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Abstract As the next-generation manufacturing system,

intelligent manufacturing enables better quality, higher

productivity, lower cost, and increased manufacturing

flexibility. The concept of sustainability is receiving

increasing attention, and sustainable manufacturing is

evolving. The digital twin is an emerging technology used

in intelligent manufacturing that can grasp the state of

intelligent manufacturing systems in real-time and predict

system failures. Sustainable intelligent manufacturing

based on a digital twin has advantages in practical appli-

cations. To fully understand the intelligent manufacturing

that provides the digital twin, this study reviews both

technologies and discusses the sustainability of intelligent

manufacturing. Firstly, the relevant content of intelligent

manufacturing, including intelligent manufacturing equip-

ment, systems, and services, is analyzed. In addition, the

sustainability of intelligent manufacturing is discussed.

Subsequently, a digital twin and its application are intro-

duced along with the development of intelligent manu-

facturing based on the digital twin technology. Finally,

combined with the current status, the future development

direction of intelligent manufacturing is presented.

Keywords Intelligent manufacturing � Digital twin �

Advanced manufacturing � Industry 4.0 � Sustainable

manufacturing

1 Introduction

As an upgrade to manufacturing industries, Industry 4.0

proposed next-generation intelligent manufacturing to

achieve high adaptability, rapid design changes, digital

information technology, and more flexible technical

workforce training. Manufacturing technologies include

cyber-physical systems [1, 2], Internet of Things (IoT) [3],

and cloud computing [4, 5]. In the Industry 4.0 era, intel-

ligent manufacturing has received increasing attention

owing to the need for sustainability. Intelligent manufac-

turing should consider sustainability aspects [6], and

intelligent manufacturing equipment, such as computerized

numerical control (CNC) machine tools and industrial

robots [7–10], should have more intelligence, which aid

their better integration into the intelligent manufacturing

closed loop to complete manufacturing tasks. Intelligent

manufacturing systems are showing a diversified trend, and

an increasing number of them are being developed for

specific tasks and applied to actual production, thereby

greatly improving the level of intelligence [11–16]. New

services for intelligent manufacturing are explored and

improved, and the sustainable collaborative manufacturing

system platform integrates customers, experts, and enter-

prises and provides them with personalized services

[17–24].

A complete real-time presentation of the state of the

intelligent manufacturing system is a challenge; however,

the emergence of a digital twin has made it possible to

solve this problem [25–27]. Manufacturing systems can

monitor physical processes, create a digital twin in the

physical world [28], receive real-time information from the

physical world for simulation analysis, and make informed

decisions through real-time communication and collabo-

ration with humans. The combination of digital twin and
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intelligent manufacturing makes manufacturing smarter,

more efficient, and more convenient.

This paper is devoted to reviewing digital twin-driven

sustainable intelligent manufacturing, which summarizes

the intelligent manufacturing that uses a digital twin from a

sustainable perspective. Firstly, the concept and application

of a digital twin are introduced along with the application

of the digital twin from three aspects: product design,

manufacturing, and product service. Secondly, digital twin-

driven sustainable intelligent manufacturing is introduced

from three aspects: intelligent manufacturing equipment,

system, and service (see Fig. 1).

Sustainable intelligent manufacturing contains sustain-

able intelligent manufacturing equipment, system, and

service, which support each other. Intelligent manufactur-

ing equipment is introduced from two dimensions: intelli-

gent manufacturing unit and line. From the perspective of a

life cycle, the intelligent manufacturing system is divided

into four parts: design, production, logistics and sales.

Intelligent manufacturing services are introduced from

three aspects: product development, manufacturing, and

after-sales services. Finally, the development trend of

intelligent manufacturing is summarized from three

aspects: framework, enabling technology and application

of sustainable intelligent manufacturing. The framework of

sustainable intelligent manufacturing includes sustainable

intelligent design, comprehensive sustainability, human-

machine collaboration, sustainable intelligent manufactur-

ing for product life cycle, across enterprise value chain, for

product environmental footprint, and sustainable intelligent

manufacturing equipment, system, and service. The

enabling technology of sustainable intelligent manufac-

turing includes digital twin-based big data-driven, artificial

intelligence-driven, and Internet of Things (IoTs)-driven

sustainable intelligent manufacturing.

2 Digital twin

2.1 Concept of digital twin

The idea of a digital twin was described as an information

mirror model by Grieves [29]. A digital twin is a digital

replica of a living or non-living physical entity. It enables a

seamless transfer of data by connecting physical and virtual

worlds [30], thereby allowing virtual entities to exist

simultaneously with physical entities. The definition of the

digital twin technology emphasizes two important features.

Firstly, each definition emphasizes the connection between

the physical model and the corresponding virtual model or

virtual counterpart. Secondly, the connection is established

by using sensors to generate real-time data [31, 32].

Table 1 lists some definitions of a digital twin in Refs.

[30, 31–37].

Based on the definitions provided in the abovemen-

tioned literature, a digital twin is a real-time digital

reproduction of physical entities. It faithfully maps physi-

cal objects and can not only describe physical objects, but

also optimize physical objects based on models.

2.2 Applications of digital twin

The digital twin technology has recently received wide-

spread attention. The world’s most authoritative IT

research and advisory firm, Gartner, chose digital twin as

one of the top ten strategic technology trends since 2016.

Lockheed Martin, the world’s largest weapon manufac-

turer, listed digital twin as the first of six top technologies

in the defense and aerospace industry in 2017. The China

Association for Science and Intelligent Manufacturing

academic consortium also selected digital twin intelligent

manufacturing assembly as one of the top 10 scientific and

technological progresses in intelligent manufacturing in

2017. A digital twin chooses products as the main research

object. Digital twin technology exists in different stages of

the product life cycle, and different elements are intro-

duced at each stage. Therefore, digital twin has different

performance forms. This section introduces the digital twin

application from three aspects: product design, manufac-

turing and product service.

2.2.1 Digital twin in product design

The digital twin application in product design is mainly

based on digital twin research product design methods to

make it more efficient. This includes digital design and

digital simulation.

Sustainable intelligent 

manufacturing

Sustainable intelligent 

manufacturing system

Sustainable intelligent 

manufacturing service

Sustainable intelligent 

manufacturing equipment

Contain

ContainContain

Support
Support

Support

 

Fig. 1 Three aspects of intelligent manufacturing
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2.2.1.1 Digital design Modeling tools are used to build

virtual models of the products to visually express their

physical parameters. A product design method based on a

digital twin was proposed, and the framework of the digital

twin product design was analyzed [37]. A new cloud-based

digital twin approach was developed for network physics

cloud manufacturing platforms to reduce computing

resources and enable an efficient interaction between users

and physical machines [38]. Product design, manufactur-

ing, and service approach were proposed, driven by a

digital twin to make the product design, manufacturing,

and service more efficient [39]. Schleich et al. [40] pro-

posed a comprehensive reference model based on the

concept of skin model shape, which corresponded to

physical products in design and manufacturing. The digital

twin-driven product design method enables researchers to

quickly find design flaws and improve design efficiency

when designing products.

