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With the remarkable technological development in cyber-physical systems, industry 4.0 has evolved by a signiicant concept
named as digital twin (DT). However, it’s still diicult to construct relationship between twin simulation and real scenario
considering dynamic variations, especially when dealing with small surface defect detection tasks with high performance
and computation resource requirement. In this paper, we aim to construct cyber-manufacturing systems to achieve a DT
solution for small surface defect detection task. Focusing on DT based solution, the proposed system consists of an Edge-Cloud
architecture and a surface defect detection algorithm. Considering dynamic characteristics and real-time response requirement,
Edge-Cloud architecture is built to achieve smart manufacturing by eiciently collecting, processing, analyzing, and storing
data produced by factory. A deep learning based algorithm is then constructed to detect surface defeats based on multi-modal
data, i.e., imaging and depth data. Experiments show the proposed algorithm could achieve high accuracy and recall in small
defeat detection task, thus constructing DT in cyber-manufacturing.

CCS Concepts: · Computer systems organization→ Embedded systems; Redundancy; Robotics; · Networks→ Network
reliability.

Additional Key Words and Phrases: defect detection; cyber manufacturing; digital twin; 3D point cloud;

1 INTRODUCTION

Considering that most manufacturing operations heavily depend on experienced persons, both small and large
equipment manufacturers have an increasing demand for the deployment of intelligent manufacturing machines
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with afordable price and reliable technologies. Inspired by Cyber-Physical systems, Cyber-Manufacturing (CM)
concept thus appears, which aims to link between signiicant elements, intertwine industrial big data and smart
analytics, discovering and comprehending invisible issues for decision making. As the core technologies of CM,
Internet-of-Things (IoT) and predictive analytics have advanced to obtain an emerging virtual representation
solution named as digital twin (DT).
With advancement of artiicial intelligence and big data analysis, DT enables to collect data from physical

space through conventional devices, and make rapid analysis and real-time decisions on the collected data, which
ensures the execution of automated systems. More importantly, DT couples collaboration between the physical
and virtual worlds equipped with Cyber-Manufacturing systems (CMS), enabling manufacturing operations to
integrate resources on a global scale and develop extensive cooperation [15, 19].
Essentially, how to facilitate DT in smart manufacturing remains an open question, calling for a systematic

methodology to build a networked data-rich environment, and transform raw data into meaningful and actionable
operations. In this paper, we focus on constructing a DT solution for small surface defeat detection task, which
scans product surface by sensors, transmits usable information, detect categories and locations of surface defects
in virtual space, and determines further operations in physical world. The reason that defeat detection task
is suitable to build DT lies in two aspects. First, since surface defeat detection exists in high-risk workshops
like tires and chips, the high density of personnel may cause safety hazards, setting strict requirements on the
distribution of personnel in diferent areas. Once human workers have been recognized as essential factor, their
natural undeterminate characteristics may harm manufacturing yield rate. Second, computer vision technology
has been successfully applied for surface defect detection in relative simple workshops [24], proving possibilities
to further improve it for high reusability, reliability and predictability by latest development of IoT and AI.
To construct DT for defeat detection task in a distributed and collaborative environment, there essentially

exists two urgent needs, that is (1) hardware and software architecture that eiciently collect and analyze large
volumes of data generated from scanners and (2) algorithms that efectively diagnose the identiied defects, and
forecast maintenance activities to minimize unexpected loss. Following such requirements, we further analyze
the limitations considering its inherently problematical properties.

From perspective of hardware and software architecture, there exists a lack of afordable sensing technologies
that can be readily integrated into manufacturing systems. Choosing proper sensors from few candidates to keep
balance between banquet and performance thus becomes an important task, in order to lay solid foundation of
data acquirement for DT. Due to the existence of interference appearances such as patterns, stains, and relections,
it’s diicult to capture small deformation of surface only with image data. We propose to capture abundant
surface information to achieve reliable detection results by both image and depth cameras, thus forming 2D and
3D big data for further analyzing. DT with CPS requires to analyze multi-physics data streams with high speed,
high volume, and high variety, in real-time, thus demanding information and communication technology (ICT)
infrastructures and parallel algorithms to equip with suicient computational capacity and bandwidth. Moreover,
high-precision 3D point cloud data brings pressure on computing resources for deformation detection. Since
it’s too expensive to build high performance computing clusters for training of deep learning models, how to
proper involve edge and cloud infrastructures to enable remote sensing and load balance for real-time detection
remains a challenge. With the idea to build an expandable paradigm for DT with CPS, we design a simple but
efect Edge-Cloud architecture to eiciently collect, process, analyze, and store big manufacturing data.

From perspective of detection algorithm, a robust learning algorithm is necessary to tell what and where is the
defect accurately and quickly, due to the diferent defeat classes, surface background, and illuminations. However,
single-mode data, i.e., either 2D or 3D data, would lead to non-robust performance, proved by large deviation
between training and testing performance. Therefore, an eicient multi-modal feature fusion mechanism should
be addressed to seamlessly integrate the collected multi-dimensional sensing data for dynamic evaluations. To
achieve predictable and reliable DT with complexity of dynamic environment, we design a deep learning scheme
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to efectively distinguish between defeats and non-defeats. Moreover, weak deformation defects might be similar
with patterns of texture or background, which leads to non-overlapping false detection results. Considering
high cost for failure cases in detection, it’s a wise option to conduct post-processing from another but efective
analyzing view, i.e., morphological operator based on patterns extracted from pre-collected samples, which greatly
improves precision performance by suppressing non-overlapping detection results.

The main contributions of this paper are as follows:

• A framework of intelligent small surface defect detection for DT is designed with CMS technologies, which
monitors product conditions and generate predictive analytic with dynamic and real-time characteristics.

• A simple but efect Edge-Cloud architecture is built, which not only connects sensors and computation
devices for 2D and 3D big data collecting, but also enables remote sensing and load balance for real-time
detection.

