Digital Signatures for Flows and Multicasts

Chung Kei Wong Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188
E-mail: {ckwong,lam }@cs.utexas.edu

Abstract sent as independent packets. Exceptions include recent pa-

We present chaining techniques for signing/verifying pers on scalable secure multicasting [1, 13, 20] and a flow-
multiple packets using a single signing/verification opera- Paseéd approach to datagram security [14]. All of these pa-
tion. We then present flow signing and verification proce- PEs are mainly concerned with data confidentiality. _
dures based upon a tree chaining technique. Since a sin- " this paper, our concerns are data authenticity, integrity
gle signing/verification operation is amortized over many &nd non-repudiation for delay-sensitive packet flows, partic-
packets, these procedures improve signing and verificationularly flows to be delivered to large groups of receivers. For

rates by one to two orders of magnitude compared to the ap-a" individual message (packet), these concerns can be ad-
proach of signing/verifying packets individually. Our pro- dressed by one of many available digital signature schemes

cedures do not depend upon reliable delivery of packets,[6: 15, 17, 19]. However, these schemes are not efficient
provide delay-bounded signing, and are thus suitable for enou.g_h for signing/verifying packets individually for delay-
delay-sensitive flows and multicast applications. To further Sensitive flows, such as packet video.

improve our procedures, we propose several extensions to " the Internet, multicast has been used successfully to
the Feige-Fiat-Shamir digital signature scheme to speed upProvide an efficient, best-effort delivery service to large
both the signing and verification operations, as well as to 9r0uPs [2]. Consider a packet flow multicasted to a group
allow “adjustable and incremental” verification. The ex- of receivers. A consequence of best-effort delivery is that
tended scheme, called eFFS, is compared to four other dig-Tany receivers will not receive all of the packets in the
ital signature schemes (RSA, DSA, ElGamal, Rabin). weMulticasted flow. Furthermore, many multicast applications
compare their signing and verification times, as well as key &l0OW receivers to have widely varying capabilities (e.g.,
and signature sizes. We observe that (i) the signing and ver-l0 receive Iay.ered.wdeo and audio transmissions) or needs
ification operations of eFFS are highly efficient compared (€-9-» 10 receive different stock quotes, news, etc.). Con-
to the other schemes, (ii) eFFS allows a tradeoff betweenS€auently, receivers get different subsequences of packets
memory and signing/verification time, and (jii) eFFS allows Tom the same multicasted flow.

adjustable and incremental verification by receivers. 1.1. Existing techniques for signing flows

Conceptually, a digital signature scheme is defined by
functions for key generation, signing, and verification. The
signer (sender) uses the key generation function to create
a pair of keys, a signing ke¥,, and a verification key,, .

The signer keeps the signing key private, and makes the ver-
ification key publicly known to all verifiers (receivers).

To sign a message using signing keyk,, the signer
calls the signing function which returns the signature of
messager. The signer then sends the signed message, con-
sisting of message: and its signature, to verifiers. Having
received the signed message, a verifier calls the verification
function with keyk,. If the verification function returns
true, then the verifier concludes that the signer did sign the

*Research sponsored by Texas Advanced Research Program grant ngnessage and the message has not been altered. Moreover,
003658-063.

1In the balance of this paper, we use “receiver’ to mean “authorized 2The signing and verification keys are also referred to as private and
receiver” unless otherwise stated. public keys, respectively.

1. Introduction

Data confidentiality, authenticity, integrity, and non-
repudiation are basic concerns of securing data delivery
over an insecure network, such as the Interr@nfiden-
tiality means that only authorized receivers will get the data;
authenticity an authorized receiver can verify the iden-
tity of the data’s sourceintegrity, an authorized receiver
can verify that received data have not been modifiemxi-
repudiation an authorized receiver can prove to a third
party the identity of the data’s sourée.

Most investigations on securing data delivery over
packet networks have focused on unicast delivery of data

the signer cannot deny having signed the message (nonrate is important. From the table, we see that the signing
repudiation). and verification rates of the sign-each approach, using ei-
In practice, a message digest function, such as MD5 [18],ther RSA or DSA, are probably inadequate for many appli-
is first applied to the message to generate a fixed-size meseations.
sage digest which is independent of message size. Signing Two techniques were proposed for signing digital
a message means signing the digest of the message. (MD5treams in [7] which, at first glance, may be used for sign-
message digests are 128 bits long.) ing packet flows. To describe the technique in [7] for sign-
A flowis a sequence of packets characterized by someing a non-real-time generated flow, consider a sequence
attribute [16, 22]. Packets in a flow may be obtained from of m packets. The sender first computes message digest
segmenting the bit stream of digitized video, digitized au- D of packetm (the last packet) and concatenates packet
dio, or a large file. Or they may be related data items, suchm — 1 and D,, to form augmented packet — 1. Then,
as stock quotes, news, etc., generated by the same sourcefor : = 1,...,m — 2, the sender computes message di-
Itis easy and efficient to sign afl-or-nothingflow, that ~ 9estDy,—; of augmented packet — :, and concatenates
is, a flow whose entire content is needed before any part of itPacketm — i — 1 and Dy, _; to form augmented packet
can be used, e.g., a long file. In this case, the signer simplym — ¢ — 1. Message digesb; of augmented packet 1 is
generates a message digest of the entire flow (file) and sigrffOmputed and signed. In this manner, only one expensive
the message digest. signing/verification operation is needed for the sequence of

Most applications, however, create flows that are not all- 7* Packets. However, a necessary condition for USi”Q the
or-nothing, i.e., a receiver needs to verify individual packets 2P0Ve technique s the followirggt-all-beforarequirement:

and use them before the entire flow is received. For thesel© Verify packet in the sequence, a receiver must have re-
flows, a straightforward solution is to sign each packet in- Ceived every packet from the beginning of the sequence.
dividually and each packet is verified individually by re- ~ For & real-time generated flow, a similar technique is
ceivers. This solution is called tisign-eachapproach. suggested in [7] with the same get-all-before requwement.
The sign-each approach is computationally expensive. 0" @ sequence ofr packets, only one expensive sign-
The signing rate and verification rate are at mo&t; (1) + ing/verification operation is needed, plus one inexpensive

Tyign) andl/(Ty(l) + Toeris,) Packets per second, respec- one-time signaturesigning/verification for each packet in
tively, whereT;(1) is the time to compute the message di- the sequence. However, since one-time signatures and keys

gest of ani-byte packetZl;,,, is signing time, an@ye,i s, are very large, this technique has a large communication

is verification time for the message digest. The signing andoverhead (around 1000 bytes per packet) [9, 10,]' .
verification rates, in packets per second, of two widely The get-all-before requirement of both techniques in [7]

used digital signature schemes, RSA [19] and DSA [15], is too stro_ng fo_r practical Internet applic_atio_ns. Reliable
with 512-bit modulus and using 100% processor time of a packet delivery is not used by many applications for flows