2.2.1.2 Digital simulation The adaptability could be

verified at the design stage through a series of simulation

experiments to verify the product performance. Haag and

Anderl [41] developed a network physical bending beam

test rig to demonstrate the digital twin concept. A modular

approach was studied to build a digital twin and make the

corresponding changes [42]. Using the built-in flexible

digital twin helps designers quickly evaluate different

designs and find design flaws. A method was proposed for

modeling and operating a digital twin in a manufacturing

environment [43]. At the design stage, researchers use

simulation experiments to verify the product, which greatly

improves the product adaptability.

2.2.2 Digital twin in manufacturing

The digital twin application in manufacturing is mainly

based on the virtual simulation model of a digital twin to

build a solid model, which is applied to the product pro-

cessing and assembly to achieve precise production con-

trol. This part includes the production process simulation,

digital production line, and equipment status monitoring.

2.2.2.1 Production process simulation Before product

production, the production process can be simulated by

means of virtual production, and productivity and effi-

ciency can be comprehensively analyzed. A new method

was proposed for resource supply and demand matching

manufacturing based on complex networks and IoTs to

realize the intellectual perception and access to manufac-

turing resources [44]. Bilberg and Malik [45] applied a

digital twin to the assembly unit to create a digital twin

model that extended the use of virtual simulation models

developed during the production system design phase to

implementation control, human and machine task assign-

ment, and task sequencing. Um et al. [46] proposed a

universal data model based on a digital twin to support

plug-and-play in modular, multi-vendor assembly lines. A

digital twin with intelligent manufacturing services was

combined to produce more sensible manufacturing plan-

ning and precise production control [47]. A digital net-

work-based manufacturing network physics system was

proposed to control intelligent workshops in parallel under

a large-scale personalization paradigm [48]. A factory

network physical integration framework was proposed for

digital-based systems to address the problems faced by

digital factories and shift the current state of digital fac-

tories to intelligent manufacturing [49].

2.2.2.2 Digital production line All the elements of the

production stage are integrated into a closely coordinated

production process through digital methods to achieve an

automated production process. The digital twin model was

studied using the digital twin technology to control robots

to automatically assemble large spacecraft components

Table 1 Definition of digital twin in the literature

Definition Refs.

Digital twin is an integrated multi-physics, multi-scale, probabilistic simulation of completed vehicles

or systems that use the best physical models, sensor updates, fleet history, etc. to reflect the life of

their corresponding flying twin

Glaessgen and

Stargel [33]

Digital twin is digital copies of biological or non-biological physical entities. By bridging the physical

and virtual worlds, data is seamlessly transferred, allowing virtual entities to exist simultaneously

with physical entities

Abdulmotaleb [30]

A coupled model of real machines running on a cloud platform that uses a combination of data-driven

analysis algorithms and other available physics knowledge to simulate health conditions

Lee et al. [34]

Real-time optimization using digital copies of physical systems Söderberg et al. [35]

The dynamic virtual representation of a physical object or system throughout its lifecycle, using real-

time data to achieve understanding, learning, and reasoning

Bolton et al. [36]

Digital twin uses physical data, virtual data and interactive data between them to map all components

in the product lifecycle

Tao et al. [37]
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[50]. Digital twin modeling and data fusion issues at each

steel product life cycle stage were explored to achieve

complex tasks [51]. A digital twin-based approach was

studied for the rapid personalization of insulated glass

production lines [52]. Moreover, a framework was pro-

posed for intelligent production management and control

methods using the digital twin technology and applied to

assembly shops for complex products [53]. A digital twin

method was proposed for the rapid personalization of

automated flow shop manufacturing systems, combining

physical system modeling and semi-physical simulation to

generate authoritative digital designs of the system during

the pre-production phase [54]. Liau et al. [55] applied a

digital twin to the injection molding industry, modeling all

stages of injection molding as virtual models to achieve a

two-way control of physical processes.

2.2.2.3 Equipment status monitoring The production

process can be monitored visually by collecting the real-

time operation data of production equipment. The abnor-

mal equipment must be dealt with and adjusted in time to

optimize the production process. Botkina et al. [56] intro-

duced digital twin data formats and structures for cutting

tools, information flow, and data management and applied

that digital twin to improve machining solutions optimized

for process planning. When the digital twin application is

applied in the production workshop, the state of the

machines and products in the workshop is reflected in the

virtual model in real-time, thereby making the manufacture

of the product more intelligent.

2.2.3 Digital twin in product service

The digital twin application in fault prediction is based on

the virtual simulation model of a digital model based on a

digital twin. The virtual simulation model faithfully reflects

the state of the solid model. The virtual simulation model

will generate faults when the solid model fails. This is the

fault detection. The virtual simulation model judges whe-

ther the physical model will generate a fault based on the

real-time state data and can effectively reduce the failure

rate. This part includes product fault warning and mainte-

nance and production index optimization.

2.2.3.1 Product fault warning and maintenance By

reading the real-time parameters of the sensors or control

systems of intelligent industrial products, a visual remote

monitoring model is built to analyze the state of products

with artificial intelligence and make early warning in time.

Meanwhile, maintenance strategies are given to reduce

losses. Fault detection and health management can be

implemented for different devices based on digital

generation. The operation mode of the device can be

optimized according to the state data of the virtual model to

reduce failure rate and improve stability.

The application of product services aims to combine a

digital twin with other technologies, such as virtual reality,

to form a new model of digital twin-based services. In the

manufacturing sector, Pairet et al. [57] introduced the

Offshore Robotics for the Certification of Assets or ORCA

Hub simulator for training and testing human-machine

collaboration solutions that unify three types of home-

made systems on the marine digital twin platform. Voinov

et al. [58] studied a method for providing reliable man-

agement of complex IoT systems. Uhlemann et al. [59]

studied the concept of a learning factory based on the

advantages of real-time data acquisition and subsequent

simulation data processing. Meanwhile, Coronado et al.

