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ABSTRACT The concept of a digital twin has been used in some industries where an accurate digital model

of the equipment can be used for predictive maintenance. The use of a digital twin for performance is critical,

and for capital-intensive equipment such as jet engines it proved to be successful in terms of cost savings

and reliability improvements. In this paper, we aim to study the expansion of the digital twin in including

building life cycle management and explore the benefits and shortcomings of such implementation. In four

rounds of experimentation, more than 25,000 sensor reading instances were collected, analyzed, and utilized

to create and test a limited digital twin of an office building facade element. This is performed to point out

the method of implementation, highlight the benefits gained from digital twin, and to uncover some of the

technical shortcomings of the current Internet of Things systems for this purpose.

INDEX TERMS Building information modeling, digital twin, life cycle management, Internet of Things,

wireless sensor network.

I. INTRODUCTION

The emergence of the Internet of Things (IoT) which is partly

the result of Moore’s law that allowed powerful semiconduc-

tor chips to be produced at very low prices [1] can impact

every aspect of our economy [2], [3]. Developments such

as cars that are connected and autonomous [4] to flying

robots [5] and smart houses [6] are all examples of either IoT

being integrated into legacy systems or IoT enabling the cre-

ation of entirely new concepts. Smart buildings are emerging

as the next frontier in the development cycle of architectural

structures [7]. Embedding programmable services into the

residential buildings is currently underway, including ser-

vices such as heating and cooling as well as the integration

of household appliances. This collaboration is taking place

between the largest household appliance manufacturers and

internet companies such as Amazon, Google, and Microsoft.

A concept that is explored extensively in the litera-

ture and has been implemented in real-world construction

projects around the world is building information modeling

(BIM) [8]–[10].

The associate editor coordinating the review of this manuscript and

approving it for publication was Antonino Orsino .

BIM is a platform for keeping an accurate and interop-

erable record of building information to enhance planning,

construction, and maintenance over the life cycle of a facil-

ity [10], [11]. In particular, BIM has been developed for

embedding the building’s 3D computer aided design (CAD)

model with additional data related to building specification,

time schedule, cost estimation, andmaintenancemanagement

(i.e., 4D, 5D, and 6D) [12]–[14] to reduce cost by preventing

mistakes in the design and construction phase [15]. Currently,

BIM is used in architecture, construction, engineering and

facility management (AEC/FM) functions for design visu-

alization and consistency, clash detection, lean construction,

cost and time estimation, and enhanced stakeholders’ inter-

operability [10]. Efforts [16, p. 19] to ensure BIM benefits

from real-time data inputs (e.g. from sensors and IoT devices)

are underway [17]; these efforts, in turn would benefit the

buildings that already have implemented BIM or are willing

to undertake the effort and cost of creating BIM documenta-

tion. More than 80% of buildings in Europe are constructed

prior to 1990, and therefore do not have BIM [10], [18]–[21].

For existing buildings without BIM documentation, there

exist major obstacles to produce it (i.e., high effort require-

ment for creating and updating the BIMmodel and difficulties
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FIGURE 1. Essential components to create a digital twin of building and difference with BIM.

related to the solving the issues of uncertain data and rela-

tionships in the BIM [10]). Existing buildings can therefore

benefit from the implementation of a digital twin, which is

a known concept in the field of manufacturing [22], for the

enhancement of building operation and maintenance and for

the implementation of a closed-loop design [23].

Wireless sensor network (WSN) integration and data ana-

lytics are two of the components required for the creation of

a digital twin [24]. Digital twin visualization for a building

can rely on 3D CAD model extracted from BIM or a custom

3D model of the building. The digital twin of a building can

utilize various sensor networks to create a real-time view of

the asset (see Fig. 1). This dynamic view allows for real-time

analytics, informed decision-making, building efficiency, and

comfort enhancement.

The first major difference between a building’s BIM and

digital twin is that the former was designed to improve the

efficiency of design and construction and is still used in

these phases of the building life cycle [25], whereas the

latter is designed to monitor a physical asset and improve

its operational efficiency and to enable predictive mainte-

nance [26]. The second major difference is that BIM was

not designed to work with real-time data and is still used in

the industry for design, construction, and maintenance tasks

and interoperability, which do not necessarily require real-

time capability [27]; meanwhile, digital twin is the digital

counterpart of a physical asset and works contrary to the

current BIM platform. Digital twin works specifically with

real-time data fed by the sensor systems to record and ana-

lyze the real-time structural and environmental parameters

of a physical asset for the purpose of performing highly

accurate digital twin simulation and data analytics [26]. The

third difference between the two concepts is related to the

type of data required for the construction of each model.

