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*e design, planning, and implementation of intelligent manufacturing are mainly carried out from the perspectives of meeting
the needs of mass customization, improving manufacturing capacity, and innovating business pattern currently. Environmental
and social factors should be systematically integrated into the life cycle of intelligent manufacturing. In view of this, a green
performance evaluation methodology of intelligent manufacturing driven by digital twin is proposed in this paper. Digital twin
framework, which constructs the bidirectional mapping and real-time data interaction between physical entity and digital model,
provides the green performance evaluation with a total factor virtual image of the whole life cycle to meet the monitoring and
simulation requirements of the evaluation information source and demand. Driven by the digital twin framework, a novel hybrid
MCDMmodel based on fuzzy rough-sets AHP, multistage weight synthesis, and PROMETHEE II is proposed as the methodology
for the green performance evaluation of intelligent manufacturing. *e model is tested and validated on a study of the green
performance evaluation of remote operation and maintenance service project evaluation for an air conditioning enterprise.
Testing demonstrates that the proposed hybrid model driven by digital twin can enable a stable and reasonable evaluation result. A
sensitivity analysis was carried out by means of 27 scenarios, the results of which showed a high degree of stability.

1. Introduction

*e concept of intelligent manufacturing rose in the 1980s.
Its emergence and development are closely related to the
four industrial revolutions and the development of related
technologies and industries. First of all, the first and second
industrial revolutions brought manufacturing industry into
the era of mechanization and electrification. With the in-
vention and application of atomic energy and electronic
computer technology, the third industrial revolution
appeared. In the same period, terms representing new

manufacturing paradigms such as flexible manufacturing
cells (FMCs) [1], flexible manufacturing systems (FMSs) [2],
computer integrated manufacturing (CIM) [3], and intel-
ligent manufacturing system (IMS) [4] are emerging grad-
ually. After more than 40 years of development and progress,
intelligent manufacturing has gradually evolved from con-
cept to industrialization and integrated into the emerging
fourth industrial revolution.
At present, the design and implementation of intelligent

manufacturing are mainly carried out from the perspectives
of meeting the needs of mass customization, improving
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manufacturing capacity, and innovating business pattern. In
some theoretical research and practice, green or even sus-
tainability has also been brought into the intelligent
manufacturing paradigm. But most of them focus on the
optimization of energy consumption in the manufacturing
process. For example, cloud platform is used for promoting
resource sharing and improving application efficiency of
manufacturing system [5]; combining big data technology in
the product life cycle to achieve sustainable intelligent
manufacturing is proposed [6]; big data method was used for
energy efficiency optimization [7], anomaly detection [8],
and energy consumption monitoring [9] in intelligent
manufacturing process; and through the analysis of relevant
literature, it can be seen that there is no clear definition of
green intelligent manufacturing in the current academic
circle, and few research studies systematically integrated
environmental and social factors into the design, planning,
and implementation of intelligent manufacturing [10, 11].
On the one hand, the current research and practice pay more
attention to the core business and competitive elements (for
example, productivity improvement, personalized custom-
ization, and intelligent services). On the other hand, the
improvement of the environment and social impact of in-
telligent manufacturing may conflict with the realization of
other elements and even may bring a lot of investment costs.
*e research on the green of intelligent manufacturing is still
in the exploratory stage.
At present, there are many researches on performance

evaluation of intelligent manufacturing, focusing on the
following aspects.
*e first aspect is overall performance evaluation of

intelligent manufacturing enterprises. Gong [12] introduced
a three-tier index system to evaluate the performance of
enterprise intelligent manufacturing by using the compre-
hensive scoring method of experts, which covers many
aspects of enterprise performance, but does not involve
environmental performance, and only uses an overall sat-
isfaction degree for the evaluation of employees. Jia and Shi
[13] use the DEA model of cross efficiency to measure the
performance of some listed intelligent manufacturing en-
terprises, which can evaluate the overall economic perfor-
mance of enterprises, but cannot pay attention to the details
of intelligent manufacturing itself, and does not consider the
environmental factors.
In the second aspect, enterprise’s intelligent

manufacturing capability is assessed. Yi et al. [14] established
the evaluation model of enterprise intelligent manufacturing
capability based on tensor analysis and measured the en-
terprise intelligent manufacturing capability from three
dimensions of life cycle, system level, and intelligent func-
tion. Similarly, Ding et al. [15] put forward the intelligent
manufacturing capability maturity model from three di-
mensions of manufacturing resources, manufacturing as-
surance, and intelligent promotion, which can support
enterprises to describe their comprehensive level of intel-
ligent manufacturing. Qu et al. [16] used Douglas produc-
tion function and seemingly unrelated regression (SUA)
analysis to evaluate the production capacity of intelligent
manufacturing enterprises, so as to compare its advantages

and disadvantages with traditional manufacturing capacity.
Schumacher et al. [17] proposed an empirical model to
evaluate the industry 4.0 maturity of discrete manufacturing
enterprise, in which nine dimensions and sixty-two indi-
cators were established for evaluation, including the items of
the impact on employees and products.
*e third aspect is environment and social impact as-

sessment of intelligent manufacturing. *ere are few re-
search studies on intelligent manufacturing environment
and social impact assessment. *e above two aspects or part
of the performance assurance research of intelligent
manufacturing involved environmental and social dimen-
sions, but it was often described as a macromethod only
including environmental or social factors as a macro-
indicator [18].
In addition, Mashhadi and Behdad [19] summarized the

shortcomings of traditional life cycle assessment (LCA) in
the assessment of the environment impact of intelligent
manufacturing, combined with the characteristics of intel-
ligent manufacturing, and put forward the assessment
concept based on product characteristics data. It is mainly a
scheme of data collection and real-time assessment by using
the new generation of information technology, rather than
studying specific assessment methods. Peruzzini et al. [20]
used social life cycle assessment (SLCA) to evaluate the
impact of the implementation of intelligent manufacturing
on the society, but it only focuses on the general social
impact, not the special impact of intelligent manufacturing
on employees or users.
By creating the virtual model of physical entity in a

digital way and simulating the behavior of physical entity by
means of data, digital twin has the characteristics of real-
time synchronization, faithful mapping and high fidelity
through the means of virtual real interaction feedback, data
fusion analysis, and decision iteration selection optimization
[21]. Digital twin can promote the interaction and inte-
gration of physical world and information world and in-
crease or expand new capabilities for physical entity [22]. In
this study, digital twin mainly focuses on obtaining the
virtual image of all factors in the whole life cycle of intel-
ligent manufacturing project to meet the monitoring and
simulation requirements of the evaluation information
source and demand for the green evaluation of intelligent
manufacturing. Based on digital twin technology [21, 22],
the complete and dynamic mapping interaction between
physical entity and digital model in green performance
evaluation of intelligent manufacturing can be realized. And
then, how to comprehensively master the multidimensional
influencing factors and their coupling relationship for
comparative analysis is the key problem in green perfor-
mance evaluation of intelligent manufacturing.
Multicriteria decision-making (MCDM) [23, 24] by

using the experience and wisdom of experts is a feasible
method to comprehensively consider the multidimensional
influencing factors and their coupling relationship that affect
the green performance evaluation. In the existing similar
evaluation problem and its solution, the value or importance
of a factor is usually evaluated by one expert in numerical
number form, which is unreasonable due to the preferences
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of individual expert and the fuzziness of expert judgment
[25, 26]. Additionally, the green performance evaluation of
intelligent manufacturing includes multidimensional
influencing factors with complex coupling relationship, and
these factors and their relationship are dynamic evolution.
*erefore, it is difficult for a single expert to achieve accurate
judgment with the numerical number form as the judgment
opinion, while integrating the fuzzy number form judgment
of multiple experts is more reasonable. Trapezoid fuzzy
number, which is a key definition in fuzzy theory, can reflect
the internal uncertainty of expert’s judgment [27, 28]. To
express the expert judgment value about the value or im-
portance of the index, using trapezoid fuzzy number can
better describe the uncertainty. *e single weight method
cannot fully reflect the weight information. *e weights
obtained by the multiple weight method should be
synthesized.
To sum up, there is a lack of special, systematic, and

objective research to evaluate the green performance of
intelligent manufacturing. *e existing studies prove the
necessity of green performance evaluation of intelligent
manufacturing and provide reference for the study of this
paper. Additionally, digital twin can provide an overall
information framework for this study. In view of this, this
paper constructs an overall information framework driven
by digital twin for the green performance of intelligent
manufacturing. In this framework, the digital twin system is
formed by mapping and interacting between intelligent
manufacturing entity and intelligent manufacturing model.
All activities in the life cycle of intelligent manufacturing
entity interact with the model in real time, and both physical
entity and digital model provide a source of digital twin data.
With the full mastery of digital twin data by multiple experts,
a novel hybrid MCDM model based on fuzzy rough-sets
AHP, multistage weight synthesis, and PROMETHEE II
(FRSA-MSWS-PII) is proposed as the methodology for the
green performance evaluation of intelligent manufacturing.
*e rest of this work is arranged as follows: overall

framework driven by digital twin is stated in Section 2;
Section 3 builds the novel hybrid MCDM model (FRSA-
MSWS-PII) for the green performance evaluation of intel-
ligent manufacturing, which include three phases: multi-
expert judgment integration based on fuzzy rough-sets AHP,
multistage weight synthesis, and intelligent manufacturing
project evaluation by PROMETHEE II; case study is given in
Section 4 by an application of remote operation and
maintenance service project evaluation for an air condi-
tioning enterprise; Section 5 presents a discussion of the
results and validation of the FRSA-MSWS-PII model; finally,
Section 6 summarizes the conclusion.

2. Overall Framework

On the basis of digital twin technology [21, 22], the bidi-
rectional mapping and real-time data interaction are con-
structed between physical entity and digital model.
*erefore, the comprehensive data integration and fusion of
physical entity and digital model can be realized and form
the digital twin data that can support and drive the green

performance evaluation methodology. In addition, the green
performance evaluation methodology results in an optimal
project alternative selection, which can interact with the
physical entity and digital model and provide the physical
entity and digital model with the support of decision-
making. *e overall framework built in this paper is driven
by digital twin. As shown in Figure 1, it consists of three
layers, which are the digital twin concept layer, information
layer, and methodology layer.
*e bidirectional mapping and real-time data interaction

between physical entity and digital model are defined the-
oretically in the digital twin concept layer. In the design stage
of intelligent manufacturing project, multiple project al-
ternatives are produced in general. All of them meet the
actual demands. After that, in the test running stage, the
original intelligent manufacturing project will be adjusted
and optimized iteratively. Finally, an optimal alternative is
determined and put into formal running stage. Additionally,
the data of formal running stage will also be fed back to assist
in the selection optimization of design stage.
Intelligent manufacturing project entity really exists in

the physical world, while intelligent manufacturing project
model is a real and complete digital mirror image of in-
telligent manufacturing project entity. Intelligent
manufacturing project model can integrate all influencing
factors related to green performance evaluation of intelligent
manufacturing project. At the same time, it is a dynamic
model, which can describe the dynamic evolution of the
whole life cycle including but not limited to the design, test
running, and formal running stages.

3. Hybrid MCDM Model (FRSA-MSWS-PII)

3.1. Fundamental Concepts. *e fundamental concepts in
the proposed hybrid model mainly include two aspects:
trapezoid fuzzy number (TFN) related to fuzzy mathematics,
rough approximation set (RAS), and rough boundary in-
terval (RBI) related to rough-sets theory [27, 28].