• A deep learning based small surface defect detection algorithm is proposed, in which features of multi-modal
data are extracted and fused as abundant information source for reliable analyzing.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 presents an overview
of the intelligent small surface defect detection framework. Details of the proposed deep learning algorithm,
including detection goal for smart manufacturing, structure design of intelligent small surface defect detection
algorithm. Section 5 presents the experimental results and discussions. Finally, Section 6 concludes the paper.

2 RELATED WORK

In this section, several related issues, including Digital Twin in Cyber-Manufacturing, and surface defect detection
algorithm, are reviewed, respectively.

2.1 Digital Twin in Cyber-Manufacturing

Enterprises of diferent sizes in various countries undertake the same manufacturing activities, forming a complex
and decentralized manufacturing network. Built on the basis of network, CM refers to the use of high performance
computing, optimization, simulation, sensing technology, and data analytics to create innovative products [31]. As
one of the most promising technologies for smart manufacturing, DT relects the evolution of the whole life cycle
of physical entities by integrating multi-disciplinary, multi-physical quantity, multi-scale and multi-probability
simulation processes, and realizes the synchronous mapping of dynamic physical world in digital space. Inspired
by the robotic digital twin, value-driven and other similar methods can solve the problem of data sensing in dual
environments by minimizing the changes between the physical and the virtual spaces, thus achieving efective
simultaneous mapping of physical and digital space [17, 30]. Essentially, the introduction of DT has greatly
promoted the development of cyber-manufacturing. For example, based on DT-based virtual simulations in CPS,
complex and varying environment factors can be efectively analyzed and thus regulated during manufacturing.
Meanwhile, CMS interface can be used for data insertion and data visualization during DT in a data-driven way
[38]. Moreover, CMS technologies can be adopted to promote the realization of DT space by collecting large
volumes of real-time data or building large-scale predictive models for signiicant advances.

As a successful example for DT with CPS, Zhou et al. [36, 39, 42] propose that equipment, product, and operator
are three basic environmental parameters, where he builds DT for small object detection in smart manufacturing,
analyzing and estimating the dynamic characteristics and real-time changes from physical manufacturing space
to virtual space. Since existing monitoring systems and prognostics approaches are not capable to support the
construction of DT, Wu et al. [34] propose a new computational framework for diagnosis and prognosis, which
enables remote real-time sensing, monitoring, and scalable high performance computing, utilizing wireless sensor
networks, cloud computing, and machine learning as core inventions from CM. Focusing on intrusion detection,
Wu et al. [35] propose a conceptual system to detect cyber-physical intrusions in CMS, where physical data from
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the manufacturing process level and production system level are integrated with cyber data from network-based
and host-based IDSs, meanwhile the correlations between the cyber and physical data are analyzed by machine
learning for intrusion detection.

Besides smart manufacturing, DT has been widely used in other domains, such as smart city, medical analysis
[8], and hydrology construction [4]. In 2010, NASA propose the goal of DT in space technology is to halve
the maintenance cost and ten times extend service life of aircraft by 2035. The European Space Agency launch
its DT Earth project with the intention of realizing dynamic and interactive natural twin systems. Meanwhile,
Bauer et al. [2] publish a study in Nature for DT Earth construction by collaborative optimization between
observational data and physical models. China begins its DT city construction of Xiongan New Area, in which
25.4-square-kilometer central business district has realized digital mapping of urban elements and dynamic
supervision of building projects. For the multi-source data collected in smart cities, Li et al. [20] introduce a deep
learning algorithm for big data analysis (BDA), and propose a distributed parallel strategy of convolutional neural
network (CNN). Through digital twins (DTs) and multi-hop transmission technology, they build a DL-based
smart city DTs multi-hop transmission IoTBDA system, and further simulate the performance of the system,
enabling the transformation of smart cities shift to granular governance and secure data processing. CARES
research team [40] develop the UK Digital Twin platform, which utilizes knowledge graph and agent technology
to analyze multi-disciplinary big data and combine ontology characterized conceptual instances, the mirror world
and parallel world thus being established in the virtual space. For example, Samah et al. [1] propose MMSUM
Digital Twins, i.e., a summarization framework that is capable of generating a multi-view multi-modal summary
for sporting events in real time to efectively summarize the development process of sports events and focus on
fans’ reactions and subjective opinions. Through sentiment analysis to track fans’ state of mind, MMSUM can
complete the evaluation of the generated multi-view summaries. Furthermore, digital twins can also be combined
with other technologies to solve practical problems. To reconcile the conlict between privacy preservation and
data training in air-ground networks, Sun et al. [23, 32] consider dynamic digital twin and federated learning for
air-ground networks where a drone acts as the aggregator based on the networks captured by digital twin. In this
model, the digital twin provides a virtual representation for air-ground network to relect time-varying states.
Moreover, considering the varying digital twin deviations and network dynamics and network dynamics, they
design a dynamic incentive scheme to adaptively adjust the selection of the optimal clients and their participation
level.

2.2 Surface Defect Detection Algorithm

We classify current surface defect detection algorithm into two categories based on the input mode, i.e., images
or 3D point cloud.

Surface Defect Detection Algorithm Based on Images. Traditional defect detection algorithms mainly rely
on manually designed features, like SIFT and ORB. However, they generally sufer from poor robustness when
facing complex pattern hidden images. Inspired by remarkable distinguish capability, deep learning methods
have become the mainstream for surface defect detection.
Early, Faghih-Roohi et al. [10] use ReLU for the activation function and evaluate several network sizes for

the speciic problem of classifying rail-surface defects. Later, Racki et al. [29] propose a more eicient network
to explicitly perform the segmentation of defects, where they design an additional decision network on top
of the features from the segmentation network to perform a per-image classiication of a defects presence,
improving classiication accuracy for surface defect detection. Afterwards, Lin et al. [21] propose LEDNet for
defect detection on LED chips with 30,000 low-resolution images, where their network follows general structure
of AlexNet by replacing fully connected layers with incorporates class-activation maps (CAMs). Inspired by
Gaussian heatmaps to characterize keypoints in pose estimation applications, CornerNet [18] is proposed that
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uses top-left and bottom-right corners of objects to construct Gaussian heatmaps for object representation. On
the basis of CornerNet, CenterNet [41] uses the center point and size of object instead, where a modiied version
of CenterNet [16] successfully detects tile crack defects with high mean average precision (mAP) performance.
In manufacturing process, weak feature representation of defects would cause defects to be submerged by

