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Abstract

Background: Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome

analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard

deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro

expression profiles. Furthermore, these algorithms tend to report biased estimations.

Results: Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression

profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies.

Conclusions: The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile

deconvolution and will be useful in studying individual cell types of complex tissues.

Background

Cellular heterogeneity is present in nearly all biological

specimens. When the genome-wide transcriptional pro-

file of heterogeneous samples is measured under differ-

ent physiological states, any observed differences are

strongly confounded by differences in cell type composi-

tions between samples [1-3]. Recent studies suggest that

the microenvironment of a tissue may change under dif-

ferent physiological states and can contribute to the eti-

ology of diverse diseases [4-10]. Consequently, to fully

understand gene expression differences associated with

different physiological states, deconvolution of tissue ex-

pression into the component expression profiles of each

cell type is critically needed.

Fluorescence Activated Cell Sorting (FACS), Laser

Capture Micro-dissection (LCM) and Translating Ribo-

some Affinity Purification (TRAP) have been used to

physically separate defined cell types before gene expres-

sion analysis [2,11-13]. However, technical difficulties,

such as limited availability of good surface markers, cell

type specific promoters and transgenic models, have re-

stricted the application of these techniques. Further-

more, the sorting process may introduce additional

stress on cells and hence alter their gene expression

profiles.

Unsupervised mixture models have been developed to

solve the gene expression devolution problem. For ex-

ample, a Latent Dirichlet Allocation (LDA) model

trained with a variational expectation maximization

framework was used to estimate the breast cancer cell

gene expression profiles from heterogeneous tumor sam-

ples [14]. An alternative approach [15] is to first reduce

the observed mixture using standard dimension reduc-

tion algorithm, such as principal components analysis

(PCA) or independent components analysis (ICA), find a

minimum-volume polytope with k vertices that enclose

the reduced data and then transform the reduced data

back to the gene expression profiles. The success appli-

cation of these unsupervised approaches will depend on

the availability of large number of observation over a

wide range of tissues [14,16]. In addition, these algo-

rithms do not use the biological knowledge on the cell

type markers.

Several supervised and semi-supervised computa-

tional deconvolution algorithms have also been pro-

posed to tackle this problem [17-21]. However, they

require prior knowledge of either the cell type frequen-

cies within a given tissue [19,20], or the in vitro gene

expression profiles of each component cell type [17,18].
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In reality, this information can be difficult to obtain

and presents a major roadblock for these kinds of ap-

proaches. Our previous work [22] has proved that gene

expression deconvolution should be done in linear

space rather than log-transformed space, as is often

used in microarray studies. Based on our previous find-

ings, we propose a novel Digital Sorting Algorithm

(DSA) that can deconvolve the expression of a tissue

into the component profiles of each cell type using a

set of marker genes that are highly expressed in each

cell type.

Results and discussion
To test whether our proposed DSA algorithm can esti-

mate the cell type proportions in a mixed tissue or cell

population, we analyzed a benchmark dataset where

RNA from the liver, brain and lung of a rat were mixed

at 11 different proportions and the mixing parameters

are known. The gene expression of pure liver, brain, and

lung, and of the mixed samples, was measured using

Affymetrix expression arrays. DSA uses a set of gene

markers that are highly expressed in specific cell types

to estimate the cell type frequencies; the expression level

of these markers in pure cell types is not required. A list

of tissue-specific markers for the liver, brain and lung

was obtained from Tissue-specific Gene Expression and

Regulation (TIGER) [23] database and GENENOTE [24]

(Additional file 1: Table S1). Using these markers, we

were able to estimate the cell type frequencies for each

cell type from the mixtures (Figure 1a). Our results dem-

onstrate that DSA can accurately estimate the cell type

proportions using marker genes.

Next, we examined whether DSA can accurately

deconvolve the gene expression profile from mixed tis-

sue samples into tissue specific expression profiles.

Using the cell type frequencies we estimated using

marker genes, we were able to accurately estimate the

expression profiles of the liver, brain and lung cells that

constitute the mixture (Figure 1b-d). The deconvolved

expression was highly correlated with the true gene ex-

pression profile in each tissue type. The error measure

was smaller for genes that are highly expressed, as would

be predicted given that technical variations tend to have

larger impact for genes that are expressed at low levels.