3.1.1. Trapezoid Fuzzy Number (TFN). A TFN is defined as
follows:

ã �(α, χ, δ, β). (1)

Its membership function fã(x): R⟶ [0, 1] is defined
as follows:

fã(x) �

x − α

χ − α
, α≤x≤ χ,

1, χ ≤ x≤ δ,

x − β

δ − β
, δ ≤x≤ β,

0, x< α orx> β,



(2)

where x ∈ R, α≤ χ ≤ δ ≤ β, and α and β are the lower bound
and upper bound of ã, respectively. Especially, when χ � δ, ã
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degenerates into a triangular fuzzy number; when
α � χ � δ � β, ã degenerates into a real number.
*e graph of function fã(x) is shown in Figure 2.
*e TFN is characterized by specific arithmetic opera-

tions that differ from those dealing with typical real num-
bers. *e arithmetic operations between two TFNs
ã1 � (α1, χ1, δ1, β1) and ã2 � (α2, χ2, δ2, β2) (α1, χ1, δ1, β1, α2,
χ2, δ2, β2∈ R+, λ>0) are carried out using the following
expressions:

(1) Addition of two TFNs “⊕”:
ã1 ⊕ ã2 � α1 + α2, χ1 + χ2, δ1 + δ2, β1 + β2( ). (3)

(2) Multiplication of two TFNs “⊗”:
ã1 ⊗ ã2 � α1 · α2, χ1 · χ2, δ1 · δ2, β1 · β2( ). (4)

(3) Multiplication of a real number and a TFN “⊗”:

λ⊗ ã1 � λ · α1, λ · χ1, λ · δ1, λ · β1( ). (5)

(4) Reciprocal of a TFN “−1”:

ã1( )− 1 � β−11 , δ
−1
1 , χ

−1
1 , α

−1
1( ) (6)

(5) Division of two TFNs “/”:

ã1
ã2
�

α1
β2
,
χ1
δ2
,
δ1
χ2
,
β1
α2

( ). (7)

(6) Barycenter of a TFN “⊙”:

⊙ã1 �
δ1
2 + β1

2 − α1
2 − χ1

2( ) + δ1 · β1 − α1 · χ1( )
3 δ1 + β1 − α1 − χ1( ) . (8)
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Figure 1: Green performance evaluation framework of intelligent manufacturing driven by digital twin.
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On the basis of the membership function of trapezoid
fuzzy number shown by formula (2), a real number a can be
converted to trapezoid fuzzy number ã [27, 28]. For ex-
ample, 2̃�(1, 3/2, 5/2, 3). For trapezoid fuzzy number ã, its
membership function fã(x) is shown in Figure 3. *e
commonly used nine-level scale assessment comments are
extremely superior (ES), strongly superior (SS), obviously
superior (OS), weakly superior (WS), equal (E), weakly
inferior (WI), obviously inferior (OI), strongly inferior (SI),
and extremely inferior (EI). *e corresponding assessment
values are 9, 7, 5, 3, 1, 1/3, 1/5, 1/7, and 1/9 in order. *e
commonly used nine-level scale assessment comments and
corresponding assessment values are converted to the
trapezoid fuzzy number form as ES: 9̃/1̃, SS: 8̃/2̃, OS: 7̃/3̃, WS:
6̃/4̃, E: 5̃/5̃, WI: 4̃/6̃, OI: 3̃/7̃, SI: 2̃/8̃, and EI: 1̃/9̃. *e
membership functions of nine-level trapezoid fuzzy number
scales are shown in Figure 4.
According to the arithmetic rules of trapezoid fuzzy

number shown by formulas (3)–(8), the trapezoid fuzzy
number values of nine-level scales are shown in Table 1.

3.1.2. Rough Approximation Set (RAS) and Rough Boundary
Interval (RBI). According to rough-sets theory, the defini-
tions of RAS and RBI are given as follows:

(1) Rough approximation set (RAS).

*e domain φwhich is a nonempty finite set contains
all objects. All objects in φ belong to n divisions, i.e.,
D1, D2, ..., Dn. *e set of divisions in φ is as follows:

D � D1, D2, ..., Dn{ }. (9)

Here, D1, D2, ..., Dn have an order relationship as
D1 <D2 < ...<Dn.

For a division Dw(1≤w≤ n), its upper RAS (URAS) is
defined as follows:

URAS Sw( ) � Y ∈ K |K ∈ D∧K≥Dw{ }. (10)

And its lower RAS (LRAS) is defined as follows:

LRAS Sw( ) � Y ∈ K|K ∈ D∧K≤Dw{ }, (11)

where Y is any object in φ.

(2) Rough boundary interval (RBI).

*e mathematical characteristics of division Sw can
be embodied by its RBI, which is composed of lower
rough limit (LRL) and upper rough limit (URL). So,
RBI of Sw is defined as follows:

RBI Sw( ) � LRL Sw( ),URL Sw( )[ ]. (12)

LRL(Sw) and URL(Sw) are expressed as follows:

LRL Sw( ) � 1

Num LRAS Sw( )( ) ∑
Y∈LRAS Sw( )

Y, (13)

URL Sw( ) � 1

Num URAS Sw( )( ) ∑
Y∈URAS Sw( )

Y, (14)

where Num(LRAS(Sw)) and Num(URAS(Sw)) are the
numbers of objects contained in the LRAS and URAS of Sw,
respectively.
*e arithmetic operations between two RBIs RBI(Sw) �

[LRL(Sw),URL(Sw)] and RBI(Su) � [LRL(Su),URL(Su)]
(LRL(Sw),URL(Sw), LRL(Su), andURL(Su) ∈ R+, λ>0) are
carried out using the following expressions:

(1) Addition of two RBIs “⊕”:
RBI Sw( )⊕RBI Su( ) � LRL Sw( ) + LRL Su( ),URL Sw( ) +URL Su( )[ ].

(15)

(2) Multiplication of two RBIs “⊗”:
RBI Sw( )⊗RBI Su( ) � LRL Sw( ) · LRL Su( ),URL Sw( ) ·URL Su( )[ ]

(16)

(3) Multiplication of a real number and an RBI “⊗”:
λ⊗RBI Sw( ) � λ · LRL Sw( ), λ · URL Sw( )[ ]. (17)

3.2. Evaluation Index System. Considering the typical en-
vironmental problems and the special influence of main
stakeholders of intelligent manufacturing, the index system
of green performance evaluation of intelligent
manufacturing is constructed through the summary of the
existing research, as shown in Figure 5. By integrating the
target, dimension, and index of the green performance
evaluation of intelligent manufacturing, the index system in
this paper mainly constructs the three-level standardized
framework.
In Figure 5, the target level is green performance eval-

uation of intelligent manufacturing; the dimension level has
three elements: general environmental effect (dimension 1),
social effect on employees (dimension 2), and social effect on
users (dimension 3); the index level has nine indexes.

~fa(x)

a

xβδχα
0

1

~

Figure 2: *e membership function graph of triangular fuzzy
number.
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Furthermore, in the index level, exhaustion of resources and
energy (index 1), destruction of ecological environment
(index 2), and hazards to human health (index 3) belong to
dimension 1; physical health effects (index 4), mental health
effects (index 5), and impact on employee development
(index 6) belong to dimension 2; physical health effects
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Figure 3: Membership functions of trapezoid fuzzy numbers ã (a� 1–9).
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Table 1: *e trapezoid fuzzy number values of nine-level scales.

Nine-level scale Trapezoid fuzzy number value

EI (0.1111, 0.1111, 0.1765, 0.2500)
SI (0.1111, 0.1765, 0.3333, 0.4286)
OI (0.2500, 0.3333, 0.5385, 0.6667)
WI (0.4286, 0.5385, 0.8182, 1.0000)
E (1.0000, 1.0000, 1.0000, 1.0000)
WS (1.0000, 1.2222, 1.8571, 2.3333)
OS (1.5000, 1.8571, 3.0000, 4.0000)
SS (2.3333, 3.0000, 5.6667, 9.0000)
ES (4.0000, 5.6667, 9.0000, 9.0000)
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Figure 5: *ree-level standardized framework for the index
system.
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(index 7), mental health effects (index 8), and impact on user
development (index 9) belong to dimension 1.

3.3. Ce Process of Proposed Hybrid Model. *is paper
presents a digital twin driven green performance evaluation
methodology of intelligent manufacturing by introducing
the hybrid model (FRSA-MSWS-PII), as shown in Figure 6.
Fuzzy numbers are used to deal with uncertainty of expert
judgment in the group decision-making process, while RBI
is used to integrate the judgments of multiple experts. Phase
1 includes the expert judgment of assessment index value by
applying the fuzzy rough-sets AHP model, which results in
the creation of input data required for the multistage weight
synthesis model (phase 2) and PROMETHEE II model
(phase 3). In phase 2, the multiple objective weights are
based on the assessment index values from phase 1, while the
multiple subjective weights are based on experts’ judgment
about the importance of assessment index. *e output data
of phase 2 are the final synthesized weights which are the
input data of phase 3.
*e FRSA-MSWS-PII model, which is the subject matter

of this paper, represents a novel approach for dealing with
uncertainty in green performance evaluation of intelligent
manufacturing based on fuzzy rough-sets AHP, multistage
weight synthesis, and PROMETHEE II. For defining the
final rank of intelligent manufacturing project alternatives,
the FRSA-MSWS-PII method is used. *e following three
sections deal with the algorithms for the FRSA-MSWS-PII
model.

3.3.1. Multiexpert Judgment Integration Based on Fuzzy
Rough-Sets AHP. To achieve multiexpert judgment inte-
gration, there are two preconditions: (1) there are N indexes:
index 1, index 2, . . ., index N, which constitute the index set
is I. Here, N� 9 and index 1, index 2, . . ., index N represent
the indexes shown in Figure 5. (2) *ere are q experts to
assess the sustainable performance of l intelligent
manufacturing project alternatives. As shown in Figure 6,
the fuzzy rough-sets AHP for multiexpert judgment inte-
gration, which is phase 1 of the hybrid model, is to obtain the
index value of intelligent manufacturing project alternatives.
Its process is as follows.
Experts judge the performance of all intelligent

manufacturing project alternatives on any index based on
their experiences and wisdom. On index t (t � 1, 2, ..., N),
the fuzzy reciprocal judgment matrix given by expert k
(k� 1,2, . . ., q) is as follows:

Φ̃k,t �

ϕ̃
k,t

1,1 ϕ̃
k,t

1,2 · · · ϕ̃
k,t

1,l

ϕ̃
k,t

2,1 ϕ̃
k,t

2,2 · · · ϕ̃
k,t

2,l

⋮ ⋮ ⋮
ϕ̃
k,t

l,1 ϕ̃
k,t

l,2 · · · ϕ̃
k,t

l,l




, (18)

where ϕ̃
k,t

i,j is the fuzzy score of intelligent manufacturing
project alternative i relative to intelligent manufacturing

project alternative j given by expert k on index t and

ϕ̃
k,t

j,i � 1/ϕ̃
k,t

i,j .
According to the table, the set of the nine-level scales is

SCA� {EI, SI, OI, WI, E, WS, OS, SS, ES} and the set of
trapezoid fuzzy number values of nine-level scales is TFN-
SCA� {(0.1111, 0.1111, 0.1765, 0.2500), (0.1111, 0.1765,
0.3333, 0.4286), (0.2500, 0.3333, 0.5385, 0.6667), (0.4286,
0.5385, 0.8182, 1.0000), (1.0000, 1.0000, 1.0000, 1.0000),
(1.0000, 1.2222, 1.8571, 2.3333), (1.0000, 1.2222, 1.8571,
2.3333), (2.3333, 3.0000, 5.6667, 9.0000), (4.0000, 5.6667,
9.0000, 9.0000)}.
From the perspective of judgment comment, ϕ̃

k,t

i,j ∈ SCA,
which represents the evaluation of performance of intelli-
gent manufacturing project alternative i relative to intelli-
gent manufacturing project alternative j given by expert k on
index t, while from the perspective of judgment value, ϕ̃

k,t

i,j ∈
TFN-SCA, which is a trapezoid fuzzy number, and can be
represented as follows:

ϕ̃
k,t

i,j � αk,ti,j , χ
k,t
i,j , δ

k,t
i,j , β

k,t
i,j( ). (19)

Especially, when i� j, ϕ̃
k,t

i,j � (1, 1, 1, 1).
Consistency inspection is carried out after all experts

finish their judgment. If any fuzzy reciprocal judgment
matrix fails to pass the consistency inspection, the corre-
sponding expert should adjust his judgment matrix. *e
basic idea of consistency inspection for fuzzy reciprocal
judgment matrix is using formula (8) to convert trapezoid
fuzzy number to real number, and then, fuzzy reciprocal
judgment matrix Φ̃k,t could be transformed into general
judgment matrix Φ̃k,t as follows:

Φk,t �

ϕk,tl,1 ϕk,t1,2 · · · ϕk,t1,l

ϕk,t2,1 ϕk,t2,2 · · · ϕk,t2,l

⋮ ⋮ ⋮
ϕk,tl,1 ϕk,tl,2 · · · ϕk,tl,l



. (20)

Consistency index (CI) of Φk,t is represented as follows:

CIk,t �
λmax( )k,t − l
l − 1

, (21)

where (λmax)
k,t is the maximum eigenvalue of Φk,t.

Usually, consistency ratio (CR) is used to evaluate the
consistency of reciprocal judgment matrix. ForΦk,t, its CR is
represented as follows:

CRk,t �
CIk,t

RIk,t
, (22)

where RIk,t is a random index (RI) that depends on the
dimension l of Φk,t. *e specific value of RI is shown in
Table 2.
When CRk,t>0.1, the judgment logic of expert k on index

It is inconsistent and Φk,t fails to pass the consistency in-
spection. As a result, expert k should adjust his judgment
process and give a new judgment matrix.
Ulteriorly, the group judgment matrix is constructed as

follows:
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Θ̃t �

ρ̃t1,1 ρ̃t1,2 · · · ρ̃t1,l

ρ̃t2,1 ρ̃t2,2 · · · ρ̃t2,l

⋮ ⋮ ⋮
ρ̃tl,1 ρ̃tl,2 · · · ρ̃tl,l


. (23)

Element ρ̃ti,j is a set, which can be represented as follows:

ρ̃ti,j � ϕ̃
1,t

i,j , ϕ̃
2,t

i,j , ..., ϕ̃
q,t

i,j{ }, (24)

In ρ̃ti,j, the fuzzy RBI of ϕ̃
k,t

i,j is obtained according to
related concepts given by formulas (8)–(13) as follows:

RBI ϕ̃
k,t

i,j( ) � LRL ϕ̃
k,t

i,j( ),URL ϕ̃
k,t

i,j( )[ ]

�
1

Num LRAS ϕ̃
k,t

i,j( )( ) ∑
Y∈̃ρti,j

Y≤ ϕ̃
k,t

i,j

Y,
1

Num URAS ϕ̃
k,t

i,j( )( ) ∑
Y∈̃ρti,j

Y≥ ϕ̃
k,t

i,j

Y




.

(25)
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Figure 6: *e process of the proposed FRSA-MSWS-PII model.

Table 2: *e specific value of RI.

Dimension l 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

8 Complexity



Based on the arithmetic operation rule of RBI shown by
formulas (16)–(18), RBI of ρ̃ti,j is obtained as follows:

RBI ρ̃ti,j( ) � LRL ρ̃ti,j( ),URL ρ̃ti,j( )[ ]
�
1

q
∑q
k�1

LRL ϕ̃
k,t

i,j( ), 1
q
∑q
k�1

URL ϕ̃
k,t

i,j( ) . (26)

*en, the RBI judgment matrix is constructed as follows:

Λ̃t �

RBI ρ̃t1,1( ) RBI ρ̃t1,2( ) · · · RBI ρ̃t1,l( )
RBI ρ̃t2,1( ) RBI ρ̃t2,2( ) · · · RBI ρ̃t2,l( )
⋮ ⋮ ⋮

RBI ρ̃tl,1( ) RBI ρ̃tl,2( ) · · · RBI ρ̃tl,l( )



. (27)

Λ̃t is decomposed into LRL matrix and URL matrix as
follows:

Λ̃tLRL �

LRL ρ̃t1,1( ) LRL ρ̃t1,2( ) · · · LRL ρ̃t1,l( )
LRL ρ̃t2,1( ) LRL ρ̃t2,2( ) · · · LRL ρ̃t2,l( )
⋮ ⋮ ⋮

LRL ρ̃tl,1( ) LRL ρ̃tl,2( ) · · · LRL ρ̃tl,l( )



, (28)

Λ̃tURL �

URL ρ̃t1,1( ) URL ρ̃t1,2( ) · · · URL ρ̃t1,l( )
URL ρ̃t2,1( ) URL ρ̃t2,2( ) · · · URL ρ̃t2,l( )
⋮ ⋮ ⋮

URL ρ̃tl,1( ) URL ρ̃tl,2( ) · · · URL ρ̃tl,l( )


. (29)

Based on the barycenter operation shown by formula (8),
Λ̃tLRL and Λ̃

t

URL are converted into real number forms: ΛtLRL
andΛtURL. *e eigenvectors of ΛtLRL andΛtURL corresponding
to the maximum eigenvalue are obtained, respectively, as
follows:

Eig ΛtLRL( ) � Eig1 ΛtLRL( ),Eig2 ΛtLRL( ), ...,Eigl ΛtLRL( )[ ],
(30)

Eig ΛtURL( ) � Eig1 ΛtURL( ),Eig2 ΛtURL( ), ..., Eigl ΛtURL( )[ ].
(31)

After averaging the two eigenvectors shown in formulas
(29) and (30), an average vector is obtained as follows:

Eig ΛtAver( ) � Eig1 ΛtAver( ),Eig2 ΛtAver( ), ...,Eigl ΛtAver( )[ ],
(32)

where Eigi(ΛtAver) � (1/2)(Eigi(ΛtLRL) + Eigi(ΛtURL)).
*e index value of alternate intelligent manufacturing

project i on index t is obtained as Eigi(ΛtAver). After solving
the index values of l intelligent manufacturing project al-
ternates on other indexes by similar way, the index value
matrix of l intelligent manufacturing project alternates on all
indexes is obtained asX � [xi,t]l×N, where xi,t � Eigi(ΛtAver).

3.3.2. Multistage Weight Synthesis. Solving index weight is
the key step of comprehensive decision of green

performance evaluation of intelligent manufacturing.

Generally, there are three methods to determine index

weight: subjective weight method, objective weight method,

and synthesis weight method. *e subjective weight method

generally uses the knowledge and experience of experts, but

the evaluation results are not scientific because of subjec-

tivity; the objective weight method determines the weight

according to the degree of difference between indexes but

often ignores the importance of the indexes themselves; the

synthesis weight method is usually composed of a variety of

subjective and objective weight methods, which can offset

the shortcomings of different weight methods.
In the aspect of index weight solving for green perfor-

mance evaluation of intelligent manufacturing, in order to
avoid the instability of assessment result caused by single
weight and make the weight setting of assessment index
more fair and reasonable, a multistage synthesis weight
method is proposed to solve index weight. *e proposed
method has three stages of weight synthesis, and there are
several substages in each stage of weight synthesis.
As shown in Figure 7, the proposed multistage weight

synthesis method has a detailed process as follows:

(1) Stage 1: subjective weight synthesis.

Subjective weight methods mainly include complex
networks method, ANPmethod, and Delphi method.
*e principle and solution process of these methods
are as follows:

(i) Complex networks method. By complex net-
works method, the determination of index
weight is regarded as the evaluation of node
importance in complex networks. *e index can
be treated as node in complex networks, and the
network attributes (degree centrality, between-
ness centrality, and closeness centrality) of a
node describe its importance in the network
from different aspects (local attribute, propa-
gation attribute, and global attribute).*erefore,
we use expert evaluation to determine whether
there is a relationship between two indexes,
regardless of the direction of the relationship.
Based on this, an undirected network with index
as node is established. *en, the degree cen-
trality, betweenness centrality, and closeness
centrality of each node are computed. Taking the
network attributes of index as criterion, the net
flow of each index is calculated by the Preference
Ranking Organization Method for Enrichment
Evaluations II (PROMETHEE II) method. *e
relative net flow of an index is obtained by
calculating the relative difference between its net
flow and the minimum net flow, and then, the
relative net flow of all indexes is normalized to
get the index weight. *e process of complex
networks method is shown in Figure 8.

(ii) ANP method. *e ANP structure of deter-
mining the subjective weight of green perfor-
mance evaluation of intelligent manufacturing is
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set up, as shown in Figure 9. *e control layer
only has one element: the overall goal (green
performance evaluation of intelligent
manufacturing), and the network layer has three
element groups corresponding to three perfor-
mance dimensions. Each element group affects
each other and contains different elements. *e
elements in the same element group also affect
each other. Based on the experts’ evaluation of
the importance and influence among the in-
dexes, the weights of the indexes are determined
by the classical ANP method.

(iii) Delphi method. It usually relies on the knowl-
edge, experience, and specialty of experts to
score the indexes of the evaluation object sep-
arately and generally adopts the percentage
grading system and then takes the average value
of all experts’ scores as the weight of the eval-
uation index. *is method has convenient op-
eration, easy investigation procedure, and
simple calculation.
It is assumed that the subjective weight vectors
obtained by h different methods are as follows:

SW1 � sw11, sw
1
2, ..., sw

1
N[ ]T,

SW2 � sw21, sw
2
2, ..., sw

2
N[ ]T,

· · ·

SWh
� swh1 , sw

h
2 , ..., sw

h
N[ ]T.

(33)

In the subjective weight synthesis stage, there are h − 1
substages, and each substage corresponds to a syn-
thesis. Taking the synthesis of SW1 and SW2 as an
example, their synthesized weight vector
SW1∘2 � [sw1∘21 , sw

1∘2
2 , ..., sw

1∘2
N ]T is defined as follows:

SW1∘2 � τ1SW
1
+ τ2SW

2, (34)

where τ1 and τ2 are the synthesis coefficients corre-
sponding to SW1 and SW2 and
τ1 ≥ 0, τ2 ≥ 0, and τ1 + τ2 � 1.

According to index value matrix X � [xi,t]l×N, the
weight contribution difference degree of SW1 and SW2

is defined as follows:

ξ1∘2 �∑l
i�1

∑N
t�1

τ1sw
1
txi,t − τ2sw

2
txi,t( )2. (35)

*erefore, a weight synthesis optimization model is
established to balance the weight contribution of SW1

and SW2 as follows:

min ξ1∘2,

s.t. τ1 ≥ 0, τ2 ≥ 0, τ1 + τ2 � 1.
(36)

Two synthesis coefficients are solved as follows:

τ1 �
∑li�1∑Nt�1 xi,t( )2sw2t sw1t + sw2t( )
∑li�1∑Nt�1 xi,t( )2 sw1t + sw2t( ) ,

τ2 � 1 − τ1.