noise and background. To avoid this, He et al. [13] propose a system for steel plate defect detection, which uses
a baseline convolutional neural network (CNN) and a multi-level feature fusion network (MFN) to combine
multiple levels of features, greatly enhancing weak features to represent defect details. Despite weak features,
small training dataset remains diiculty, since too few training sample prone to be overitting for deep learning
structure. To mitigate overitting problem, Tabernik et al. [33] present a segmentation-based deep-learning
architecture that is designed for the detection and segmentation of surface anomalies, where the architecture
enables the model to be trained using a small number of samples, thus being practical for real-scene applications.
In order to solve the time-consuming problem of deep learning models in automatic optical metal defect detection
systems, Lin et al. [22] used Spearman rank correlation, Pearson correlation and Kendall correlation to replace
the evaluation methods in traditional detection models, and achieve better performance.
Surface Defect Detection Algorithm Based on 3D Point Cloud.We classify current methods into three

categories, i.e., multi-view based, Voxelization-based, and raw-data based. Multi-view based methods transform
disordered, unstructured 3D point cloud data to structured, two-dimensional data with bird-eye and front view
through projection and interpolation, thus detecting surface defeats by regarding transformed data as images
[5, 25]. Later, MV3D [6] is proposed with two stages, namely 3D Proposal Network and Region-based Fusion
Network. Specially, the former network irst extracts features from the input bird’s-eye view, front view, and RGB
images, and then obtains a large number of candidate 3D bounding box predictions that may contain objects from
the obtained feature maps. By integrating candidate features from diferent sources into the same dimension
using RoI pooling, the later network fuse features to accurately predict the class and 3D bounding box of the
object.
Voxelization-based defect detection algorithms aggregate unstructured points into structured voxel repre-

sentations, meanwhile maintaining three-dimensional information [9]. For example, SECOND [37] designs 3D
coeicient convolution operation, which efectively improves the speed of voxel-based 3D point cloud detection
algorithm, meanwhile solving the problem of empty voxels in transformed data. Diferent from information loss
caused by the previous two kinds of methods, detection methods based on raw-data designs to directly extract the
structured multi-dimensional feature data from the original point cloud, such as Hierarchical features [11, 26, 27].
For example, PointNet++ [28] design a local feature extraction module, which perform feature extraction by
downsampling on the original point cloud. Multiple features of diferent receptive ields are then obtained by
cascading the set, where the last layer outputs the global features for accurate defeat detection. Compared with
the method using single modal data and common feature fusion methods, our method can more efectively fuse
the features extracted from the depth map and pseudo color map, and dynamically adjust the fusion weight
between the feature relations of the two maps.

Moreover, some other methods, such as radar, can be applied to surface defect detection. Cheng et al. [7] propose
a radar-vision fusion based method for small surface object detection, which adopts a novel representation format
of millmeter wave radar point cloud. By fusing the multi-scale features of RGB images and radar data, the method
efectively improves the accuracy and robustness of water surface precision measurement and achieves advanced
performance.

3 THE PROPOSED FRAMEWORK

We introduce how to efectively monitor product conditions and generate predictive analytic with dynamic and
real-time characteristics in this section. To fulil these high standard requirements, we design a framework of
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Fig. 1. Framework design of the proposed Edge-Cloud architecture for smart manufacturing, which enables interaction

between physical manufacturing environment and virtual space via steps of collecting data, feature processing, defect

detection and results back for improvement.

intelligent small surface defect detection for DT with CMS technologies. Speciically, we build an Edge-Cloud
architecture to collect 3D point cloud data of product surface through 3D scanners, meanwhile keeping load
balance in either cloud or edges for high computation capacity. Then, we ofer descriptions on design of defect
detection algorithm driven by the proposed edge-cloud architecture. Afterwards, an overview on structure
design of the proposed intelligent small surface defect detection algorithm is proposed to perform manufacturing
detection task. Finally, we will demonstrate processing steps of framework including feature extraction and
fusion, detection, and post-processing, which move towards the goal of building DT with CPS technologies.

3.1 Edge-Cloud Architecture for Smart Manufacturing

Considering dynamic characteristics and real-time response requirement, we construct a simple and efective
Edge-Cloud architecture for smart manufacturing, which is shown in Fig. 1. It enables remote sensing, load
balance, and results sending back for improvement through the mutual mapping and timely interaction between
physical manufacturing environment, i.e., factory and virtual space.

To reach such goals, the proposed architecture requires to accurately describe the proximity of the digital model
to the physical model, where edge server close to the collecting devices are capable to meet these requirements.
More precisely, edge server in Fig. 1 can quickly respond to the variations of physical products, thus dynamically
adjusting the whole framework for better performance. The proposed architecture is thus designed with sensing
devices, edge servers and cloud servers, which efectively and automatically collects, processes, analyzes and
stores big data produced by stream lines of factory.
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Algorithm 1 Design of Edge-driven defect detection algorithm.

Require: Collected data �
Ensure: Defect detection results �
1: while Collection device is working do

2: if Obtain the data from both 2D and 3D scanners then
3: Upload the data � to edge servers
4: Extract features �2� and �3� from 2D and 3D input, respectively
5: Fuse features �2� and �3� to obtain �
6: Upload � to cloud server
7: Obtain defect detection results � in cloud server based on �
8: Return � to irst edge and then sensing devices(workers) for pipeline adjustment
9: else

10: Wait for new collected data
11: return �

Speciically, to reduce the pressure of data transmission, we transfer the collected data captured by sensing
devices to the nearest edge servers for feature processing through edge selection. Afterwards, the extracted feature
are further transmitted to the cloud server for defect detection, which generally requires high computation cost
via deep learning algorithms. Finally, the detection results are returned to the edge servers, guiding production
activities for promotion in the factory.
Since edge-cloud architecture is a physically distributed and logically collaborative system, the proposed

framework ensures capability by signiicantly increasing computing and storing capacity without purchasing
expensive devices, meanwhile solving the limitations of local collection and processing equipments. Moreover,
computing and storage pressure is efectively dispersed to several edge servers and cloud server, where the short
distance between edge servers and sensing devices guarantee real-time synchronization between the physical
manufacturing environment and virtual space, thus alleviating the uniied management worklow of traditional
automatic algorithms. Last but not least, design of feature processing on physically closer edge servers can greatly
reduce the size of transferred data, reducing latency of data transmission from edge to cloud. Since cloud could
undertake computationally intensive workloads due to its suicient computing and storing resources, we employ
detection and post-processing in cloud for reliable and costly analyzing.