Pentium Il 300 MHz machine are shown below. and multicasts. For example, reliable delivery is generally
packet size| Signing rate | Verification ra;te not used for video and audio flows due to the extra delays

associated with retransmissions; either losses are tolerated
(bytes)| RSA DSA | RSA DSA or forward error correction techniques are used instead.
125 ;g? i;g iégg 5273 For large-scale multicast applications, reliable delivery
' of multicast packets is a difficult problem [5]. Moreover,
2048| 780 172] 1620 126 even if reliable multicasting is available, receivers with dif-
If a slower machine is used, or only a fraction of proces- ferent needs/capabilities may choose to get different sub-
sor time is available for signing/verification (e.g., a receiver sequences of packets in a multicasted flow. In short, the
machine has only 20% processor time for verification be- get-all-before requirement is not satisfied.
cause the other 80% is needed for receiving and processinqlzl Characteristics and requirements
packets), then the rates should be decreased proportionally. We have observed various characteristics in the delivery
The signing rate is notimportant formn-real-ime gen- ¢ q,u5 and multicasts by an unreliable packet network,
eratedflow, i.e., a flow whose entire content is known in such as the Internet. They are summarized below:
advance (such as stored video). This is because packets in o Each packet in a flow mav be used as soon as it is re-
the flow can be signed in advance. For a real-time gener- ceivedp y

ated flow, however, the signing rate must be higher than the e A receiver may get only a subsequence of the packets

packet generation rate of the flow. Furthermore, for delay- i af Diff : . ¢ diff ¢ sub
sensitive flows, real-time generated or not, the verification anuinfgvé inerent recelvers may get ditierent subse-

3The signing and verification rates are for signing and verifying 128-bit ~ ® De€lay sensitive ﬂOWS_ require fast processing at a
MD5 message digests of packets. sender as well as receivers. Some flows are generated

in real time by their senders. sizes. We observe that (i) the signing and verification op-
e For a multicasted flow, many receivers are limited in erations of eFFS are highly efficient compared to the other

resources (processing capacity, memory, communica-schemes, (ii) eFFS allows a tradeoff between memory and

tion bandwidth, etc.) compared to the sender, which signing/verification time, and (iii) eFFS allows adjustable

is typically a dedicated server machine. In some envi- and incremental verification by receivers.

ronments, both senders and receivers may be limited in

. R 2. How to Sign a Flow
resources, e.g., mobile computers using wireless com- . : _ iy _
munications. To digitally sign/verify delay-sensitive flows, the sign-

each approach is computationally too expensive for many

¢ Receivers may have widely different capabilities/re- . . o
sources. For example, receivers may be personal dig_apphcanons, particularly those applications that generate

ital assistants, notebook computers, or desktop ma-paCkEt ﬂOV\I’S In re_al t|mer.]) h h
chines. Moreover, the resources available to a receiver As an alternative to the sign-each approach, we present

for verifying signatures may vary over time. two c_h_aunlng techniques (star and tree) for prow_dmg au-
, O , thenticity to a group of packets, calledbdock using a
Given the above characteristics, we design procedures;sing|e signing operation. The basic idea is to compute a

for signing and verifying flows in Section 2 as wellas a dig- 5,5k digest which is signed. In order to make packets

ital s?gnature scheme in Section 3 to meet the the following dividually verifiable each packet needs to carry its own au-
requirements: thentication information consisting the signed block digest
e The signing procedure is efficient and delay-bounded (block signaturgtogether with some chaining information
(for real-time generated flows). as proof that the packet is in the block.
e The verification procedure is highly efficient (since 2 1 gtgr chaining
many receivers have limited resources).

. o - Considem packets that constitute a block. In star chain-
e Packets in a flow arimdividually verifiable

: _ __ing, the block digest is simply the message digest of the
e Packet signatures are small (i.e., small communication,, packet digests (listed sequentially). Ugt) denote the

overhead). . o B message digest function being used (e.g., MD5). Consider,

tion operation is adjustable to the amount of resourcesp, .. Ds. The block digest i, s = h(Dy,...,Ds),

a receiver has. It allows a receiver/verifier to verify & and the block signaturesign(D;_s), is the block digest

message at a lower security level using less resourcessigned with some digital signature scheme (such as RSA,

and later increase the security level by using more re- pga or eFFS).

sources (e.g., if the message is important). The relationship between the packet digests and the
1.3. Contributions of this paper block digest can be.represer_lted byla one-level rooted tree,
called arauthentication starFigure 1 illustrates an authen-
tication star for eight packets, with packet digests at leaf
nodes, and the block digest at the root.

In Section 2, we first describe and compare two chain-
ing techniques (star and tree) for signing/verifying multiple
packets using a single signing/verification operation (with-
out the get-all-before requirement in [7]). We then present
flow signing and verification procedures based upon the tree
chaining technique. Since a single signing/verification op-
eration is amortized over many packets, these procedures)
improve signing and verification rates by one to two or-
ders of magnitude compared to the sign-each approach. @ @ L @ @ @

The signing procedure also provides delay-bounded sign- bt b2 D3 D4 DS D6 D7 D8
ing. Thus the procedures can be used for delay-sensitive Figure 1. Star chaining technique.
flows. For packets to be individually verifiable, each packet

In Section 3, we turn our attention to improving the sign- needs its own authentication information. Such authenti-
ing and verification operations in the procedures. Specif- cation information, calleghacket signatureconsists of the
ically, we present several extensions to the Feige-Fiat-block signature, the packet position in the block, and the
Shamir digital signature scheme to speed up both signingdigests of all other packets in the block. (We use the term
and verification as well as to allow adjustable and incre- chaining overheado refer to all information in a packet
mental verification. In Section 4, the extended Feige-Fiat- signature except the block signature.)

Shamir (eFFS) scheme is compared to four well-known sig- Suppose the third packet in the above example is re-
nature schemes [6, 15, 17, 19]. We compare their sign-ceived. Its authenticity can be individually verified as
ing and verification times, as well as key and signature follows. The verifier computes the dige®?; of the

packet received, and then the block digd3t ; = in Figure 2 for the third packet. Each node in the path needs

h(D1, D2, D%, Dy,...,Dg), where Dy,Ds,Dy,...,Dsg to be verified. A verifier computes the digeBt of the

are carried in the packet signature. The verifier then callsreceived packet, and then each of its ancestors in the tree.

the verification operation to veriffp;_g, i.e., to determine Thatis,D;_, = h(D%, Dy), D} _, = h(D1_2,Dj%_,), and

whetherD] _¢ is equal to block digedP; _s in block signa- D) ¢ = h(D}_4,Ds5_g), whereDy, D; 5 andD5_g are

ture sign(D1_g). The packet is verified if the verification carried in the packet signature. The verifier then calls the

operation returns true, i.e)} _g = D;_s. verification operation to determine whethf_g is equal
Suppose the third packet is the first in the block to ar- to block digestD;_s in block signaturesign(D;_s). The

rive and its authenticity has been verified. Afterwards, the packet is verified if the verification operation returns true,

verifier knows every node in the authentication star, i.e.,i.e.,D]_g = D;_s.

all nodes in the authentication star are verified and can be Suppose the third packet is the first in the block to arrive.

