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ABSTRACT A digital twin-based optimization procedure is presented for an ultraprecision motion system

with a flexible shaft connecting the motor to the (elastic) load, which is subject to both backlash and friction.

The main contributions of the study are the design of the digital twin and its implementation, assuming

a two-mass drive system. The procedure includes the virtual representation of mechanical and electrical

components, non-linearities (backlash and friction), and the corresponding control system. A procedure

for digital twin-based optimization is also presented, in which the maximum absolute position error is

minimized while maintaining accuracy with no significant increase in the control effort. The optimal settings

for the controller parameters and for the backlash peak amplitude, the backlash peak time, and the hysteresis

amplitude are then determined, in order to guarantee an appropriate dynamic response in the presence

of backlash and friction. The surface quality of certain manufactured components, such as hip and knee

implants, depends on the smoothness and the accuracy of the real trajectory produced in the cutting process

that is strongly influenced by the maximum position error. The simulations and experimental studies are

presented using a real platform and two references for trajectory control, and a comparison of four digital

twin-based optimization methods. The simulation study and the real-time experiments demonstrate the

suitability of the digital twin-based optimization procedure and lay the foundations for the implementation

of the proposed method at an industrial level.

INDEX TERMS Digital twin, ultraprecision motion system, friction, backlash, optimization, cascade

control.

I. INTRODUCTION

Nowadays, Industrial Cyber-Physical Systems (ICPS) lead to

new production concepts that call for seamlessly integrated

simulationmodels and different abstraction levels for increas-

ing competitiveness [1]. In this context, the Digital Twin

(DT) approach has emerged as a key concept for modeling,

simulation, and optimization of ICPS. Indeed, the main ratio-

nale behind a DT is its capability to integrate multiphysics

and multiscale systems and their heterogeneity. It does so

by making use of the best available representations (physical

and virtual models) for perfect emulation and mirroring of

the operating conditions of the corresponding real systems

[2], [3]. Any hardware or software prototype that can be used

to emulate real performance and thereby real-time behavior

The associate editor coordinating the review of this manuscript and
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can therefore be considered a DT and not necessarily a unique

one. Some simulation aspects of DTs, taking into account

optimized operations and failure predictions, were analyzed

in [4]. Important model properties such as model scalabil-

ity, interoperability, expansibility, and fidelity were analyzed

in [5] through a reference model for the DT in design and

production engineering. The study pointed to the main dif-

ferences between a conceptual model and the corresponding

virtual representation for the DT. The similarities, differ-

ences, and complementarities between big data and DT and

the extent to which both can be integrated to promote smart

manufacturing and Industry 4.0 were thoroughly reviewed

in [6]. Recent studies have focused on ways to produce and

to use big data in ICPS throughout the product lifecycle on

the basis of a method for product design and manufacturing,

service driven by the DT procedure [7]. The case-study in [8]

connected the simulation tool to the factory database, in order
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to demonstrate one possible solution that moves towards a

semantic web and a linked data approach for factory systems.

New research working towards shop-floor DT systems was

reported in the literature as well as key components ranging

from physical to DT data [9]. However, three open issues

still limit the practical implementation of DT: the bottleneck

of communicating physical and virtual spaces to support

interaction in real-time; the physical space and its variabil-

ity, uncertainty, complexity and ambiguity, which complicate

highly accurate and high-fidelity mirroring of the physical

system; and, the different time scales of discrete, virtual, and

continuous physical spaces. A DT-based model for individu-

alized design of a hollow glass production line by combining

the custom design theory, basic synchronization technology,

and a hierarchical multi-objective optimization algorithmwas

proposed in [10]. The potential applications of DTs in design,

system integration, diagnostics, prediction and advance ser-

vices were likewise analyzed in [11]. A joint optimization

model was proposed for coordinating micro-punching system

and staggered process using DTs in [12]. Co-simulation dur-

ing runtime of DTs, aiming at ‘‘Plug-and-Simulate’’ behavior

is a challenging and as yet unresolved issue [13]. Com-

munications and the required cybersecurity technologies for

developing DTs are key topics that go beyond the scope of

this paper [14]. In a recent review of state-of-the-art DT

industrial applications, both the quick growth and the demand

for suitable and efficient DT implementations in response to

the main industrial technical challenges were corroborated

in [15].