The effect of the number of marker genes used in esti-

mating the proportion of each cell type was also studied.

We randomly sampled the marker genes from the

TIGER list (Additional file 1: Table S1). In 100 repeti-

tions, we plotted the correlation and mean absolute dif-

ference between the estimated and pure cell-specific

expressions against the number of markers used. Our re-

sults demonstrate that DSA is robust to the number of

marker genes and only requires several marker genes for

accurate gene expression deconvolution (Additional file 2:

Figure S1).

We next asked whether DSA can identify differentially

expressed genes between different tissue types. To do

this, we computed the gene expression fold change using

the deconvolved gene expression profile, and then car-

ried out a Receiver Operator Curve (ROC) analysis to

assess DSA’s ability to detect changes more than two-

fold between any tissue types. Our results demonstrate

that DSA is highly specific and sensitive in identifying

differentially expressed genes (Figure 1e-f ).

In the benchmark data, liver, brain and lung were used

to construct the mixtures. However, the expression dif-

ferences between different cell types within a tissue sam-

ple are much smaller compared to the differences

between liver, brain and lung. Hence, we tested whether

our DSA algorithm works on real tissue samples com-

posed of cell types with gene expression profiles that are

more similar to each other.

IM-9, Raji, Jurkat and THP-1 cells were mixed in dif-

ferent proportions and the expression profile of each

mixture was measured by microarray [19]. Marker genes

for each of the cell types was extracted from the Immu-

nogenetic Related Information Source (IRIS) database

[25]. First, we used the genes that are highly expressed

in each of these cells (Additional file 3: Table S2) to esti-

mate the cell type proportions accurately (Figure 2a).

Next, using the estimated cell type frequencies, we

deconvolved the expression profiles of the mixture into

profiles for each individual cell type (Figure 2b and

Additional file 4: Figure S2). Finally, to test whether the

estimated expression profiles of immune cells can be used

to identify genes that are differentially expressed between

cell types, we applied an ROC analysis on our decon-

volved expression profiles (Figure 2c and Additional file 5:

Figure S3). High AUC values (0.8 or higher) were ob-

served, indicating that differentially expressed genes

can be identified accurately with high specificity and

sensitivity.

Population specific expression analysis (PSEA) [26] is

an algorithm that has the same input parameters as

DSA. However, PSEA uses the marker gene information

as normalization factors in the gene expression deconvo-

lution analysis. Hence, the estimated gene expression

profiles are not the absolute gene expression values, but

are relative to the average of the marker genes for each

cell type. In practice, the marker genes from different

cells are not guaranteed to have the same expression

level. This critical assumption of PSEA makes compar-

ing results between different cell types biased towards

the marker gene expression.

To compare the performance of DSA and PSEA, we

tested both algorithms on the liver-brain-lung benchmark

dataset. The fold change differences estimated by DSA are
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highly correlated with the true difference (Figure 3a).

However, the fold change differences estimated by PSEA

between liver and brain are all negative, due to the fact

that the marker genes of liver are expressed at higher

levels than the markers genes of brain (Figure 3b). Our re-

sults demonstrate that the fold change estimated by DSA

is more accurate than PSEA. Since DSA only assumes that

marker genes are highly expressed and does not require

the marker genes to be expressed at same level, DSA tends

to estimate the absolute expression level as measured by

the array on pure cell populations.

We were next interested in determining the lower

limit of cell type frequency that could be estimated from

a mixed tissue. To test this, we simulated blood samples

using 6 different immune cell types with cell type

proportions ranging from 60% to 0.1% (Figure 4 and

Additional file 6: Table S3). Cells that are present at a

frequency greater than 10% in the tissue sample could

Figure 1 Unbiased estimation of tissue type specific profiles. (a) Mixing proportions were estimated using markers for liver, brain and lung.