[60] developed and implemented a low-cost manufacturing

execution system (MES) and an android operating system

(OS) application to generate a shop floor digital twin model

by collecting machine data enabled by MES and MTCon-

nect. Schluse et al. [61] introduced an experimental digital

twin to create interactions in different application scenarios

and provided a new foundation for simulation-based inte-

grated systems engineering. Macchi et al. [62] explored the

role of a digital twin in asset lifecycle management. Kunath

and Winkler [63] discussed the conceptual framework and

potential applications of digital twin decision support sys-

tems that were eager to manufacture systems in the order

management process. Biesinger et al. [64] introduced the

digital twin of the body-in-white production system to

achieve a rapid integration of new cars. Vachálek et al. [65]

introduced a digital twin and supported existing production

structures and the most efficient use of resources in the

automotive industry through digital production and

enhanced production and planning strategies. Uhlemann

et al. [66] also introduced multimodal data acquisition

methods to ensure the most accurate synchronization of

digitally generated network physical processes with real

physical models. Tao and Zhang [67] studied the digital

twin workshop based on a digital twin and its operation

mechanism and implementation method. In the manufac-

turing process, the carbon emission problem in the manu-

facturing process should also be considered in addition to

ensuring the manufacturing stability [68].

The progress made by the digital twin technology in the

research of medical, sports, manufacturing, etc., has led to

the continuous development of these industries. In the

medical field, Martinez et al. [69] studied the impact of

digital twin on service business model innovation by fully

understanding how to set up, implement, and use digital

health and understanding the impact of digital health in the

enterprise services business. A cloud healthcare system
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framework was proposed for digital twin healthcare aimed

at achieving the goal of personal health management by

integrating medical physics and virtual space [70]. In the

field of sports, Balachandar and Chinnaiyan [71] used a

digital twin in the field of sports to make virtual connec-

tions and monitor athletes in the lab.

2.2.3.2 Production index optimization By reading and

analyzing the status data of products, the configuration

parameters of products are modified to improve their per-

formance and optimize the production indexes. Guivarch

et al. [72] proposed a new method for developing a digital

twin for helicopter power systems to better predict the

service life of mechanical components. A general digital

twin model was established for complex devices. A method

was also proposed for using the digital twin to drive pre-

diction and health management to improve the accuracy

and efficiency of forecasting and health management [73].

Lynn et al. [74] proposed a network-, physical system-

based manufacturing system for implementing process

control and optimization. A multi-domain unified modeling

method was established for the digital twin to study its

computer numerical control (CNC) machine tools and

make these tools more intelligent while optimizing the

operating mode, reducing the sudden failure rate, and

improving the CNC machine tool stability [75]. Dynamic

Bayesian networks were used to build multi-function

diagnostic and predictive probabilistic models to achieve a

digital twin [76].

3 Digital twin-driven sustainable intelligent

manufacturing

Research on digital twin-driven intelligent manufacturing is

a hot trend and has achieved good results in life cycle man-

agement, data fusion, rapid production, intelligent forecast-

ing, and sustainable manufacturing [77–85]. Intelligent

manufacturing is a deep integration between the artificial

intelligence technology and the advanced manufacturing

technology. The new generation artificial intelligence tech-

nology mainly includes cloud computing, IoTs and big data,

among others. Intelligent manufacturing brings great chan-

ges to all aspects of the manufacturing industry, making it

capable of learning, generating, and using knowledge. The

digitalization, networking, and intelligence of intelligent

manufacturing have been balanced.

Intelligent manufacturing is a broad manufacturing

category that uses computer integrated manufacturing, high

levels of adaptability and rapid design changes, digital

information technology, and more flexible technical

workforce training. Figure 2 shows the system architecture

of intelligent manufacturing, which describes the activities,

equipment, features, and others involved in intelligent

manufacturing from three dimensions, namely life cycle,

system level, and intelligent features [86].

The intelligent manufacturing technology is the deep

integration and integration of the information technology,

intelligent technology, and equipment manufacturing tech-

nology. The intelligent manufacturing technology is based

on advanced technologies, such as the modern sensing

technology, network technology, automation technology,

and anthropomorphic intelligence technology. The intelli-

gent manufacturing technology can realize intelligent design

process, intelligent manufacturing process, and intelligent

manufacturing equipment through intelligent sensing,

human-computer interaction, decision making, and execu-

tion technology. In addition, the concept of sustainable

[87, 88] manufacturing is receiving increasing attention, and

intelligent manufacturing should be sustainable [89].

Intelligent manufacturing plays a pivotal role in next-

generation manufacturing, especially in high-end manu-

facturing; hence, the world’s traditional manufacturing

powers and new manufacturing powers have come up with

plans to develop intelligent manufacturing. Table 2 pre-

sents the intelligent manufacturing development plans of

some countries and organizations [90–95]. This section

describes intelligent manufacturing in terms of intelligent

manufacturing equipment, intelligent manufacturing sys-

tems, and intelligent manufacturing services.

3.1 Sustainable intelligent manufacturing

equipment

Intelligent manufacturing equipment refers to manufac-

turing equipment with sensing, analysis, reasoning, deci-

sion-making, and control functions. It is a deep integration

Life cycle

System level

Intelligent feature

Design Production Logistics Sales Service

Device

Unit

Workshop

Enterprise

Collaboration

Resource element
Interconnection

Fusion sharingSystem integrationEmerging business

Fig. 2 System architecture of intelligent manufacturing [86]

Digital twin-based sustainable intelligent manufacturing: a review 5

123



of the advanced manufacturing technology, information

technology, and intelligent technology. The development

of intelligent manufacturing equipment reflects the level of

the manufacturing industry. Intelligent manufacturing

equipment can be classified into two types: intelligent

manufacturing unit and intelligent manufacturing produc-

tion line.

3.1.1 Intelligent manufacturing unit

The intelligent manufacturing unit is an independent pro-

cessing equipment in intelligent manufacturing, which is

the smallest processing unit for intelligent manufacturing.

A knowledge-driven digital twin manufacturing unit that

supports self-manufacturing for the overall framework of

intelligent manufacturing was proposed [96]. Lohtander

et al. [97] studied the digital twin technology based on

micro-manufacturing units. The intelligent manufacturing

unit contains various processing equipment, such as

machine tools, robots, and special equipment.

3.1.1.1 Machine tools and equipment The machine tool

is mainly used to perform machining tasks. From the first

machine tool to the present, the machine tool has achieved

great development. The style, type, and technology also

experienced revolutionary innovation.

CNC machine tools are automatic machine tools with a

program control system, which could solve the processing

problems of complex and precision products and represent

the development trend of modern machine tools. Compared

with traditional machine tools, CNC machine tools have

the following advantages: high processing precision,

stable processing quality, high productivity and flexibility.

Many researchers conducted intelligent manufacturing-re-

lated research on CNC machine tools.

A fault diagnosis strategy based on cascade faults was

proposed to ensure the safe operation of CNC machine

tools [98]. The state-based monitoring architecture was

used for the alarm management of CNC machine tools

[99]. Yang et al. [100] proposed a method to accurately

determine the critical point of thermal coupling deforma-

tion of machine tools. A two-dimensional thermal error

compensation method was proposed for the thermal error

compensation of CNC machine tools, which greatly

improved the compensation effect of the workbench [101].