While BIM is suitable for the integration of cost estima-

tion and time schedule data to enhance the efficiency of

a construction project [8], [28], digital twin is designed to

integrate real-time sensor readings to analyze and improve

the building’s interaction with the environment and with

users [29].

In this paper, we aim to explore issues related to the cre-

ation of a building’s digital twin and propose a method for its

implementation for a building facade. Moreover, the paper

discusses some of the applications of the digital twin of a

building facade.

This paper is organized in the following manner. After

the research introduction, the study presents the literature

review, which explores the research conducted on digital

twin, building informationmodeling, comparison of BIM and

digital twin of building, and smart buildings. In the third

section, the research methodology and the case study setup

are explained in detail. Following this, the results are pre-

sented in the sections that concern technical obstacles, valida-

tion of data, sensor configuration, and digital twin creation.

The next section is the discussion of benefits of the digital

twin of buildings, and the study ends with the conclusions.

II. LITERATURE REVIEW

A. DIGITAL TWIN

At present, one of the standard methods for enhancing system

design, testing, and maintenance is through modeling and

simulation. Modeling and simulation play a decisive role

in supporting design tasks and validating system properties.

However, the first simulation-based solutions are known for

optimized operations and failure prediction [34]. The digital

twin emerged from the integration of sensor networks and

the digitalization of machinery and production systems in the

manufacturing industry [35]. The main difference between

simulation in the design phase and a digital twin is that the

latter requires a physical asset and a sensor network, while

the former does not [24]. Accordingly, the study in [35] pre-

sented an expanded definition: ‘‘digital twins will facilitate

the means to monitor, understand, and optimize the functions

of all physical entities, living aswell as nonliving, by enabling

the seamless transmission of data between the physical and

virtual world.’’
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TABLE 1. A detailed comparison of BIM and digital twin of building.

The research in [36] described the simulation aspect of

digital twins as the collection of relevant digital artifacts

that involves engineering and operation data, in addition to

behavior description using various simulationmodels. Digital

twins utilize these specific simulation models based on their

capability for solving problems, deriving relevant solutions

for real-life systems, and describing behavior. In general,

the study in [36] defined the vision of the digital twin as

‘‘a comprehensive physical and functional description of a

component, product or system together with all available

operational data.’’

The digital twin is a concept that can be exerted to many

fields and technologies [37], and therefore it seems the

concept could disrupt industries beyond manufacturing.

In addition, the digital twin was one of the top ten strategic

technology trends of 2018, and based on research future pre-

dictions, the digital twin market will reach 15 billion dollars

by 2023 [35], [38]. The research in [39] defined the digital

twin of a building as the ‘‘interaction between the real-world

building’s indoor environment and a digital yet realistic vir-

tual representation model of building environment, which

provides the opportunity on real-time monitoring and data

acquisition.’’ In their delineation, an indoor environment indi-

cates information on the air temperature, airflow, relative

humidity, and lighting condition, while a digital virtual one

indicates computational fluid dynamics and luminance level.

Moreover, based on study presented in [39], some of the

considerable benefits of creating digital twin of a building

are as follows: 1) gathering, generating and visualizing the

environment of the building, 2) analyzing data irregularities,

and 3) optimizing building services.

B. BUILDING INFORMATION MODELING

According to the US National Building Information Model

Standard Project Committee [30], BIM is ‘‘a digital represen-

tation of physical and functional characteristics of a facility.

A BIM is a shared knowledge resource for information about

a facility, forming a reliable basis for decisions during its life

cycle; defined as existing from earliest conception to demoli-

tion.’’ Meanwhile, [31] defines BIM as ‘‘an overarching term

to describe a variety of activities in object-oriented Com-

puter Aided Design (CAD), which supports the representa-

tion of building elements in terms of their 3D geometric and

non-geometric (functional) attributes and relationships.’’

BIM is different from 3D CAD modeling [30], [31], [40].

The main emphasis of BIM is on embedded information

(e.g., specification, material type, installation method, time,

cost) in the design model and on the interoperability of this

comprehensive information-rich model for enhanced collab-

oration in the AEC/FM community.

In an ideal case scenario, BIM can also be used to simulate

operations management on a construction site during con-

struction and can thus support and optimize the development

of the construction schedule [41].

BIM has been changing over the history of its exis-

tence. According to the BIM maturity model presented

in [16, p. 15-16], Level 0 BIM in the 1990s took advantage

of early CAD modeling software, hence, information was

scattered, and data sharing was mostly on paper drawings.