cached. With caching, when another packet in the block ar- After verifying it, the verifier knows the following nodem

rives later, say the sixth packet, the verifier only needs to the authentication treeDs, Dy, D1_2, D3_4, D1_4, D5_g

compute the digesbg of the packet received and compare and the block digesb; _s. These are verified nodes which

it to the verified nodeDs in the authentication star. If they can be cached. By caching verified nodes, the verifier only

are equal, the packet is verified. needs to compute each node in the authentication tree at

2.2. Tree chaining most once.

Tree chaining subsumes star chaining as a special case. For example, after verifying the third packet, to verify
With tree chaining, the block digest is computed as the root the sixth packet which arrives later, the verifier computes
node of anauthentication tre¢ Consider, for example, a the digest of the packet receivdd;, its parentD; =
block of eight packets with packet digedds, ..., Ds. The ~ 1(Ds, Dg), and its grandparend;_g = h(D5_g, D7—s).
packet digests are the leaf nodes of a degree two (binary)f Ds—s is equal to the cached nod®, s, the sixth packet
authentication tree, with other nodes of the tree computed'S verified.
as message digests of their children, as shown in Figure 22_3. Comparison of chaining techniques
For example, the parent of the leavies and D, is D15 =
h(D1, Dy) whereh(-) is the message digest function being We performed experiments on a Pentium 1l 300 MHz
used. The root is the block digest, with the block signature Machine running Linux, and compared star and tree chain-

being the signed block digest. ing. We used MD5 as the message digest function [18] for
generating 128-bit message digests.
. D1-8 For each chaining technique, an authentication tree is
first built for a block of packet8j.e., each node is computed
) ’ as the message digest of its children. The time to build an
O D1-4 @ D5-8 authentication tree (excluding time to compute packet di-
/ hN / \ gests) is called thaee build time The block signature is
then obtained by signing the block digest at the root. Af-
&pr2 () p34 D5-6 D7-8 ter that, the packet signature of each packet is built from
é é , \ / / the authentication tree and the block signature. The time
to build a packet signature is callgacket signature build
@ Q Q O O time Thechaining timefor a block at a signer is the sum of
DI D2 D3 D4 D5 D6 D7 D8 tree build time and packet signature build time for all pack-
Figure 2. Tree chaining technique. ets in the block (excluding signing time of the block digest).

For a packet to be individually verifiable, each packet Table 1(a) shows the chaining time for a block of packets at

needs to carry its own authentication information (packet & SIgner.
signature). In tree chaining, a packet signature consists of Note that the total signing time for all packets in a block
the block signature, the packet position in the block, and theis the block’s chaining time plus the signing time of the
siblings of each node in the packet's path to the root. (Again block digest, which is 12.7 ms using 512-bit RSA and
we use the terrohaining overheatb denote all information ~ 5.6 ms using 512-bit DSA. Consider a block of 16 pack-
ina packet Signature except the block Signature_) ets. From Table 1(a), the Chaining time is 0.214 ms for a
To verify a packet individually, a verifier needs to verify degree two authentication tree. The total signing time is
its path to the root. Consider, for example, the dashed path

5Some are carried in the packet signature and the others have been com-
4Tree chaining was first presented in [11]. Any rooted tree can be used puted.

as an authentication tree with packet digests at leaf nodes and the block %We will use “tree” instead of “tree/star” since star chaining is a special

digest at the root. In particular, there is no need to use a balanced tree. case of tree chaining.

0.214 + 12.7 = 12.9 ms using 512-bit RSA. Thus the av- block size (number of packets)

erage signing time for one packet1i8.9/16 = 0.81 ms, 2 4 8 16 32 64 128
which is more than 15 times smaller than one 512-bit RSA | Star 17 49 113 241 497 1009 2038
signing operation. treedeg 2| 18 35 52 69 86 103 12¢

To verify packe'gs in a block, an authen_tication t_ree is :::2 g:gg ig 28 11?1 133 12?(’)?1 1223 123()
built from packet signatures as packets arrive. Thain-
ing time for a block at a verifier is the sum of tree build Table 2. Average chaining overhead size
time and time to verify chaining information in the packet (bytes) per packet.
signature of every packet in the block (excluding verifica-
tion time of the block signature). The chaining time for a O(mlog(m)) wherem denotes block size.
block at a verifiewith cachingof verified nodes is shown As shown in Table 1(b), star chaining takes less time at a
in Table 1(b). verifier than tree chaining for all block sizes.

The total verification time for all packets in a block is ~ From Table 2, note that the chaining overhead of star
the block’s chaining time plus the verification time of the chaining is much greater than tree chaining for block sizes
block signature, which is 0.40 ms using 512-bit RSA and larger than eight. If a small communication overhead is
7.6 ms using 512-bit DSA. Consider a block of 16 packets. important, packet signature sizes should be reduced. We
From Table 1(b), the chaining time is 0.241 ms for a de- recommend the use of degree two tree chaining which re-
gree two authentication tree. The total verification time is quires the smallest chaining overhead. (Any improvement
0.241 + 0.40 = 0.64 ms using 512-bit RSA. Thus the aver- in chaining time is insignificant if the signature scheme be-

age verification time for one packet(s54/16 = 0.04 ms, ing used has a signing/verification time much larger than the
which is 10 times smaller than one 512-bit RSA verification chaining time. See Table 3 in Section 2.4.)
operation. 2.4. Flow signing and verification procedures
block size (number of packets) A flow is signed by partitioning it into blocks of packets,
2 4 8 16 32 64 128 with each block signed using tree chaining. For a non-real-
star 0.014 0.022 0.034 0.063 0.137 0.376 1.283 time generated flow, blocks are of the same size&hosen

tree deg 2| 0.016 0.043 0.100 0.214 0.445 0.912 1.852 g he a power of the authentication tree degte@he flow

tree deg 4| 0.016 0.028 0.068 0.133 0.285 0.573 1.1j74 signing procedure, flowsigm;, d), for a non-real-time gen-

tree deg 8| 0.016 0.028 0.058 0.131 0.262 0.531 1.098 erated flow is shown in Figure 3

(&) Chaining time (ms) at a signer. For a real-time generated flow, the packet generation

block size (number of packets) rate is time-varying fqr many appllcat|(_)ns, such as com-

2 4 8 16 32 64 128 pressed video and voice-activated audio. For these appli-

Star 0.014 0.021 0.030 0.049 0.085 0.158 03p5 cations, partitioning the flow into fixed size bloqks_may

tree deg 2| 0.016 0.047 0.109 0.241 0.499 1.036 2153 lead to an unpredictable (perhaps unbounded) signing de-

tree deg 4| 0.016 0.026 0.070 0.133 0.291 0.584 1.286 lay. Instead, the flow is partitioned by fixed time periods,

tree deg 8| 0.016 0.026 0.044 0.110 0.221 0.440 0.963 and packets generated in the same time period are grouped

(b) Chaining time (ms) at a verifier (with caching). into a block (see Figure 4). The flow signing procedure,
o flowsignRT(T, d), for a real-time generated flow, whefe
Table 1. Chaining time (ms) for a block. is the time period and is the authentication tree degree, is