DSA estimation can recapitulate the true percentage of each cell type in the mixture. (b-d) DSA estimation of liver, brain and lung gene

expression profiles compared against true expression profiles measured using pure tissue samples. (e-f) ROC analysis on differential gene

expression analysis of brain vs. liver and lung vs. liver using DSA.
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be accurately estimated (Figure 4a-c). Cell types that are

present at greater than 1% but less than 10% can still be

estimated, though with relatively larger errors (Figure 4d-e).

Cell types that are present at lower than 1% in the tissue

failed to be identified (Figure 4f). To summarize our results

systematically, we plotted the error of estimation and fre-

quencies of each cell type against the signal to noise ratio

(SNR). Clearly, SNR decreases as cell type frequency goes

down, and the mean square of errors (MSE) goes up with

decreasing SNR (Figure 5d). To assess the sensitivity and

Figure 2 Unbiased estimation of cell type specific profiles. (a) Cell type frequencies were estimated using markers for IM-9 cells (green), Raji

cells (blue), Jurkat cells (red), and THP-1 cells (purple). (b) DSA estimation of the gene expression profiles of IM-9 cells compared against true

expression profiles measured using pure cell samples. (c) ROC analysis on differential gene expression analysis of estimated IM-9 cells vs. Jurkat

cells using DSA.

Figure 3 Comparison between DSA and PSEA. (a) Fold change estimated by DSA compared against the true fold change between liver and

brain samples. The dotted line represents the reference line where all the points should follow. (b) Fold change estimated by PSEA compared

against the true fold change between liver and brain samples.
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Figure 4 (See legend on next page.)
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specificity of differential gene analysis, we applied ROC

analysis on deconvolved expression profiles and found that

samples with high accuracy in deconvolution have high

AUC value. For samples that have low frequencies in a tis-

sue and poor accuracy in deconvolution, differential gene

analysis can still identify genes that are significantly

changed between cell types with reasonable -- but signifi-

cantly reduced -- sensitivity and specificity (Figure 5a-c).

We next tested whether DSA is capable of estimating

the frequency of a cell type in a mixed tissue in vivo, and
subsequently obtaining its gene expression profile. To

this end, we applied our algorithm on a set of human

Figure 5 (a-c) The AUC analysis of cell types that have high and low confidence of deconvolved gene expression profile. Eosinophil and

myeloid dendritic cells have the best AUC scores since these two cell types have the highest proportions in the mixed samples. Naïve B-cells and

basophils yield poor but still informative AUC scores, as these two cell types have the lowest frequency in the mixed samples. (d) The plot of

mean square of error (MSE) and weight against signal-to-noise ratio (SNR). The best cut-off point was observed around 45. Cell types that are

present at too low of a frequency in a given tissue will have dramatically increased errors.

(See figure on previous page.)

Figure 4 The estimated transcriptomes for 6 different immune cell types were plotted against the gene expression measured on

arrays. Cell types that have higher percentage in the tissue sample tend to have better estimation accuracy. (a-f) Scatter plots of estimated

profile against microarray measures in Eosinophil, Myeloid Dendritic, Mature B-cells, Granulocyte, Naïve B-cells, and Basophils.
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Hodgkin’s lymphomas, in which macrophage frequency

was shown to predict progression-free survival [8]. A set

of tumor associated macrophage (TAM) specific genes

was selected by comparing mouse mammary tumor as-

sociated macrophages to normal mouse splenic macro-

phages [9] (Additional file 7: Table S4). Using these

TAM-specific genes, DSA was applied to the gene ex-

pression profiles of a set of Hodgkin’s lymphomas. For each

tumor, DSA was able to estimate the percentage of TAMs

in the sample. We found that the estimated TAM percent-

age is a predictor of progression free survival for these pa-

tients (Figure 6a). A 30-fold lower p-value was achieved

using our estimation than using CD68 as a marker for

TAMs. The hazard ratio between TAM high and TAM

low group is 2.7. Using DSA, we were able to obtain

the gene expression profile of TAMs in the patient

samples. By comparing the TAM transcriptome to the

tumor transcriptome, we identified a list of genes that

are highly expressed in TAMs. When Gene Ontology

(GO) analysis was applied to these genes [10], we

identified response to wounding, defense response, and

inflammatory response as high significantly enriched

biological processes (Figure 6b). These results con-

firmed that the estimated gene expression profile is in-

deed enriched for macrophage related functions.