During the 2000s, Level 1 BIM became popular; companies

started to use 3D CAD modeling, and common data envi-

ronment (CDE) was used for digital data sharing. However,

Level 1 BIM did not allow project team members to share

the models with one another. Level 2 BIM gained traction

during the 2010s when collaboration and sharing of digital

files and models entered the next evolution level through the

use of common file formats and the introduction of Industry

Foundation Class (IFC) and Construction Operations Build-

ing Information Exchange (COBie). Most companies are cur-

rently at Level 1 or Level 2 however; nonetheless, Level 3

BIM is being developed with an emphasis on stakeholders’

collaboration (i.e., through the use of same design model).

The design model of Level 3 BIM is stored in a centralized

cloud-based repository to ensure collaboration throughout the

building life cycle.

BIM is still mostly used for resource efficiency enhance-

ment during facility design and construction [10], [42] and

knowledge exchange [11]. The purpose is to facilitate the

tasks of building architects, engineers, and facility managers

and avoid costly design mistakes [11]–[14].

C. COMPARISON OF BIM AND DIGITAL TWIN OF

BUILDING

BIM and digital twin of building can be compared in detail

based on the following aspects; application focus, users, sup-

porting technology, software, stages of life cycle, and origin

(see Table 1). BIM is mainly used to prevent errors during

the design of a building, facilitate communication between
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stakeholders, improve construction efficiency, and monitor

the construction project’s time and cost [10]. Meanwhile,

the digital twin of a building can be used for predictive main-

tenance [26], resource efficiency improvement, enhancement

of tenants’ comfort, what-if analysis for optimization of the

building design, and enabling closed-loop design [23] to

transfer learnings from a building to the future ones. The users

of BIM are architects, engineers, and constructors who utilize

it during the design and construction phase [9], [16]. BIM is

also used by facility managers [30] for maintenance planning

throughout the building life cycle. Notably, BIM can be used

during the demolition [31] as it contains relevant information.

Digital twin is utilized by facility managers in the use phase

of the building life cycle to enhance its operation. Digital

twin also provides architects valuable inputs for the design of

future buildings based on the detected flaws and improvement

areas unveiled during the use phase of a building.

Technologies that support BIM at its current form are

detailed 3D CAD modeling, CDE to create a single source

of information for the collaboration of project teams, and

standard data formats for sharing and exchanging BIM data

between different software applications such as IFC and

COBie [16]. Supporting technologies for digital twin are 3D

CAD modeling, WSNs, machine learning algorithms [32],

and data analytics. The major software applications used for

BIM are Autodesk Revit, ArchiCAD by Graphisoft, Micro-

Station by Bentley Systems, and the open source BIMserver

by TNO [16]. Meanwhile, some of the software applications

used to create a digital twin are Predix from General Elec-

tric, Dasher 360 from Autodesk, and Ecodomus. Notably,

the origin of the two concepts are also different. BIM was

conceptualized by Charles Eastman in the mid-1970s [16]

and was implemented for the first time in the RUCAPS CAD

system for the London Heathrow Airport Terminal 3 design

and construction [43], [44]. Digital twin conceptualization

originates from the Apollo program at NASA [22], where a

physical twin of the crew module was kept on the ground to

simulate conditions and resolve possible issues that the space-

craft may face in space. However, the actual implementation

of digital twin occurred only recently when General Electric

developed the Predix software platform for the collection

and analysis of the data from sensors installed in GE90 jet

engines for blades degradation monitoring and predictive

maintenance [45]–[47].

Regarding flexibility, although some buildings are still

constructed using pre-BIM traditional practices, they can

benefit from digital twin by being retrofitted with sensors and

by taking advantage of cloud-based analytics tools.

D. INTERNET OF THINGS AND SMART BUILDINGS

The IoT is significantly expanding, and it is predicted to

reach a staggering 20 billion internet-connected things by

2020 [48]. The study in [49] defined IoT as ‘‘an open

and comprehensive network of intelligent objects that have

the capacity to auto-organize, share information, data, and

resources, reacting and acting in the face of situations and

changes in the environment.’’ In discussing modern advance-

ment in innovative internet technologies and WSN, IoT has

emerged as a ubiquitous global computing network where

the collected data from more affordable and available sensors

and actuators can be utilized for data analysis-based control

of the resources or physical environments [48], [50], [51].

