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DIGITAL STRAIGHT LINES IN THE
KHALIMSKY PLANE

ERIK MELIN

Abstract

We consider the digital plane of integer points equipped with the Khalimsky topology. We suggest
a digitization of straight lines such that the digitized image is homeomorphic to the Khalimsky
line and a digitized line segment is a Khalimsky arc. It is demonstrated that a Khalimsky arc is the
digitization of a straight line segment if and only if it satisfies a generalized version of the chord
property introduced by Rosenfeld.

1. Digitization of straight lines

We are interested in representing lines in the digital plane, Z2. One widely used
digitization is the one considered by Azriel Rosenfeld [6]. Define the set

C(0) = {x; x1 = 0 and −1/2 < x2 ≤ 1/2}
∪ {x; −1/2 < x1 ≤ 1/2 and x2 = 0}.

For each p ∈ Z2, let C(p) = C(0) + p. Note that C(p) is a cross with center
at p, that C(p) ∩ C(q) is empty if p �= q, and that

⋃
p∈Z2 C(p) is equal to

the grid lines (R × Z) ∪ (Z × R). We now define the Rosenfeld digitization of
A ⊂ R2:

DR: P(R2) → P(Z2), DR(A) = {p ∈ Z2;C(p) ∩ A �= ∅}.
Since the union of the crosses is the grid lines, a straight line or a sufficiently
long line segment has non-empty digitization. We briefly discuss some termin-
ology in this context: C(p) is called a cell with nucleus p. In general, C(p)

may be any subset of a space X, and is defined for every p in some subspace
Z of X. Using the definition above, the digitization of a subset of X is a subset
of Z, completely determined by the cells. If (X, d) is a metric space and

C(p) ⊂ {x ∈ X; ∀b ∈ Z, d(x, p) ≤ d(x, b)},
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then we talk of a Voronoi digitization. Such a digitization may be thought of
as a reasonable metric approximation. Note that DR is a Voronoi digitization;
C(p) is contained in the set {x ∈ R2; ‖x − p‖∞ ≤ 1

2 }.
In the real plane, the concept of straight lines is old and very well known;

a straight line is a set of the form {(1 − t)a + tb; t ∈ R}, where a and b are
two distinct points in the plane. A straight line segment is a connected subset
of a line. We shall consider closed segments of finite length (possibly empty),
which, unless empty, we may write as {(1− t)a+ tb; t ∈ [0, 1]}, where a and b

are the endpoints. We will denote such a segment by [a, b]. Like Rosenfeld, we
will have to exclude lines and straight line segments with a slope 45◦ +n ·90◦,
wheren is an integer – for certain such lines, the Rosenfeld digitization is not an
8-arc (see Section 5.1); to be precise, consider the line defined by y = x+1/2.
The Rosenfeld digitization of this line is

{(n, n); n ∈ Z} ∪ {(n, n + 1); n ∈ Z}
and this set is too fat. This may seem unsatisfying, but fortunately this special
case is trivial to handle if needed; we have to choose one of the terms of the
union above.

In his famous paper [6], Rosenfeld used a slightly different digitization.
For lines with slope strictly between 45◦ and −45◦ he considered only the
intersections with the vertical grid lines. Near the ends of line segments, this
may result in a different digitization – namely if the line intersects a horizontal
segment of a crossC(p), and then ends before it reaches the vertical segment of
the same cross. This, however, does not matter so much, since it only influences
the length of the digital line segments; it does not affect the properties of the
digitization. When we talk about the Rosenfeld digitization below, we mean
our version, although it does not really matter which version we use. We will
discuss some properties of the Rosenfeld digitization below, and motivate why
we suggest another digitization. To begin with, we want to recall the definition
of the Khalimsky topology.