3.2 Design of Edge-driven Defect Detection Algorithm

To it with the proposed Edge-Cloud architecture for smart manufacturing, we modify the general steps of defect
detection algorithm for better performance. As illustrated in Fig. 1 and Algorithm 1, the proposed edge-driven
defect detection algorithm consists of four steps: collecting data � transmitted from sensing devices to edge
servers, extracting and fusing feature map � transmitted from edge servers to cloud servers, detecting defects
results � transmitted from cloud to edge, then edge to sensing devices. More precisely, if a worker working
with sensing devices tries to know defect detection results of current producing product in pipeline for timely
adjustment, the whole process can be described as follows:

1) Workers have options to upload their captured data probably containing small surface defect to edge server.
If they choose yes to upload, sensing equipments including 2D cameras and 3D scanners will timely collect
surface data on the corresponding workpiece through the gateway. Then, the data will be transmitted to
the nearest edge server based on certain selection rules for edge selection.
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Fig. 2. A sample of small surface defect, where we render it from diferent views to beter find defects.

2) The edge server employs multi-modal feature extraction and fusion module to generate feature map based
on the uploaded data, which provides both 2D and 3D analysis for distinguish feature desorption. After
extraction and fusion, feature map is transmitted to cloud server for further detection.

3) The cloud server employs defect detection and post-processing modules to achieve accurate detection
results based on the uploaded feature maps. Both modules are designed to obtain high recall performance,
thus guaranteeing non-existence of valid products during smart manufacturing.

4) The detection results are returned to irst edge servers and then sensing devices, where resulting imageswith
bounding boxes to intuitively show small surface defects can be used by workers for further determination.
Once the worker standing by the sensing devices is notiied with defects on current product in real time,
he or she can simple abandon this product or half the whole pipeline to investigate reason for defected
production.

It’s worthy noting that multiple sensing devices or workers, who locate in diferent factories and are willing
to share data, can upload data to compensate for data scarcity with the proposed edge-cloud architecture, thus
greatly improving accuracy performance of defect detection model trained in the cloud. Such beneits of non-local
unconstraint and iteratively optimization allows grouped factories to build DT with more conidence and patience.
Besides, workers have the right to choose whether uploading data to cloud or not, thus opting out of sharing
data at any time. If the data is private, workers can choose to only upload the collected data to local private edge
servers for defect detection services, thus ensuring privacy of users and security of data.

3.3 Structure Design of Intelligent Small Surface Defect Detection Algorithm

In this section, we irstly analyze requirements to design intelligent small surface defect detection algorithm for
DT, and then ofer descriptions on overall structure design of the proposed algorithm.
Requirement Analysis.Facing challenge of recognizing defects in complex industrial scenario, it’s diicult

for general algorithms to keep consist performance in both easy and hard cases, due to their data-driven property.
By investigating manual detection process complicated by lighting, observation and hand touch, it’s of great
signiicance to learn how to achieve robust and convinced detection results. We show 3D point cloud data of
small surface defects renderings from diferent views in Fig. 2. It’s noted that we can only observe texture of the
workpiece under a top-down view in Fig. 2(a). Meanwhile, a skilled worker can quickly ind the best view for
defect detection as shown in Fig. 2(b), where red and black boxes mark intrinsic shape protruding and surface
deformation defect, respectively.

Based on former analysis, we briely list requirements of algorithm design to construct DT for smart manufac-
turing.
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Fig. 3. Workflow of the proposed intelligent small surface defect detection algorithm.

• High recall performance. It’s wise to adopt multiple modalities for defect detection with two reasons, 1)
weak deformation in depth map lead to miss detection results and 2) severe deformation background in
pseudo-color map is easily to be ampliied in rendering process, thus resulting in wrong detection results.
Moreover, Fig. 2 proves drawbacks of using single modality, which ignores much information of defects.

• Low False Rejection Rate. Most existing defect detection algorithms sufer from bias of training data, which
refers to large deviation from training samples and real product samples, resulting in high false rejection
rate, especially in non-overlapping detection. Since most of post-processing algorithms like NMS [12],
softNMS [3], and softerNMS [14], fails in handling non-overlapping detection errors, it’s a high priority
requirement to design novel post-processing algorithms to eliminate such errors.

Algorithm Design. We show structure design of the proposed intelligent small surface defect detection
algorithm in Fig. 3, which includes general steps of multi-modal feature extraction and fusion, defect detection
and post-processing within the proposed edge-cloud architecture. It’s noted that we design the whole defect
detection algorithm with three stages following the classic idea of Faster-RCNN structure, i.e., feature extraction,
detection and post-processing. Moreover, we modiies it to it with multi-modal input, and improves it in post-
processing with morphology operations to further improve detection performance on extremely small surface
defects.

Aiming to improve low recall performance caused by only using single modality of surface defect samples, the
irst step of feature extraction and fusion adaptively deines fusion weights for either 2D or 3D modality based on
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Algorithm 2 Design of Intelligent small surface defect detection algorithm.