(37)

SW1∘2 and SW3 are synthesized in the same way, and
their synthesized weight vector is obtained as SW1∘2∘3.
According to the process of subjective weight synthesis
stage shown in Figure 1, the synthesized subjective
weight vector can be obtained in the end as follows:

SW1∘2∘...∘h � sw1∘2∘...∘h1 , sw1∘2∘...∘h2 , ..., sw1∘2∘...∘hN[ ]T. (38)

(2) Stage 2: objective weight synthesis.

Objective weight methods mainly include entropy
method, CRITIC method, and standard deviation
method. *e principle and solution process of these
methods are as follows:

(i) Entropy method. In information theory, entropy is
a measure of uncertainty, which determines the
weight according to the variation in index. Gen-
erally, the smaller the entropy of an index, the
greater the variation degree in the index, the more
the information it provides, and the greater its
weight; on the contrary, the larger the entropy of an
index, the smaller the variation degree of the index,
the less information it provides, and the smaller its
weight. Entropymethod calculates the weight of an
index based on its information quantity.

(ii) CRITIC method. Its basic idea is to compre-
hensively measure the weight of the index
through the contrast intensity within the index
and the conflict between the indexes. Contrast
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Figure 9: *e ANP structure.
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intensity is presented in the form of standard
deviation, while conflict is determined by the
correlation between indexes.

(iii) Standard deviation method. *is method uses
the standard deviation of an index to determine
its weight. If an index has a larger standard
deviation, which means that the index is more
different in value, its weight will be larger. By
normalizing the standard deviations of all in-
dexes, the weights of indexes can be obtained.
According to the process of objective weight
synthesis stage shown in Figure 1, by the same
way with the solving process of synthesized
subjective weight vector, the synthesized ob-
jective weight vector also can be obtained in the
end as follows:

OW1∘2∘...∘g � ow1∘2∘...∘g1 , ow
1∘2∘...∘g
2 , ..., ow

1∘2∘...∘g
N[ ]T.

(39)

(3) Stage 3: total synthesis.

Under the premise of obtaining synthesized sub-
jective weight SW1∘2∘...∘h and synthesized objective
weight OW1∘2∘...∘g, total synthesis of subjective and
objective weight is carried out using the same weight
synthesis optimization model shown by formula
(35), and the vector TW � [tw1, tw2, ..., twN]

T is
obtained as follows:

TW � τswSW
1∘2∘...∘h

+ τowOW
1∘2∘...∘g, (40)

where τsw and τow are the subjective synthesis coeffi-
cient and objective synthesis coefficient, and they are
corresponding to SW1∘2∘...∘h and OW1∘2∘...∘g, respec-
tively. Here, τsw ≥ 0, τow ≥ 0, and τsw + τow � 1.

3.3.3. Intelligent Manufacturing Project Evaluation by
PROMETHEE II. Traditional object assessment methods in-
clude TOPSIS (Technique for Order Preference by Similarity to
an Ideal Solution) [28], VIKOR (VlseKriterijumska Opti-
mizacija I Kompromisnoresenje) [29], AHP, and other mixed-
model MCDM methods. *ese methods have decision com-
pensation in the assessment and decision-making process; that
is, the high value of one index can remedy the low value of
other indexes. In this part, PROMETHEE II [30] is used to
assess the green performance and sort several intelligent
manufacturing projects.*e core idea of thismethod is that the
level is not lower than the relationship. By PROMETHEE II,
the priority function is used to compare the intelligent
manufacturing projects one by one to determine the priority
sequence of all intelligent manufacturing projects, which can
avoid the influence of decision compensation on the assess-
ment results of intelligentmanufacturing projects.*ismethod
fully considers the objective facts of the existence of the
preference of the decision-maker, making the decision-making
results more convincing.

In PROMETHEE II, there are many common criteria to
determine the preference function. Compared with others, the
Gaussian preference function has nonlinear characteristics,
which is more in line with the actual decision-making envi-
ronment.*erefore, this paper chooses the preference function
in the form of Gaussian criteria. *e index values of intelligent
manufacturing projects i andm (i,m� 1, 2, . . ., l and i≠m) in
index t are xi,t and xm,t, respectively. On index t, the preference
function of intelligent manufacturing project i compared with
intelligent manufacturing project m is defined as follows:

pt(i, m) �
0, xi,t − xm,t ≤ 0,
1 − e− xi,t−xm,t( )2/2η2 , xi,t − xm,t > 0,

 (41)

where the value of parameter η is 0.2.
Under the condition of considering all indexes, the

weighted preference degree of intelligent manufacturing
project i compared with intelligent manufacturing projectm
is expressed as follows:

p(i, m) �∑N
t�1

wt · pt(i, m). (42)

*e outflow Ω+i and inflow Ω−i of intelligent
manufacturing project i can be obtained as follows:

Ω+i � ∑l
m�1,m≠i

p(i, m),

Ω−i � ∑l
m�1,m≠i

p(m, i),

(43)

where p(m, i) represents the weighted preference degree of
intelligent manufacturing project m compared with intel-
ligent manufacturing project i under the condition of
considering all indexes.
*e degree of intelligent manufacturing project i su-

perior to other projects can be represented by outflow Ω+i ,
and the degree of intelligent manufacturing project i inferior
to other projects can be represented by inflowΩ−i . *erefore,
the preference net flow of intelligent manufacturing project i
is represented as follows:

Ωi � Ω+i −Ω
−
i . (44)

*e net flow is the main basis for the PROMETHEE II
method to measure the advantages and disadvantages of the
intelligent manufacturing projects. *e priority ranking
results of all intelligent manufacturing projects can be ob-
tained by comparing the net flow values.

4. Case Study: Application of the FRSA-MSWS-
PII Model for Green Performance
Evaluation of Intelligent Manufacturing
Project for an Air Conditioning Enterprise
Driven by Digital Twin

*e remote operation and maintenance service project is a
key component of the intelligent manufacturing strategy for
an air conditioning enterprise. *is section will evaluate the
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green performance of the remote operation and mainte-
nance service project alternatives to obtain the optimal one
from multiple alternatives. *e enterprise has built the
digital twin system of its intelligent manufacturing project,
which can provide the digital twin data of whole life cycle for
green performance evaluation. *ere are ten alternatives of
intelligent manufacturing project of remote operation and
maintenance service, which are Alter. 1, Alter. 2,. . ., Alter.
10.*ree experts participate in the index value calculation of
intelligent manufacturing project alternatives. For index 1,
the fuzzy reciprocal assessment matrices given by three

experts are Φ̃1,1 � [ϕ̃1,1i,j ]10×10, Φ̃
2,1
� [ϕ̃

2,1

i,j ]10×10, and

Φ̃3,1 � [ϕ̃3,1i,j ]10×10. Due to limited space and without losing
generality, only Φ̃1,1 is given as follows:

Φ̃1,1 �

E OS E WS OS E ES WS OS E

OI E OI WI E E SI OI WI WI

E OS E WS E OS WS SS E OS

WI WS WI E WS OS E WS E SS

OI E OI WI E EI E SI WI WI

E E OI OI ES E E SI SI EI

EI SS WI E SS E E SS OS E

WI OS SI WI SS SS SI E WI WS

OI WS E E WS SS OI WS E SI

E WS OI SI WS ES E WI SS E





.

(45)

*rough consistency inspection, three matrices Φ̃1,1,
Φ̃2,1, and Φ̃3,1 can pass the inspection. *en, the group
judgment matrix Θ̃1 � [ρ̃1i,j]10×10 is constructed based on
Φ̃1,1, Φ̃2,1, and Φ̃3,1 and ρ̃1i,j � ϕ̃

1,1

i,j , ϕ̃
2,1

i,j , ϕ̃
3,1

i,j{ }. For example,
ρ̃11,2 � ϕ̃

1,1

1,2, ϕ̃
2,1

1,2, ϕ̃
3,1

1,2{ } � OS,E,OS{ } � {(1.0000, 1.2222,

1.8571, 2.3333), (1.0000, 1.0000, 1.0000, 1.0000), (1.0000,
1.2222, 1.8571, 2.3333)}. Based on formulas (11)–(13), the

rough boundary interval of ϕ̃
1,1

1,2 � OS in ρ̃11,2 �

ϕ̃
1,1

1,2, ϕ̃
2,1

1,2, ϕ̃
3,1

1,2{ } is obtained as RBI(ϕ̃
1,1

1,2) � [LRL(ϕ̃
1,1

1,2),

URL(ϕ̃
1,1

1,2)] � [(1.0000, 1.1481, 1.5714, 1.8889), (1.0000,

1.2222, 1.8571, 2.3333)], while RBI(ϕ̃
2,1

1,2) �

[LRL(ϕ̃
2,1

1,2),URL(ϕ̃
2,1

1,2)] � [(1.0000, 1.0000, 1.0000, 1.0000),

(1.0000, 1.1481, 1.5714, 1.8889)] and RBI(ϕ̃
3,1

1,2) �

[LRL(ϕ̃
3,1

1,2),URL(ϕ̃
3,1

1,2)] � [(1.0000, 1.1481, 1.5714, 1.8889),

(1.0000, 1.2222, 1.8571, 2.3333)]. According to the arithmetic
operation rules shown in formulas (14)–(16), the rough

boundary interval of ρ̃11,2 � ϕ̃
1,1

1,2, ϕ̃
2,1

1,2, ϕ̃
3,1

1,2{ } can be obtained
as RBI(ρ̃11,2) � [(1.0000, 1.0988, 1.3809, 1.5926), (1.0000,
1.1975, 1.7619, 2.1852)].

*e rough boundary intervals of other elements in Θ̃1 �
[ρ̃1i,j]10×10 can be obtained by the same way. *e RBI
judgment matrix is constructed as Λ̃1 � [RBI(ρ̃1i,j)]10×10.
*en, Λ̃1 is decomposed into LRL matrix Λ̃1LRL and URL
matrix Λ̃1URL. Λ̃

1

LRL is shown in Tables 3 and 4, while Λ̃
1

URL is
shown in Tables 5 and 6.
According to formula (8), Λ̃1LRL and Λ̃

1

URL are converted
into real number forms Λ1LRL, shown in Table 7, and Λ1URL
shown in Table 8.
*e eigenvectors of Λ1LRL and Λ1URL corresponding to the

maximum eigenvalue are obtained, respectively, as
Eig(Λ1LRL) and Eig(Λ1URL). After averaging the two eigen-
vectors, an average vector is obtained as
Eig(Λ1Aver) � [0.3353, 0.3039, 0.3235, 0.3009, 0.3108, 0.3354,
0.2915, 0.3100, 0.3234, 0.3214]T.
*e index value of ten intelligent manufacturing project

alternatives on index 1 is obtained as Eig(Λ1Aver). After
solving the index values of ten intelligent manufacturing
project alternatives on other indexes by the same way, the
index value matrix of ten intelligent manufacturing project
alternatives on all indexes is obtained as X � [xi,t]10×9, as
shown in Table 9.
Subjective weight solved by the complex networks

method, ANP method, and Delphi method is shown in
Table 10, while objective weight solved by the entropy
method, CRITIC method, and standard deviation method is
shown in Table 11.
As shown in Figure 10, the weight synthesis has three

stages. Stage 1 and stage 2 have two substages, respectively.
*e synthesized weight obtained in each stage is shown

in Table 12.
According to formulas (40) and (41), the weighted

preference degree matrix is obtained, as shown in Table 13.
According to formulas (42) and (43), the outflow, inflow,

net flow, and final rank are obtained, as shown in Table 14.