The integration of manufacturing data and sensory data

into DTs of virtual systems to improve their accountability

and capabilities for cyber-physical manufacturing is a key

factor with very promising solutions to improve the accuracy

of machine tools and their capabilities [16]. Prognostics and

health management in the lifecycle monitoring of a product

using DTs was explored in [17], to improve both the accuracy

and the efficiency of complex equipment functioning in harsh

environments.

Likewise, promising results have recently been reported

for the evaluation of process plans with dynamic changes

of machining conditions and DT-related uncertainties [18].

Along the same lines, on-going research into modelling DTs

and their application framework for machine tools equipped

with Computerized Numerical Control (CNC) that use uni-

fied modeling language and mapping strategies was reported

in [19] with very promising initial results. Similarly, the main

components of a DT for a machine tool including the finite

element models of the structure, the model of the cutting

process, and the model of the transmission chains and the

control systems was reported in [20].

The main limitations of the above-mentioned approaches

are their weak focus on control system performance and the

unclear DT-based optimization procedures [21]. The CNC

of a machine tool center is to date still the cornerstone of

the manufacturing process, the quality and the efficiency

of which rely on the efficient performance of the cascade

control system. Cascade control is configured as two nested

loops, the basis of which is that the fast dynamics of the

internal loop will allow a more rapid attenuation of any

disturbance and will minimize its possible effects, before it

affects the primary output, which is the variable of interest

that is controlled. In CNC machine tools, this variable is the

position signal that generates a trajectory that must be fol-

lowed during cutting. Large manufacturers of control systems

such as Siemens, Heidenhain, and Fagor continue to provide

a cascade P-PI solution for their machine tools, due to its

robustness, low cost, and relatively simple tuning rules [22].

Many model-based control strategies have been explored,

such as model predictive control [23], and robust control [24],

but with very limited impact in real industrial setups.

However, tuning all required parameters using frequency

analysis and experimental de-coupled rules is a slow, cum-

bersome, and inefficient procedure. The cross- correlation of

parameters and the cross influence of the control parameters

and feedforward components in the presence of hard non-

linearities, such as friction and backlash, limit the optimal

setting of control and compensation parameters. In this paper,

a DT-based optimization procedure for wholemotion systems

in the presence of backlash and friction is presented. The

systems are assumed to be two-mass drive systems with a

flexible shaft connecting themotor and the (elastic) load. This

topic has received great attention from the scientific com-

munity, because the identification of mechanical parameters

of the two-mass drive systems is not straightforward [25].

To the best of the authors’ knowledge, the key point is the

design and implementation of the DT for the whole system,

including the virtual representation of all mechanical and

electrical components including the load, the main nonlin-

earities (backlash and friction), and the corresponding control

system. Moreover, the application of a DT that improves the

control system behavior on the basis of optimization, as in

this case study, is another approach with many applications,

amongwhichmachine tools. Themain optimization objective

is to minimize the maximum position error while maintaining

accuracy and with no significant increase in the control effort.

Novel aspects of this work also include simulation and exper-

imental studies on a real platform using different trajectories

for tracking control and the comparison of four methods in

DT-based optimization in real experiments.

The paper is organized as follows. Following this intro-

ductory section, the DT implementation and validation will

be presented. The third section will describe the DT-based

optimization of the ultraprecision motion system, which will

include the experimental validation. Finally, the concluding

remarks will be summarized in the fourth section.

II. DIGITAL TWIN IMPLEMENTATION AND VALIDATION

A. PHYSICAL SYSTEM DESCRIPTION

Our study is focused on producing a DT for a real ultrapreci-

sion motion system globally available in many machine tool

centers with CNC. The platform, shown in Fig. 1, consists of
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FIGURE 1. Test platform.

a spindle-screw system for longitudinal movement of a car-

riage. The spindle-screw system and the carriage are mounted

on a platform that can be rotated with respect to the base.

This industrial platform also has a rigid system for locking

each position, in addition to a shock absorber that prevents

the impact of the pivoted assembly against the bench in case

of unrestrained movement. The bench was arranged in a

horizontal configuration, in order to carry out the tests.