Conclusions
In conclusion, we have demonstrated the general feasi-

bility of a Digital Sorting Algorithm (DSA) to obtain cell

type specific gene expression profiles from a complex

tissue. DSA represents a dramatic improvement over the

conventional deconvolution approaches, which typically

require prior knowledge of cell type frequencies or

in vitro gene expression profiles for each cell type. By

using cell type specific genes, DSA overcomes these lim-

itations. We have also demonstrated that DSA is an

unbiased estimation algorithm for signal reconstruction

and deconvolution. Downstream analysis, such as differ-

ential gene analysis, will benefit from digital sorting

and yield better results. Most important of all, we have

demonstrated that DSA can be used to extract the

expression profile of a specific cell type from a complex

tissue. This will allow for investigation of the properties

of specific cell types in mixed tissues in vivo. For ex-

ample, we can obtain the gene expression profile of a

particular cell type in the cancer microenvironment just

from microarray data from the bulk tumor. In principle,

the DSA framework could be applied to any unbiased

high-throughput dataset, such as global DNA methyla-

tion array, next generation sequencing data, metabolic

data, and proteomics. Partially, RNA-seq is a more ac-

curate technology compared to microarray. The linearity

assumption holds true in RNA-seq studies, hence we be-

lieve that our DSA framework can also be applied to

RNA-seq data.

In many real-world applications, a small number of

cell type specific markers are often available to molecu-

lar biologists since these markers are frequently used in

biochemical assays. For example, the cancer stem cell

markers are known for many types of tumors. The use

of these markers in gene expression deconvolution

greatly improved the performance and also enabled the

application of this algorithm not only to cancer studies,

but also to other biological studies involved with hetero-

geneous samples.

DSA is implemented in a single R package (https://github.

com/zhandong/DSA). The package also includes sample

data from liver, brain and lung benchmark data and the

cell type specific markers.

Methods

Microarray analysis

Liver, brain and lung tissues derived from a single rat

were homogenized, extracted, and mixed in 11 different

proportions in triplicates. The gene expression profile of

these mixed tissues were measured using Affymetrix

array and can be obtained from GSE19830. Immune cell

expression profiles were obtained from GSE11057 and

GSE24759. Hodgkin’s lymphoma dataset was obtained

from GSE17920. The tumor associated macrophage

marker genes were obtained from GSE18404.

Figure 6 (a) The percentage of TAMs in Hodgkin’s lymphoma tumors was negatively associated with progression-free survival.

(b) Genes that are highly expressed in DSA extracted TAMs are enriched for biological processes characteristic of macrophages, such as response

to wounding, immune, inflammatory and defense response.
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Simulated immune cells

Six different immune cell lines that were used to con-

struct references are available in the simulated blood

samples. The weights were sampled randomly in de-

creasing order (Additional file 6: Table S3).

Linear model on gene expression deconvolution

Let S be an n × k gene expression matrix that contains k
cell types and n genes, W be a k × p matrix where each

column of W contains the frequencies of k cell types in

a particular observation, and O be an n × p expression

matrix that contains the observed gene expression level,

where n represents the number of genes and p is the

number of observed tissue samples. The mixing process

can be modeled through a linear model:

O ¼ S �W ð1Þ

where S represents the source signal, W is the weight

matrix for cell type frequencies, and O is the observation

on tissue samples. In a typical gene expression profiling

setting, O is often measured through microarray or

RNA-seq. Both W and S are unknown and our goal is to

estimate S. We approach this problem by first estimating

W using cell type specific markers and then solve the

linear model using estimated W.

Estimate cell type frequencies matrix W from marker

genes

Given that we know a set of genes that has high expres-

sion level in a specific cell type and low expression in all

other cell types, we can predict the proportion of each

cell type present in the tissue sample using these genes.

Let XS be an m × k matrix that contains m cell type spe-

cific genes for k cell types. For each cell type, there could

be multiple cell type specific genes. Since each gene is

highly expressed in a single cell type, we can take an

average of all the genes that are highly expressed in a

single cell type and save the matrix as eXS .