2. The Khalimsky topology

There are different ways to introduce the Khalimsky topology on the integer
line. One rather elegant way is to use a function f : R → Z that approximates
any real number by the closest integer (and when there is a choice, i.e., for the
half-integers, always prefers the closest even integer). The Khalimsky topology
on Z is the strongest topology such that f is continuous, when R has the
Euclidean topology. This definition has some immediate consequences. For
example, since Z is now the continuous image of a connected set, Z is connected
in the Khalimsky topology.
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We can also give the Khalimsky topology explicitly, by specifying a topo-
logical basis. For every even integer m, the set {m− 1,m,m+ 1} is open, and
for every odd integer n the singleton {n} is open. A basis is given by

{{2n + 1}, {2n − 1, 2n, 2n + 1}; n ∈ Z}.
It follows that even points are closed. A digital interval [a, b] ∩ Z with the
subspace topology is called a Khalimsky interval, and a homeomorphic image
of a Khalimsky interval into a topological space is called a Khalimsky arc.

On the digital plane Z2, the Khalimsky topology is given by the product
topology. A point with both coordinates odd is open. If both coordinates are
even, the point is closed. These types of points are called pure. Points with
one even and one odd coordinate are neither open nor closed; these are called
mixed.

Pure, open
Pure, closed
Mixed

5

4

3

2

1

0
0 1 2 3 4 5

Figure 1. Part of the Khalimsky plane

In Figure 1, a part of the Khalimsky plane is shown; the lines indicate which
points are connected. Note that the mixed points are only connected to their 4-
neighbors, whereas the pure points are connected to all eight neighbors. These
properties are discussed in [2], [1], where also a more systematic study of the
Khalimsky topology can be found.

2.1. Continuous functions

Having equipped Z with the Khalimsky topology, we may speak of continuous
functions Z → Z. It is not hard to see that a continuous function f must be
Lipschitz with Lipschitz constant 1; we say it is Lip-1. Indeed, a set {m, n} is
connected if and only if |m−n| ≤ 1. A continuous image of a connected set is
connected; this means in particular that |f (n+1)−f (n)| ≤ 1 for every n. Lip-
1 is however not sufficient for continuity. It is not hard to prove that f : Z → Z is
continuous if and only if: (i) f is Lip-1 and (ii) For every x, f (x) �≡ x(mod 2)
implies f (x ± 1) = f (x). (See for example Lemma 2.7 of [5].) Using this
result, it is also easy to check that the mapping Z → Z2, x �→ (x, f (x)) is
in fact a homeomorphism from Z to its image, assuming f to be continuous.
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Hence, the graph of a continuous function on a Khalimsky interval is always
a Khalimsky arc.

3. Notions of mathematical morphology

We will need some concepts from mathematical morphology, see [8, Chapter
II] or [4], for an introduction to this topic.

Let (G,+) be a commutative group. We may then speak of Minkowski
addition of two subsets;

A + B = {x + y; x ∈ A, y ∈ B}
is called the Minkowski sum of A and B. Given any subset A of G we also
define the opposite set as Ǎ = {−x; x ∈ A}. Let us fix a set B ⊂ G. The
operation on subsets of G defined by A �→ A+B is called dilation by B. The
operation A �→ A � B, where A � B = (Ac + B)c by definition, is called
erosion by B. Combining these operations, we may define the B-opening as
AB = (A�B̌)+B, and theB-closure asAB = (A+B̌)�B = ((A+B̌)c+B)c.
In this paper, we will only need to consider the B-closure. It can be shown that
the mapping A �→ AB is extensive, increasing and idempotent under the order
of set inclusion.

4. Continuous digitization

One drawback with the Rosenfeld digitization of R2 when one has equipped
Z2 with the Khalimsky topology is that the Rosenfeld digitization is designed
to work well with 8-connectedness (see Section 5.1). In the Khalimsky plane,
only pure points are connected to all 8 neighbors. In particular, this means that
the Rosenfeld digitization of a line or straight line segment is not in general
connected in the Khalimsky sense.