With the enhancement of computing and communication

capabilities for the physical objects (i.e., the things in IoT),

these objects can provide high-quality services for the users

through their wired or wireless communications [9]. The

concept of a smart city can be pragmatic in light of this

breakthrough. One of the main service domains in a smart

city is a smart building [50]. According to the research in [52],

three primary characteristics that identify a smart building are

its components, functions, and outcomes. Components con-

sist of multiple interconnected pieces of technical building

equipment and appliances, sensing and control infrastructure,

and emerging technologies. All of these components behave

according to their functions, which define the intelligence and

effectiveness of the building and which eventually result in

certain outcomes, such as health, comfort, productivity, and

energy efficiency [53]; all these would benefit the environ-

ment, society, and the economy.

E. GAP IN THE LITERATURE

Although the concept of IoT has been studied extensively

in the context of future connected equipment and the possi-

bilities that come from it [54]–[57], the use of IoT-enabled

sensor networks to build a digital twin of a smart building

was not extensively studied. The study in [39] presented a

brief overview of a conceptual framework for a transition

from a physical room to a digital twin, but the study fell short

in providing an in-depth technical analysis of the framework

for the transition, and they also did not present any empirical

experimentation to support their concept. The study in [58]

provided a background on the concept of the digital twin of a

building and briefly pinpointed the potential applications, but

it did not provide any real-world proof or data. In another arti-

cle, [59] presented a case of digital twin utilization by Kone

company to improve the elevator service in buildings while

reducing maintenance cost. Fraunhofer Building Innovation

Alliance is studying the digital twin of buildings, and in a pub-

lished short note, it highlighted the digital twin of a building’s

potential benefits throughout the building life cycle [60]. The

study in [61] utilized the concept of digital twin of a building

to calculate the rate of return on investment in upgrading

existing buildings to net-zero energy buildings (NZEB). Their

research was based on a BIM model that was simulated in

Revit software for energy saving calculations. However, they

stopped short of implementing the digital twin of a build-

ing and collecting real-time empirical data. In this research,

we contribute to filling the knowledge gap by investigating

the creation of a sensor network for the digital twin of a

building and by studying the current technical shortcomings

of establishing a digital twin. The application and the benefits
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FIGURE 2. Data flow diagram of the designed sensor network.

of the digital twin of a building are also discussed in this

paper.

III. METHODOLOGY

The methodology used in this research is experimentation

using a testbed. To collect data, we created a WSN that was

installed on the building facade of an office building at the

Aalto University in Finland. The aim was to collect light,

ambient temperature, and relative humidity measurements

data of the environment.

A. EXPERIMENT TESTBED SETUP

Texas Instruments (TI) Sensortag CC2650 was selected due

to its characteristics, such as the availability of various sen-

sors on each tag, Bluetooth Low Energy (BLE) commu-

nication technology, coin-cell power source, and low cost.

Another important aspect that led to this selection was the

existence of a large community of developers around this

sensor hardware platform. In addition, we used a Raspberry

Pi 3B+ as the sensor network gateway. We utilized Raspbian

as the operating system on the network gateway, and we

used an open source collector code by the IBM company in

Python programming language for communication and for

recording the data that were generated by TI Sensortags. This

code was modified to lengthen the period between sensor

data recordings up to 240 seconds, and further developments

allowed for offline and cloud-based recording of the sensors’

data. For the offline part, which was used for the development

of this paper, the data recordings were stored in .csv files

on the gateway’s local memory. Fig. 2 shows the data flow

diagram for our sensor network.

B. DATA COLLECTION STEPS

The process of data collection followed a four-step process,

as illustrated in Fig. 3. Step 1 is initial testing, debugging,

and WSN setup verification. Step 2 pertains to expanding

the WSN. Step 3 relates to sensors’ reading validation, while

Step 4 describes the creation and visualization of a limited

facade digital twin. All of these steps are explained individu-

ally in the following subsections.

1) INITIAL TESTING, DEBUGGING, AND WSN SETUP

VERIFICATION

During the initial testing, we evaluated the performance of

WSN inside the building using three Sensortags. We then

FIGURE 3. Four phases of data collection.

initiated several data collection tests over a period of one

month while the sensors were installed on the inside and

outside of the building facade. During this time, we examined

the impact of distance and data recording time interval on

the battery life of the Sensortags. Moreover, the continuous

connectivity between the gateway and the Sensortags was

investigated. We encountered a number of serious issues with

the stability of the communication between the Sensortags

and the gateway. After analyzing the data collected from the

initial tests, we formulated solutions for the communication

issues encountered during the tests to expand the sensor

network.

2) EXPANDING THE WSN

We expanded the sensor network from three sensors to seven.