The entire system was controlled by a Fagor 8070 open

ComputerizedNumerical Control (CNC), with a P-PI cascade

control. The open CNC facilitates the deployment of the

DT, its operation, and communications through a standard

Windows operating system. The communication between

Windows-based applications and real-time data, as well as the

main parameters and variables can be easily accessed through

the open CNC. The position and speed loops were closed

with sampling times of 250µs and 62.5µs, respectively. The

reference position for trajectory control is generated every

4milliseconds with a cubic interpolation between samples for

the position loop. The values of the most important parame-

ters of the motion system are shown in Table 1.

B. DIGITAL TWIN DESCRIPTION AND IMPLEMENTATION

A DT was implemented, in order to analyze the behavior

of the system. It is composed of two main components:

the electromechanical model of the system and the model of

the P-PI cascade controller (Fig. 2). The representation of the

mechanical part is inspired in a system with two masses that

has a spring, in order to represent three clearly differentiated

elements: the motor, the shaft, and the load. The parameters

of this model are: the axis torsional stiffness, K ; damping, B;

the engine inertia moment, JM; the load, JL; the electrome-

chanical moment applied by the engine, MM; the moment of

the load, ML; and the torque moment of the axis, MS. In the

proposed model, the angular velocities of the motor masses,

ωM, and the load, ωL, and the axis torque, MS, will be used

as the state variables [26].

If the resonance and antiresonance frequencies, ω01 and

ω02, are defined as:

ω01 =
√

K/JL

ω02 = ω01

√

1 + (JL/JM); (1)

TABLE 1. Physical system.

and, the damping coefficients, D1 and D2, are:

D1 =
B

2ω01JL

D2 = D1

√

1 +
JL

JM
=
B(JM + JL)

2JMJLω02
(2)

then, the transfer function will be:

HωM/MM
(s) =

1

JMs
·
s2 + 2D1ω01s+ ω2

01

s2 + 2D2ω02s+ ω2
02

; (3)

By using the previously defined values of,ω02,D1, andD2,

the second transfer function becomes:

HωL/ωM
(s) =

2D1ω01s+ ω2
01

s2 + 2D1ω01s+ ω2
01

. (4)

In addition to the mechanical model of the motor-load

assembly, an electric model that relates a control signal (volt-

age or electric current) to the torque developed by the motor

is required. In practice, the dynamics of the electrical part

are much faster and are perhaps neglected in relation to the

mechanical part. It involves reducing the electric model of

the motor to a constant and to inertia. All the more so as the

identification of the moment of inertia, the viscous friction

coefficient and the load torque and setting their values is very

challenging. The DT is an alternative method for representing

the two-mass drive system [25].

It is also necessary to represent friction, backlash and

noise, through computationally efficient models. Friction is

a phenomenon inherent in any electromechanical system

that impairs its functional operation. The most basic and

the most widely used friction model in the industry is the

Coulomb model, where the friction force, F , is constant

with an FC value and dependent on the direction of the

velocity. By adding a small viscous friction component, FV,
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FIGURE 2. Digital twin model representation.

that depends on the relative velocity between the surfaces, v,

the conventional model can be expressed as shown in (5):

F = FCsgn(v) + FVv. (5)

A hysteresis block is also added for solving the problem of

discontinuity in the zero crossing. This friction model, with

experimental results near to real friction behavior, is very

simple and effective at a computational level. Some research

effort has sought to build models that are a combination of

both approaches [27]. The conventional model only takes

mechanical hysteresis into account by means of a dead-band

zone centered on the offset equilibrium point.

Finally, the influence of unmodeled dynamics on the plant

is represented by disturbance in the form of noise in the load

position signal. In this work, a development in the Fourier

series from the acquired real signal means that the main

harmonics of the real signals acquired from a machine tool

can be identified.

The P-PI control structure is defined in a cascade with

feedforward components (speed and acceleration), and the

set of ‘‘plant + nonlinearities’’ are modeled and represented

using (3) and (4). A friction model based on (5) with hys-

teresis and the well-known dead zone model were used,

respectively, for the definition of the nonlinearities and for

the definition of backlash.