Require: Input depth data ��
�
, color image data ��� , where � refers to the �th batch

Ensure: Detection bounding boxes �� , their corresponding conidence scores ��

1: Extract multiple modality feature maps � �
�
and � �� based on ��

�
and ��� respectively, represented by Eq. 2

2: Obtain � �
�
by fusing � �

�
and � �� with a weighting scheme, represented by Eq. 3

3: Obtain set of detection bounding boxes �� and their corresponding conidence scores �� with the proposed
defect detection module, represented by Eq. 1

4: Suppress �th bounding box ��� by decreasing ��� , if distance in feature map between � �
� , �

and pre-extracted

prototypes �� is larger than threshold, represented by Eq. 5
5: return (�� ,�� )

cross-modality relationship between depth and pseudo-color maps. Since early fusion would lead to information
lost due to both modalities has large gap in representation structure, we thus utilize idea of feature fusion instead
of raw and early fusion. Then, defect detection module applies steps of region proposal, region classiication and
regression to accurately predict defect regions. Finally, post-processing module adopts morphological information
of detected defects to perform alignment, thereby suppressing the wrong detection of non-overlapping areas.

We describe steps of the proposed defect detection algorithm in Algorithm 2. Speciically, each input batch of
data can be represented as a set:{(�1

�
, �1� ), (�

�
�
, ��� ), ..., (�

�
�
, ��� )}, where � represents the index of splitting batch, �

is the total batch number, ��
�
and ��� refer to the �th batch of depth and color imaging data, respectively. The later

multi-modal feature extraction operation extracts semantic 3D and 2D features � �
�
and � �� based on input ��

�
and

��� , respectively. Then, feature fusion operation fuse � �
�
and � �� to obtain distinguished feature map � �

�
for further

detection. After multiple modality feature extraction and fuse accomplished by Eq. 2 and Eq. 3 respectively, the
defect detection result can be obtained by:

(�� ,�� ) = ���� (�
�
� , �

�
� ),�ℎ��� 1 ≤ � ≤ �. (1)

where function ���� () refers to operations of the proposed defect detection module, � and � represent set of
bounding boxes and the corresponding conidence scores as detection results.

Finally, post-processing operation is used to suppress wrong detection results based on Euclidean distance in
feature map between � �

� , �
and the pre-extracted defect prototype feature set �� ,� , which utilizes characteristics of

general defects to improve robustness of small defect detection. It’s worthy noticing that operations in algorithm
are designed with sequential connections, where they are trained irstly in individual sections and then in a
collaborative way, thus optimizing the whole process in irst locally and then globally maximal sense.

3.4 Design of Multi-modal Feature Extraction and Fusion Module

Most of the existing image-based defect detection methods focus on extraction of information from single image
modality, rather than multiple modalities. To boost detection performance even facing extremely small defects,
we design to extract and fuse information from both modalities, i.e., the input depth and color imaging data. It’s
noted that this module is deployed on edge servers, transmitting fused feature map to cloud servers for further
detection.

We perform feature extraction on color imaging data �� through backbone network, i.e., Swin-T, which is built
on self-attention network. Swin-T not only performs multi-level recursive feature extraction being similar with
the classic convolutional neural network, but also constructs window-shifting self-attention scheme to perform
multiple iterations of feature optimization. Moreover, Swin-T introduces a down-sampling operation similar to
pooling, which is more conducive to expand size of receptive ield. Owing to hierarchical structure of feature
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maps computed by Swin-T, end-to-end feature fusion methods like Feature Pyramid Fusion (FPN) can be directly
applied.
Speciically, we irst apply chunking operation to process raw color imaging data �� , which is a common

pre-processing step for feature extraction via transformer. More precisely, �� is divided into non-overlapping
sub-blocks with a stride of 4 pixels in both row and column directions. Each 3D feature map is constructed with
multiple sub-blocks as 4 × 4 × 3 = 48. Then, a fully connected layer is adopted to map dimension of the sub-block
from 48 to � , where � is a preset constant. Afterwards, we use a window-shifting self-attention scheme for local
feature extraction. Finally, we use three diferent sub-block fusion layers to down-sample the generated feature
map, where the same self-attention scheme is further adopted to generate local feature with diferent scales. It’s
noted that sub-block fusion layer can reduce the number of sub-blocks to a quarter of the original, and double
the dimension of sub-block, which is similar to pooling operation.
After feature extraction by Swin-T, we design pyramid fusion operation to fuse feature map of diferent

scale, which is capable to efectively enhance feature representation ability, especially low-level ones to improve
detection performance of small defects. Such operation can be written as:

�̃�,� = ��� (�̃�,�−1) ⊕ ����� (��,�),�ℎ��� 2 ≤ � ≤ 4 (2)

where� refers to index number of pyramid level, ��,� and �̃�,� represent feature map before and after pyramid
fusion operation respectively, ��� () means up-sampling operation using nearest neighbor interpolation, ����� ()
represents using 1 × 1 convolution operation to reduce number of feature channels, and ⊕ means element-wise
addition operation.
Similarly, the proposed module extract features from depth map data �� with Swin-T and pyramid fusion

operation, obtaining feature set {�̃�,�},� = 1, 2, 3, 4. It’s noted �̃�,� for depth data and �̃�,� for color imaging
data have the same size in diferent scales.

At last, we fuse �̃�,� and �̃�,� for information enhancement via multiple modalities, which can be written as

�� ,� = �� ⊙ �� (�̃�,�) + (1 − ��) ⊙ �� (�̃�,�),�ℎ��� 1 ≤ � ≤ 4, (3)

where function �� () refers to global pooling operation for feature generation with dimension 1 × � , ⊙ refers to
element-wise multiplication, and �� is weight for diferent modality. It can be adaptively calculated based on
input feature map of diferent modalities as:

�� = �� �� (���� (�� (�̃�,�), �� (�̃�,�))),�ℎ��� 1 ≤ � ≤ 4, (4)

where ���� () refers to concatenate operation, and �� �� () represents two fully-connected layers. It’s noted the
number of nodes in each fully-connected layer is 2� , �4 , and � respectively, and each layer uses ReLU and
Sigmoid activation function respectively.

3.5 Designs of Defect Detection and Post-processing Module

In this subsection, we will introduce designs of defect detection and post-processing modules with three steps,
i.e., ROI proposal, ROI classiication and regression, and Post-processing via morphology operations.