Fig. 4 shows the arrangement of the seven sensors. A data

set was collected for a period of 10 days, during which the

sensors were on the building facade, both inside (i.e., on the

windows) and outside. Three sensors were installed inside

the room, specifically on the windows facing outward, and

four sensors were installed on the facade, facing outward

of the same wall as the inside sensors. This data set was

utilized to determine the optimal mesh of the WSN on the

building facade. Throughout the data collection campaign,

in order to prevent confusion regarding the assignment of

sensor readings to the sensor that it belongs to, a constant one-

to-one matching is used where the name of the sensor data

file on the gateway corresponds to a similar physical designa-

tion, which is based on each sensor’s constant MAC address

(see Table 2).
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FIGURE 4. Sensor configurations at the office building.

TABLE 2. Sample of the table used for the sensors’ physical and virtual
designations in relation to MAC addresses.

3) SENSORS’ READING VALIDATION

A different data set was collected to examine the validity of

the sensors’ readings and to determine each sensor’s error

range for each environmental parameter of light, ambient

temperature, and relative humidity. This data set was col-

lected while sensors were placed adjacent to one another on

the surface of an office desk where light, ambient tempera-

ture, and relative humidity were the same for all the sensors.

The data collection interval was set to 90 seconds for all

sensors. Section V uses this data set to calculate the sensors’

error range. We used Minitab and Microsoft Excel software

to analyze the sensors’ data sets and produce the time series

graphs.

4) DATA COLLECTION FOR THE FACADE DIGITAL TWIN

In the last round of data collection, six sensors were installed

on the facade of a building at the Aalto University campus,

and a data set of environmental lighting, ambient temperature,

and relative humidity was collected. This data set was used

for the creation and visualization of the digital twin of the

building facade.

C. RAW SENSOR DATA PROCESSING

The data collected from the sensors contained noise due to

multiple factors. These factors caused the sensors to discon-

nect or to not be able to send the correct data to the gateway.

One of the reasons was the low battery level, which caused the

energy-intensive sensors to send wrong readings (noise) to

FIGURE 5. Time series plot for temperature, and humidity measurements
before noise cleansing.

the gateway. The ambient temperature and relative humidity

sensors on TI Sensortags are energy-intensive and they can

stop sending accurate readings when the battery levels are

low even before the TI Sensortag itself runs out of power and

turns off. The other source of noise was produced when the

sensors were disconnected from the gateway for any reason.

One of the main disconnectivity causes was the obstacles

between the sensor and the gateway. For instance, the dual

layer glass of the building windows significantly attenuated

the Bluetooth signal strength and disrupted the connectivity.

Fig. 5(a) and Fig. 5(b) illustrate the noise in one of the sensor

data recordings before data cleansing. In order to remove the

noise from temperature (e.g., −40.0 readings) and relative

humidity (e.g.: 0.0 and 99.0 readings), we initially reviewed

the data and then cleansed it. It should be noted that light

readings of the sensors did not have noise and could thus be

utilized without cleansing.

IV. TECHNICAL OBSTACLES

In this section, we present the important technical shortcom-

ings and challenges that we faced while creating our limited

building’s facade digital twin. We also present the solutions
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that were utilized to address them. In the developed testbed,

the gateway used Bluetooth to communicate with the TI Sen-

sortags. Therefore, the Bluetooth channel was continuously

receiving the data sent from the Sensortags. Our experiments

showed that when the gateway was continuously connected

to the cloud through Wi-Fi, it caused disruptions to the

Bluetooth channel and resulted in a disconnection between

the sensors and the gateway. To resolve this technical issue,

we disabled the Bluetooth link of the gateway, and we used a

USB Bluetooth dongle to enable the Bluetooth communica-

tions. In this fashion, we resolved the disconnectivity issue

of the gateway while keeping it connected to the internet

through Wi-Fi.

In another experiment, we measured the light values for

indoor and outdoor environments. Our tests showed that

locating the sensor behind the window glass attenuates the

Bluetooth signal strength considerably while putting a strain

on the sensor’s battery. This often caused the disconnectivity

between the sensor and the gateway. The solution to this issue

was found to be the placement of the gateway on the same side

of the window that the sensors are located.