XS ¼

g11 0 … 0
g21 0 … 0
0 g32 … 0
0 g42 … 0
0 g52 … 0
0 0 ⋱ ⋮

0 0 … gmk

0
BBBBBBB@

1
CCCCCCCA

⇒

eXS ¼

�g1 0 … 0
0 �g2 … 0
0 0 ⋱ 0
0 0 … �gk

0
BB@

1
CCA

Although eXS is unknown, the corresponding gene ex-

pression for cell type specific markers, OS and ÕS are

measured on the observed mixed samples. Substitute eXS

and ÕS to equation (1), we obtain

eOs ¼ eXS �W ð2Þ

Since eXS is a diagonal matrix, we can multiply each

side of equation (2) by the eX�1

S and obtain

eX�1

S
eOs ¼ W ð3Þ

Given that W is the frequency matrix and each column

of W sums to 1 [15], we can form a system of linear

questions of k unknown parameters, �g1…�gk , where each

column of
Xk

i¼1

eX�1

S
eOs

� �
ij
¼ 1 ð4Þ

When the number of observations on the mixed samples

is greater the number of cell types involved that is p > k,
we can solve the system of equations with k unknown pa-

rameters. Once �g1…�gk is known, we can take eX�1

S into

equation (3) and compute the cell type frequency matrix.

Digital sorting on tissue samples

Input: Expression data on tissue samples and a set of

gene symbols that is known to be highly expressed in a

specific cell type.

Output: Expression profile for each of the cell types in

a tissue.

Step I: If W is known, proceed to step II, else estimate

W using XS and equation 3.

Step II: Estimate S through quadratic programming.

minS ‖O� SW‖2

s:t S≺t1 and S � t2

where O is the gene expression profile on tissue samples,

S is the expression profile for pure cell types, W is the

weight matrix estimated using the marker genes, and t1
and t2 is the maximum and minimum measurable gene

expression level. R package ‘quadprog’ is used to solve

the quadratic programming problem.

Receiver operator characteristic (ROC) analysis

R package ‘ROCR’ from CRAN [27] was used to compute

the ROC curve and the area under curve (AUC). Specific-

ally, genes with more than 2 fold increase or decrease are

included in the reference list as the positive set. Our goal

is to assess the true positive rate and false positive rate in

identifying these genes using our estimated gene expres-

sion profiles. A ratio between the estimated gene expres-

sion profiles of two different cell types is used to compute

the ROC curve. A gene is classified into the positive set if

the ratio of this gene is greater than a threshold t. A ROC

curve is generated by varying t.
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Survival analysis

Five tumor associated macrophage (TAM) marker genes

were selected by comparing the macrophage in mouse

mammary tumor to the normal splenic macrophages.

The percentage and expression profile of TAMs were es-

timated using DSA algorithm. A cox proportional hazard

model was used and a significant association was identi-

fied with survival. Further, patients are dichotomized

into two groups by comparing to the median percentage

of TAMs. A log rank test was calculated on these data.

Additional files

Additional file 1: Table S1. Marker genes for liver, brain and lung

Additional file 2: Figure S1. Correlation and mean absolute difference

between DSA estimation and original cell specific expression using

various number of marker genes. The experiment was repeated 100

times on each number of marker genes. Result show that DSA was

robust to the number of marker genes used, even with small number of

marker genes.

Additional file 3: Table S2. Marker genes for cells of the immune

system.

Additional file 4: Figure S2. DSA estimation of T-cells, B-cells, and

monocytes. Cell type specific markers were extracted from Immune

Response In Silico database. Using these markers, DSA was able to

faithfully identify the gene expression profile of B-cells, T-cells, and

monocytes from mixture samples.

Additional file 5: Figure S3. AUC analysis for differential gene analysis.

Differential gene expression analysis using estimated pure cell gene

expression profiles was able to accurately identify genes that are

differentially expressed between different cell types.

Additional file 6: Table S3. Cell type proportions for simulated blood

samples.

Additional file 7: Table S4. Marker genes for Macrophages.
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