For each chaining technique, a packet signature has twoshown in Figure 3.
parts, the block signature and the chaining overhead. In For both real-time and non-real-time generated flows, the
general, if a tree is not balanced and full, the chaining over- flow verification procedure, shown in Figure 5, is the same.
head sizes of different packets are different. Table 2 showsFor the first received packet in a block, i.e., the block sig-
the average chaining overhead size per packet. The size ofature carried in the packet signature is new to a verifier,
the block signature is not included in Table 2 since it de- the verifier computes the packet digest, and every ancestor
pends on which signature scheme is used (e.g., the blocof the packet digest. For the computed block digest (the
signature is 64 bytes for 512-bit RSA, and 40 bytes for 512- root of authentication tree), the verifier calls the verification
bit DSA). operation to verify that it is equal to the block digest in the

From Table 1(a), note that for any block size smaller bloqk signature. Ifso__/erified, then all computed nodes and
than or equal to 64 packets, star chaining takes less timgheir children are verified and cached. _
at a signer than tree chaining (degrees two to eight). How- For @ packet that is not the first received packet in a
ever, for a larger block size, star chaining takes more time Plock, the verifier computes the packet digest. If the packet
at a signer than tree chaining, because the chaining time A node is computed as the message digest of its children which are
for a star isO(m?2) and the chaining time for a tree is either computed or carried in the packet signature.

procedure flowsigfm, d) procedure flowveriff)
for each block ofn packetsPy,. .., Py for each received packet
compute packet digests; if the block signaturesign(root) in the packet signature is new then
build a degreel authentication tree; /* this is the first received packet in the block */
let root be the block digest; compute the packet digest;
compute the block signatugggn(root); compute each ancestor of the packet digest
for each packeP; in the block /* build its signature */ as the message digest of its children;
let p be its path taroot; let root’ be the computed block digest;
its signature consists of the block signatugn(root), if (verify (root’, sign(root)) = false) then
siblings of each node ip, and the packet position the packet is not verified
endfor else
endfor the packet is verified;
cache all computed nodes and their children as verified
procedure flowsignR{T’, d) endif
for each period else /*this is not the first received packet in the block */
let Pl, ey P, be the packets generated Compute the packet digest;
with digests computed in peridf; if (packet digest has been cached) then
build a degreel authentication tree; if (computed packet digest its cached value) then
let root be the block digest; the packet is not verified
compute the block signatugggn(root); else
for each packeP; in the block /* build its signature */ the packet is verified
let p be its path to theoot; endif
its signature consists of the block signatugn(root), else
siblings of each node ip, and the packet position compute all non-cached ancestors of the packet digest;
endfor let node be the highest node computed;
endfor compute the parent efode;
: [P if (computed parent its cached value) then
Figure 3. Flow signing procedures. the packet is not verified
else
chaindm) + Tson chainp) + Tsion the packet is verified;
cache all computed nodes and their children as verifieg
b endif
\ pertod T \ perioa T \ e endif
W_/\/l_/ endif
m, packets m, packets endfor
Figure 4. Signing a real-time generated flow. Figure 5. Flow verification procedure (with

caching of verified nodes).
digest has been cached and the cached value is equal to th

computed packet digest, then the packet is verified. Oth-t%e use of degree two tree c_haymng. o
erwise, the verifier computes every non-cached ancestor of 12Ple 4 shows the flow signing and verification rates for
the packet digest. For the highest non-cached ancestor, thBackets of size 512, 1024, or 2048 bytes. We used degree
verifier computes its parent. If the computed parent and its WO tree chaining. From the tables, observe that the flow
cached value are equal, then the packet is verified and alSi9ning and verification rates decrease as the packet size in-
computed nodes and their children are verified and cached.C€@ses. It is because more time is needed to compute the
We implemented the flow signing and verification proce- message digest of a Iarger_packet. 'I_'he decregse IS more pro-
dures, and performed experiments on a Pentium 11 300 MHz pounced when the block 5|ze.used Is large, since more time
machine running Linux. We used MD5 as the message di- 'S used to compute packet digests for a large block than a
gest function, and experimented with both 512-bit RSA an

d small block. Observe also that the flow signing and ver-
512-bit DSA as the signature scheme for block signatures. |f|cat;onfrates mclrlease Vﬁ'ﬂ: k,"OCk size and the increase is
Table 3 shows the flow signing and verification rates for greatertor a smafler packet size.
1024-byte packetd Note that tree and star chaining are one 2.5. Bounded delay signing
to two orders of magnitude more efficient than the sign-each ~gnsider Figure 4. Assume that, in perifgat mostm
approach. The flow signing and verification rates increasep,cyets are generated and their packet digests computed.
with block size. However, the rates vary only slightly with 1,4 delay for signing a block of packets is bounded by
the chaining technique used and with the tree degree intreep, _ + chaing(m) + Tyign Wherechain,(m) is the
. . . s 8 sign s
chaining. Since degree two tree chaining has the loweStchaining time for a block o packets at a signer, afft);,,
chaining overhead (packet signature size), we recommendg tpe signing time of the block digest.
Sverificat . Table 5 shows the delay bound for periéd= 50 ms.
erification rates were computed assuming no packet loss. Due toN h he delav b d is fairly i L he block
page limitation, we only show results for RSA. Results for DSA can be _Ote t_ at the delay boun IS Tairly |n§9n3|t|ve to the bloc
found in [21]. size since the block’s chaining time is much smaller than

block size (number of packets) block size (number of packets)
2| 4| 8| 16| 32| 64| 128 2| 4 | 8| 16| 32| 64| 128
sign-each 78.7 1960
star 152 | 302 | 582 | 1090 | 1920 | 3090 | 4310 || 3090 | 4530 | 5870 | 6900 | 7600 | 7930 | 8180
tree deg 2| 153 | 304 | 570 | 1080 | 1890 | 3010 | 4310 3020 | 4320 | 5540| 6360 | 6910 | 7210| 7350
tree deg 4| 153 | 301 | 579 | 1080 | 1900 | 3070 | 4380 || 3000 | 4400 | 5650 | 6640 | 7230 | 7590 | 7760
tree deg 8| 153 | 302 | 581 | 1080 | 1900 | 3060 | 4350 || 2960 | 4400 | 5680 | 6660 | 7340 | 7740 | 7860
(a) signing rates using 512-bit RSA (b) verification rates using 512-bit RSA
Table 3. Flow signing/verification rates (packets/sec) for 1024-byte packets.
packet size block size (number of packets) block size (number of packets)
(bytes) 2 4 8 16 32 64 | 128 2 4 8 16 32 64 128
512 | 157 | 310 | 605 | 1160 | 2130 | 3640 | 5670 || 3600 | 5630 | 7740 | 9560 | 10800 | 11600| 12000
1024 | 153 | 304 | 570 | 1080 | 1890 | 3010 | 4310 || 3020 | 4320 | 5540| 6360 | 6910| 7210| 7350
2048 | 153 | 296 | 552 | 982 | 1600 | 2330 | 3010 || 2320 | 2980 | 3520 | 3860 | 4040| 4140| 4160

(a) signing rates using 512-bit RSA (b) verification rates using 512-bit RSA
Table 4. Flow signing/verification rates (packets/sec) for degree two tree chaining.