ROI Proposal Step. In the irst step, we adopt CNN to predict regions that may contain surface defects based
on feature map computed by last module. Moreover, we adopt K-means algorithm to improve anchor box settings
for higher accuracy.
Speciically, we irstly perform operation of generating region proposals on all levels of fused feature maps

{�� ,�,� = 1, 2, 3, 4}, which encodes visual clues in diferent modalities and scales. Moreover, low-level feature
map not only interacts with high-level feature map for semantical meaning boosting, but also involves local
information for small defects, thus beneiting defect detection with high recall performance. Afterwards, we
use K-means algorithm to cluster defect size based on the generated region proposals, thus setting size of the
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clustering centers as preset size of anchor boxes. In fact, K-means algorithm could largely promote to further
classiication step with an optimized initial values, thus achieving convergency in few iterations.
ROI Classiication and Regression Step. Based on the preset size of anchor boxes, we not only classify

defect categories and predict the exact bounding boxes by calibration on region proposals, but also ofer prediction
conidence for each group of prediction including category and bounding box. Therefore, we deine � � and � � as
the prediction of bounding box and conidence score for the �th defect located by intelligent detection algorithm
���� , where 1 ≤ � ≤ � and � is the total number of defects for the input and sensing product.
Post-processing Step via Morphology Operations After detection, there exist non-overlapping wrong

detection results, due to weak deformation and similar patterns of defects. To suppress these errors for higher
precision performance, a post-processing module is proposed, which performs morphological alignment by
comparing between general patterns of defects and the current detected defect, thus suppressing non-usual
defects by decreasing its prediction conidence.

Firstly, we collect quantity of typical defect samples to construct multi-modal feature set of defect prototypes
�� , which acts as a parametric conclusion on defeat patterns from depth and imaging modalities. Then, we scale
all depth maps in �� to the preset size (200, 200) using nearest neighbor interpolation, and normalize them as
values from 0 to 1.

Afterwards, we calculate distances � �,� in feature map between the �th bounding box �� , � and the �th defect
prototype, where 1 ≤ � ≤ � and � is the total number of defect prototypes in training dataset. Once the minimal
value in � �,� represented as �̃ � is larger than a pre-set threshold � , we would greatly decrease the corresponding
prediction conidence � � for suppressing and even eliminating. The whole process can be represented as follows:

� � =

{

� � , � � �̃ � ≤ �

� � −
�̃ �
2 , � � �̃ � > �

(5)

where �̃ � is calculated as

�̃ � = min ∥�� , � − ��,� ∥,�ℎ��� 1 ≤ � ≤ �, (6)

where ∥∥ refers to calculate Euclidean distance between two feature maps with same size.

4 EXPERIMENT

In this section, we show the efectiveness of the proposed DT framework in detecting small surface defeats. We
irst introduce dataset and measurements. Then, ablation experiments are conducted to prove positive impacts
of diferent structure designs. Afterwards, we perform comparative studies on two novel modules and ofer
discussions on performance. Finally, we provide analysis on computation cost and implementation details.

4.1 Dataset and Measurement

We collect two datasets, i.e., DeA and DeB, from a factory, which corresponds to two industrial products A and
B. Since occurrence probability of small surface defects is relatively low in all types of defects, we collect less
samples than expected, where DeA and DeB contain 24 and 37 original 3D point clouds by scanning surface
defeats of A and B, respectively. We show several examples in Fig. 4 by rendering 3D point clouds as pseudo
color images for display, where we can observe rough surface, and complex texture appearance of A. Moreover,
green rectangles are used to locate defects, which are diicult to recognize due to its small size and irregular
shape. Essentially, all these properties relect diiculties in real-world production scenario with DT sense, which
improves generality of the proposed framework. DAGM 2007, KTH-TIPS, and several other datasets with the
similar properties can be used for testing as well.
After obtaining DeA and DeB, we further construct DeA+ and DeB+, where original samples are manually

annotated and enhanced to generate more samples. Speciically, we irst use point cloud rendering algorithm,
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Fig. 4. Several samples of small surface defects in DeA dataset, where green rectangles refer to deformation defects.

which renders the original 3D point clouds as pseudo-color and depth map data with enhanced deformation
characteristics. Then, we follow COCO annotation format for manual annotation based on pseudo-color map.
To ensure fairness of testing during sample generation, we irstly divide original data into three parts by cross-
validation criterion, and then generate another 300 samples in each part without interferences among testing and
training samples. Finally, DeA+ and DeB+ is constructed by merging original and generated data, which can be
represented as pairs of depth and color imaging data � = {(��

�
, ��� ), 1 ≤ � ≤ �}.

Following requirement analysis for algorithm design in Section 3.3, we apply �� , and recall for evaluation.
Speciically, AP is deined as the mean precision value over multiple IoU (Intersection over Union) thresholds and
all the object classes:

��� �
=

1

10 ×�

�︁

�=1

1︁

�=1

0� (�,� � ) (7)

where � and � refer to the index of class and threshold respectively,� is the total number of classes, the IoU values
� � corresponds to a range from 0.5 to 0.95 with a step size of 0.05, and the function � (�,� � ) () calculates precision
values for the �th object class under a ixed IoU threshold� � . More precisely, ��50 refer to mAP values over the
IoU thresholds of 0.5.

Recall is used to measure the capability of detection algorithm to accurately ind out all defects from quantity
of scanning products, where we expect to obtain high recall performance during testing. Since prediction results
can be divided into four categories, i.e., true positive (TP), false negative (FN), false positive (FP), and true negative
(TN), recall can be calculated with ������ = ���/(��� + ��� ), where � represents number of classiied samples.
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Table 1. Performance comparisons with diferent structure designs on DeA+ and DeB+ datasets. Bold indicates the best.