Leadscrew backlash compensation and friction compensa-

tion are included in the DT diagram shown in Fig. 2. The

anticipative component creates either a positive or a negative

discrete pulse, depending on the change of displacement in

one direction or another. The reversal peak backlash compen-

sation is therefore performed by increasing the motor speed

(backlash peak amplitude, PP2) for a time period (backlash

peak time, PP3), so that the exponential compensation of the

backlash, due to movement reversal peak, will be:

RP = PP2e
−t/PP3 . (6)

This additional command pulse is used to recover the

possible spindle backlash in the motion reversals. Every time

the motion of the axis is inverted, the CNC applies the set

point corresponding to the movement plus the additional set

point indicated by the above parameter.

Another important parameter is the hysteresis amplitude,

fH, to solve the zero cross discontinuity problem in the

Coulomb friction model plus viscous friction. It also controls

when to start exponential compensation (6), due to the peak

of the movement inversion, after detecting an inversion of the

direction of movement. In this way, no exponential compen-

sation is started each time an inversion command is received.

Therefore, in this work, six tuning parameters are consid-

ered that strongly influence the dynamic behavior (transient

response and accuracy) of the motion systems in the DT of

the whole system:

K =
[

K
pos
p K vel

p K vel
i PP2 PP3 fH

]

(7)

where, K
pos
p is the proportional gain of the outer loop (posi-

tion controller); K vel
p , K vel

i represent the proportional and

integral gain, respectively, of the inner loop (speed con-

troller). PP2 is the backlash peak amplitude and PP3 is the

backlash peak time, which are the compensators for the back-

lash, and fH is the compensator for the friction hysteresis.

C. DIGITAL TWIN VALIDATION

Machine motion corresponding to a test trajectory or

reference position (see Fig. 3) was simulated and com-

pared with actual measured values, for DT validation and

implementation.

The values of the adjusted parameters were obtained from

a standard method proposed in the literature and applied in

industry, called the Fine Tune (FT) method [28]. The FT

method is a proprietary tool that can be loaded directly on

the open CNC or on a personal computer. This auto-tuning

method serves to perform a fine servo-performance tuning
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FIGURE 3. Reference positions and corresponding velocities for
assessment of the digital twin.

one axis at a time, or all axes automatically by means of a

combination of experimental studies and frequency response

diagrams. Within the graphics mode, the Bode frequency

response diagrams can be displayed that allow the user

to interpret the dynamic behavior of each axis and make

decisions for later readjustments of the axis control loop.

Within the operating mode, the user takes measurements and

develops a more detailed display of the various diagrams.

The results create an information bar that displays the data

regarding the cutoff frequency, the gain margin or the phase

margin of the Bode diagram before and after the auto tun-

ing. It thereby produces a helpful visual improvement chart

for final decision-making by the user. This iterative process

is very costly and a conservative estimate of the average

parameter tuning time would be 5400s, even though it could

take days, depending on the machine tool. Although further

analysis of this method is beyond the scope of this paper,

additional details are available in [29].

The corresponding values were obtained using the FT

method, by combining experimental data processing and

frequency analysis:

KFT =
[

K pos
p K vel

p K vel
i PP2 PP3 fH

]

KFT = [66.667 0.28650.0080 0.71840.0082] (8)

The position values corresponding to the reference were

simulated using the proposed DT. After that, real values

were experimentally obtained on the test platform. The error

was computed as the difference between the simulated and

actual values. In contrast, after the initial damping, the error

had a steady-state behavior (see Fig. 4), with low values.

A remarkable aspect was the relationship between the error

and the speed, with higher error values at higher speeds. Peaks

also occurred at speed changes. This behavior was caused by

the dynamic characteristics of the DT that include friction and

backlash.

The maximum absolute error of the simulation study was

12.58 µm; the mean absolute error, 1.04µm; and the root

mean squared error; 1.59 µm. It can be concluded that the

FIGURE 4. Behavior of the position error for the corresponding reference.

position error was remarkably low, within the intervals usu-

ally considered for motion systems used in CNCmachine tool

centers. Therefore, using the reference shown in Fig. 3 (refer-

ence 1), the simulation of the DT depicted in Fig. 4 reflected

the behavior of whole system very well.

III. DIGITAL TWIN-BASED OPTIMIZATION

A. PROBLEM DEFINITION

There are several figures of merit or cost functions, widely

used in the industry in general, which are applied both at the

design stage and for the evaluation of the control systems.