the block digest’s signing time. Note that using DSA, the flow verification rate is smaller
For a given application, with a specified delay bound, than the flow signing rate. This is undesirable because re-
D,, for signing a real-time generated flow at a known ceivers/verifiers are generally less powerful than the signer/
packet rate, we can work backwards and derive an ap-sender, e.g., the receivers may be personal digital assistants
propriate value for the paramet&rneeded for procedure orlow-end notebook computers. Using RSA, the flow sign-
flowsignRT(T, d). From Figure 4, observe thdt must be ing rate may not be high enough for some applications. Al-
larger tharls;,y, + chains(m), andD, must be largerthan though we can increase the flow signing and verification
2(Tsign + chaing(m)). rates by using a longer period or a larger block size, nei-
ther option is desirable. A larger block size increases the

number of packets generated in peribd chaining overhead (packet signature size). A longer period
2 4 8 16 32 64 128 increases the delay for signing real-time generated flows.
treedeg 2| 62.6 62.6 62.8 62.8 63.1 635 64/6 To obtain a signature scheme better than RSA and DSA
treedeg 4| 62.6 62.7 627 627 63.0 632 640 for signing/verifying flows, we propose several extensions
treedeg8| 62.5 62.6 627 627 63.0 632 6309 g the Feige-Fiat-Shamir signature scheme. The extended

scheme, called eFFS, is presented in the next section. The
eFFS scheme has a very efficient signing operation (more
efficient than those of RSA and DSA) and a verification op-
eration as efficient as that of RSA. A performance compar-

. . - . ison of eFFS with four other signature schemes (including
For non-real-time generated flows, signing efficiency is rga and DSA) is given in Section 4

not critical. Thus a signature scheme with an efficient ver-

ification operation, such as RSA, can be used in the flow 3 The eFFS Signature Scheme

signing and verification procedures. For real-time gener- _) _)

ated flows, however, it is critical that both signing and ver- _ The eFFS signature scheme is derived from the Feige-

ification are highly efficient. Furthermore, in choosing a Fiat-Shamir signature scheme [3, 4] with several exten-

digital signature scheme, we must also consider machine3ions. In Section 3.1, we describe the basic Feige-Fiat-

capabilities (sender and receiver), as well as the fraction ofShamir signature scheme. In Section 3.2, we describe an

processor time available for signing and verification. improvement suggested in [12], called small verification
Using 100% processor time of a Pentium Il 300 MHz key (small v—k(_ay) which redupes verification time by an

machine, the flow signing and verification rates for 1024- ©rder of magnitude. In Section 3.3, we propose to use

byte packets, degree two tree chaining, and block size six-2 SPeedup technique suggested by the Chinese Remainder
teen. are shown below. Theorem (crt), which reduces signing time. In Section 3.4,

Table 5. Signing delay bound (ms) for period
T = 50 ms using 512-bit RSA.

2.6. Selecting a digital signature scheme

we propose to use a technique, calgdcomputatiorfpre-

signing rate| _verification rate com hich reduces signing and verification times by us-

512-bit RSA | 1080 packets/se¢ 6360 packets/se¢ - p), whi uces signing verttication fimes by u
512-bit DSA | 2100 packets/sek 1530 packete/sor ing more memory. With precomputation, the signing op-
bt packetsisep packets/sef eration time is reduced by a factor of two to three using

eFFS parameték, ¢)
(32,1) | (32,2) (64,1) | (32,4) (64,2) (128,1)
basic FFS| 3.75 7.45 6.19| 14.83 12.33 11.85
small v-key | 3.71 7.38 6.42| 14.75 12.79 12.44
crt + small v-key| 3.24 6.41 5.44| 12.78 10.83 9.91
4-bit precomp + crt + small v-key 2.00 3.95 3.03] 7.85 5.98 5.11
8-bit precomp + crt + small v-key 1.48 2.92 2.03] 5.79 4.00 3.14

Table 6. eFFS signing time (ms) with 512-bit modulus.

eFFS parametéi, t)
(32,1) | (32,2) (64,1) | (32,4) (64,2) (128,1)
basic FFS| 3.12 6.28 5.94| 1351 11.29 11.14
small v-key | 0.30 0.58 0.39] 114 0.71 0.60
4-bit precomp + small v-key 0.29 0.57 0.36| 1.10 0.66 0.55
8-bit precomp + small v-key 0.28 0.56 0.36| 1.09 0.65 0.54

Table 7. eFFS verification time (ms) with 512-bit modulus.

only a few hundred bytes of additional memory. Lastly, in gestis at least x t bits long; let{;; } be the firstt x ¢ bits
Section 3.5, we design an extension to prowvadgustable of the message digestwhere- 1,...,¢t,andj = 1,...,k;
andincrementakignature verification. With this extension, (3) computey; = r; % (s’{“ X oo X sZ““) modn for
a signature can be verified at different security levels, i.e.,i = 1,...,¢. The signature of message consists ofy;}
a verifier can use less resources to verify a signature at gori = 1,...,tand{b;;}fori =1,...,tandj =1,...,k.
lower security level. Moreover, the verificationis incremen- 1q verify the signature of message, a verifier com-

tal, i.e., the verifier can first verify a signature at a lower ,tes,, — y2 x (W0 x ... x vl*)modnfori =1,...,t.

security level, and later increase the security level by usingne signature is valid if and only if the firét x ¢ bits of

more resources. _ o . h(m, 21,...,2) are equal to thgb;; } received.
We implemented the basic Feige-Fiat-Shamir (FFS)

scheme and the eFFS scheme (i.e., with the improvement§h
and extensions mentioned above) using the large intege

arithmetic routines from CryptoLib [8]. Table 6 and Ta- £ x |n| + k ¢ bits. The signing/verification key size only

ble 7 show the times for signing and verifying (with 512-bit . .)
modulus) 128-bit message digests, using different speedupgepends O, but the signature size is proportionaltd=or

. . 1 _hi — 2
techniques and different eFFS/FFS parameers).® The e_xar_nple, V\.”.th 5.12 bit m_odqlus ar@,) = (128,1), _the
results were obtained on a Pentium Il 300 MHz machine signing/verification key size is 8256 bytes, and the signature

.) size is 80 bytes.
running Linux.
. . L The security level of FF&, t) depends on the following:
3.1. Feige-Fiat-Shamir signature scheme (1) the size of modulus, (i.e., the size of the primesand
In the basic FFS signature scheme with paramgten q), and (2) the value of produét. A system with a longer
[3, 4], each signer chooses two large prinpeandgq, and modulus is more secure, and a system with a lakgerod-
computes modulus = pq. Then, the signer chooses uctis more secure. If two systems with the same modulus

Assuming|v;| = |n| and|s;| = |n|, where|z| denotes
fhe size ofz in bits, both the signing key and verification
key sizes ardk + 1) x |n| bits, and the signature size is

k integersvy, ..., v (or k integerssy, ..., s;), and com- and samé:t product (but differenk andt values), then their
putesy,...,sg (O vy,...,v;) by s2 = v modn. The security levels are about the same. For a fikegroduct,
signing key is{s1,..., sk, n} and the verification key is we can reduce the signature size by using a sma{&nd a
{vi,...,vg,n}. largerk). Fort = 1, the signature size is minimized, but the
To sign message:, the signer does the following steps: signing/verification key size is maximized. Moreover, for
(1) choose random integers;y, ..., r;, between 1 and, a fixed k¢t product, the signing/verification time is smaller
and compute;; = 72 modn fori = 1,...,t; (2) calculate whent is smaller (see Table 6 and Table 7). Therefore, we
the message digektm, z1, ..., z:) where the message di- recommend to use = 1 except when adjustable verifica-

gest functiork(-) is public knowledge and the message di- tion is needed®

9Note that the produckt determines the security level of eFFS/FFS
for the same modulus. We discuss more about paramgtet$ later in 100ur extension to provide adjustable and incremental signature verifi-
Section 3.1. cation, which is described in Section 3.5, requires 1.