In this section, we will suggest an alternative digitization of a straight line.
We will call this digitization the Khalimsky continuous digitization, or often just
continuous digitization. The digitized line will be connected in the Khalimsky
sense; in fact, it will be a homeomorphic image of the Khalimsky line. Let

D(0) = {(t, t) ∈ R2; −1/2 < t ≤ 1/2} ∪ {(t,−t) ∈ R2; −1/2 < t ≤ 1/2}.
For each pure point p ∈ Z2, define D(p) = D(0) + p. Note that D(p) is
a cross, rotated 45◦, with center at p, and that D(p) is contained in the set
{x ∈ R2; ‖x − p‖∞ ≤ 1/2}. This means that a digitization with D(p) as a
cell with nucleus p is a Voronoi digitization. Compare with the C(p) used in
the Rosenfeld digitization discussed above. Let us first define an intermediate,
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pure digitization of a subset A of R2:

DP(A) = {p ∈ Z2; p is pure and D(p) ∩ A �= ∅}.
This digitization is the basis for continuous digitization. To make everything
work as we wish, certain mixed points have to be added. In words, a point
belongs to the continuous digitization if it belongs to the pure digitization or
if the two points (p1 ± 1, p2) or the two points (p1, p2 ± 1) belong to the pure
digitization. If p is mixed, then (p1 +1, p2) and (p1 −1, p2) are both pure, and
the operator adds the missing point p in between, gluing these points together.
Now we formally give the definition of continuous digitization:

Definition 4.1. Let L be a Euclidean line or a line segment. The continu-
ous digitization D(L) of L is defined as follows: If L is horizontal or vertical
D(L) = DR(L). Otherwise define DM(L) as

DM(L) = {p ∈ Z2; (p1 ± 1, p2) ∈ DP(L)} ∪ {p ∈ Z2; (p1, p2 ± 1) ∈ DP(L)}
and let

D(L) = DP(L) ∪ DM(L).

As was the case for the Rosenfeld digitization, we will have to make an ex-
ception for a certain family of lines and line segments. Here it is the horizontal
lines and the vertical lines; in the Rosenfeld case, it was the diagonal lines. In
fact, the reason is precisely the same – the digitization of some lines would
be too fat. As will be seen below, the first step of continuous digitization is
closely related to Rosenfeld digitization, one difference being that the plane
and the grid lines are rotated 45◦.

Using notation from mathematical morphology, we can much simplify the
formula in the definition above when L is not horizontal or vertical. Compared
with the pure digitization, certain mixed points are added in the continuous di-
gitization. This process can be described as a morphological closure operation
with the following set: M = {(0, 0), (1, 0), (0, 1), (1, 1)}. We have

D(L) = (DP(L))M = ((DP(L) + M̌)c + M)c.

Remark 4.2. While the morphological formula is a convenient way of
writing the relatively complicated definition, an algorithm should probably
instead be based on the following recursive approach (here formulated for
lines with slope strictly between 0◦ and 45◦): Suppose that a pure point pi is in
the digitization. If L meets D(pi + (1, 1)), let pi+1 = pi + (1, 1), otherwise
let pi+1 = pi + (1, 0) and pi+2 = pi + (2, 0).



54 erik melin

Pure digitization Continuous digitization

The cross D (p)

Point in DP(L)

Point in D (L)
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Figure 2. Example of pure and continuous digitization of a line segment

In Figure 2, this definition is illustrated. We will first show the approximation
properties of this digitization are not too bad; to be precise, we will show
that the distance from this digitization to the original line is not too big. To
formulate it, we need consider the distance between a subset A of a metric
space (X, d) and a point x in the space defined by d(A, x) = infy∈A d(x, y).
Sometimes, we will let dp denote the lp-metric (where 1 ≤ p ≤ ∞), in order
to avoid misunderstandings. We also let dp denote the corresponding set-point
distance.

Remark 4.3. Let L be a Euclidean line. It is easy to see that if p is pure
and d∞(L, p) < 1/2, then p ∈ D(L). In contrast to this, note that the line
may pass through a mixed point that does not belong to the digitization. For
example, the line y = x − 1 has the digitization {(n, n); n ∈ Z}.

Proposition 4.4. Let L be a Euclidean line in R2. Then d∞(L, p) ≤ 1/2
for every p ∈ D(L). Moreover, for every x ∈ L we have d1(D(L), x) ≤ 1.