An improved energy consumption model that effectively

reflected the relationship between processing parameters

and energy consumption in machining processes was pro-

posed based on empirical models and contributed to sus-

tainable manufacturing [102]. Krimpenis and Fountas

[103] studied the multi-objective machining optimization

problem based on a genetic algorithm and examined the

influence of the key machining parameters of CNC

machining operations. The different stages of the machine

tools were introduced [104], including Machine 1.0,

Machine 2.0, Machine 3.0, and detailed key features of

Machine 4.0, such as network physics machines and ver-

tical and horizontal integrated machine tools. Jeon and Ha

[105] proposed a general method for generating the

velocity distributions for acceleration and deceleration

techniques for CNC machine tools. A proportion integra-

tion differentiation iterative learning controller for the

CNC machine tools to perform repetitive tasks was pro-

posed in Ref. [106]. Keller et al. [107] conducted a study

on the reliability and maintainability of CNC machine tools

after analyzing the field fault data of 35 CNC machine

tools. Yamato et al. [108] built an automatic flutter sup-

pression system for parallel turning, integrating on-line

flutter monitoring based on the cutting force estimation.

At present, the research on CNC machine tools mainly

focuses on fault diagnosis, error compensation, parameter

optimization, etc., which greatly improve the fault diag-

nosis efficiency and the machining accuracy of CNC

machine tools. The research on CNC machine tools would

also be extended to online real-time monitoring of prod-

ucts, smart machine tools, and green manufacturing.

The cold heading machine is a type of machine tool that

uses a mold and a punch to make a part from a wire. The

Table 2 Main intelligent manufacturing development plans in the world

Country/organization Intelligent manufacturing development plan Refs.

Germany Industry 4.0 [90]

European Union Horizon 2020 [91]

Japan Industrial Value Chain Initiative [13]

United States Advanced Manufacturing Partnership [92]

South Korea Manufacturing Industry Innovation 3.0 strategy [90]

United Kingdom Modern industrial strategy [93]

France New France Industrial [94]

China Made in China 2025 [95]
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force driven by the punch pushes the material from the

mold into a new shape [109]. Li et al. [110] revealed the

mechanical behavior and the dynamic response of the cold

heading machine and designed a new type of cold head

force polyvinylidene fluoride piezoelectric film force sen-

sor. The sensor has excellent dynamic performance and

high precision measurement deformation ability. The

multi-station cold heading machine is an automated, high-

precision forming equipment widely used in manufacturing

for the mass production of bolts and nuts. The reliability of

the cold heading machine would affect the quality of the

processed product and the processing efficiency [111].

Cold heading machines should meet the needs of a low-

carbon economy [112]. The research team of Shanghai

University developed the first servo cold heading machine

tool in China, which opened a new direction for the cold

heading machine tool development.

3.1.1.2 Industrial robotics The automation and intelli-

gence of manufacturing are inseparable from the applica-

tion of industrial robots, which are widely used in all

aspects of manufacturing. With the development of the

manufacturing industry, the types and functions of indus-

trial robots are becoming more diverse. In the process of

traditional manufacturing to intelligent manufacturing,

industrial robots would also usher in a new and greater

development.

In recent years, an increasing number of researchers

have been working on industrial robots. Some industrial

robots must be taught before application to ensure effi-

ciency. A scheme was proposed to minimize external force

estimation errors and reduce guidance task interference by

using virtual mass and virtual friction models for the

manual teaching of industrial robots without force sensors

[113]. The accuracy of industrial robots is affected by the

uncertain parameters of link size and joint clearance

deviation. Pérez et al. [114] studied the synergy between

virtual reality and robots to create a fully immersive

environment based on virtual reality, thereby improving the

efficiency of the training and simulation process and pro-

viding a cost-effective solution. Industrial robots can sub-

mit efficiency and precision through teaching and training.

In addition, they may also experience problems, such as

loss of posture during exercise. An interval method was

used to analyze the motion response of industrial robots

with uncertain, but bounded parameters [115]. A path

planning method was proposed to ensure that the floating

base reached the predetermined attitude when the end-ef-

fector of the space-based n-joint manipulator moved to the

predetermined position [116]. An improved omnidirec-

tional mobile industrial robot tracking and localization

algorithm could be proposed to solve the problem of atti-

tude loss in motion. Industrial robots are inconvenient in

the exchange of programming information for different

processing projects, and integration is difficult [117].

Slavkovic et al. [118] introduced an indirect method for

industrial robot programming for machining tasks, saving

machining project information in a standard for exchange

of product model data-numerical control format for an easy

exchange between different users for machining. A tool

path generation method based on a network model was

studied and integrated into the offline robot programming

system to provide a comprehensive solution for robot

modeling, simulation, and tool path generation [119]. Some

researchers used modeling software to simulate the struc-

ture of industrial robots using the finite element method.

Berg et al. [120] studied an interaction concept that uses

tracking of gestures and eyes to achieve a path to the

robotic system and through projection to achieve a channel

from the robotic system. Norrlof [121] studied an adaptive

iterative learning control algorithm based on the estimation

process and quadratic criterion optimization using the

Kalman filter and successfully applied in industrial robots.

In addition, research on underactuated robots has made

great progress [122–124].

The research on industrial robots makes industrial robots

more competitive in an application. With higher precision,

smaller error, more reasonable structure, more convenient

programming, and more friendly human-computer inter-

action, industrial robots are becoming increasingly impor-

tant in industrial applications.

3.1.1.3 Special equipment Special equipment includes

mining machinery, oil drilling equipment, special metal-

lurgical equipment, and other special equipment.

Researchers studied the use of hydrogen as a fuel in mining

machinery to meet sustainability requirements [125]. Islam

et al. [126] studied the vibration problem of holding oil and

gas through simulation experiments. Andreev et al. [127]

studied the technical parameters of the complex non-fur-

nace treatment of blast furnace cast iron by the pulsating

inert gas injection method, which significantly increased

the operation resistance of metallurgical equipment.

3.1.2 Intelligent manufacturing production line

The intelligent manufacturing line consists of a series of

precisely arranged intelligent manufacturing units that

could be processed more flexibly and intelligently. Indri

et al. [128] researched on a new paradigm of production

lines based on three different sensor development methods

characterized by a high degree of flexibility. The thin-film

solar cell production line production capacity is low. The

low-pressure chemical vapor deposition (LPCVD) is the

main process leading to low productivity. To solve this

problem, a method of prioritizing the LPCVD process work

Digital twin-based sustainable intelligent manufacturing: a review 7
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list was proposed, which greatly increased the production

capacity and prolonged the service life of the device [129].