In particular, the maximum absolute error (i.e., absolute value

of the maximum path tracking error) was selected during the

reversal of the axes, Epk :

Considering that the P-PI cascade control loop controllers

are defined by control laws, which relate their input variable

(the error) with the control action, and that v is a vector of

the parameters, it can be expressed in the time domain in the

following way:

u(t) = c (e(t), v) ; e(t) = r(t) − y(t) (9)

thereby defining an interval [t0, tF] that corresponds to

both the temporal and the dynamic responses of the control

systems before changes in disturbance, YZ , or a reference

trajectory, r(t).

From the temporal behavior of the error within the defined

interval, it is possible to define a certain cost function

that evaluates the dynamic behavior of the control system,

by means of a figure of merit:

I = g (e(t))|
tF
t0

(10)

Epk = I = max (|e(t)|)|
tF
t0

, (11)

where, Epk is defined as the peak in the error that occurs

when the direction of the path or trajectory changes. Epk
is influenced by the nonlinearities that deteriorate the tran-

sient response and the accuracy, which can ultimately affect

the quality of the manufactured components. Once the cost
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function is chosen, it is therefore a matter of minimizing the

maximum peak in the position error:

K =
[

K
pos
p K vel

p K vel
i PP2 PP3 fH

]

OPT
= argmin

(

Epk
)

(12)

B. DIGITAL TWIN-BASED OPTIMIZATION HEURISTICS

Nowadays, an industrial procedure called the Fine Tune

(FT) method, previously described, is applied to perform

the optimization process. Three gradient-free proce-

dures were selected: Simulated Annealing (SA), Genetic

Algorithms (GA) and the Cross-Entropy method (CE).

As previously explained, these heuristics require no strict

mathematical prerequisites which are mandatory for analytic

and numeric optimization methods [30].

The previously described and well-established industrial

tuning method, the FT method, has two main drawbacks:

it is both costly in terms of the time required for tuning

and inefficient in terms of the optimality of the solution

obtained. Genetic algorithms (GA) are one of the most popu-

lar gradient-free heuristics for solving optimization problems.

As with other evolutionary algorithms, they are inspired in

the evolution of biological species. Nevertheless, the main

distinctive characteristic of GA is the encoding of each

individual solution into a string of information (called a

chromosome) [31]. This codification makes the algorithm

problem-independent, so they can be considered robust in

nature.

Several approaches have been proposed for each operator.

Selection can be carried out, among others, by using roulette,

tournament or ranking. The main approaches for crossover

are single-point, multi-point, uniform, half uniform, partially

matched and heuristic-based. Finally, uniform, non-uniform,

Gaussian and supervised are the most widely used mutation

methods [32]. Some concepts such as elitism, which guar-

anties the survival of better solutions in the next population,

have also been incorporated to enhance the performance of

GA [33].

The cross-entropy (CE) method is a population-based

heuristic which solves optimization problems by trans-

forming them into associated stochastic problems with

very low probabilities using a variance minimization tech-

nique [34], [35]. The foundation of CE is the construction of a

random sequence of solutions that converges in a probabilistic

way towards an optimal or a near-optimal solution [36]. The

CE algorithm [37] starts by initializing the mean and variance

of the distribution that should be used for generating the

working population. This initialization has a stochastic com-

ponent. Following that process, a loop is inaugurated until the

preset stopping conditions are reached, either by reaching the

maximum number of iterations or through a convergence of

the solutions. The mean and the variance are updated in each

iteration from the so-called elite population, composed of the

most suitable individuals from the working population.

Simulated annealing (SA) is another well-known gradient-

free optimization heuristic. Based on metallurgical cooling

FIGURE 5. Flow diagram of the optimization procedure.

processes [38], slow cooling in the metallurgic annealing pro-

cess aims to obtain a global minimal energy state in a metal,

giving it a stable structural state, and avoiding the metastable

states with higher energy. In a similar way, the simulated

annealing method targets the global optimum of a mathemat-

ical function, avoiding the local optima [39]. SA works by

dealing with a single solution point, that is randomly selected.

An algorithmic parameter is also initialized, which deter-

mines the probability of moving from one state to another.

The optimization process takes place in a cycle, which ends

when some conditions are achieved: usually, when the tem-

perature parameter reaches some prescribed value and after a

maximum number of iterations.