Proof. For a horizontal, vertical or diagonal line, these statements are easy,
so we need not consider such lines any further. For the first statement, suppose
that p ∈ D(L). If p is pure, then the statement is true by construction. If p is
mixed, then either (p1 ± 1, p2) ∈ D(L) or (p1, p2 ± 1) ∈ D(L). In the first
case, L meets both D(p1 − 1, p2) and D(p1 + 1, p2), and therefore must pass
through {y ∈ R2; ‖y − p‖∞ ≤ 1/2}. The other case is similar.

To prove the second statement, note that the family of sets

{{x ∈ R2; d1(x, p) ≤ 1}; p is pure}
covers the plane. Let x ∈ L and p be a pure point such that d1(x, p) ≤ 1.
If p ∈ D(L) we are done, so suppose this is not so. Then d∞(x, p) ≥ 1/2,
which means that x belongs to one of the four triangles in the set

{x ∈ R2; d1(x, p) ≤ 1 and d∞(x, p) ≥ 1/2}.
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Suppose for definiteness that x belongs to the right-most triangle; in other
words that x1 ≥ p1 + 1/2. By combining the slope assumption with the fact
that L does not meet D(p), we conclude that L intersects D(p + (1, 1))
and D(p + (1,−1)). But this implies that p + (1, 0) ∈ D(L) and clearly
d1(x, p + (1, 0)) ≤ 1.

Now we turn to the theorem which motivates the definition of continuous
digitization:

Theorem 4.5. Suppose that L is a real line. Then D(L) is homeomorphic
to the Khalimsky line. If [a, b] is a line segment, then D([a, b]) is a Khalimsky
arc (possibly empty).

Proof. For a horizontal, vertical or diagonal line or line segment, the con-
clusion follows easily. Let L be a real line. We may restrict ourselves to the
case where the slope is strictly between 0 and 45◦ – this is sufficient because of
symmetry in the definition. First we show that there are no two points x and y

in the digitization such that x1 = y1 and x2 �= y2. We consider two cases. If x
is mixed, then by the slope assumption, the two pure points (x1 ±1, x2) belong
to the digitization. Therefore L cannot meet any D(p) of a pure point with the
same first coordinate as x. Nor can it meet any D(p1, p2) where p1 = x1 − 1
and p2 ≥ x2 + 2 or where p1 = x1 + 1 and p2 ≤ x2 − 2. Hence there cannot
be any other mixed point in the digitization with the same first coordinate.

If x is pure, then L cannot meet any D(y) of a pure point with y1 = x1 and
y2 ≥ x2 +2 or y2 ≤ x2 −2. Nor can it meet any D(p1, p2) where p1 = x1 −1
and p2 ≥ x2 + 1 or where p1 = x1 + 1 and p2 ≤ x2 − 1, and as before, there
cannot be any mixed point with the same first coordinate.

The argument above shows that D(L) can be written as the graph of a
function f : Z → Z. Now we show that f is in fact continuous, and hence that
the map Z → D(L), n �→ (n, f (n)) is a homeomorphism.

Suppose x = (n, f (n)) ∈ D(L) is mixed, so that f (n) and n have different
parity. Then (x1 ± 1, x2) belong to D(L) by definition, which means that
f (n ± 1) = f (n) as required.

If x = (n, f (n)) ∈ D(L) is pure, so that f (n) and n agree in parity, then
L may meet either D(x1 + 1, x2 + 1) so that f (n + 1) = f (n) + 1, or L will
intersect D(x1 + 2, x2), which implies f (n + 1) = f (n). A similar argument
shows thatf (n−1) = f (n)−1 orf (n−1) = f (n). Thereforef is continuous.
Finally, the digitization of a segment [a, b] is clearly a connected, finite, subset
of the digitization of the corresponding line, and therefore homeomorphic to
a Khalimsky interval.

The following corollary of Theorem 4.5 and Proposition 4.4 shows that
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the continuous digitization is, in a certain metric sense, the best Khalimsky-
continuous digitization possible.