A task scheduling strategy was proposed based on a hybrid

heuristic algorithm after studying the task scheduling

strategy of fog computing, which solved the problem of

limited computing resources and high energy consumption

in intelligent production lines [130]. A large number of

simulation experiments are required to reduce cost and

save time before a production line is put into use. The

intelligent production line fully verifies the availability of

the production line by communicating with the external

real programmable logic controller. The genetic algorithm-

based approach is applied to the overhead shuttle (OHS)

system design of flat panel display production lines [131].

To solve the problem of low efficiency and poor model

quality of the production line modeling method, the con-

cept of the digital twin production line was proposed, and

the real-time modeling and simulation method of the digital

twin production line were studied [132]. Its effectiveness

was verified on the product assembly line. Research on

intelligent manufacturing production lines still mainly

focused on improving productivity. However, a few studies

also combined virtual platforms, such as production lines

and digital twin, which will be a research direction in the

future.

3.2 Sustainable intelligent manufacturing system

The intelligent manufacturing system is a human-machine

integrated intelligent system composed of intelligent

machines and experts. According to different processing

methods, intelligent manufacturing systems could be divi-

ded into process manufacturing systems and discrete

manufacturing systems. According to the product life cycle

process, discrete intelligent systems could be introduced

from four aspects: design (e.g., low carbon design [133]),

production, logistics, and sales. This section introduces

intelligent manufacturing systems.

3.2.1 Process manufacturing system

Process manufacturing refers to the process in which the

processed object continuously passes through the produc-

tion equipment, and the raw materials are physically or

chemically changed to finally obtain the product. The

process manufacturing system refers to the production

system applied to the process manufacturing process and is

widely used in the petroleum and chemical industries.

Three generations of systems can produce three products at

the same time, but their processing units are susceptible to

failure. Accordingly, an integration framework was pro-

posed to solve the research on the three generations of

palm-based biomass [134]. A mesoscale simulation method

was proposed for heavy oil petroleum structural units and

dissipative ion dynamics and used to simulate various

heavy oil petroleum systems [135].

Research on process manufacturing systems focused on

the petrochemical industry. Future research will focus on

intelligence, safety, and efficiency.

3.2.2 Discrete manufacturing system

Discrete manufacturing systems refer to products that are

made up of many independently machined parts ultimately

assembled into a system of products. This section intro-

duces discrete manufacturing systems from the perspective

of the product life cycle, from design, production, logistics,

and sales.

3.2.2.1 Design The design could be divided into con-

ventional and innovative designs.

(i) Conventional design

Given that existing computer-aided design systems do not

effectively provide the proper use of geometric tolerances,

Lemu [136] proposed an algorithm development solution

to achieve appropriate tolerances and conditions for use

during the design specification phase. The facial prosthesis

system based on computer-aided design/computer-aided

manufacturing (CAD/CAM) was developed for the manu-

facture of facial prosthesis [137]. Lv and Lin [138]

developed a real-time operational planning system in a

distributed manufacturing network that significantly

reduced planned workload. Gu et al. [139] studied the

design of a multi-stage reconfigurable manufacturing sys-

tem and measured the production loss, throughput stabi-

lization time, and total production shortage time. Maturana

et al. [140] proposed MetaMorph, an adaptive multi-agent

manufacturing system architecture for dynamically creat-

ing and managing agent communities.

(ii) Innovative design

He et al. [141–147] used intelligent feature- and model-

based methods, spatial matrix, parametric, and other

methods for intelligent design. The intelligent design sys-

tem was used in the design process of the product, making

the design process more efficient with a higher precision

[148], a smaller error, and more sustainability [149] and

generally requiring a computer-aided design system. A

low-carbon design method based on carbon footprint was

also proposed for product design [150–154]. Gregor et al.

[155] created the Zilina Intelligent Manufacturing System

expected to create an integrated collaborative environment

that connected real, digital, and virtual. A low-carbon
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design method based on carbon footprint is also proposed

for product design.

Research on intelligent design systems has made the

design process more standardized, thereby greatly reducing

workload and improving efficiency [156]. However, the

current intelligent design system still has some shortcom-

ings. The current intelligent design system is not intuitive

in the design process. Therefore, integration with the vir-

tual reality technology and the collaborative design [157]

would be the key research direction of the next stage.

3.2.2.2 Production Intelligent production systems are

used in the processing of products, optimizing the pro-

cessing steps of products, and improving the resource uti-

lization, adaptability, and robustness of manufacturing

systems. Manufacturing could be divided into two pro-

cesses: machining and assembly.

(i) Machining

Simeone et al. [158] proposed an intelligent cloud manu-

facturing platform for sheet metal cutting services that

increased the utilization of supplier resources to 92.3%.

The intelligent immune system for energy-saving manu-

facturing can achieve an energy savings of approximately

30% in the factory and increase the production efficiency

by more than 50% [159]. Stadnicka et al. [160] analyzed

the role of humans in intelligent manufacturing systems

and proposed innovative ways to learn how to simulate a

virtual reality to transfer knowledge of intelligent manu-

facturing systems. In addition, considering the low carbon

requirements in the production process will save more

energy [161]. Tao et al. [162] proposed a cloud manufac-

turing service system and a framework based on the IoTs

and cloud computing. They also analyzed the relationship

between the two. An advanced manufacturing IoT intelli-

gent manufacturing platform was designed based on IoTs,

cloud computing, big data analysis, network physics sys-

tem, and prediction technology. This platform was then

applied to the bumping process of semiconductor compa-

nies. The application results showed that the platform could

perform comprehensive inspections in production [163].

He et al. [164] put forward a new method of constraint

mechanism function synthesis based on system dynamic

programming, which was applied to the offshore platform

jacking system. A network physics system based on multi-

agent technology was developed and applied to the man-

ufacturing workshop to improve the reconfigurability and

responsiveness of the workshop [165]. Lee et al. [166]

proposed the industrial IoT suite to run high value-added

manufacturing processes, implement intelligent production,

and achieve re-industrialization in Hong Kong. These

studies effectively improved resource utilization and pro-

duction efficiency. Other studies focused on sustainability

[167] and in rationalizing the processing steps to make the

process meet sustainability requirements.

Helo et al. [168] developed a cloud-based distributed

manufacturing execution system to address the needs and

challenges of managing distributed manufacturing in a

multi-company supply chain. The architecture of intelli-

gent manufacturing systems was proposed based on dis-

tributed artificial intelligence to shorten the product

development cycle [169]. The structure of the intelligent

chemical industry network physical system was proposed

and applied to the intelligent distillation tower [170]. The

operation results showed that stability and robustness met

the requirements.

Resource-intelligence and access systems were devel-

oped based on the IoTs to realize the manufacturing model

of cloud manufacturing [171]. Jain et al. [172] developed a

digital twin model that implemented an estimate of the

measurable characteristic output of a photovoltaic energy

conversion unit. Based on this model, 10 different faults,

power converters, and electronic sensor faults were

detected and identified in the photovoltaic energy conver-

sion unit. The detection and identification times were less

than 290 ls and 4 ms, respectively. Moreover, the fault

detection and recognition time in the distributed photo-

voltaic panels were less than 80 ms and 1.2 s, respectively.