The other concern that needed to be addressed was the

number of sensors. We considered a scenario where there

was a need for more than 10 Sensortags to be used for

data collection. Thus, to decrease the traffic caused by the

Sensortags data transmission, we tried using two parallel

gateways. The result of this test showed that using parallel

gateways without software modifications would cause com-

munication disruptions. A software solution can resolve this

hardware issue by dedicating specific sensors to a specific

gateway and disabling blind pairing with Bluetooth devices

on the gateway. A solution to sensor disconnectivity for cases

where the number of sensors is higher than seven can involve

lengthening the data upload intervals for the sensors; we

suggest setting this interval to be over three minutes, as our

experimentation showed that this would provide a highly

reliable connection between the sensors and the gateway.

In the following round of hands-on testing, which was per-

formed to find a better economically justified sensor option,

a test was conducted utilizing a different Sensortag that

was built by another manufacturer with our gateway. Blue-

tooth 4.0 BLE Sensor Tag/iBeacon Station NRF51822 was

the tested Sensortag. The results showed that although

NRF51822 Sensortag has an ambient light sensor as well as

temperature and relative humidity sensors, these might not be

suitable for this project because of two reasons. Firstly, there

was a lack of support availability by the supplier company

and user community while, user-friendly software resources

for the NRF51822 Sensortags were also scarce. These are

important negative points in comparison to the TI Sensortags.

The second reason was related to the power management on

NRF51822 Sensortags, which does not allow for smart power

management. In such a setting, a sensor would run out of

battery significantly earlier than the TI Sensortags, which

offer smart power management. Therefore, the application

of NRF51822 Sensortags would be very costly from the

management perspective, although their initial purchasing

price is one-third that of TI Sensortags.

We conducted tests where the battery level readings of the

Sensortags were activated in the code. In this way, the oper-

ator can gain visibility into the inner workings of the sen-

sor from an energy consumption perspective and implement

a better battery replacement policy. Furthermore, to fully

understand the impact of sensor data transfer frequency on

their battery life, we tested different time intervals to find

an optimal data transfer latency between every two mea-

surements. We performed data collection with intervals of

20, 30, 60, 90, 120, and 240 seconds using three Sensortags.

This test was performed to understand the optimal setting

for the data collection while considering the Sensortags’

battery consumption and the number and types of parameters

measured. Our conclusion is that setting a short time inter-

val decreases the battery life of the Sensortags and causes

connectivity issues between the Sensortags and the gateway.

Thus, using a short time interval is not an optimal method

for data measurement. Moreover, the short time interval also

increases the amount of collected data, which would be sim-

ilar in the measured values since little change occurs in a

short time, and consequently the complexity of data analysis

is increased. However, using a longer time interval is also

not an accurate solution for certain environmental factors

with rapid fluctuations such as light; while factors such as

temperature and relative humidity that change gradually can

benefit from longer data recording intervals. Our conclusion

is that when setting the time interval, three major points

should be considered: 1) the number of deployed Sensortags,

2) the number of measured environmental factors, and 3) the

type of measured environmental factors. Considering these

points, in our setting we set the recording time interval to

90 seconds.

In this research, we used BLE technology for the com-

munication between sensors and gateway due to its afford-

ability, availability, and low energy consumption [62] that

allow battery-powered sensors. In contrast to Zigbee, BLE

communication technology is widely and out of the box

available in consumer electronic devices [63] such as laptops,

smartphones, and in our case, Raspberry Pi 3B+. BLE con-

sumes less energy than Zigbee [62]. The data rate for BLE

(i.e., 1 Mbit/s for short bursts) is four times greater than Zig-

bee (i.e., 250 Kbit/s) [64], [65]. Moreover, in performing the

experiments for this research, we did not require data trans-

mission over long distances; thus, BLE was a suitable choice.

Nonetheless, based on the comparison presented in Table 3

for a real-world digital twin creation project for a building,

Zigbee is more suitable.

Zigbee by design offers meshing capability [66] and thus,

requires a lower number of gateways compared to the BLE

technology. Zigbee-enabled sensors relay the information

through the mesh network. In other words, the data travels

from a single sensor device across a group of routers (i.e.,

Zigbee nodes) until the transmission reaches the IoT gateway.

In the case of data transmission failure at any router, data
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TABLE 3. Comparison of Zigbee and BLE.

FIGURE 6. Time series plot for light measurements of sensors 4 (black),
5 (green), and 7 (red).

is automatically transferred to another router; thus, Zigbee

offers a highly reliable network with almost zero information

loss [67]. The mesh networking feature of the technology

significantly extends the communication range [68]. The

maximum range of Zigbee is up to 100 meters [64], [66], [69]

in node-to-node communication. These features of Zigbee,

hence, makes it a suitable candidate [70] for a WSN for the

digital twin of a building.