Dataset Render Enhance Fusion Post-pro ��50 (%) Recall(%)

DeA+ ✓ ✓ ✓ ✓ 75.2 95.4
DeA+ ✓ ✓ ✓ ś 71.7 96.9

DeA+ ✓ ✓ ś ś 71.2 89.7
DeA+ ✓ ś ś ś 67.3 82.4
DeA+ ś ś ś ś 41.9 52.5

DeB+ ✓ ✓ ✓ ✓ 77.0 97.7
DeB+ ✓ ✓ ✓ ś 72.4 98.2

DeB+ ✓ ✓ ś ś 72.6 91.9
DeB+ ✓ ś ś ś 68.1 85.7
DeB+ ś ś ś ś 45.9 64.7

4.2 Ablation Experiment

To explore efectiveness of structure designs, results of ablation experiments are shown in Table. 1, where we add
algorithm modules on the basis of Faster RCNN network for performance comparisons. Speciically, Post-pro
refers to add the proposed morphological alignment algorithm on the basis of NMS in the post-processing
module. Fusion represents to adopt the proposed multi-modal feature extraction and fusion module, rather
than only using one modality, i.e., pseudo color data, for training. Enhance refers to generate new samples
based on morphological operations, rather than only adopting basic transformations for data enhancement,
such as rotation, clipping, scaling and so on. Render represents that rendering the original 3D point clouds as
pseudo-color and depth map data with enhanced deformation characteristics, rather than only using point clouds
and depth maps for training.

From Table 1, we can observe that Render and Enhance settings greatly improve defect detection performance,
proved by large promotion in ��50 and ������ . In fact, Render help generate 2D modality, i.e., pseudo-color data
and ofer more informative 3D modality, i.e., depth data on the basis of point cloud data, which ofers multiple
views to better locate small and weak defects as shown in Fig. 2. Meanwhile, Enhance greatly increases the
number of samples in training dataset with novel morphological operations, which prevents overitting of small
dataset and improves generalization ability of the trained network.

Later, we could observe that Fusion could greatly increase recall performance, but fails in promoting��50. This
phenomenon can be explained by the fact that fusion introduces multiple modalities with new visual clues on
defects, which helps to mine all possible defects with a high recall performance. However, new possible defects
are diicult to accurately locate due to its small and weak deformation properties, resulting in the same or even
lower ��50 performance.

Last but not least, Post-pro greatly improves��50, meanwhile slightly decreasing recall performance. Essentially,
post-processing operations, including NMS and the proposed morphological alignment algorithm, generally
help suppress non-overlapping false detection defects, thus increasing ��50 and decreasing recall explained by
deinitions of both measurements.
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Table 2. Performance comparisons between the proposed method and several comparative studies on DeA+ and DeB+

datasets. It’s noted that we modify setings of multimodal feature extraction and fusion module for comparisons. Bold

indicates the best.

Dataset Backbone Fusion ��50 (%) Recall(%)

DeA+ ResNet18 OnlyColor 69.5 85.5
DeA+ ResNet18 OnlyDepth 65.2 81.3
DeA+ ResNet18 FuseAdd 71.1 88.3
DeA+ ResNet18 FuseConcat 69.8 90.4
DeA+ ResNet18 Ours 72.1 94.3

DeA+ ResNet50 OnlyColor 70.0 88.3
DeA+ ResNet50 OnlyDepth 64.9 80.8
DeA+ ResNet50 FuseAdd 70.8 90.1
DeA+ ResNet50 FuseConcat 71.3 91.3
DeA+ ResNet50 Ours 71.7 96.9

DeB+ ResNet18 OnlyColor 70.8 89.5
DeB+ ResNet18 OnlyDepth 68.5 84.4
DeB+ ResNet18 FuseAdd 70.2 93.1
DeB+ ResNet18 FuseConcat 71.8 92.1
DeB+ ResNet18 Ours 71.8 97.1

DeB+ ResNet50 OnlyColor 71.8 90.2
DeB+ ResNet50 OnlyDepth 68.7 85.2
DeB+ ResNet50 FuseAdd 72.1 94.6
DeB+ ResNet50 FuseConcat 72.7 94.1
DeB+ ResNet50 Ours 72.4 98.2

Based on all former analysis, it’s our best choice to adopt all four modules for the highest ��50 and second
highest recall, which keeps balance between precision and recall measurement, thus promoting intelligent and
applicable capability of the whole framework.

4.3 Comparative Experiment on Multimodal Feature Extraction and Fusion Module

We report defect detection results achieved by the proposed method and several comparative methods in Table.
2, where we modify settings of multimodal feature extraction and fusion module for comparisons. Speciically,
OnlyColor abandons structure of data fusion with only pseudo-color data. On the contrary,OnlyDepth abandons
structure of data fusion with only depth data. FuseAdd adopts feature fusion method with element-wise addition
operation, where feature map of both modalities directly sums for output. FuseConcat use concatenation
operation and 1 × 1 convolution ilter for feature fusion, where feature map of both modalities are irstly
concatenated as one feature map and then re-scaled by convolution operation.
On both DeA+ and DeB+ datasets, the proposed method generally achieves the best performance in terms

of ��50 and recall, except that we achieve slightly worse performance than FuseConcat in group of DeB+ and
ResNet50. It’s noted that the proposed method has achieved large improvement in recall, since design of multi-
modal feature fusion enables to better locate small and weak deformation defects by viewing and examining
surface patterns via distinguish feature maps. Adopting one modality, such as OnlyColor and OnlyDepth, fails
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Table 3. Performance comparisons between the proposed method and several comparative studies on DeA+ and DeB+

datasets. It’s noted that we modify setings of post-processing module for comparisons. Bold indicates the best.

