the capabilities of CCS for
debugging, plotting in both the time and frequency domains, and other matters.
Appendix H contains several programming examples using the TMS320C6416 DSK.

In Chapter 2 we illustrate input and output (I/O) with the AIC23 stereo codec
on the DSK board through many programming examples. Chapter 3 covers the
architecture and the instructions available for the TMS320C6x processor. Special
instructions and assembler directives that are useful in DSP are discussed. Pro-
gramming examples using both assembly and linear assembly are included in this
chapter.

In Chapter 4 we introduce the z-transform and discuss FIR filters and the effect
of window functions on these filters. Chapter 5 covers infinite impulse response
(IIR) filters. Programming examples to implement real-time FIR and IIR filters are
included. Appendix D illustrates MATLAB for the design of FIR and IIR filters.

Chapter 6 covers the development of the fast Fourier transform (FFT). Pro-
gramming examples on FFT are included using both radix-2 and radix-4 FFT. In

xiv Preface
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Chapter 7 we demonstrate the usefulness of the adaptive filter for a number of appli-
cations with least mean squares (LMS). Programming examples are included to
illustrate the gradual cancellation of noise or system identification. Students have
been very receptive to applications in adaptive filtering. Chapter 8 illustrates tech-
niques for code optimization.

In Chapter 9 we introduce DSP/BIOS and discuss a number of schemes (Visual
C++, MATLAB, etc.) for real-time data transfer (RTDX) and communication
between the PC and the DSK.

Chapter 10 discusses a total of 22 projects implemented by undergraduate and
graduate students. They cover a wide range of DSP applications in filtering, spec-
trum analysis, modulation schemes, speech processing, and so on.

A CD is included with this book and contains all the programs discussed. See
page xxi for a list of the folders that contain the support files for the examples and
projects.

Over the last 10 years, faculty members from over 200 institutions have taken my
workshops on “DSP and Applications.” Many of these workshops were supported
by grants from the National Science Foundation (NSF) and, subsequently, by Texas
Instruments. I am thankful to NSF, Texas Instruments, and the participating faculty
members for their encouragement and feedback. I am grateful to Dr. Donald Reay
of Heriot-Watt University, who contributed several examples during his review of
my previous book based on the TMS320C6711 DSK. I appreciate the many sug-
gestions made by Dr. Mounir Boukadoum of the University of Quebec, Dr.
Subramaniam Ganesan from Oakland University, and Dr. David Kozel from Purdue
University at Calumet. I also thank Dr. Darrell Horning of the University of New
Haven, with whom I coauthored my first book, Digital Signal Processing with the
TMS320C25, for introducing me to “book writing.” I thank al the students at Roger
Williams University, the University of Massachusetts at Dartmouth, and Worcester
Polytechnic Institute (WPI) who have taken my real-time DSP and senior design
project courses, based on the TMS320 processors, over the last 20 years. The con-
tribution of Aghogho Obi, from WPI, is very much appreciated.

The continued support of many people from Texas Instruments is also very much
appreciated: Cathy Wicks and Christina Peterson, in particular, have been very sup-
portive of this book.

Special appreciation: The laboratory assistance of Walter J. Gomes III in several
workshops and during the development of many examples has been invaluable. His
contribution is appreciated.

Rulph Chassaing
Chassaing@msn.com

Chassaing@ece.wpi.edu
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1
DSP Development System

1

• Testing the software and hardware tools with Code Composer Studio
• Use of the TMS320C6713 DSK
• Programming examples to test the tools

Chapter 1 introduces several tools available for digital signal processing (DSP).
These tools include the popular Code Composer Studio (CCS), which provides an
integrated development environment (IDE), and the DSP starter kit (DSK) with
the TMS320C6713 floating-point processor onboard and complete support for input
and output.Three examples illustrate both the software and hardware tools included
with the DSK. It is strongly suggested that you review these three examples before
proceeding to subsequent chapters.

1.1 INTRODUCTION

Digital signal processors such as the TMS320C6x (C6x) family of processors are like
fast special-purpose microprocessors with a specialized type of architecture and an
instruction set appropriate for signal processing. The C6x notation is used to desig-
nate a member of Texas Instruments’ (TI) TMS320C6000 family of digital signal
processors. The architecture of the C6x digital signal processor is very well suited
for numerically intensive calculations. Based on a very-long-instruction-word
(VLIW) architecture, the C6x is considered to be TI’s most powerful processor.