5. Discussion of the Results

In order to make a final selection of the optimal alternatives,
it is necessary to assess the reliability of the results obtained
by the initial model. *e most common means of assessing
the reliability of the results is to compare them with other
MCDM techniques. *e discussion of the results is pre-
sented using the comparison of three MCDM methods
(PROMETHEE II, TOPSIS, and VIKOR). *ese methods
were chosen because they have so far given stable and re-
liable results [27–30]. TOPSIS and VIKOR methods were
modified using fuzzy rough-sets AHP and multistage weight
synthesis techniques proposed in this paper, which are called
FRSA-MSWS-TOPSIS and FRSA-MSWS-VIKOR. *ese
two modified models are compared with the proposed
FRSA-MSWS-PII. Additionally, the models for comparison
(FRSA-MSWS-TOPSIS and FRSA-MSWS-VIKOR) are di-
vided into multiple submodels which are with synthesis of
different quantity weights. In the second part of this section,
a sensitivity analysis [31, 32] of the proposed FRSA-MSWS-
PII model was carried out through 27 scenarios.
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5.1. Comparing the Ranks of Different Models.
FRSA-MSWS-TOPSIS model and FRSA-MSWS-TOPSIS
model are divided into multiple submodels. All models
including the proposed model (model 1) are as follows:

(1) Model 1: proposed model (FRSA-MSWS-PII) with
synthesis of six weights (SW1, SW2, SW3+OW1,
OW2, OW3)

(2) Model 2: FRSA-MSWS-TOPSIS with synthesis of
two weights

Model 2.1: SW1+OW1

Model 2.2: SW1+OW2

Model 2.3: SW2+OW2

Model 2.4: SW2+OW3

Model 2.5: SW3+OW1

Model 2.6: SW3+OW3

(3) Model 3: FRSA-MSWS-VIKOR with synthesis of
two weights

Model 3.1: SW1+OW1

Model 3.2: SW1+OW2

Model 3.3: SW2+OW2

Model 3.4: SW2+OW3

Model 3.5: SW3+OW1

Model 3.6: SW3+OW3

Table 3: LRL matrix Λ̃1LRL (part 1: columns 1–5).
Alter. 1 2 3 4 5

1 (1, 1, 1, 1)
(1.0000, 1.0988, 1.3809,

1.5926)
(1.1037, 1.6779, 1.8694,

1.9372)
(0.6468, 1.7128, 1.8540,

1.8657)
(0.9951, 1.3021, 1.3572,

1.7378)

2
(0.5336, 0.5676, 1.0397,

1.3301)
(1, 1, 1, 1)

(0.4684, 0.9725, 1.1776,
1.3317)

(0.8246, 1.0541, 1.0761,
1.6594)

(0.5427, 0.8139, 0.9974,
1.3416)

3
(1.1489, 1.4540, 1.4561,

1.5842)
(0.4953, 0.5825, 0.8568,

1.6916)
(1, 1, 1, 1)

(0.8178, 1.1612, 1.2975,
1.9428)

(1.0195, 1.0630, 1.5027,
1.9814)

4
(0.7188, 1.0560, 1.6952,

1.7386)
(0.9026, 1.1191, 1.4234,

1.4681)
(0.7571, 0.9762, 1.0272,

1.2090)
(1, 1, 1, 1)

(0.5961, 1.1055, 1.1799,
1.3777)

5
(0.5566, 0.9454, 1.2728,

1.4644)
(0.6137, 0.9540, 1.2736,

1.3970)
(1.4355, 1.4538, 1.5025,

1.9150)
(1.1477, 1.1610, 1.3913,

1.4760)
(1, 1, 1, 1)

6
(0.8475, 1.4009, 1.7410,

1.7550)
(1.0563, 1.1164, 1.7237,

1.8260)
(0.7848, 1.0350, 1.6751,

1.9214)
(0.7092, 1.6417, 1.7861,

1.9843)
(0.4996, 1.3061, 1.4028,

1.4263)

7
(0.6408, 0.6771, 0.7431,

0.7685)
(1.1400, 1.2236, 1.2805,

1.5275)
(0.5379, 0.7261, 1.0074,

1.2589)
(0.6112, 1.1761, 1.4969,

1.8638)
(0.6579, 0.7795, 0.9149,

1.3757)

8
(0.5216, 0.6006, 0.8792,

1.7264)
(1.0414, 1.1301, 1.6366,

1.6826)
(0.8778, 1.5035, 1.5495,

1.6198)
(0.6862, 0.8049, 1.7300,

1.8657)
(0.4572, 0.6153, 1.6511,

1.9409)

9
(1.1202, 1.2001, 1.3715,

1.3804)
(0.9248, 1.1256, 1.1425,

1.2045)
(1.0368, 1.2759, 1.4487,

1.7079)
(0.7720, 0.9169, 1.3599,

1.4148)
(1.2160, 1.5583, 1.6575,

1.8508)

10
(0.4973, 1.1939, 1.2250,

1.6033)
(0.7335, 0.8219, 1.3439,

1.6985)
(1.2856, 1.4828, 1.4831,

1.5321)
(0.5005, 1.3199, 1.4872,

1.8169)
(0.6924, 1.0332, 1.4494,

1.7761)

Table 4: LRL matrix Λ̃1LRL (part 2: columns 6–10).
Alter. 6 7 8 9 10

1
(0.8231, 1.4384, 1.4980,

1.9344)
(0.7973, 0.8449, 1.4851,

1.7588)
(0.4518, 1.0495, 1.3834,

1.8698)
(1.0328, 1.0413, 1.0671,

1.2811)
(1.0170, 1.0771, 1.1450,

1.6334)

2
(0.5954, 0.6653, 0.7476,

1.5292)
(0.6231, 0.6613, 1.2175,

1.5019)
(1.3189, 1.5298, 1.7686,

1.8909)
(0.4508, 1.3995, 1.7914,

1.9844)
(0.6138, 0.6702, 0.7080,

1.4125)

3
(0.5483, 1.5937, 1.7837,

1.8983)
(0.4979, 0.6576, 0.7253,

1.0678)
(0.5462, 0.9109, 0.9647,

1.9929)
(0.5753, 0.5893, 1.4282,

1.6547)
(0.4660, 0.9057, 0.9741,

1.6068)

4
(0.7969, 0.9776, 1.3572,

1.9376)
(0.6649, 1.2982, 1.8309,

1.9369)
(0.8275, 0.9925, 1.7121,

1.8904)
(0.6747, 1.3023, 1.3485,

1.7974)
(0.5677, 0.6411, 0.8219,

1.0728)

5
(1.2083, 1.2108, 1.8492,

1.9144)
(0.7146, 0.8002, 0.8029,

1.1253)
(0.6222, 1.1302, 1.8526,

1.9686)
(0.6320, 0.7937, 1.3844,

1.5524)
(0.8933, 0.9312, 1.1001,

2.3003)

6 (1, 1, 1, 1)
(0.5999, 1.2586, 1.7172,

1.7181)
(1.1534, 1.4559, 1.6905,

1.9581)
(0.8006, 1.0462, 1.3536,

1.3637)
(0.9830, 1.5819, 1.7278,

1.9731)

7
(0.4849, 0.8541, 1.3713,

1.7175)
(1, 1, 1, 1)

(0.5054, 0.9498, 1.1806,
1.6663)

(0.7472, 0.9787, 1.3915,
1.5946)

(0.5912, 0.7424, 0.8956,
1.3431)

8
(1.0599, 1.2561, 1.4907,

1.5989)
(0.5189, 0.8263, 1.1357,

1.6201)
(1, 1, 1, 1)

(0.4803, 1.1356, 1.5093,
1.5413)

(1.2220, 1.3407, 1.7600,
1.8463)

9
(0.5794, 1.4202, 1.4745,

1.5811)
(0.4763, 0.6373, 1.3491,

1.8889)
(0.4891, 1.1740, 1.4547,

1.7554)
(1, 1, 1, 1)

(0.5341, 0.7245, 0.9628,
1.4774)

10
(0.8962, 1.0925, 1.5457,

1.9992)
(0.8964, 1.5462, 1.5810,

1.6611)
(0.9733, 1.3922, 1.5989,

1.6593)
(0.5296, 1.5882, 1.6884,

1.8302)
(1, 1, 1, 1)
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Table 5: URL matrix Λ̃1URL (part 1: columns 1–5).
Alter. 1 2 3 4 5

1 (1, 1, 1, 1)
(1.0000, 1.1975, 1.7619,

2.1852)
(1.3959, 1.8678, 2.5606,

2.9058)
(0.8786, 2.2426, 2.6681,

4.7228)
(1.4288, 2.4658, 2.8178,

3.9657)

2
(1.3456, 1.9678, 2.5142,

2.8548)
(1, 1, 1, 1)

(1.1568, 1.4847, 2.5474,
3.0198)

(1.0122, 1.0903, 2.8725,
4.8158)

(0.8339, 0.8947, 1.5098,
2.6066)

3
(1.4519, 1.5936, 2.0034,

2.4383)
(1.8749, 2.4067, 2.8435,

3.2298)
(1, 1, 1, 1)

(1.3095, 1.8756, 1.9465,
3.4211)

(0.8830, 2.7474, 2.8092,
4.1440)

4
(0.9330, 1.6784, 1.9591,

2.5506)
(0.8341, 1.1678, 1.2461,

2.9649)
(0.9159, 2.8247, 2.8936,

3.8990)
(1, 1, 1, 1)

(0.9411, 2.2048, 2.3311,
2.3398)

5
(1.6968, 2.3804, 2.6040,

4.8683)
(0.9998, 1.7316, 1.9192,

2.5134)
(1.2597, 1.3015, 1.3197,

2.3604)
(1.5705, 2.2564, 2.4946,

2.5479)
(1, 1, 1, 1)

6
(1.9121, 1.9896, 2.0809,

2.7139)
(1.6729, 2.4921, 2.5787,

3.9713)
(1.5206, 1.7650, 2.2768,

4.3007)
(1.4500, 1.9317, 2.0937,

2.7454)
(0.9090, 1.5973, 1.6085,

1.8771)

7
(0.8938, 1.4201, 2.1974,

3.0621)
(1.0727, 1.8788, 2.6766,

4.4705)
(1.1865, 1.2597, 1.5389,

4.6016)
(1.5736, 2.0361, 2.4198,

2.4402)
(0.9572, 1.0258, 1.3335,

2.7689)

8
(0.9447, 1.4976, 2.3286,

2.8905)
(1.2111, 1.7803, 1.8775,

3.5145)
(1.0618, 1.1577, 2.2412,

2.8931)
(0.9720, 1.9844, 2.6592,

2.9915)
(0.9858, 2.4791, 2.5981,

2.7111)

9
(0.8528, 1.1187, 1.6901,

1.8615)
(1.9187, 1.9237, 2.5988,

4.1383)
(1.5716, 2.7271, 2.8658,

3.1107)
(1.3071, 1.6180, 1.8360,

2.6575)
(1.5352, 1.6308, 2.3372,

2.7600)

10
(2.1417, 2.1589, 2.7904,

4.4097)
(0.8631, 1.5053, 1.8778,

2.7503)
(1.0816, 1.1919, 1.5187,

2.9980)
(1.2190, 1.6116, 1.8136,

4.9229)
(1.2200, 1.3066, 1.7422,

1.8604)