(ii) Assembly

An IoT intelligent assembly system framework was pro-

posed based on the information and communication tech-

nology, sensor networks, and radio frequency identification

and applied to the assembly process of mechanical prod-

ucts [173]. Research on the intelligent production system

based on the agent technology can effectively improve the

system adaptability. An agent-based manufacturing system

architecture was proposed for application to hybrid multi-

product production to improve the adaptability and

robustness of the manufacturing system [174]. Chaplin

et al. [175] designed evolvable assembly systems using the

intelligent agent technology and data distribution services.

Intelligent production systems can be developed based on

distributed technologies to shorten the development cycle.

Intelligent production systems for specific product research

meet specific production needs. Wang [176] introduced the

general framework of a zero-defect manufacturing system

and introduced the application of zero-defect manufactur-

ing methods to create zero-defect products. The network

physical system architecture of the intelligent manufac-

turing workshop was proposed, and it verified the feasi-

bility of the architecture on a small flexible automated

production line [177]. A custom-oriented intelligent man-

ufacturing system was proposed, and a customizable candy

production system was established [178]. A labeling and

management framework was proposed for steel label
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characters, while a method for the online monitoring and

tracking of marker characters based on machine vision was

proposed to realize information management and intelli-

gent manufacturing for steel manufacturing [179]. A

knowledge-based intelligent system for diagnosing web-

based management was studied, and its defects increased

the wafer manufacturing throughput [180]. Specific intel-

ligent production systems enable agile manufacturing and

reduce the probability of defects.

3.2.2.3 Logistics The intelligent logistics system is

applied to the traceability of product processing and the

management of product logistics information. Strandhagen

et al. [181] studied Industry 4.0 for manufacturing logistics.

The study of four Norwegian manufacturing companies

showed that the practicality of Industry 4.0 in manufac-

turing logistics depended on the production environment. A

food traceability network physical system method based on

intelligent value stream was proposed to improve the effi-

ciency of the food traceability system [182]. Maoudj et al.

[183] developed a distributed multi-agent system for

scheduling and controlling robotic flexible assembly units.

The production data are collected in real time for product

traceability based on the intelligent logistics system

developed by the radio frequency identification technology

[184–188], realizing the production management and

dynamic scheduling of the workshop. The intelligent

logistics system realizes the logistics function in intelligent

manufacturing and can track the status and logistics

information of the product in real time to realize dynamic

scheduling.

3.2.2.4 Sales The intelligent sales system is used to sell

manufactured products and manage sales information for

intelligent sales. A vehicle sales integrated management

system was studied. It can manage vehicle sales in a unified

manner and input real-time information into mobile devi-

ces with high security [189].

Take the marketing module of a company’s collabora-

tive manufacturing system as an example. The module has

the functions of entering order information, querying order

information, and managing customer information for

entering and managing order information. After the sales-

person obtains the order, the order information is entered

into the system, and the order information could then be

queried and managed.

3.3 Sustainable intelligent manufacturing services

Intelligent manufacturing services for intelligent manu-

facturing have a wide range of applications. This section

introduces intelligent manufacturing services from three

aspects: product development, manufacturing, and after

sales services (see Fig. 3). Sustainable intelligent manu-

facturing service contains product development, manufac-

turing, and after sales services, which support each other.

3.3.1 Product development services

The product development service in the intelligent manu-

facturing service mainly serves the whole process of pro-

duct development, making the development process simple

and efficient. This part includes collaborative design ser-

vice, product customization service, and so on.

3.3.1.1 Collaborative design service Collaborative

design service mainly provides a platform to integrate

people with design requirements and capabilities. When

someone has design requirements, they can publish the

requirements to the platform. People with design capabil-

ities can undertake the requirements and participate in the

design together. Zhang et al. [190] proposed an intelligent

manufacturing integration system that was applied to the

projects they participated in and achieved good results. He

et al. [191] proposed sustainable supply chain design

model. Sun et al. [192] studied the security of networked

control systems. McFarlane et al. [193] explored the impact

of automatic identification systems on the intelligent con-

trol of manufacturing plants. To solve the layout opti-

mization problem of the multi-module satellite equipment,

a two-system co-evolution algorithm based on the bode

coevolution framework was proposed [194]. Malik and

Bilberg [195] proposed a digital and physical medical

workspace that combined the digital and physical worlds

for collaborative design. To solve the problems in dis-

tributed collaborative design system of complex products, a

group global search and negotiation algorithm based on

fuzzy matter-element particle swarm optimization was

proposed [196].

Sustainable intelligent 

manufacturing service

Manufacturing service After sales service

Product development 

service

Contain

ContainContain

Support
Support

Support

Fig. 3 Three aspects of intelligent manufacturing service
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3.3.1.2 Product customization service A large-scale

personalized production framework based on the concept

of Industry 4.0 was proposed and realized large-scale

personalized production in industrial practice [197]. Rød-

seth et al. [198] developed a new model of deep digital

maintenance based on network physics systems and

maintenance theory to achieve integrated planning. To

achieve a new approach to personalization and cus-

tomization, researchers are rapidly deploying resources

based on manufacturing services [199–204].

3.3.1.3 Other services The performance estimation

model-based optimization algorithm was studied [205] and

applied to large-scale complex manufacturing system

simulations [206], reducing the run time by more than 7%.

A product lifecycle management application framework

based on the digital twin was proposed [207]. A view-

based 3D CAD model reuse framework was proposed to

enable the effective reuse of 3D CAD models in the pro-

duct life cycle [208]. He et al. [209] used the low-carbon

concept to optimize the structure of the product to meet the

low carbon requirements. Bodrow [210] proposed an

application scenario for knowledge visualization to test the

expertise and demonstrated its usefulness in intelligent

software applications for process control. Giret et al. [211]

proposed a specific software engineering approach to help

developers develop a sustainable intelligent manufacturing

system, called Go-green ANEMONA. A graph-based

knowledge reuse method was proposed to support knowl-

edge-driven decision making in product development,

reuse the knowledge already in the manufacturing industry,

and improve the product innovation quality [212].

Through research on intelligent development services,

the running time of the complex manufacturing system

simulation is shortened, and the accuracy and the real-time

performance of online monitoring systems are improved,

making product development easier.

3.3.2 Manufacturing service

Manufacturing services mainly include intelligent moni-

toring, intelligent control, and collaborative manufacturing.