3.2. Small verification key components

In FFS, the sizes of signing key componefis} affect
the signing time, and the sizes of verification key compo-
nents{v;} affect the verification time. An improvement
idea suggested in [12] is to use small prime numbess
the verification key componen{s; } and compute the sign-
ing key componentgs;} by s? v;l modn. This im-
provement (labeled as “small v-key” in Table 6 and Table 7)

12% to 20% (see Table 6). The amount of additional mem-
ory needed is only a few hundred bytes for storing a few
large integers (with 512-bit modulus).

3.4. Precomputation: memory-time tradeoff

One important feature of FFS is that a signer/verifier can
trade memory for signing/verification time. We propose to
use the following improvement (labeled “precomp” in Ta-
ble 6 and Table 7) to speed up signing/verification operation

has two advantages. First, the verification time is an orderby using more memory at signer/verifier.

of magnitude smaller than without this improvement (and
the signing time is not affected). Second, the verification
key size becomes smaller. In practice, foup to 128, the
verification key component&;} are always less thadt®.
Thus, for a 512-bit modulus arfd= 128, the signing key

To illustrate the basic idea of this improvement, consider
the signing operation witk = 4. To sign a message, a

signer computes; = r; x (st x ... x s44) modn, for
i =1,...,t. Sincesy,...,ss do not change from mes-
sage to message, amg, ..., b, are either one or zero,

size is 8256 bytes, and the verification key size is 320 bytes.the signer can precompute and store the product (njod
Since a signing key is private to a signer, the relatively large of every non-empty subset dfsi,...,ss}. Let Sy, .4,

signing key size does not pose a problem.

3.3. Chinese remainder theorem speedup

We propose to use the following improvement (labeled
as “crt” in Table 6), which is based on the Chinese Re-

denote the precomputed produdt x ... x si* modn.

Then, to sign a message, the signer can compytay
Ty X Sbn...bm modn.

For largek, it is not practical to precompute the product
(mod n) of every non-empty subset dfs;,...,sg}. In-

mainder Theorem, to speed up signing operation. In FFS,stead, the signer partitions, ..., s} into smaller sets

the signing operation involves the computingyef= r; x
(shit x ... x s%”“) modn where{s;} do not change and
only {r;} and {b;;} change from message to message.
Let f(r;,{bij},s1,...,s%) denote the arithmetic function
ri x (s¥ x ... x shi*). Basically, the functiory(-) com-
putes the product of some large integers, and the in-
teger f(-) modn. Since onlyy; is needed (and the actual
value of f(-) is not needed), the multiplication operations
in f(-) can be done in mod for efficiency.

Moreover, as = pgq, by using Chinese Remainder The-
orem,y; (= f(-) modn) can be computed from two smaller
integersa; = f(-) modp, andb; = f(-) modg. In par-
ticular, the Chinese Remainder Theorem says that
(aixgxp,t4+bixpxp, ') modn wherep, ! = p~! modg
andg, ' = ¢~ modp. Therefore, instead of computing
directly by onef(-) function call with multiplication opera-
tions in modr, a signer first computes andb; by two f(-)
function calls, one with multiplication operations in mpd
and the other in mog. Then, the signer computgsfrom

a; andb; by Chinese Remainder Theorem. Since there are

many multiplication operations if(-) and multiplication
operations in mogh and modqg are more efficient than in
modmn, the signing time is decreased.

and precomputes each of them. If each smaller set contains
four s;, then it is a 4-bit precomputation. Similarly, if each
smaller set contains eighf, then it is an 8-bit precomputa-
tion.

Compared to the basic FFS (with small v-key), 4-bit pre-
computation plus crt speedup reduces the signing time by
45% to 55%, and 8-bit precomputation plus crt speedup re-
duces the signing time by 60% to 70% (see Table 6). For
4-bit precomputation withk = 128 and 512-bit modulus,

a signer needs to stoil@8/4 x (2* — 1) = 480 products.
That is, additional memory of80 x 512 bits or 31 kilo-
bytes is required. The additional memory required by 8-bit,
12-bit, and 16-bit precomputation are 261 kilobytes, 2.88
megabytes, and 33.6 megabytes, respectively. Given that
a low-end desktop PC or a notebook computer has at least
16 or 32 megabytes of memory, the additional memory re-
quired by 8-bit precomputation does not pose a problem.
In the remaining experiments, we use signing with small
v-key, 8-bit precomputation and crt speedup.

Although similar precomputation can be used in verifi-
cation operations, it is not effective with the small v-key
extension. This is because with the small v-key exten-
sion, small primes are used as public key components, and

This Chinese Remainder Theorem improvement cantheir products can be computeq very e.ﬁiciently. For exam-
only be used by a signer because knowledge of the factord!€, with the small v-key extension, 8-bit precomputation in

of modulusn is required. It reduces the signing time by

Actually, [12] suggests using the filprime numbers as the verifica-
tion key component§v; }. However, since not every prime numbesatis-
fies the condition that there exists an integauch thats? = p—! modn,
we use the firsk prime numbers that satisfy the condition as the verifica-
tion key components.

verification operations reduces the verification time by less
than 10% (see Table 7). In the remaining experiments, we
use verification with small v-key and no precomputation.

3.5. Adjustable and incremental verification
In multicast or group communications, receivers typi-
cally have different amounts of resources, and the resources

available to a receiver for verification vary over time. It is kt product

thus desirable to have an adjustable and incremental sig- kt=32 kt=64 £Kkt=128

nature verification operation. An adjustable verification al- 1-level signature 1.48 2.03 3.14
lows a receiver/verifier to verify a message at a lower se- | 2-level signature 3.02 4.08
curity level using less processor time. An incremental ver- | 4-level signature 5.89

ification allows a receiver/verifier to verify a message at a
lower security level first, and later increase the security level

. : . L (ms).
by using more processor time (e.g., if the message is impor-
tant)_. . . security kt product
Since the security level of a signature scheme depends level kt=32 kt—=64 Fkt=128
on its parameters, e.g., the modulus size, an obvious ap- level Lof 1 0302 0.388 0.598
proach to provide adjustable and incremental verification is level 1 of 2 ' 0 '321 o '401
to use multiple keys (with different modulus sizes) to gen- ' '
.) . ; level 2 of 2 0.603 0.752
erate multiple signatures for different security levels. To
. . . . level 1 of 4 0.336
verify at a lower security level, the verification key with a
shorter modulus size is used to verify the corresponding sig- level 2 of 4 0.612
fy ponding sig level 4 of 4 1.164

nature. This approach is simple but very inefficient. In the
following, we design an extension to FFS that provides ad-
justable and incremental verification efficiently.