Table 6: URL matrix Λ̃1URL (part 2: columns 6–10).
Alter. 6 7 8 9 10

1
(1.0856, 1.4359, 2.2780,

2.3293)
(0.8282, 1.5578, 2.2857,

2.5171)
(1.7336, 1.8140, 1.8174,

4.0347)
(1.2599, 1.2930, 1.5676,

2.9902)
(2.1814, 2.4984, 2.8523,

4.8855)

2
(1.9559, 1.9668, 2.6945,

2.8364)
(1.0309, 1.1247, 1.2174,

1.8890)
(2.0821, 2.5939, 2.7338,

4.9534)
(1.7569, 1.8550, 1.9609,

2.5630)
(0.9146, 2.0622, 2.8486,

3.8604)

3
(2.5282, 2.6897, 2.9562,

2.9657)
(1.4502, 1.4629, 2.1983,

2.8661)
(0.9020, 1.4561, 1.9119,

3.9980)
(1.0401, 1.9743, 2.7913,

4.2684)
(0.9066, 2.1276, 2.2694,

3.0096)

4
(1.3612, 1.9131, 2.4528,

3.7361)
(1.1284, 1.3665, 1.8680,

2.6496)
(1.2325, 1.3524, 2.1553,

2.7878)
(1.5721, 2.1685, 2.6767,

2.9556)
(1.0085, 1.2046, 1.3279,

1.7180)

5
(1.2671, 1.5430, 1.6123,

2.7801)
(1.4844, 1.5762, 1.7465,

2.8314)
(1.3677, 1.6992, 1.9013,

2.1088)
(1.4527, 1.5013, 1.7332,

2.9330)
(1.1802, 1.2257, 1.5547,

1.9670)

6 (1, 1, 1, 1)
(1.1297, 2.2511, 2.3894,

2.9781)
(0.9836, 1.3593, 1.7513,

2.6157)
(1.3540, 1.4390, 1.9142,

2.1576)
(1.0371, 2.0850, 2.7939,

4.4945)

7
(1.1553, 1.4880, 1.5508,

1.7356)
(1, 1, 1, 1)

(1.1869, 1.4414, 1.8417,
2.3879)

(1.3343, 1.3919, 2.8183,
4.0151)

(1.7366, 2.0025, 2.3034,
3.5067)

8
(1.1300, 1.5650, 1.9010,

2.0894)
(1.5903, 2.3132, 2.4199,

2.4578)
(1, 1, 1, 1)

(1.3946, 1.5279, 1.6276,
1.7335)

(1.3428, 2.0892, 2.4250,
3.5989)

9
(2.4919, 2.7597, 2.9611,

3.2421)
(1.6795, 1.8655, 2.6587,

2.6980)
(1.5653, 2.0299, 2.6733,

2.6790)
(1, 1, 1, 1)

(1.0599, 2.7767, 2.9745,
3.0679)

10
(1.2209, 1.8226, 2.4807,

2.6000)
(1.0587, 1.6723, 2.0247,

2.3236)
(1.0306, 1.0814, 2.0090,

2.8380)
(0.9603, 0.9948, 2.5564,

4.7606)
(1, 1, 1, 1)

Table 7: Real number form matrix Λ1LRL.
Alter. 1 2 3 4 5 6 7 8 9 10

1 1 1.5314 1.6206 1.4502 1.3533 1.4101 1.2253 1.1829 1.1195 1.2467
2 0.8732 1 0.9696 1.1815 0.9277 0.9341 1.0056 1.6240 1.3692 0.9003
3 1.3962 0.9456 1 1.3245 1.4052 1.3976 0.7491 1.1550 1.0641 1.0024
4 1.2965 1.2240 0.9899 1 1.0433 1.2840 1.4147 1.3558 1.2670 0.7829
5 1.0521 1.0520 1.6035 1.2950 1 1.5459 0.8802 1.3835 1.0907 1.3823
6 1.4157 1.4310 1.3540 1.4816 1.1058 1 1.3005 1.5629 1.1353 1.5446
7 0.7071 1.3030 0.8849 1.2772 0.9513 1.1062 1 1.0778 1.1772 0.9094
8 0.9719 1.3723 1.3468 1.2719 1.1681 1.3485 1.0335 1 1.1417 1.5417
9 1.2668 1.0891 1.3683 1.1145 1.5616 1.2089 1.0983 1.1979 1 0.9408
10 1.1048 1.1561 1.4336 1.2495 1.2373 1.3923 1.3778 1.3899 1.3436 1
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Table 9: Index value matrix X � [xi,t]10×9.

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Alter. 1 0.3353 0.8333 0.9152 0.2143 0.9220 0.6691 0.1878 0.3506 0.5922
Alter. 2 0.3039 0.9618 0.9684 0.2419 0.9735 0.9615 0.5368 0.8203 0.2277
Alter. 3 0.3235 0.4796 0.9242 0.8130 0.9635 0.6902 0.1321 0.8642 0.9406
Alter. 4 0.3009 0.7109 0.7820 0.7688 0.4530 0.6899 0.2541 0.7354 0.1286
Alter. 5 0.3108 0.3492 0.1416 0.1874 0.8411 0.7253 0.3854 0.9552 0.1310
Alter. 6 0.3354 0.4949 0.4434 0.7890 0.8157 0.2682 0.5408 0.5010 0.6817
Alter. 7 0.2915 0.7384 0.7792 0.3484 0.7117 0.6896 0.2464 0.2071 0.5485
Alter. 8 0.3100 0.9638 0.4063 0.6267 0.3014 0.7761 0.3296 0.5554 0.7292
Alter. 9 0.3234 0.9018 0.9634 0.5925 0.2248 0.2344 0.3318 0.8566 0.3289
Alter. 10 0.3214 0.8329 0.3192 0.9363 0.4150 0.2769 0.3260 0.3260 0.5260

Table 8: Real number form matrix Λ1URL.
Alter. 1 2 3 4 5 6 7 8 9 10

1 1 1.9481 2.1786 2.6741 2.6765 1.7774 1.7807 2.5275 1.8617 3.2143
2 2.1596 1 2.0555 2.5039 1.5031 2.3644 1.3543 3.2199 2.0662 2.4149
3 1.8819 2.5825 1 2.2090 2.6034 2.7819 2.0116 2.1619 2.5455 2.0433
4 1.7712 1.6605 2.5614 1 1.8669 2.4042 1.7760 1.8956 2.3310 1.3261
5 3.0017 1.7821 1.6409 2.1853 1 1.8684 1.9738 1.7633 1.9750 1.4944
6 2.2110 2.7231 2.5680 2.0662 1.4638 1 2.1489 1.7024 1.7196 2.6385
7 1.9067 2.5757 2.3581 2.1032 1.6022 1.4725 1 1.7266 2.4189 2.4427
8 1.9157 2.1776 1.8503 2.1235 2.0933 1.6615 2.1507 1 1.5697 2.3904
9 1.3786 2.7131 2.5055 1.8854 2.0731 2.8643 2.2239 2.2266 1 2.3587
10 2.9505 1.7620 1.7784 2.5948 1.5328 2.0168 1.7550 1.7606 2.3935 1

Table 10: Subjective weight.

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Complex networks method (SW1) 0.0685 0.0309 0.1646 0.0656 0.0258 0.1591 0.1396 0.2425 0.1034
ANP method (SW2) 0.0284 0.0913 0.0711 0.1715 0.1104 0.1162 0.1852 0.1049 0.1209
Delphi method (SW3) 0.0830 0.0497 0.0607 0.0970 0.1141 0.1530 0.1323 0.0875 0.2226

Table 11: Objective weight.

Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Entropy method (SW1) 0.1154 0.1133 0.1099 0.1091 0.1108 0.1111 0.1117 0.1110 0.1077
CRITIC method (SW2) 0.1077 0.1153 0.1024 0.1189 0.1066 0.1143 0.1163 0.1116 0.1069
Standard deviation method (SW3) 0.0072 0.1070 0.1515 0.1388 0.1416 0.1226 0.0663 0.1306 0.1344
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Figure 10: *e weight synthesis process.
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(4) Model 4: FRSA-MSWS-TOPSIS with synthesis of
three weights

Model 4.1: SW1, SW2+OW1

Model 4.2: SW2, SW3+OW2

Model 4.3: SW1, SW3+OW3

Model 4.4: SW1+OW1, OW2

Model 4.5: SW2+OW2, OW3

Model 4.6: SW3+OW1, OW3

(5) Model 5: FRSA-MSWS-VIKOR with synthesis of
three weights

Model 5.1: SW1, SW2+OW1

Model 5.2: SW2, SW3+OW2

Model 5.3: SW1, SW3+OW3

Model 5.4: SW1+OW1, OW2

Model 5.5: SW2+OW2, OW3

Model 5.6: SW3+OW1, OW3

(6) Model 6: FRSA-MSWS-TOPSIS with synthesis of
four weights

Model 6.1: SW1, SW2+OW1, OW2

Model 6.2: SW1, SW2+OW2, OW3

Model 6.3: SW2, SW3+OW1, OW3

Model 6.4: SW2, SW3+OW1, OW2

Model 6.5: SW1, SW3+OW2, OW3

Model 6.6: SW1, SW3+OW1, OW3

(7) Model 7: FRSA-MSWS-VIKOR with synthesis of
four weights

Model 7.1: SW1, SW2+OW1, OW2

Model 7.2: SW1, SW2+OW2, OW3

Model 7.3: SW2, SW3+OW1, OW3

Model 7.4: SW2, SW3+OW1, OW2

Model 7.5: SW1, SW3+OW2, OW3

Model 7.6: SW1, SW3+OW1, OW3

(8) Model 8: FRSA-MSWS-TOPSIS with synthesis of
five weights

Model 8.1: SW1, SW2, SW3+OW1, OW2

Model 8.2: SW1, SW2, SW3+OW2, OW3

Model 8.3: SW1, SW2, SW3+OW1, OW3

Model 8.4: SW1, SW2+OW1, OW2, OW3

Model 8.5: SW2, SW3+OW1, OW2, OW3

Model 8.6: SW1, SW3+OW1, OW2, OW3

Table 14: *e outflow, inflow, net flow, and final rank.

Outflow Inflow Net flow Final rank

Alter. 1 2.0998 2.0036 0.0962 4
Alter. 2 3.3781 1.4468 1.9313 2
Alter. 3 3.6129 1.0577 2.5552 1
Alter. 4 2.0032 2.1477 −0.1445 5
Alter. 5 1.6731 3.2940 −1.6208 10
Alter. 6 2.3546 2.5657 −0.2111 6
Alter. 7 1.7805 2.4108 −0.6302 8
Alter. 8 2.2557 2.1512 0.1045 3
Alter. 9 2.0233 2.5379 −0.5145 7
Alter. 10 1.6088 3.1748 −1.5660 9

Table 12: *e synthesized weight obtained in each stage.

Synthesis coefficients Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index 7 Index 8 Index 9

Substage 1–1: SW1∘2 0.3131 and 0.6869 0.0409 0.0724 0.1004 0.1384 0.0839 0.1296 0.1709 0.1480 0.1154
Substage 1–2: SW1∘2∘3 0.6181 and 0.3819 0.0570 0.0638 0.0852 0.1226 0.0954 0.1385 0.1562 0.1249 0.1564
Substage 2–1: OW1∘2 0.7110 and 0.2890 0.1132 0.1139 0.1077 0.1119 0.1096 0.1120 0.1130 0.1111 0.1075
Substage 2–2: OW1∘2∘3 0.4289 and 0.5711 0.0527 0.1100 0.1327 0.1273 0.1279 0.1181 0.0864 0.1222 0.1228
Stage 3: TW 0.3509 and 0.6491 0.0542 0.0937 0.1161 0.1256 0.1165 0.1252 0.1108 0.1232 0.1346

Table 13: *e weighted preference degree matrix.