On the contrary, BLEworks in a star network topology [66]

with limited connected nodes, where the gateway is at the

center. In other words, each BLE-enabled sensor requires

to be directly connected to a gateway. BLE communication

is vulnerable to interruptions and data loss under certain

conditions [72]. Thus, BLE communication is not preferable

for real-world implementation of largeWSNs that cover large

areas.

V. VALIDATION OF DATA

Using the data set collected to evaluate the validity of sen-

sors’ readings, we realized that measurable differences exist

between the readings of various sensors, and these differences

can lead to inaccurate interpretation of experimental data.

A time series plot for the light measurements by three Sen-

sortags in a similar lighting condition is presented in Fig. 6,

which shows the differences in the readings of the sensors and

the increased deviation while the lighting is increased.

The same pattern was identified for all the sensor record-

ings related to the ambient temperature and the relative

humidity. Therefore, before analyzing the data collected from

TABLE 4. Error range for different sensortags.

the sensors in order to create the digital twin, we needed to

eliminate the error range of the sensors. After calculating

the percentage of error for each sensor, an error correc-

tion coefficient was introduced for each sensor. This assists

in removing false variations from sensor readings. Table 4

presents the error range for seven Sensortags. This table is

used for determining the error percentage of various sensors

compared to sensor 5 (S5), which has been selected as the

reference Sensortag. Among all Sensortags used in our exper-

imentation, S5 was selected as the golden sample since the

readings of this sensor (i.e., light, ambient temperature, and

relative humidity) were closest to the readings of recently cal-

ibrated industrial sensors at the Aalto University’s Metrology

Research Institute.

VI. DETERMINING THE SENSOR CONFIGURATION

It is important to optimize the number of sensors required for

a building from a cost perspective as well as the usability of

the system. To be more specific, the cost factors related to the

implementation of a sensor network on the building facade for

the purpose of creating a digital twin are as follows: 1) sensor

network design; 2) the procurement of sensors, gateways,

and other related hardware and software; 3) installation costs

related to sensors and back-end systems; 4) the monitoring

and data collection as well as the analysis and fusion of results

into the smart building systems; and 5) system maintenance

related to the sensors’ battery replacement (in case of battery-

powered systems), sensor replacement in case of damage and

loss, connectivity maintenance for both wired and wireless

connections, as well as gateway and software maintenance

and updates.

After we selected and cleansed the data set and deter-

mined the error range, we started the analysis of the data

that was collected from the sensors on the building facade

to determine a suitable configuration for the Sensortags.

Figs. 7(a), 7(b), and 7(c) illustrate the light, temperature,

and humidity recordings by four Sensortags. These four

Sensortags are part of the seven Sensortags configuration

illustrated in Fig. 4. Three of the sensors are installed on a

straight horizontal line, one meter apart. The fourth sensor is

installed at 0.6 meters above the middle sensor.

For the sensor configuration optimization, the following

Algorithm 1 is applied. Given that the sensor mesh includes

m rows and n columns, sij refers to spatial grid for sensor

in the row i and column j and αij is the measurement of

sensor sij. This algorithm performs in two steps: The hor-
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FIGURE 7. Time series plots for light, temperature, and humidity
measurements by sensors 3 (black), 4 (red), 5 (green), and 7 (blue) that
were installed on the building facade over an eight-day time span.

izontal optimization of sensors’ configuration, followed by

the vertical optimization of sensors’ configuration. In the

horizontal optimization, the difference between two imme-

diately adjacent sensors’ measurements is compared with

the difference of the error range of the same sensors, while

taking into account the intended accuracy. Intended accuracy

(IA) in this algorithm refers to the decision maker or facility

manager’s required sensor network accuracy. As long as the

difference between the measurements of adjacent sensors is

Algorithm 1 Sensor Mesh Optimization

Initialization:

1: sij: Sensor in row i and column j

2: αij: Measurement of sensor sij
3: S :Matrix of αij for all i and j

4: Set m : The number of sensors’ rows

5: Set n : The number of sensors’ column

6: Set eij : Error range of sensor sij
7: Set IA : Intended accuracy set by decision maker