Indeed, many swarm intelligence algorithms have also

demonstrated very good results when solving optimization

problems including parameter tuning problems [40]–[42].

However, the assimilation of these techniques in industrial

informatics is not expanding as might be expected, basically

due to the number of parameters and the lack of precise proce-

dures for setting these parameters. Newmethods such as PSO

based on quantum mechanics (QPSO) do not require velocity

vectors to move the particles, and the number of adjusting

parameters is less than the standard PSO [43]. QPSO has

demonstrated the high potential for setting parameters of

optimization methods [44]. However, a comparative study

among QPSO and CE, which have similar complexity and

convergence speed, is beyond the scope of this paper. New

hybrid meta-heuristic methods based on cross-entropy and

swarm intelligence are under exploration [45].

DT-based optimization for the ultraprecision motion sys-

tem with backlash and friction is focused on optimal settings

for the three P-PI controller parameters and the compen-

sating parameters for backlash and friction. The procedure

combines an optimization method (i.e. either GA, either CE,

or SA) with the DT that is developed (see Fig. 5). Regardless

of which heuristic is used, the whole procedure is the same.

Firstly, a random population (i.e. a set of solutions) is created
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TABLE 2. Setting parameters for optimization methods.

TABLE 3. Optimized setting parameters.

and then evaluated. After this evaluation, the end conditions

of the corresponding method are checked and, if any of them

are fulfilled, the optimization process ends and an optimal

(or near-optimal) solution is computed and updated in the

real system. Otherwise, a new population is created from the

current one.

The optimization heuristic is linked to the DT through

the population evaluation. Initially, the DT is configured by

specifying the proper real technical information and a real

trajectory is defined. For each solution in the population,

a simulated trajectory is then obtained by the DT and the

performance index (10) is computed, based on the difference

between both real and simulated trajectories.

C. OPTIMIZATION FOR THE TESTING REFERENCE

Equations (1)-(6) and the procedure depicted in Fig. 5 were

initially implemented on a desktop computer with Intel

Core i7-4790 CPU 3.6GHz, 64bits processor (8GB RAM),

for the sake of fast implementation. The prototyping

of the whole digital-twin procedure was implemented in

MatLab/Simulink R©R2018, while the updating of parame-

ters (12) obtained with DT-based optimization, shown in

Table 3, was automatically performed in the Fagor 8070

CNC.

The control and compensating parameters obtained by the

four selected methods are shown in Table 3. Simulations with

the DT enabled the computation of position errors and control

signals for each optimization method (see Fig. 6 and Fig. 7).

FIGURE 6. Simulated position error of the four optimization methods
used for experimental tuning.

FIGURE 7. Close-up graph section of position error and control signal
behavior for simulated position error within the interval (4.7 . . . 5.4 s).

TheDT-based optimization procedure previously described

is applied by using GA, CE and SA. The setting parameters

are shown in Table 2. A detailed analysis of a velocity-

change point, when it is applied the reference position shown

in Figure 3, corresponding to the interval (4.8. . . 5.0s) is

shown in Fig. 7.

The sudden increment in velocity led to a higher position

error. However, the three optimization methods produced

lower maximum position error values than those given by the

FT method. Nevertheless, there was no noticeable increment

in the control effort, even when the velocity values increased.
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TABLE 4. Methods comparison for reference shown in figure 3.

Two performance indices were calculated for position

error, in order to obtain a more reliable comparison: the

maximum absolute error (i.e., absolute value of the max-

imum path tracking error) that occurs when the direction

of the path or trajectory abruptly changes (Epk) and the

Integral Time Absolute Error (ITAE). Moreover, the Integral

of the Absolute Control Signal (IAU) was also computed

to quantify the control effort. Finally, the execution time

was also determined for each optimization heuristic, in order

to evaluate the computational cost of applying those tech-

niques. Analyzing the values that were obtained (see Table 4),

a remarkable improvement could be noted both for Epk and

for ITAE when the optimization heuristics were applied.

Interestingly, the IAU obtained for the four methods showed

similar values in relation with the real physical process and

constraints on the motor current available and power. It also

corroborated the very good resemblance between the sim-

ulated control signals and the actual current signal of the

motor.