3.3.2.1 Intelligent monitoring A 3D visual monitoring

system for production lines based on OpenGL modeling on

the VC??6.0 platform was established to meet effective

production [213]. A grey online modeling surface rough-

ness monitoring system was developed to accurately pre-

dict the surface roughness in end milling [214]. Machine

center fault diagnosis and prediction based on data mining

were studied to develop a systematic approach and obtain

predictive maintenance knowledge in the Industry 4.0 era

[215]. The manufacturing service in the intelligent

manufacturing service mainly serves the whole process of

product processing and manufacturing and provides ser-

vices, such as monitoring, scheduling, online monitoring,

sustainable manufacturing, and real-time warning for pro-

duct processing. Kim and Hwangbo [216] developed an

intelligent real-time early warning system for plastic film

production with a prediction accuracy close to 100%.

3.3.2.2 Intelligent control An intelligent decision sup-

port system architecture based on radio frequency identi-

fication was proposed for processing production

monitoring and scheduling in a distributed manufacturing

environment [217]. Tan et al. [218] proposed an embedded

adaptive network service framework [219] and applied this

to networked manufacturing systems. A browser-server-

terminal model is proposed to realize remote control of

embedded terminal devices, and a new method of remote

control of embedded terminal devices is proposed [220].

Theorin et al. [221] proposed a line information system

architecture for flexible plant integration and data appli-

cations. A mapping-based computational experimental

approach was proposed and used to solve the complexity of

the construction and development of the manufacturing

service ecosystem and analyze the evolution of the manu-

facturing service ecosystem [222].

3.3.2.3 Collaborative manufacturing In addition, for the

problem of close contact between users and manufacturers,

a synergistic-based service combination approach can be

used to connect users to manufacturers and make full use of

resources to create a collaborative manufacturing platform

[223–228].

Take an equipment collaborative manufacturing system

as an example to illustrate the intelligent manufacturing

service [229]. The equipment collaborative manufacturing

system is a collaborative manufacturing platform that

integrates customers, experts, and manufacturing compa-

nies. The customers are provided with collaborative design

and collaborative manufacturing services. When customers

have design or manufacturing requirements, but do not

have the conditions for completion, they can post demand

orders on the platform, describe the requirements in detail,

provide the necessary documentation, and wait for experts

or a manufacturing company to accept the order.

For a company, when a customer issues a demand order,

the company first reviews and evaluates whether it can

complete the order. If yes, it directly accepts the order,

directly connects with the customer, and no longer pub-

lishes it on the platform; otherwise, the order will be sorted

out. The order is then released to the platform for experts or

manufacturing companies that cooperate with the platform.

A platform for experts or manufacturing companies to

undertake design or manufacturing orders is provided.
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When an expert or a manufacturing company finds an

appropriate order on the platform, it can apply for the

order. They can then establish contact on the platform after

the platform administrator approves the application. Such

an equipment collaborative manufacturing system inte-

grates customers, experts, and manufacturing companies

into a closed loop of manufacturing, thereby providing

intelligent services to customers, experts, and manufac-

turing companies and enabling them to benefit from them.

With the increasing use of cloud applications, tech-

nologies, such as cloud manufacturing and cloud services,

can be applied to the after-sales service of intelligent

manufacturing services. A dynamic ant colony genetic

hybrid algorithm was proposed for solving large-scale

cloud service composition and optimization problems

[230]. A multi-objective hybrid artificial bee colony algo-

rithm was proposed for service composition and opti-

mization selection in cloud manufacturing [231]. An offline

3D automated printer approach to enhance the competi-

tiveness of 3D printing was developed based on the cloud

manufacturing service model and the 3D printing cloud

service platform [232]. The optimal choice of a cloud

service portfolio in cloud manufacturing was studied, and a

cloud service category and a service quality index were

established [233]. The agent-based manufacturing service

discovery framework was studied. This framework consists

of an object- and model-based manufacturing task agent, a

manufacturing service agent, and task and service matching

process knowledge base to realize the manufacturing ser-

vice discovery in a cloud manufacturing environment

[234]. The development of the cloud manufacturing service

platform provides technical support. A cloud manufactur-

ing service platform for small- and medium-sized enter-

prises, which implements semantic intelligence search,

order tracking, event task guidance, and collaborative

management, was developed [235].

3.3.3 After-sales service

After-sales service mainly includes fault diagnosis and

maintenance.

3.3.3.1 Fault diagnosis DeSmit et al. [236] studied a

method for systematically identifying network physical

vulnerabilities in intelligent manufacturing systems. This

method can analyze the potential impact of vulnerabilities in

intelligent manufacturing systems. Fault diagnosis and pre-

diction of wind turbines based on supervisory control and

data acquisition (SCADA) datawere studied, and an artificial

intelligence-based frameworkwas proposed forwind turbine

fault diagnosis and prediction using the SCADA data [237].

A neighborhood enhancement matrix decomposition

methodwas proposed to predict the loss of the service quality

value of the cloud manufacturing service platform [238].

Lartigau et al. [239] proposed a service quality assessment-

based approach for transport impact analysis.

3.3.3.2 Fault maintenance The interstitial error data

interpretation and the compensation of machine center

intelligent predictive maintenance were studied based on

an artificial neural network [240]. The research results

showed that the gap error in the front and back directions of

the machining center could be predicted and compensated.

Liu and Ming [241] proposed a framework for the revision

of the rough Decision Making Trial and Evaluation Lab-

oratory method for capturing and evaluating intelligent

industrial product service systems.

The after-sales service research includes fault warning,

fault diagnosis, quality maintenance, and cloud-based

after-sales service. Fault warning and diagnosis enable the

user to grasp the status of the product in real time and take

corresponding measures according to the feedback in time,

which greatly increases the service life of the product.

4 Framework of digital twin-driven sustainable

intelligent manufacturing

This study proposed the framework of digital twin-driven

sustainable intelligent manufacturing (see Fig. 4).

Digital twin-driven sustainable intelligent manufactur-

ing consists of a basic platform, sustainable intelligent

manufacturing equipment, sustainable intelligent manu-

facturing system, and sustainable intelligent manufacturing

service. Among them, the basic platform is mapped with

sustainable intelligent manufacturing equipment, sustain-

able intelligent manufacturing system, and sustainable

intelligent manufacturing service. The sustainable intelli-

gent manufacturing equipment, sustainable intelligent

manufacturing system, and sustainable intelligent manu-

facturing service support each other. Sustainable intelligent

manufacturing platforms could be interconnected to inte-

grate the value chain among enterprises and form a new

industrial form.