Alter. 1 Alter. 2 Alter. 3 Alter. 4 Alter. 5 Alter. 6 Alter. 7 Alter. 8 Alter. 9 Alter. 10

Alter. 1 0 0.1097 0.0784 0.2744 0.3406 0.3040 0.1158 0.2275 0.3077 0.3417
Alter. 2 0.3107 0 0.2633 0.3761 0.3417 0.4448 0.4223 0.3916 0.2909 0.5367
Alter. 3 0.3512 0.2610 0 0.2990 0.4132 0.4260 0.4460 0.4158 0.4229 0.5779
Alter. 4 0.2334 0.1217 0.0645 0 0.3146 0.3027 0.2314 0.1943 0.2120 0.3286
Alter. 5 0.1696 0.0251 0.0751 0.1781 0 0.2308 0.1711 0.2242 0.2525 0.3466
Alter. 6 0.2542 0.2477 0.0974 0.2982 0.3858 0 0.3120 0.1972 0.3178 0.2443
Alter. 7 0.0306 0.1140 0.0698 0.1867 0.3491 0.2484 0 0.1980 0.2872 0.2967
Alter. 8 0.2483 0.2347 0.1425 0.2035 0.4120 0.2161 0.2838 0 0.2529 0.2619
Alter. 9 0.2567 0.1170 0.1293 0.1556 0.3694 0.2919 0.2656 0.1974 0 0.2404
Alter. 10 0.1489 0.2158 0.1373 0.1762 0.3675 0.1012 0.1628 0.1051 0.1939 0
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(9) Model 9: FRSA-MSWS-VIKOR with synthesis of
five weights

Model 9.1: SW1, SW2, SW3+OW1, OW2

Model 9.2: SW1, SW2, SW3+OW2, OW3

Model 9.3: SW1, SW2, SW3+OW1, OW3

Model 9.4: SW1, SW2+OW1, OW2, OW3

Model 9.5: SW2, SW3+OW1, OW2, OW3

Model 9.6: SW1, SW3+OW1, OW2, OW3

(10) Model 10: FRSA-MSWS-TOPSIS with synthesis of
six weights (SW1, SW2, SW3+OW1, OW2, OW3)

(11) Model 11: FRSA-MSWS-VIKOR with synthesis of
six weights (SW1, SW2, SW3+OW1, OW2, OW3)

Ranking of the alternatives according to the models used
in order to assess the reliability of the results shows that
alternative 3 remained in the first place for the majority of
themodels (Tables 15–19).*ere was a change in the ranking
of alternative 3 using the FRSA-MSWS-TOPSIS model and
FRSA-MSWS-TOPSIS model, whereby alternatives 3 and 2
changed places for the majority of the models.
In order to establish the connection between the results

obtained using 51 different models (Tables 15–19), Spear-
man’s correlation coefficient (SCC) was used. SCC of ranks
is a useful and important indicator for determining the link
between the results obtained by different models [31–33].
Additionally, the case in this study has ordinal variables or
ranked variables, while SCC is suitable for use in this sit-
uation. In this paper, SCC was used to define the statistical

significance of the difference between the ranks obtained by
different models. *e results of the comparison of ranks
using SCC are shown in Tables 20–24.
*e SCC values from Tables 20–24, which are with the

average values of 0.64, 0.74, 0.77, 0.90, and 0.92 (all greater
than 0.60), show a high correlation between the ranks among
the models examined. In addition, the average value of SCC
tends to increase when the number of synthesized weights
increases, which reveals that the model tends to be stable when
more weights are synthesized. Based on recommendations by
Ghorabaee et al. [33], when all SCC values are greater than 0.8,
an extremely high correlation is shown. In our case, when the
number of synthesized weights is 6, all of the SCC values are
significantly greater than 0.8 (Table 24) and the average value is
0.92; when the number of synthesized weights is 5, most of the
SCC values are significantly greater than 0.8 (Table 23) and the
average value is 0.90; when the number of synthesized weights
is 4, most of the SCC values are also significantly greater than
0.8 (Table 22) and the average value is 0.77 (slightly less than
0.8). *erefore, we can conclude that there is a very high
correlation (closeness) between the proposed FRSA-MSWS-
PII model and the other models for the treatment of uncer-
tainty (fuzzy and rough), especially when the number of
synthesized weights is more than 4.

5.2. Sensitivity Analysis. Since the results of MCDM models
depend to a great extent on the values of the weight coef-
ficients of the assessment index, this section shows

Table 15: Comparison of the ranks of alternatives according to models 1, 2, and 3.

Model 1
Model 2 Model 3

2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2 3.3 3.4 3.5 3.6

Alter. 1 4 6 6 6 6 4 4 7 7 9 8 2 2
Alter. 2 2 2 2 2 2 3 2 1 1 3 4 3 3
Alter. 3 1 1 1 1 1 1 1 2 2 6 1 1 1
Alter. 4 5 3 3 5 5 7 7 3 3 2 3 9 9
Alter. 5 10 7 7 10 10 10 10 9 9 10 10 10 10
Alter. 6 6 8 8 3 3 5 5 5 6 1 2 4 4
Alter. 7 8 9 9 9 9 6 6 10 10 8 7 6 5
Alter. 8 3 5 5 4 4 2 3 6 5 4 6 5 6
Alter. 9 7 4 4 8 7 9 8 4 4 7 9 8 8
Alter. 10 9 10 10 7 8 8 9 8 8 5 5 7 7

Table 16: Comparison of the ranks of alternatives according to models 1, 4, and 5.

Model 1
Model 4 Model 5

2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2 3.3 3.4 3.5 3.6

Alter. 1 4 7 5 4 6 6 3 7 4 4 7 7 3
Alter. 2 2 2 3 2 2 2 2 1 1 2 1 2 2
Alter. 3 1 1 1 1 1 1 1 3 6 1 2 1 1
Alter. 4 5 3 7 5 3 5 7 2 9 6 3 4 8
Alter. 5 10 8 10 9 8 10 10 9 10 10 9 10 10
Alter. 6 6 6 4 7 7 3 5 5 2 5 5 3 4
Alter. 7 8 9 6 8 9 8 6 10 5 9 10 8 6
Alter. 8 3 4 2 3 5 4 4 4 3 3 4 6 5
Alter. 9 7 5 9 6 4 7 8 6 8 7 6 9 9
Alter. 10 9 10 8 10 10 9 9 8 7 8 8 5 7
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Table 17: Comparison of the ranks of alternatives according to models 1, 6, and 7.

Model 1
Model 6 Model 7

2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2 3.3 3.4 3.5 3.6

Alter. 1 4 7 6 5 5 4 4 7 7 4 3 4 4
Alter. 2 2 2 2 2 2 2 2 1 1 1 1 1 2
Alter. 3 1 1 1 1 1 1 1 4 2 2 5 2 1
Alter. 4 5 3 3 7 6 5 5 2 3 8 8 6 6
Alter. 5 10 8 9 10 10 9 9 9 10 9 9 10 10
Alter. 6 6 6 7 4 4 7 7 5 5 3 2 5 5
Alter. 7 8 9 8 6 7 8 8 10 9 6 7 9 9
Alter. 8 3 4 4 3 3 3 3 3 4 7 4 3 3
Alter. 9 7 5 5 8 9 6 6 6 6 10 10 7 7
Alter. 10 9 10 10 9 8 10 10 8 8 5 6 8 8

Table 18: Comparison of the ranks of alternatives according to models 1, 8, and 9.

Model 1
Model 8 Model 9

2.1 2.2 2.3 2.4 2.5 2.6 3.1 3.2 3.3 3.4 3.5 3.6

Alter. 1 4 5 4 4 6 5 4 4 4 4 6 4 4
Alter. 2 2 2 2 2 2 2 2 1 1 1 1 1 1
Alter. 3 1 1 1 1 1 1 1 3 2 2 2 2 2
Alter. 4 5 6 6 6 3 6 5 6 6 6 3 7 6
Alter. 5 10 9 9 9 9 10 9 9 10 10 10 10 10
Alter. 6 6 4 5 5 7 4 6 5 5 5 5 3 5
Alter. 7 8 8 8 8 8 7 8 10 9 9 9 8 9
Alter. 8 3 3 3 3 4 3 3 2 3 3 4 6 3
Alter. 9 7 7 7 7 5 8 7 7 7 7 7 9 7
Alter. 10 9 10 10 10 10 9 10 8 8 8 8 5 8

Table 19: Comparison of the ranks of alternatives according to models 1, 10, and 11.

Model 1 Model 10 Model 11

Alter. 1 4 4 3
Alter. 2 2 2 2
Alter. 3 1 1 1
Alter. 4 5 6 5
Alter. 5 10 10 10
Alter. 6 6 5 4
Alter. 7 8 8 9
Alter. 8 3 3 6
Alter. 9 7 7 8
Alter. 10 9 9 7

Table 20: Correlation of the ranks in the models 1, 2, and 3.

Model
1

Model
2.1

Model
2.2

Model
2.3

Model
2.4

Model
2.5

Model
2.6

Model
3.1

Model
3.2

Model
3.3

Model
3.4

Model
3.5

Model
3.6

Model 1 1 0.78 0.78 0.88 0.90 0.90 0.94 0.76 0.79 0.38 0.58 0.77 0.71
Model
2.1

— 1 1 0.61 0.68 0.48 0.59 0.87 0.90 0.21 0.35 0.32 0.27

Model
2.2

— — 1 0.61 0.68 0.48 0.59 0.87 0.90 0.21 0.35 0.32 0.27

Model
2.3

— — — 1 0.99 0.83 0.84 0.79 0.78 0.67 0.84 0.73 0.67

Model
2.4

— — — — 1 0.82 0.85 0.84 0.83 0.65 0.79 0.72 0.66
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sensitivity analysis of the results when there is a change in
the weights of the assessment index.
Sometimes the ranks of the alternatives change as a result

of very small changes in the weight coefficients. *erefore,
the results of MCDM models as a rule are accompanied by
an analysis of their sensitivity to these changes. *is section
presents a sensitivity analysis of the ranking of the alter-
natives to changes in the weight coefficients of the assess-
ment index carried out through 27 scenarios (Tables 25–27).
*e scenarios for the sensitivity analysis were grouped

into three phases. In each phase of the sensitivity analysis,

the weight coefficients of the assessment index are increased,
respectively, by 25%, 50%, and 75%. One assessment index is
favoured per scenario for each of nine scenarios in the phase,
and its weight coefficient is increased by the given values. In
the same scenario, the weight coefficients of the remaining
assessment index were each reduced by the corresponding
ratios. Changes in the ranking of the alternatives for the
scenarios are shown in Tables 25–27.
*e results (Tables 25–27) show that the allocation of

different weights to the assessment index through the sce-
narios leads to a change in the ranking of the alternatives,

Table 20: Continued.