The security level of FF&,t) depends on the prod-

uct kt as well as the modulus size. Generally speaking, To | level1 level 2
if two systems have the same modulus and s&merod- Fromlevel0| 0.401 0.752
uct, then their security levels are about the same. Our From level 1 0.368

extension to provide adjustable and incremental verifica-
tion is to uset greater than one, and to include;} for

Table 8. eFFS t-level signature signing times

Table 9. eFFS verification times (ms) at differ-

ent security levels.

(a) 2-level signature

1 = 2,...,tin signatures. This is called talevel signa- To | levell level2 level3 level4
ture.'? This extension is as secure as the original scheme | FromlevelO| 0.336 0.612 0.884 1.16
because; = y? x (v?* x...xvb*) modnfori =2,...,t From level 1 0.288 0.564 0.841
can be computed easily from the original signature, which From level 2 0.287 0.567
consists of b;; } and{y; }, together with the verification key From level 3 0.291

{v1,...,vr,n} which is publicly known.
To verify at-level signature of message at security

level [of ¢t (wherel < t), a verifier does the following:
b

(b) 4-level signature

Table 10. eFFS incremental verification times
(ms) for kt = 128.

(1) computez; = y? x (v¥ x ... x v2*) modn for i = o
1,...,1,and (2) verify thats, . .., z, are equal tas, . . ., z; for (k,) = (128,1), which is2.06 + 3.19 = 5.25 ms. _
respectively, and the firgt x ¢ bits of h(m, 21, 23, . . . , ¢) Table 9 shows the (adjustable) verification times at dif-

ferent verification security levels. Table 10 shows the (in-
cremental) verification times from one level to a higher
level. Forkt = 128 and a 2-level signature, a verifier can
first verify a message at level 1 of 2 using 0.401 ms proces-
sor time, and later increase to level 2 (of 2) by using 0.368
ms additional processor time.

are equal to th¢b;; } received.

To increase the verification security level frépto [, a
verifier does the following: (1) compute = y? x (v’l’“ X
. xvk#Fymodn fori =l +1,...,1s, and (2) verify that
2l 41, - - -, 21, are equal tacy, 41, . . ., z;, respectively.

The size of at-level signature isit + (2t — 1) x |n|
bits. For a 512-bit modulus and prodigt= 128, a 1-level

signature is 80 bytes and a 2-level signature is 208 bytes. In this section, we compare eFFS(128,1) to four other

Table 8 shows d|fferertt-lev_el s_|gna_1ture_ signing times. signature schemes available from CryptoLib [8], namely:
For the_saméct product, the signing Flme_lncr_eas_es as the DSA [15], EIGamal [6], RSA [19], and Rabin [17]. We
t value increases. However, th_e signing t|m(_e is still smaller compare their key and signature sizes, and signing and ver-
than using multiple keys for d'ﬁ‘?rer.“ sepunty Ieyels_. For ification times. Then, we compare their signing and verifi-
example, the 2-I_eve| signature signing t|me_, which is _4'_08 cation rates for 1024-byte packets when each is used as the
ms forkt = 1.28' is smaller than the time to sign two (origi- signature scheme in our flow signing and verification proce-
nal 1-level) signatures, one fgk, t) = (64,1) and the other dures presented in Section 2. Experiments were performed

12Note that the original (1-level) signature does not provide adjustable ON @ Pentium [I 300 MHz machine running Linux. Four
and incremental verification. different modulus sizes, 384, 512, 768, and 1024 bits, were

4. Comparison with other Signature Schemes

used in the comparison. (Note that it is difficult to com- modulus size (bits)
pare the security levels of different signature schemes even 384 512 768 1024
if they use the same modulus size.) RSA sign | 62 127 362 794
_ _ (e=3) verify | 0.26 0.40 070 1.14
4.1. Key and signature sizes Rabin _sign | 11.3 195 475 950

Table 11 shows the signing/verification key and signa- verify | 0.14 0.20 0.38 0.56
ture sizes. The signing keys are from 96 to 384 bytes in all DSA sign 39 56 10.2 16.3
schemes except eFFS whose signing keys are much larger, verify | 51 7.6 147 242
from 6,192 to 16,512 bytes. Note that a signing key is pri- ElGamal sign 51 6.8 123 189
vate to a signer. We do not expect the relatively large eFFS verify | 244 519 157.5 3503
signing keys to pose a problem for sources/signers of packet eFFS sign | 225 3.14 534 8.13
flows 13 (128,1) verify| 0.49 0.60 079 1.0

modulus size (bits) Tgble 12. _Signing and verifying times (ms) of
384 512 768 1024 different signature schemes.
RSA signing key 96 128 192 256
(e=3) verification key| 48 64 96 128 from 3.9 to 18.9 ms, are much more efficient than those
signature 48 64 96 128 of RSA and Rabin, with times from 6.2 to 95.9 ms. On the
Rabin signing key 96 128 192 256 other hand, the verification operations of RSA and Rabin,
verification key | 48 64 96 128 with times from 0.14 to 1.14 ms, are much more efficient
signature 48 64 9% 128 than those of DSA and ElGamal, with times from 5.1 to
DSA signing key 136 168 232 296 350.3ms.
verificationkey | 164 212 308 404 By comparison, eFFS has a signing operation even more
signature 40 40 40 40 efficient than those of DSA and EIGamal, and a verification
ElGamal signing key 144 192 288 384 operation as efficient as that of RSA. This combination of
V.e”f'cat'on key| 144 192 288 384 the most efficient signing and highly efficient verification
signature 96 128 192 256 . .
= makes eFFS the best choice for most applications.
eFFS signing key 6192 8256 12384 16512 L .
(128,1) verification key| 304 320 352 384 4.3. Flow signing and verification rates
signature 64 80 112 144
L . modulus size (bits)

T_able 11. Slgnlng key, ver.|f|cat|on !(ey, and 384 512 768 1024

signature sizes (bytes) of different signature RSA _flow signing 1910 1080 415 193

schemes. (e=3) flow verification | 6730 6360 5590 493(

In RSA and Rabin, verification keys are from 48 to 128 | Rabin flowsigning | 1190 743 323 1695
bytes. In DSA, ElGamal, and eFFS, verification keys are flow verification | 7440 7130 6680 617
slightly larger, from 144 to 404 bytes. Even for receivers DSA flowsigning | 2740 2100 1310 871
with limited resources, we believe that a verification key as flow verification | 2230 1530 935 606
large as 400 bytes would not pose a problem. ElGamal flow signing 2330 1850 1140 740