Finally, by comparing the execution times it was concluded

that the cross-entropy method required much shorter times

than the alternatives for obtaining the corresponding optimal

values.

D. EXPERIMENTAL VALIDATION

The real position error and the control signal were analyzed

on the basis of real experimental results obtained from the

real system, in order to validate the procedure for DT-based

optimization on the basis of the simulation results.

The four position errors graphs using the reference position

shown in Figure 3 (reference 1), are shown below in Fig. 8.

The maximum absolute position errors were lower than

16µm in every case. It should be noted than the higher error

values take place at higher velocities.

The behavior of the control signals both from the DT

simulation and the real experiments revealed no relevant

differences between the four methods (FT, GA, CE, SA)

under consideration in this study and, for that reason, are

not represented. For the sake of clarity, Fig. 9 only shows

close-up graph sections of the position errors and control

signals in the interval (4.7. . . 5.4 s). Similar improvement

trends, can in the first place, be remarked, but different values

for position errors with the proposed method, and, secondly,

FIGURE 8. Experimental position errors for the considered reference
shown in Figure 3.

FIGURE 9. Close-up graph section of the experimental position errors and
control signals.

a high similarity of control signals, therefore only a slight

increase in the control effort can be inferred.

Improvements in the maximum absolute errors of 28%,

26% and 20% for GA, CE, and SA, respectively, with respect

to the FT method are clearly demonstrated when the per-

formance indices are compared (Table 4). Considering the

integral time absolute error instead, those improvements were

21%, 23%, and 19%, respectively. On the contrary, the param-

eters yielded by the optimization heuristics caused no incre-

ment of over 3% in the control effort represented by the IAU.

Finally, let us consider a new very demanding reference

trajectory in terms of amplitude and changes in the refer-

ence velocity, as shown in Fig. 10. The real-time results
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FIGURE 10. Reference position and the corresponding velocity for
validating the procedure.

FIGURE 11. Close-up graph section of the experimental position errors
and control signals for the reference shown in Figure 10.

of applying the same optimized setting parameters shown

in Table 3 using this new reference (reference 2) and the

DT are depicted in Fig. 11. This figure represents a close-up

graph section of the position errors and control signals in the

interval (0.5. . . 1.2s). Table 5 shows the corresponding per-

formance indices, in order to visualize the real impact of the

proposed method on the reduction of the maximum absolute

position error. It corroborates the generalization capability of

the digital twin-based optimization procedure, regardless of

the shape of the reference that is used.

The swing test using this new high reference corroborated

the benefits of applying the DT-based optimization.

The improvement in the main performance indices

depicted in Table 5 is evident and quite remarkable: up to

TABLE 5. Methods comparison for reference 2.

50.9% inmaximum error reduction for SA and up to 24.8% in

ITAE for CE, with no significant increase in the control effort.

Overall, CE slightly outperformed SA, FT, and GA with 50%

and 24.8% of improvement in Epk and ITAE increasing the

control effort (IAU) by only 0.3%.

IV. CONCLUSION

In this paper, a digital twin for modelling the behavior of

ultraprecision motion systems with backlash and friction has

been presented. The digital twin emulates the whole motion

system including friction and backlash and the control sys-

tem. It is applied in the proposed procedure for optimal setting

of the parameters of the emulated two-mass drive system.

In the case study, the parameters of a P-PI cascade control

system and the compensation gains were adjusted using the

FT method. Three gradient-free optimization strategies were

considered in the DT-based procedure. Initially, the results

were compared by considering the simulated data for a refer-

ence, showing the high precision of the DT.

The effectiveness of the proposed digital twin-based opti-

mization method was also evaluated in real time trajectory

control experiments using a real platform with an open CNC

capable of interaction with the DT. The improvements in

accuracy in terms of the maximum position error and inte-

gral time absolute error were significant. This remarkable

improvement was achieved with a slight increase in the con-

trol effort, quantified by the integral of the absolute control

signal. It should be noted that the cross-entropy method

required a remarkably shorter time than the other optimiza-

tion approaches for almost similar outcomes. Further studies

to analyze the influence of other optimization methods will

be conducted, as well as the hybridization of gradient free

methods such as quantum-based particle swarm optimization

and cross entropy.
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