The data of the basic platform comes from the equip-

ment layer of the platform, which includes equipment, unit,

production line, and production workshop. After the plat-

form obtains data from the device layer, it combines cloud

computing, artificial intelligence, IoTs, and other tech-

nologies. It then comprehensively considers environmental,

economic, and social factors and combines human, equip-

ment, and technology to provide data for virtual and

physical prototyping. Virtual and physical prototyping map

with sustainable intelligent manufacturing equipment,

sustainable intelligent manufacturing systems, and sus-

tainable intelligent manufacturing services.
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Fig. 4 Framework of digital twin-driven sustainable intelligent manufacturing
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Sustainable intelligent manufacturing equipment

includes an intelligent manufacturing unit and an intelli-

gent manufacturing production line. The intelligent man-

ufacturing unit includes machine tools, robots, special

equipment, measurement and control equipment, and other

equipment. Sustainable intelligent manufacturing equip-

ment maps to virtual and physical prototyping.

The sustainable intelligent manufacturing system

includes a discrete manufacturing system and a process

manufacturing system. In the horizontal direction, the

sustainable intelligent manufacturing system could be

divided into sustainable design, sustainable production,

sustainable logistics, sustainable sales, and sustainable

services and form a sustainable closed loop. In the vertical

direction, it could be divided into automatic production

system, manufacturing execution system, and enterprise

resource management. Discrete and process manufacturing

systems overlap and differ in all directions.

Sustainable intelligent manufacturing service includes

product development, manufacturing, and after-sales ser-

vices. Product development services include collaborative

design, product customization, and others. Manufacturing

services include intelligent monitoring, intelligent control,

and collaborative manufacturing. After-sales service

includes fault diagnosis and maintenance.

5 Future works

It is gradually phasing out the industry with a heavy

environmental burden. Developing intelligent manufactur-

ing with increasing attention on sustainability is vigorous.

Sustainability is paid increasing attention, thereby clearly

positioning the sustainable development of the manufac-

turing industry as the foundation. Sustainable intelligent

manufacturing plays an irreplaceable role. Several future

works are needed in this topic.

5.1 Framework of sustainable intelligent

manufacturing

(i) Sustainable intelligent design

The design is the foundation of intelligent manufacturing;

therefore, the traditional design must urgently be upgraded

to a sustainable intelligent design to achieve sustainable

intelligent manufacturing. Virtual and physical prototyping

could be interconnected in real time at the design stage.

Achieving a sustainable design for the sustainable supply

chain is also important.

(ii) Comprehensive sustainability

The concept of sustainability has become an important

topic [242–244], and combining sustainable concepts with

intelligent manufacturing to achieve sustainable intelligent

manufacturing is an important future research direction. As

a sustainable technology, it could reduce emissions in the

life cycle of products, thereby achieving the requirements

of both intelligent manufacturing and comprehensive sus-

tainability from the perspective of environmental, eco-

nomic, and social aspects.

(iii) Sustainable intelligent manufacturing for the product

life cycle

Sustainable intelligent manufacturing for the product life

cycle, including design, production, logistics, sale, and

service, must be achieved. The virtual and augmented

realities could be also used in the product life cycle.

(iv) Sustainable intelligent manufacturing across enter-

prise value chain

The interconnection among enterprises could be more

universal; thus, the intelligent manufacturing could pay

more attention on the enterprise value chain.

(v) Sustainable intelligent manufacturing for product

environmental footprint

The massive emissions of greenhouse gases, especially

carbon dioxide, have led to increasing global warming.

Therefore, cleaner production is receiving global attention

in the manufacturing industry. The industry is responsible

for producing products in an environmentally friendly

manner. The European Union (EU) proposes the use of the

product environmental footprint [245, 246], including 14

types of environmental factors (e.g., product carbon foot-

print, product water footprint, etc.) to simulate the envi-

ronmental impact of the emissions generated during the

product life cycle. The environmental impact of manufac-

turing is becoming increasingly serious. Hence, the chal-

lenges of improving production efficiency and reducing

carbon footprint during the product life cycle are receiving

increasing attention [247]. In studying the intelligent

manufacturing of the carbon footprint of products, one

must consider the carbon emissions of products from raw

materials, processing, transportation, use, recycling, etc., to

guide the development of intelligent manufacturing. To

achieve clean manufacturing, low-carbon manufacturing is

a future research direction.

(vi) Human-machine collaboration

Human and machine could interact with each other more

collaboratively in sustainable intelligent manufacturing,

which enables a human to have efficient and effective

decision-making with machines.

(vii) Sustainable intelligent manufacturing equipment,

sustainable intelligent manufacturing system, and

sustainable intelligent manufacturing service
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5.2 Enabling technology of sustainable intelligent

manufacturing

(i) Digital twin-based big data-driven sustainable intel-

ligent manufacturing

With the implementation of intelligent manufacturing,

manufacturing precision, product quality, and processing

efficiency would continuously improve. With the help of

the digital twin and big data technologies, a virtual simu-

lation model of the solid model would be established, and

the entity status could be fed back in real time. The digital

twin could be applied to online real-time product inspec-

tion and equipment fault diagnosis and repair.

(ii) Artificial intelligence-driven sustainable intelligent

manufacturing

Information technology has achieved rapid development

since the beginning of the 21st century. In recent years,

artificial intelligence has rapidly developed in the aspects

of medical, monitoring, and interaction, thereby greatly

changing people’s lifestyles. In the future, the intelligent

manufacturing process would inevitably reduce the human

factor. Therefore, applying artificial intelligence to intelli-

gent manufacturing, gradually replacing the role of human

beings, and realizing unmanned intelligent manufacturing

will be the future research direction.

(iii) IoTs-driven sustainable intelligent manufacturing

The Internet of Things enables all objects that could per-

form independent functions to be connected to the network,

thereby enabling interconnection and interoperability to

achieve the effect of the Internet of everything. Combining

IoTs with intelligent manufacturing enables the production

equipment and production products to be interconnected.

The equipment can independently sense the processing

quality of the products and make timely adjustments to

achieve independent production.

5.3 Application of sustainable intelligent

manufacturing

Sustainable intelligent manufacturing must be put into

applications. For process intelligent manufacturing sys-

tems, such as those used in the steel, pharmaceutical, and

petrochemical industries, and for the discrete intelligent

manufacturing system, such as that used in the mechanical

manufacturing industry, the MES could play an important

role in the manufacturing system.

6 Conclusions

With the transformation and upgrade of manufacturing,

sustainable intelligent manufacturing has become increas-

ingly important. Intelligent manufacturing combined with a

digital twin has the functions of intelligent sensing and

simulation, which makes the production of products more

efficient and intelligent. At the same time, it could monitor

the status of products and production equipment in real

time and predict possible failures in time. After the intro-

duction of a digital twin and its application, three aspects of

digital twin-driven sustainable intelligent manufacturing,

namely sustainable intelligent manufacturing equipment,

sustainable intelligent manufacturing systems, and sus-

tainable intelligent manufacturing services, were intro-

duced. The framework of the digital twin-driven

sustainable intelligent manufacturing was proposed in

detail. The future direction of digital twin-driven sustain-

able intelligent manufacturing was also discussed.
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