The signature of DSA is the smallest and is 40 bytes for flow ve.rm(.:atlon 602 294 99 45
all modulus sizes. For all of the other schemes, the signa{ €FFS flowsigning | 3750 3060 2180 157(
tures are larger and about the same size, 48 to 256 bytes. In (128,1) flow verification| 6140 5930 5540 498(

particular, the signature sizes of eFFS and the popular RSA Table 13. Flow signing and verification rates
are about the same. (packets/sec) for 1024-byte packets, degree

4.2. Signing and verification times two tree chaining, and block size sixteen.

Table 12 shows the signing and verification times for a Table 13 shows the flow signing and verification rates
16-byte message (digedf).DSA and ElGamal have been of our flow signing and verification procedures (for 1024-
designed to achieve efficient signing (e.g., for use in smart-byte packets, degree two tree chaining, block size sixteen,
card applications), and RSA and Rabin have been designe@nd 100% of processor time of a Pentium Il 300 MHz ma-
to achieve efficient verification. From Table 12, note that chine). Both DSA and ElGamal have low flow verification
the signing operations of DSA and ElGamal, with times rates, rendering them inappropriate for receivers with lim-

FETS—— deed 100 | . | devi o ited resources, such as personal digital assistants and low-
uchn signing kKeys are inaee 00 large 1or smal evices, sucn as H
smartcards, but it is unlikely that these devices would generate flows. end notebook computers. Both RSA and Rabin have low

14We usee=3 in RSA to obtain its fastest verification time without af- f!OW signing rates, rendering them_lnappropnate fpr r_eal'
fecting its signing time. time generated flows, such as live video/audio applications.

By comparison, eFFS provides high flow signing rates suit- References
able for real-time generated flows while its flow verification

rates are also very high. [1] T. Ballardie. Scalable Multicast Key Distribution, RFC
. 1949 May 1996.
5. Conclusions [2] S. E. Deering. Multicast Routing in Internetworks and Ex-
We investigated the problem of signing/verifying delay- tended LANSs. InProc. of ACM SIGCOMM ’88Aug. 1988.
sensitive packet flows to provide data authenticity, integrity, [3] U. Feéige, A. Fiat, and A. Shamir. Zero Knowledge Proofs

of Identity. InProc. of the 19th Annual ACM Symposium on
Theory of Computingl987.

[4] A. Fiat and A. Shamir. How to Prove Yourself: Practi-
cal Solutions to Identification and Signature Problems. In

and non-repudiation for Internet applications. We have de-
signed flow signing and verification procedures, based upon
a tree chaining technique, to meet the following require-

ments: (i) flow signing is efficient and delay-bounded (for CRYPTO '86pages 186-194, 1987.

real-time generated flows), (ii) flow verification is highly ef- ~ [5] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
ficient (for receivers with limited resources), (iii) packets in L. Zhang. A Reliable Multicast Framework for Light-
a flow are individually verifiable (for best-effort multicast Weight Sessions and Application Level Framing. Aroc.
delivery), (iv) packet signatures are small (for a small com- of ACM SIGCOMM "951995.

[6] T. E. Gamal. A Public-Key Cryptosystem and a Signature

munication overhead), and (v) verification at a receiver is) :
Scheme Based on Discrete Logarithms. ARYPTO '84

adjustable to different security levels and can be carried out .

. . L re s Springer-Verlag, 1985.

|ncrem_entally (for receivers W't_h I'_m'ted resoulrf:es). [7] R.Gennaro and P. Rohatgi. How to Sign Digital Streams. In
We implemented our flow signing and verification pro- CRYPTO'971997.

cedures and performed experiments to compare different [8] J. B. Lacy, D. P. Mitchell, and W. M. Schell. CryptoLib:

chaining techniques. From experimental results, we rec- cryptography in software. IRroceedings of USENIX: 4th

ommend the use of degree two (binary) tree chaining since UNIX Security Symposiyrdct. 1993.

it requires the smallest packet signature size (i.e., smallest [9] L.Lamport. Constructing digital signatures from a one-way

communication overhead) while its signing and verification function. Technical Report CSL 98, SRl Intl., 1979.

rates are comparable to the rates of other chaining tech_[10] R. C. Merkle. A Digital Sighature based on a Conventional
Encryption Function. 'CRYPTO '871987.

nigues. Our flow signing and verification procedures are [11] R. C. Merkle. A Certified Digital Signature. IBRYPTO

very efficient and achieve one to two orders of magnitude '89, 1989.

improvement compared to the sign-each approach. [12] S. Micali and A. Shamir. An Improvement on the Fiat-
To further improve our procedures, we propose sev- Shamir Identification and Signature Scheme. CIRYPTO

eral extensions to the Feige-Fiat-Shamir digital signature '88, pages 244-247, 1990.

scheme [3, 4] to speed up both the signing and verification [13] s. Mittra. lolus: A Framework for Scalable Secure Multi-
operations, as well as to allow adjustable and incremental , . ¢asting. InProc. of ACM SIGCOMM '971997.

. . [14] S. Mittra and T. Y. Woo. A Flow-Based Approach to Data-
verification. The extended scheme, called eFFS, is com- gram Security. IiProc. of ACM SIGCOMM '971997.

pared to four other digital signature schemes, RSA[19], Ra- [15] National Institute of Standards and Technology. Digital Sig-

bin [17], DSA [15], and EIGamal [6], on the same comput- nature Standard. NIST FIPS PUB 86, U.S. Department of
ing platform (Pentium 11 300 MHz machine running Linux). Commerce, May 1994,

The signing operation of eFFS is more efficient than [16] C.Partridgelsing the Flow Label Field in IPv6, RFC 1809
those of the other four schemes. The verification operation June 1995. _ _ _
of eFFS is as efficient as that of RSA (tie for a close sec- [17]1 M. Rabin. Digitized signatures and public-key functions as
ond behind the verification operation of Rabin). In addition intractible as factorization. Technical Report LCS/TR-212,

to efficient siani d ificati h tended th MIT Laboratory for Computer Science, 1979.
0 elncient signing and verincaton, we have extende e 18] R. L. Rivest. The MD5 Message Digest Algorithm, RFC

eFFS scheme to allow a receiver to efficiently carry out ad- 1321 Apr. 1992.

justable and incremental verification. Such a capability is [19] R. L. Rivest, A. Shamir, and L. Adleman. A method for

useful for large-scale multicast applications with a variety obtaining digital signatures and public key cryptosystems.

of receivers including some with limited resources. Communications of the ACNM1(2):120-126, 1978.
Additional experimental results can be found in our tech- [20] C. K. Wong, M. Gouda, and S. S. Lam. Secure Group

nical report [21] available at the following URLS. Communications Using Key Graphs. Rioc. of ACM SIG-

COMM 98, Vancouver, B.C., Sept. 1998.
[21] C.K.Wongand S. S. Lam. Digital Signatures for Flows and
Multicasts. Tech Report TR 98-15, Department of Computer

http://www.cs.utexas.edu/users/lam/NRL/netwedcurity.html
http://www.cs.utexas.edu/users/ckwong

Sciences, The University of Texas at Austin, May 1998.
ACknOWledg.ement . [22] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zap-
We would like to thank the anonymous reviewers for pala. RSVP: A new resource ReSerVation ProtodBEE

their comments and suggestions. Network Magazingd(5), 1993.