Digital signal processors are used for a wide range of applications, from com-
munications and controls to speech and image processing. The general-purpose
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digital signal processor is dominated by applications in communications (cellular).
Applications embedded digital signal processors are dominated by consumer prod-
ucts. They are found in cellular phones, fax/modems, disk drives, radio, printers,
hearing aids, MP3 players, high-definition television (HDTV), digital cameras, and
so on. These processors have become the products of choice for a number of con-
sumer applications, since they have become very cost-effective.They can handle dif-
ferent tasks, since they can be reprogrammed readily for a different application.
DSP techniques have been very successful because of the development of low-cost
software and hardware support. For example, modems and speech recognition can
be less expensive using DSP techniques.

DSP processors are concerned primarily with real-time signal processing. Real-
time processing requires the processing to keep pace with some external event,
whereas non-real-time processing has no such timing constraint. The external event
to keep pace with is usually the analog input. Whereas analog-based systems with
discrete electronic components such as resistors can be more sensitive to tempera-
ture changes, DSP-based systems are less affected by environmental conditions.
DSP processors enjoy the advantages of microprocessors. They are easy to use,
flexible, and economical.

A number of books and articles address the importance of digital signal proces-
sors for a number of applications [1–22]. Various technologies have been used for
real-time processing, from fiberoptics for very high frequency to DSPs very suitable
for the audio-frequency range. Common applications using these processors have
been for frequencies from 0 to 96kHz. Speech can be sampled at 8kHz (the rate at
which samples are acquired), which implies that each value sampled is acquired at
a rate of 1/(8kHz) or 0.125ms. A commonly used sample rate of a compact disk is
44.1kHz. Analog/digital (A/D)-based boards in the megahertz sampling rate range
are currently available.

The basic system consists of an analog-to-digital converter (ADC) to capture an
input signal. The resulting digital representation of the captured signal is then
processed by a digital signal processor such as the C6x and then output through a
digital-to-analog converter (DAC). Also included within the basic system are a
special input filter for anti-aliasing to eliminate erroneous signals and an output
filter to smooth or reconstruct the processed output signal.

1.2 DSK SUPPORT TOOLS

Most of the work presented in this book involves the design of a program to imple-
ment a DSP application. To perform the experiments, the following tools are used:

1. TI’s DSP starter kit (DSK). The DSK package includes:

(a) Code Composer Studio (CCS), which provides the necessary software
support tools. CCS provides an integrated development environment
(IDE), bringing together the C compiler, assembler, linker, debugger, and
so on.

2 DSP Development System
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(b) A board, shown in Figure 1.1, that contains the TMS320C6713 (C6713)
floating-point digital signal processor as well as a 32-bit stereo codec for
input and output (I/O) support.

(c) A universal synchronous bus (USB) cable that connects the DSK board
to a PC.

(d) A 5V power supply for the DSK board.

2. An IBM-compatible PC. The DSK board connects to the USB port of the PC
through the USB cable included with the DSK package.

3. An oscilloscope, signal generator, and speakers. A signal/spectrum analyzer is
optional. Shareware utilities are available that utilize the PC and a sound card
to create a virtual instrument such as an oscilloscope, a function generator, or
a spectrum analyzer.

All the files/programs listed and discussed in this book (except some student
project files in Chapter 10) are included on the accompanying CD. Most of the
examples (with some minor modifications) can also run on the fixed-point C6416-
based DSK. See Appendix H for the appropriate support files along with five illus-
trative examples. Reference 1 contains examples implemented on the C6711-based
DSK (which has been discontinued). A list of all the examples is given on pages
xv–xviii.

1.2.1 DSK Board

The DSK package is powerful, yet relatively inexpensive ($395), with the necessary
hardware and software support tools for real-time signal processing [23–43]. It is a
complete DSP system.The DSK board, with an approximate size of 5 ¥ 8 in., includes
the C6713 floating-point digital signal processor and a 32-bit stereo codec
TLV320AIC23 (AIC23) for input and output.

The onboard codec AIC23 [37] uses a sigma–delta technology that provides ADC
and DAC. It connects to a 12-MHz system clock. Variable sampling rates from 8 to
96kHz can be set readily.

A daughter card expansion is also provided on the DSK board. Two 80-pin con-
nectors provide for external peripheral and external memory interfaces.Two project
examples in Chapter 10 illustrate the use of the external memory interface (EMIF)
with light-emitting diodes (LEDs) and liquid-crystal displays (LCDs) for spectrum
display.

The DSK board includes 16MB (megabytes) of synchronous dynamic random
access memory (SDRAM) and 256kB (kilobytes) of flash memory. Four connectors
on the board provide input and output: MIC IN for microphone input, LINE IN for
line input, LINE OUT for line output, and HEADPHONE for a headphone output
(multiplexed with line output). The status of the four user dip switches on the 
DSK board can be read from a program and provides the user with a feedback
control interface.The DSK operates at 225MHz.Also onboard the DSK are voltage
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(a)

(b)

FIGURE 1.1. TMS320C6713-based DSK board: (a) board; (b) diagram. (Courtesy of Texas
Instruments)
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regulators that provide 1.26V for the C6713 core and 3.3V for its memory and
peripherals.