Corollary 4.6. Suppose that ϕ: Z → ϕ(Z) ⊂ Z2 is a homeomorphism,
and that L is a line in R2. Then

sup
p∈D(L)

d∞(L, p) ≤ sup
p∈ϕ(Z)

d∞(L, p).

Proof. Note that if ϕ(Z) contains precisely the same pure points as D(L),
then ϕ(Z) = D(L) and since D(L) is the graph of a monotone function, the
pure points in ϕ(Z) cannot be a proper subset of the pure points in D(L).
Therefore, if D(L) �= ϕ(Z), there must be a pure point q such that q ∈ ϕ(Z)
and q �∈ D(L). But then

sup
p∈D(L)

d∞(L, p) ≤ 1/2 ≤ d∞(L, q) ≤ sup
p∈ϕ(Z)

d∞(L, p)

as required.

5. Chord measures

In this section we will present the chord property introduced by Rosenfeld [6]
to characterize the sets that are the Rosenfeld digitization of line segments. Our
goal is to give a generalized version that does the same with the continuous
digitization.

The chord property will here be defined using a function we will call the
chord measure. This will allow not only a characterization of which sets are
digital lines, but also provide a qualitative measure; a smaller chord measure
means a better approximation of a line. Assume that R2 is equipped with a
metric d. Denote by F 2 ⊂ P(Z2) the family of finite subsets of the digital
plane. Let A ∈ F 2 be a finite set, and let p and q be points in A. Denote by
H the distance from the line segment [p, q] to A defined by:

H : F 2 × Z2 × Z2 → R, H(A, p, q) = sup
x∈[p,q]

min
m∈A

d(m, x).

Remark 5.1. The distance function H above, is related to the Hausdorff
distance between subsets of a metric space (X, d). The Hausdorff distance
between two subsets A,B ⊂ X is defined by:

d(A,B) = max
(
sup
y∈B

d(A, y); sup
x∈A

d(B, x)
)
.

If B = [p, q] is a line segment and A a finite set as above, then clearly
H(A, p, q) = supy∈B d(A, y), i.e., the first term in the Hausdorff distance.
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What about the other term? If we let A be the Rosenfeld digitization of a
relatively long line segment, and p = q be one of the two endpoints of the
digitized line. Then B = [p, q] is a one-point set. Clearly supx∈A d(B, x) =
supx∈A d(p, x) has a value that is comparable in magnitude with the length of
the line segment. Below we will consider the maximum of H(A, p, q) over
all line segments [p, q]. A small value of this maximum will mean a good
digitization. Since the second term of the Hausdorff distance has a maximum
(taken again over the line segments) comparable with the length of the line
segment, it is of little use in this context.

Definition 5.2. Let A ∈ F 2 be a finite set. Then the chord measure of A,
denoted by ζ(A), is defined by:

ζ(A) = max
p,q∈A

H(A, p, q) = max
p,q∈A

sup
x∈[p,q]

min
m∈A

d(m, x).

Definition 5.3. Let A ∈ F 2. We say that A has the chord property for the
metric d if ζ(A) < 1 for the metric d.

Rosenfeld did not use the chord measure. He defined this property directly,
as in the following proposition.

Proposition 5.4. Let A ∈ F 2 be a finite set. Then A has the chord property
for the l∞-metric if and only if for every pair p, q of points in A, the line
segment [p, q] ⊂ A + B, where B = {x ∈ R2; ‖x‖∞ < 1} is the unit disk in
the l∞ norm.

Proof. Suppose that A has the chord property, so that ζ(A) < 1. Then it
is immediately clear that the other statement holds. (In particular ζ(∅) = −∞
and the statement is vacuously true for the empty set.) Conversely, suppose that
ζ(A) ≥ 1. Then there are points p and q in A such that H(A, p, q) ≥ 1. But
since [p, q] is a compact set, and the l∞-metric is continuous for the Euclidean
topology, there is an x ∈ [p, q] such that minm∈A d(x,m) ≥ 1. But then also
the other statement does not hold.