Dataset Backbone Post-pro ��50 (%) Recall(%)

DeA+ ResNet18 NMS 72.1 94.3

DeA+ ResNet18 NMS+Ours 76.8 93.6
DeA+ ResNet18 softNMS 70.1 94.3

DeA+ ResNet18 softNMS+Ours 74.6 93.6

DeA+ ResNet50 NMS 71.7 96.9

DeA+ ResNet50 NMS+Ours 75.2 95.4
DeA+ ResNet50 softNMS 70.9 96.9

DeA+ ResNet50 softNMS+Ours 73.6 95.4

DeB+ ResNet18 NMS 71.8 97.1

DeB+ ResNet18 NMS+Ours 74.7 96.5
DeB+ ResNet18 softNMS 70.2 97.1

DeB+ ResNet18 softNMS+Ours 73.3 96.5

DeB+ ResNet50 NMS 72.4 98.2

DeB+ ResNet50 NMS+Ours 77.0 97.7
DeB+ ResNet50 softNMS 71.6 98.2

DeB+ ResNet50 softNMS+Ours 74.2 97.7

to search for the best view to locate defects without abundant information, which is proved by the fact that
their results are quite smaller than the other three methods. Moreover, the proposed adaptive weighting scheme
ofers weights on feature maps of diferent modalities based on input content information, thus achieving more
convinced and accurate detection results. Such advantage can be proved by the fact that the proposed method
outperforms FuseAdd and FuseContact in all testings, which apply ixed and inlexible fusion strategy for multiple
modalities fusing.

The proposed method has a smaller gain on ��50, compared with recall measurement. This phenomenon can
be explained by the fact that adopting multiple modalities ofers more potential defect regions to improve recall,
nevertheless bringing diiculties in identifying them as defects or not with their complicated input raw data. We
further ind these hard cases as non-overlapping bounding boxes, where algorithm misclassify them due to their
similar appearance and texture with defects. To distingue such hard cases for precision boosting, we thus design
post-processing module with idea of morphological alignment.
Experimental results also show that ResNet50 is more proper than ResNet18 to be obtained for backbone

network for defect detection, where deeper structure of ResNet50 is capable to extract more informative and
ine-grained features for locating small defects, compared with relatively shallow network depth of ResNet18.

4.4 Comparative Experiment on Post-processing Module

Table 3 shows comparative experimental results on DeA+ and DeB+ datasets, where we modify settings of
post-processing module as comparative studies. Speciically, NMS sorts detection bounding boxes of the same
category based on their corresponding conidence scores, thus eliminating boxes with larger IoU than threshold.
Meanwhile, SoftNMS removes detection bounding boxes whose conidence are smaller than threshold by
decreasing conidence scores based on their IoU values. It’s noted that all post-processing algorithms in this paper

ACM Trans. Internet Technol.



Digital Twin of Intelligent Small Surface Defect Detection with Cyber-Manufacturing Systems • 17

Fig. 5. Samples of the detected defeats before and ater morphological post-processing operations.

are designed without learning process, so that they can be merged in sequential order for accuracy boosting.
We show samples of the detected defeats before and after morphological post-processing operations in Fig.5,
where we can observe that proper post-processing algorithm could greatly prevent error detections, even with
similarities in appearance and texture.
It’s observed that the proposed morphological alignment algorithm improves ��50 and slightly decreases

recall on the basis of NMS and softNMS. Such experimental results show that morphological post-processing can
efectively suppress non-overlapping false detection regions to improve precision performance. Meanwhile, NMS
or softNMS is arranged in sequential processing order to deal with overlapping false detections. However, the
proposed morphological alignment algorithm eliminates a small number of correct detection regions, since their
shape patterns are not included in the pre-extracted prototype dataset. In fact, this drawback can be avoided by
enlarging size of prototype dataset with more captured samples.
Only using NMS or softNMS achieves the same recall and diferent ��50 as illuminated in Table 3, since

post-processing methods help remove wrong detections other than ind more defeats. Moreover, NMS generally
achieves better ��50 performance than softNMS, no matter using only or with the morphological alignment
algorithm. This phenomenon can be explained by the fact that softNMS achieves more redundant bounding boxes
on sparse data, due to its strategy to suppress wrong detections via decay in conidence score. Last but not least,
usage of ResNet50 promotes to defeat detection performance due to its deeper network structure, compared with
shallow structure of ResNet18.

4.5 Computation Cost

In this subsection, we only discuss the time-consuming part of our surface defect detection method, including
transmission time, defect collection time and processing time in both edge servers and cloud center. Under
the hardware and software environment mentioned in Section 4.6, the transmission of 1833ąÁ1396ąÁ1 image
mentioned in DeA+ is total cost 2.55s between the edge server and cloud center, which is the same as the
transmission time between the devices and edge servers. The simulation results show that the processing time
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of each image in edge servers is 9.76s, and the processing time in cloud center is 8.74s. After all, the proposed
method is still applicable to the actual surface defect detection scene, and simulation is only a means to verify the
efectiveness and correctness of the proposed surface defect detection system.

4.6 Implementation Details

All our experiments were conducted on a server with two Intel Xeon E5-2620 v4 (@2.1GHz) CPUs and one
single NVIDIA GTX 1080Ti graphics cards. We adopt three-fold cross-validation to divide training and testing
set. ImageNet dataset is used to pre-train weights. The training learning rate and batch size is set to 0.001 and
1, respectively. All methods in comparative experiments are trained for 50 epochs. To evaluate the accurate
computation cost of the cloud-edge structure, we choose the Amazon’s reserved instance "m3.medium" as the
virtual machines (VM) on the edge servers.

5 CONCLUSION

Automatical defect detection is widely used in manufacturing. However, it’s still diicult to construct relationship
between twin simulation and real scenario considering dynamic variations, especially when dealing with small
surface defects. We thus propose a framework of intelligent small surface defect detection with CMS technologies
for DT, including an Edge-Cloud architecture and an intelligent surface defect detection algorithm. Considering
dynamic characteristics and real-time response requirement, Edge-Cloud architecture is built to eiciently collect,
process, analyze, and store big data produced by stream lines of factory. Then, we extract and fuse features from
both 2D and 3D modalities to accurately identify the status of surface. Finally, a novel morphological alignment
algorithm is proposed to aid in eliminating wrong detection for precision boosting. Ablation and comparative
experiments prove the efectiveness of the proposed method in building DT environment for small defeat detection.
Our future work includes 3D geometry reconstruction via multi-view captured images to promote detection
accuracy with surface geometry information.
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