Model
1

Model
2.1

Model
2.2

Model
2.3

Model
2.4

Model
2.5

Model
2.6

Model
3.1

Model
3.2

Model
3.3

Model
3.4

Model
3.5

Model
3.6

Model
2.5

— — — — — 1 0.98 0.47 0.50 0.32 0.59 0.88 0.83

Model
2.6

— — — — — — 1 0.58 0.60 0.31 0.56 0.89 0.85

Model
3.1

— — — — — — — 1 0.99 0.59 0.61 0.38 0.33

Model
3.2

— — — — — — — — 1 0.55 0.56 0.37 0.31

Model
3.3

— — — — — — — — — 1 0.77 0.14 0.09

Model
3.4

— — — — — — — — — — 1 0.49 0.48

Model
3.5

— — — — — — — — — — — 1 0.99

Model
3.6

— — — — — — — — — — — — 1

Table 21: Correlation of the ranks in the models 1, 4, and 5.

Model
1

Model
4.1

Model
4.2

Model
4.3

Model
4.4

Model
4.5

Model
4.6

Model
5.1

Model
5.2

Model
5.3

Model
5.4

Model
5.5

Model
5.6

Model 1 1 0.85 0.88 0.98 0.83 0.92 0.93 0.81 0.56 0.98 0.85 0.71 0.82
Model
4.1

— 1 0.62 0.89 0.98 0.85 0.66 0.92 0.24 0.81 0.94 0.64 0.49

Model
4.2

— — 1 0.79 0.53 0.88 0.93 0.59 0.75 0.89 0.66 0.73 0.90

Model
4.3

— — — 1 0.89 0.85 0.88 0.78 0.45 0.93 0.83 0.58 0.72

Model
4.4

— — — — 1 0.78 0.64 0.87 0.15 0.77 0.89 0.55 0.45

Model
4.5

— — — — — 1 0.87 0.84 0.62 0.93 0.89 0.84 0.81

Model
4.6

— — — — — — 1 0.59 0.72 0.92 0.66 0.67 0.95

Model
5.1

— — — — — — — 1 0.35 0.79 0.99 0.76 0.48

Model
5.2

— — — — — — — — 1 0.62 0.38 0.49 0.77

Model
5.3

— — — — — — — — — 1 0.85 0.76 0.85

Model
5.4

— — — — — — — — — — 1 0.79 0.56

Model
5.5

— — — — — — — — — — — 1 0.75

Model
5.6

— — — — — — — — — — — — 1
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Table 22: Correlation of the ranks in the models 1, 6, and 7.

Model
1

Model
6.1

Model
6.2

Model
6.3

Model
6.4

Model
6.5

Model
6.6

Model
7.1

Model
7.2

Model
7.3

Model
7.4

Model
7.5

Model
7.6

Model 1 1 0.85 0.90 0.92 0.93 0.98 0.98 0.78 0.88 0.60 0.61 0.96 0.98
Model
6.1

— 1 0.98 0.71 0.72 0.89 0.89 0.88 0.93 0.31 0.27 0.79 0.81

Model
6.2

— — 1 0.75 0.75 0.94 0.94 0.84 0.92 0.33 0.28 0.82 0.83

Model
6.3

— — — 1 0.98 0.85 0.85 0.62 0.77 0.75 0.75 0.90 0.92

Model
6.4

— — — — 1 0.84 0.84 0.70 0.82 0.78 0.78 0.93 0.94

Model
6.5

— — — — — 1 1 0.76 0.84 0.47 0.48 0.92 0.93

Model
6.6

— — — — — — 1 0.76 0.84 0.47 0.48 0.92 0.93

Model
7.1

— — — — — — — 1 0.95 0.33 0.44 0.81 0.77

Model
7.2

— — — — — — — — 1 0.50 0.49 0.88 0.87

Model
7.3

— — — — — — — — — 1 0.87 0.68 0.67

Model
7.4

— — — — — — — — — — 1 0.75 0.70

Model
7.5

— — — — — — — — — — — 1 0.99

Model
7.6

— — — — — — — — — — — — 1

Table 23: Correlation of the ranks in the models 1, 8, and 9.

Model
1

Model
8.1

Model
8.2

Model
8.3

Model
8.4

Model
8.5

Model
8.6

Model
9.1

Model
9.2

Model
9.3

Model
9.4

Model
9.5

Model
9.6

Model 1 1 0.95 0.98 0.98 0.90 0.95 0.99 0.92 0.96 0.96 0.92 0.73 0.96
Model
8.1

— 1 0.99 0.99 0.85 0.98 0.96 0.90 0.94 0.94 0.88 0.73 0.94

Model
8.2

— — 1 1 0.87 0.96 0.99 0.92 0.95 0.95 0.87 0.72 0.95

Model
8.3

— — — 1 0.87 0.96 0.99 0.92 0.95 0.95 0.87 0.72 0.95

Model
8.4

— — — — 1 0.81 0.92 0.77 0.82 0.82 0.90 0.49 0.82

Model
8.5

— — — — — 1 0.94 0.88 0.94 0.94 0.88 0.81 0.94

Model
8.6

— — — — — — 1 0.90 0.94 0.94 0.89 0.67 0.94

Model
9.1

— — — — — — — 1 0.98 0.98 0.88 0.76 0.98

Model
9.2

— — — — — — — — 1 1 0.92 0.83 1

Model
9.3

— — — — — — — — — 1 0.92 0.83 1

Model
9.4

— — — — — — — — — — 1 0.75 0.92

Model
9.5

— — — — — — — — — — — 1 0.83

Model
9.6

— — — — — — — — — — — — 1
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Table 24: Correlation of the ranks in the models 1, 10, and 11.

Model 1 Model 10 Model 11

Model 1 1 0.99 0.88
Model 10 — 1 0.89
Model 11 — — 1

Table 25: Scenarios for the sensitivity analysis (phase I, 25%).

tw1∗ 1.25 tw2∗1 .25 tw3∗1.25 tw4∗1.25 tw5∗1.25 tw6∗1.25 tw7∗1.25 tw8∗1.25 tw9∗1.25
Alter. 1 4 4 3 8 3 3 5 7 4
Alter. 2 2 2 2 3 2 1 1 1 2
Alter. 3 1 1 1 1 1 2 2 2 1
Alter. 4 5 5 4 5 8 5 4 3 7
Alter. 5 10 10 9 10 6 7 10 5 10
Alter. 6 6 7 5 2 4 8 3 8 5
Alter. 7 8 8 7 9 5 6 7 9 6
Alter. 8 3 3 8 4 7 4 6 6 3
Alter. 9 7 6 6 7 9 9 8 4 8
Alter. 10 9 9 10 6 10 10 9 10 9

Table 26: Scenarios for the sensitivity analysis (phase I, 50%).

tw1∗ 1.50 tw2∗1.50 tw3∗1.50 tw4∗1.50 tw5∗1.50 tw6∗1.50 tw7∗1.50 tw8∗1.50 tw9∗1.50
Alter. 1 4 4 3 8 3 4 6 7 4
Alter. 2 2 1 2 5 2 1 1 1 2
Alter. 3 1 2 1 1 1 2 2 2 1
Alter. 4 5 5 4 4 7 5 4 3 7
Alter. 5 10 10 9 10 5 7 10 5 10
Alter. 6 6 8 7 2 4 8 3 8 5
Alter. 7 8 7 6 9 6 6 7 9 6
Alter. 8 3 3 8 3 8 3 5 6 3
Alter. 9 7 6 5 7 9 9 8 4 8
Alter. 10 9 9 10 6 10 10 9 10 9

Table 27: Scenarios for the sensitivity analysis (phase I, 75%).

tw1∗ 1.75 tw2∗1.75 tw3∗1.75 tw4∗1.75 tw5∗1.75 tw6∗1.75 tw7∗1.75 tw8∗1.75 tw9∗1.75
Alter. 1 4 4 3 8 3 4 6 8 4
Alter. 2 2 1 2 6 2 1 1 1 2
Alter. 3 1 2 1 1 1 2 2 2 1
Alter. 4 5 6 4 3 7 5 5 3 8
Alter. 5 10 10 9 10 5 7 10 5 10
Alter. 6 6 8 7 2 4 8 3 7 5
Alter. 7 8 7 6 9 6 6 8 9 6
Alter. 8 3 3 8 4 8 3 4 6 3
Alter. 9 7 5 5 7 9 9 7 4 7
Alter. 10 9 9 10 5 10 10 9 10 9

Table 28: Correlations in the ranking of 27 scenarios.

Scenario SCC Scenario SCC Scenario SCC

S1 1.00 S10 1.00 S19 1.00
S2 0.99 S11 0.95 S20 0.93
S3 0.81 S12 0.77 S21 0.77
S4 0.73 S13 0.68 S22 0.58
S5 0.64 S14 0.59 S23 0.59
S6 0.84 S15 0.85 S24 0.85
S7 0.85 S16 0.87 S25 0.90
S8 0.61 S17 0.61 S26 0.59
S9 0.94 S18 0.94 S27 0.92
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which confirms that the model is sensitive to changes in the
weight coefficients. By comparing the alternatives which are
ranked first (Alter. 3 and Alter. 2) in scenarios 1–27 with the
initial ranking (Table 14), it is can be seen that the rank of the
highest ranked alternative is confirmed. Analyzing the
ranking through 27 scenarios also shows that alternative
Alter. 3 holds its rank in 16 scenarios, while in 11 scenarios,
it is ranked second. *e alternative ranked second (Alter. 2)
holds its rank in 13 scenarios, while it is ranked first in 11
scenarios. Changing the weights of the assessment indexes
through the scenarios leads to changes in the ranking of the
remaining alternatives. However, these changes were not
drastic, which also confirms the correlation of the ranks
through the scenarios (Table 28).
*e SCC values were obtained by comparing the initial

ranks of the FRSA-MSWS-PII model (Table 14) with those
obtained through the scenarios (Tables 25–27). By analyzing
the results (Table 28), we can conclude that there is a high
correlation of the ranks, since in 15 scenarios, the value of
SCC is greater than 0.80, while in the remaining scenarios, it
is greater than 0.55.*e average value of SCC through all the
scenarios is 0.81, which indicates a high average correlation.
On this basis, we can conclude that there is satisfactory
closeness of the ranks and that the proposed ranking is
confirmed and credible.

6. Conclusions

In future manufacturing industry, there is no doubt about
that green intelligent manufacturing is the target direction of
sustainable development. *e key point of green intelligent
manufacturing is to achieve a reasonable balance of envi-
ronmental, social, and economic performance of
manufacturing system and a sustainable development of
consumption and production. Obviously, some technical
and policy support are required. Driven by digital twin
system, this paper focuses on the methodology from the
perspective of green performance evaluation of intelligent
manufacturing to promote the transformation of
manufacturing industry to green intelligent manufacturing.
Because the contribution in this paper is just a pilot

study on the social influence evaluation for intelligent
manufacturing, there are many future works that should be
carried out in the future. It is only a performance evalu-
ation model based on MCDM, and the mechanism that
how multiple factors affect the green performance of in-
telligent manufacturing has not been studied deeply. In
addition, the development of intelligent manufacturing
will pay more attention to the impact on people in the
future. In the final analysis, whether intelligent
manufacturing can provide human with a well-being work
and comfortable life will be explored. Human-oriented
green performance evaluation methodology of intelligent
manufacturing is necessary to study in the future. For
example, the long-term and cumulative impact of intel-
ligent manufacturing on human beings should be evalu-
ated with the coordination of intelligence and economy of
intelligent manufacturing.*en, a green maturity model of
intelligent manufacturing in the whole life cycle can be

built based on the decision-making support from the green
performance evaluation.
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