5.1. Chord measures and Rosenfeld digitization

When discussing the Rosenfeld digitization, it is natural to consider Z2 to be
8-connected, i.e., any of the horizontal, vertical or diagonal neighbors of a
point is connected to the point. Given two points x and y we say that x is
adjacent to y if and only if ‖x − y‖∞ = 1. An 8-arc is a finite, connected,
subset A of Z2, such that all but at most two points of A have exactly two
adjacency points, and the two exceptional points (the endpoints) have exactly
one adjacency point in A.
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Rosenfeld [6] proved that the Rosenfeld digitization of a straight line seg-
ment is an 8-arc with chord property for the l∞-metric and conversely, that if
an 8-arc has the chord property for the l∞-metric, then it is the digitization of
a straight line segment.

6. Chord measures and continuous digitization

In this section we will use the chord measure introduced above to characterize
the continuous digitization of a straight line segment. As with the Rosenfeld
digitization, it is possible to show that a continuous digitization satisfies the
chord property for a certain metric and, conversely, under some natural extra
conditions, that a Khalimsky arc satisfying this chord property is the digitiza-
tion of a straight line segment.

We will need to consider a somewhat special metric. Let δ(x, y) be the
metric on R2 defined by δ(x, y) = max(|x1 − y1|/2, |x2 − y2|); in essence the
l∞-metric rescaled in the first coordinate. In general, of course, we may for
each positive α define a metric δα(x, y) = max(α|x1 − y1|, |x2 − y2|). The
following two examples show that α = 1/2 is not a random choice.

Example 6.1. Let for each positive integer Lm = [(0, 0), (2m + 2, 2m)].
Then

D(Lm) = {(n, n); 0 ≤ n ≤ m} ∪ {(n + 2, n);m ≤ n ≤ 2m} ∪ {(m + 1,m)}.
Consider the segment [(0, 0), (m + 2,m)], and in particular the point r =
(m + 1 − 2/m,m − 1) on this segment. The only point p ∈ D(Lm) with
|p2 − r2| < 1 is p = (m − 1,m − 1). We have |p1 − r1| = 2 − 2/m, but
for a fixed α > 1/2, we can choose an m such that α|p1 − r1| > 1. Therefore
D(Lm) does not have the chord property for the δα-metric.

Example 6.2. It is easy to check that the Khalimsky arc

D = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 1), (6, 2)}
is not the continuous digitization of a straight line segment. (Use Theorem 6.3
below.) Note that the critical point is the point (3, 1) on the segment [(0, 0),
(6, 2)]. If however α < 1/2, then D will have the chord property for the
δα-metric.

A striking property of the δ-metric is that it is not invariant under permutation
of the coordinates. A consequence is that we have to consider two separate
cases: With the definition above, we will handle lines with slope between
−45◦ and 45◦ and Khalimsky arcs that are graphs of a function of the first
variable, i.e., {(x, f (x)) ∈ Z2; x ∈ I ⊂ Z}. In the other case, we first have
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to permute the coordinates, so that the criteria above is fulfilled. Note that
the digitization of a straight line segment is always the graph of a continuous
function in some variable.

In order to avoid complicated notation or a complicated formulation of the
theorems below, we will define the δ1-metric to be the δ-metric above, and the
δ2-metric to be the same metric after permutation of the coordinates; in other
words, the l∞-metric rescaled in the second coordinate. With the term some
δ-metric we mean one of these metrics.

Theorem 6.3. The continuous digitization of a straight line segment is a
Khalimsky arc (possibly empty) having the chord property for some δ-metric.

Proof. Let D be the continuous digitization of a line segment L. The-
orem 4.5 shows that D is a Khalimsky arc. When L is a diagonal or horizontal
line segment, the second statement is easy, so we need not consider these cases
any further. Assume therefore that the slope of L is strictly between 0◦ and
45◦. The case with slopes between 0◦ and −45◦ is similar.

Suppose now that p, q ∈ D and let r ∈ [p, q]. It follows from Proposi-
tion 4.4 that there is a point s ∈ L such that d∞(s, r) ≤ 1

2 . We have to prove
that there is a point a ∈ D such that δ(a, r) < 1. Consider first the case r is
a pure point. Unless s = (

r1 − 1
2 , r2 + 1

2

)
, it follows immediately that r ∈ D.