Appendix H illustrates a DSK based on the fixed-point processor C6416.

1.2.2 TMS320C6713 Digital Signal Processor

The TMS320C6713 (C6713) is based on the VLIW architecture, which is very well
suited for numerically intensive algorithms. The internal program memory is struc-
tured so that a total of eight instructions can be fetched every cycle. For example,
with a clock rate of 225MHz, the C6713 is capable of fetching eight 32-bit instruc-
tions every 1/(225MHz) or 4.44ns.

Features of the C6713 include 264kB of internal memory (8kB as L1P and L1D
Cache and 256kB as L2 memory shared between program and data space), eight
functional or execution units composed of six arithmetic-logic units (ALUs) and
two multiplier units, a 32-bit address bus to address 4GB (gigabytes), and two sets
of 32-bit general-purpose registers.

The C67xx (such as the C6701, C6711, and C6713) belong to the family of the
C6x floating-point processors, whereas the C62xx and C64xx belong to the family
of the C6x fixed-point processors. The C6713 is capable of both fixed- and floating-
point processing. The architecture and instruction set of the C6713 are discussed in
Chapter 3.

1.3 CODE COMPOSER STUDIO

CCS provides an IDE to incorporate the software tools. CCS includes tools for code
generation, such as a C compiler, an assembler, and a linker. It has graphical capa-
bilities and supports real-time debugging. It provides an easy-to-use software tool
to build and debug programs.

The C compiler compiles a C source program with extension .c to produce an
assembly source file with extension.asm. The assembler assembles an.asm source
file to produce a machine language object file with extension.obj. The linker com-
bines object files and object libraries as input to produce an executable file with
extension.out. This executable file represents a linked common object file format
(COFF), popular in Unix-based systems and adopted by several makers of digital
signal processors [25]. This executable file can be loaded and run directly on the
C6713 processor. Chapter 3 introduces the linear assembly source file with exten-
sion .sa, which is a cross between C and assembly code. A linear optimizer opti-
mizes this source file to create an assembly file with extension .asm (similar to the
task of the C compiler).

To create an application project, one can “add” the appropriate files to the
project. Compiler/linker options can readily be specified. A number of debugging
features are available, including setting breakpoints and watching variables; viewing
memory, registers, and mixed C and assembly code; graphing results; and monitor-

Code Composer Studio 5
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ing execution time. One can step through a program in different ways (step into,
over, or out).

Real-time analysis can be performed using real-time data exchange (RTDX)
(Chapter 9). RTDX allows for data exchange between the host PC and the target
DSK, as well as analysis in real time without stopping the target. Key statistics and
performance can be monitored in real time. Through the joint team action group
(JTAG), communication with on-chip emulation support occurs to control and
monitor program execution. The C6713 DSK board includes a JTAG interface
through the USB port.

1.3.1 CCS Installation and Support

Use the USB cable to connect the DSK board to the USB port on the PC. Use the
5-V power supply included with the DSK package to connect to the +5-V power
connector on the DSK to turn it on. Install CCS with the CD-ROM included with
the DSK, preferably using the c:\C6713 structure (in lieu of c:\ti as the default).

The CCS icon should be on the desktop as “C6713DSK CCS” and is used to
launch CCS.The code generation tools (C compiler, assembler, linker) are used with
CCS version 2.x.

CCS provides useful documentations included with the DSK package on the 
following (see the Help icon):

1. Code generation tools (compiler, assembler, linker, etc.)

2. Tutorials on CCS, compiler, RTDX

3. DSP instructions and registers

4. Tools on RTDX, DSP/basic input/output system (DSP/BIOS), and so on.

An extensive amount of support material (pdf files) is included with CCS. There
are also examples included with CCS within the folder c:\C6713\examples.
They illustrate the board and chip support library files, DSP/BIOS, and so on. CCS
Version 2.x was used to build and test the examples included in this book.A number
of files included in the following subfolders/directories within c:\C6713 (suggested
structure during CCS installation) can be very useful:

1. myprojects: a folder supplied only for your projects. All the folders in the
accompanying book CD should be placed within this subdirectory.

2. bin: contains many utilities.

3. docs: contains documentation and manuals.

4. c6000\cgtools: contains code generation tools.

5. c6000\RTDX: contains support files for real-time data transfer.

6. c6000\bios: contains support files for DSP/BIOS.

7. examples: contains examples included with CCS.

8. tutorial: contains additional examples supplied with CCS.

6 DSP Development System
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