(If s = (
r1 − 1

2 , r2 − 1
2

)
we may use the assumption on the slope to conclude

that r ∈ D.) Suppose s = (
r1 − 1

2 , r2 + 1
2

)
. Then no pure point in D, and

therefore no point in D, can be on or below the line through r , parallel with
L. This contradicts the fact that r ∈ [p, q].

Next suppose that r2 ∈ Z, but r is not pure. Then there is a pure point m
such that m2 = r2 and r ∈ ]m,m + (2, 0)[. Clearly m1 − 1

2 < s1 < m1 + 5
2

and |m2 − s2| ≤ 1
2 . Suppose that m �∈ D. Then L must intersect the segment[(

m1 + 1
2 ,m2 − 1

2

)
,
(
m1 + 5

2 ,m2 − 1
2

)[
, and it follows that m + (2, 0) ∈ D.

Since |m1 − r1| < 2, |m1 + 2 − r1| < 2 and m2 = r2, both m and m + (2, 0)
have a δ-distance strictly less than one from r , and at least one of them is in
D.

Finally, we study the case r2 �∈ Z. Note that if s is in the parallelogram

{x ∈ R2;m2−1/2 <x2 ≤m2+1/2 and m2−m1−1 ≤ x2−x1 <m2−m1+1},
where m is pure, it follows that m ∈ D, that |m1 −s1| < 3

2 and that |m2 −s2| ≤
1
2 . Since these parallelograms cover R2, there is an m such that s belongs to
the corresponding parallelogram. From the triangle inequality, it follows that
|m1 − r1| ≤ |m1 − s1| + |s1 − r1| < 2 and similarly that |m2 − r2| ≤ 1. But
since we have excluded the case r2 ∈ Z, the last inequality is also sharp. Hence
δ(m, r) < 1 and the theorem is proved.
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The converse of this theorem is formulated below. The proof is an adaptation
of Kiselman’s [4, Theorem 10.4] proof of Rosenfeld’s corresponding theorem.
Rosenfeld’s original proof can also be adapted to work, however, the present
proof is much shorter.

Theorem 6.4. Suppose that a Khalimsky arc D = {(x, f (x)); x ∈ I } ⊂ Z2

is the graph of a monotone, continuous function f , and that D has pure end-
points. If D has the chord property for the δ1-metric, then D is the continuous
digitization of a line segment.

Proof. Let D be the graph of a, say, increasing and continuous function f ,
and let D have the chord property for the δ1-metric. Given three real numbers
α, β, ρ we define a strip in the plane by

S(α, β, ρ) = {x ∈ R2; αx1 + β − ρ(1 + α) ≤ x2 ≤ αx1 + β + ρ(1 + α)}.
Let us call the number ρ the diagonal width of the strip. The boundary,
∂S(α, β, ρ), of the strip consists of two components given by the lines x2 =
αx1 + β ± ρ(1 + α), i.e., the center line, x2 = αx1 + β, translated by the
vectors (−ρ, ρ) and (ρ,−ρ). Observe that a set of pure points is a subset of
the digitization of a straight line segment if and only if it is contained in a strip
with a diagonal width strictly less than 1

2 .
For a given α there is a smallest strip S(α, β, ρ) containing D. If we also

allow α to vary, there is a strip S0 = S(α0, β0, ρ0) of smallest diagonal width.
If D consists of only one or two pure points, the conclusion follows easily, so
we may assume that D consist of at least three pure points. Clearly, there must
be at least one point of D in each component of the boundary of D; otherwise
we could adjust β, and decrease ρ to obtain a narrower strip. Also, one of these
lines must contain a second point of D; otherwise we could rotate the lines
slightly to obtain a strip of smaller diagonal width.

To demonstrate this, note that because of the assumption thatf is increasing,
we cannot have two points p and q in D such that p = q+(t,−t) for some real
t . Suppose that q is the only point on the lower boundary and p is the only point
on the upper boundary. If p is below the diagonal line {q + (t,−t); t ∈ R}
we may rotate the upper line around p and the lower line around q clockwise,
by decreasing α, and adjusting β and ρ, to get a narrower strip. If p is above
{q + (t,−t); t ∈ R}, we should instead rotate by increasing α.

In fact, we may assume that there are two points p, q on one line, and a
point s on the other line, and the diagonal projection of s onto the pq-line is
on the open segment ]p, q[. Otherwise we can again rotate the line somewhat
to get a narrower strip.

For definiteness, we shall assume that the three points of the boundary are
p, s, q, where p and q are on the lower boundary and s on the upper boundary.
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Let r = s + (2ρ0,−2ρ0) ∈ [p, q] be the diagonal projection of s onto [p, q].
If D is not a subset of a digitization of a straight line, then ρ0 is at least 1

2 .
We will show that then there is no point d ∈ D, such that δ1(d, r) < 1, or in
other words that D does then not satisfy the chord property for the δ1-metric.
Now, since 2ρ0 ≥ 1, such a point d must satisfy d2 < s2. As D is the graph
of an increasing function, we can therefore exclude any point with d1 ≥ s1.
But again, since 2ρ0 ≥ 1, it follows that r1 ≥ s1 + 1, so that also any d with
d1 ≤ s1 − 1 can be excluded. We conclude that there is indeed no d ∈ D such
that δ1(d, r) < 1.

So far, we have proved that a Khalimsky arc D with the chord property that
is the graph of an increasing function is a subset of the digitization of some
straight line x2 = α0x1 +β0. Since D is a Khalimsky arc with pure endpoints,
it is clear that D is the digitization of a compact, connected subset of the line,
i.e., a line segment.

Remark 6.5. The requirement that D is the graph of a monotone function
is necessary. Consider the set K = {(0, 0), (1, 1), (2, 0)}. It is easy to see that
K is a Khalimsky arc with pure endpoints, that satisfies the chord property for
the δ1-metric. However K is not the digitization of a line segment.

Remark 6.6. An essential fact used in the proof is that if ρ0 < 1
2 , then

D is the digitization of the center line, x2 = α0x1 + β0. This follows from
Remark 4.3. Note that D(p) is a rotated cross, and we use the diagonal width.
In Kiselman’s proof of Rosenfeld’s theorem, the cross is not rotated, and he
considers the vertical height of the strip.

7. Concluding remarks

In this section we will discuss some further properties of continuous digitiza-
tion and compare it with Rosenfeld digitization. Let f : Z → Z be a continuous
function, and let Gf = {(x, f (x)) ∈ Z2; x ∈ Z} be its graph. It is straight-
forward to check that the complement of the graph consists of precisely two
connectivity components, namely

{x ∈ Z2; x2 < f (x1)} and {x ∈ Z2; x2 > f (x1)}.
This implies that the continuous digitization of a line separates the Khalimsky
plane into two components, precisely as a Euclidean line separates the Euc-
lidean plane. This property does not hold in general for a Rosenfeld line if the
plane is considered to be 8-connected, nor for the Khalimsky plane. However,
the property does hold for the 4-connected plane and Rosenfeld lines. Compare
with the Jordan curve theorem in a digital setting [7], [3].
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Another consequence is that if two Euclidean lines cross, and thus has a
common point, then the digitized lines also have at least one common point.
To see this, observe that since the digitization of one line separates the plane,
it also separates the other line. This property does not hold for the Rosenfeld
lines.

Example 7.1. Let L1 = {(t, t); t ∈ R} and L2 = {(t,−t)+ (0, 1); t ∈ R}
be two line in the plane. Then DR(L1) = {(n, n); n ∈ Z} and DR(L2) =
{(n,−n) + (0, 1); n ∈ Z}, so clearly DR(L1) ∩ DR(L2) is empty. This is the
natural example, but there is one problem: The Rosenfeld digitization has an
exception for these lines. However, if we rotate these lines just a little around
the origin, the digitization near the origin will still be the same, say for every
p ∈ Z2 with ‖p‖∞ < 10. Now there is no exception, and the same conclusion
holds.
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