8: Set A = B = C = ∅

Horizontal optimization

9: for i = 1 to m do

10: Set j = 1, j′ = 2

11: while (j′ < m+ 1) do

12: if (αij − αij′ 6 |eij − eij′ | + IA) then

13: A←− A ∪ sij′

14: j′←− j′ + 1

15: else

16: j←− j′

17: j′←− j′ + 1

18: end if

19: end while

20: end for

Vertical optimization

21: for j = 1 to n do

22: Set i = 1, i′ = 2

23: while (i′ < n+ 1) do

24: if (αij − αi′j 6 |eij − ei′j| + IA) then

25: B←− B ∪ si′j
26: i′←− i′ + 1

27: else

28: i←− i′

29: i′←− i′ + 1

30: end if

31: end while

32: end for

Set of all redundant sensors

33: C ←− A ∩ B

34: Return C

lower than the difference of their error range plus the IA,

the algorithm replaces the adjacent sensormeasurements with

the next immediate horizontally adjacent sensor measure-

ments and performs the same calculation until the difference

between the measurements of two sensors compared exceeds

the difference of the error range of the same sensors plus

the IA. Subsequently, the algorithm stores all the redundant

sensors in set A. By completing the first full row, the algo-

rithm continues the horizontal optimization by performing

the same steps for the immediate next row. The same steps

are consequently performed for the vertical optimization of

sensor configuration, and the algorithm stores all the yielding

redundant sensors in set B. Finally, the overall optimized

sensor mesh is determined by removing the sensors in set C ,

which is the intersection of A and B.
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FIGURE 8. Suggested sensors’ mesh on a simple building facade that was
used in Section VII for the creation of a limited digital twin of the building
facade.

The data collected by all seven sensors contained infor-

mation on lighting (lx), temperature (C◦), and relative

humidity (%), and the sensors were installed in a configu-

ration that covered 3.4 meters horizontally and 0.6 meters

vertically. The preliminary analysis of this data illustrated

that the deviation among the recording of the sensors is

largely due to the sensors’ defined error range. Therefore,

we conclude that a digital twin of the building facade can

be created with an acceptable accuracy using a configuration

where the sensors covering the building facade are installed

in a mesh with a horizontal distance of greater than 3.4meters

from one another and a vertical distance of greater than 0.6

meters.

Fig. 8 presents the proposed sensor mesh for creating

digital twin of a building in this research. This sensor config-

uration is used for minimizing the cost of the sensor network,

while maintaining the IA of the WSN readings at a high

level. In this sensor mesh, the horizontal distance between

the sensors is 4 meters, and the vertical distance between the

sensors is 1.5 meters. The proposed sensor mesh in Fig. 8 is

utilized in a limited experiment with six Sensortags to create

the digital twin of the building facade. Section VII explains

the method used and the results of our digital twin creation

and visualization experiment.

In this research, the digital twin of building facade was

created based on a WSN with a mesh topology. The rea-

son behind the selection of mesh topology over star and

tree topologies is that the mesh topology is a common

and preferable configuration for real-world smart building

WSNs [73]; thus, mesh is used to retain the applicability

of the research results for real-world building’s digital twin

creation while using other communication technologies such

as Zigbee or LoRa.

VII. DIGITAL TWIN CREATION AND VISUALIZATION

The location of sensors on the building facade for the creation

of the digital twin is shown in Fig. 9. The sensors are located

at the center of each rectangular area, and in this configuration

each sensor covers 6 m2 of the building facade. The collected

data by the light sensors of Sensortags were processed before

being utilized by software to visualize the real-time state of

facade brightness; this visualization was done by assigning a

specific color to the lux values in a color spectrum. The color

spectrum was defined by selecting the yellow color range

and by assigning a light shade of yellow to the bright lights

with a light intensity of 2400 lux and higher, while a dark

shade of yellow was assigned to an 800-lux light intensity

and lower. The light intensities between 800 and 2400 lux are

automatically assigned different shades of yellow between

the two selected colors according to their light intensity val-

ues. In this research, we selected this high color contrast for

a relatively small light intensity range in order to facilitate

the illustration; however, in real-world implementation the

range can be wider. This method of creating a building facade

digital twin through the real-time visualization of sensor

readings can be performed using other sensor types (e.g.,

ambient temperature, relative humidity or sensors measuring

other environmental attributes); this can be done by only

assigning a suitable data variation range and the selection of

a distinct color spectrum. For instance, a temperature digital

twin of the building facade can be created by assigning a color

spectrum, starting with dark blue and ending with dark red to

a temperature range of −30◦C to +40◦C .

Fig. 9 illustrates the creation, visualization, and testing of

the building facade digital twin that was implemented in this

research. The presence of an obstacle such as a person or a

car can be detected visually by the digital twin in real-time.

In Fig. 9(e), the person’s distance to the wall is 0.5 meters,

while the vehicle and the tree are 6.2 meters and 5.3 meters

away from it, respectively. In this illustration, the reading

of the light sensor that is adjacent to the person shows a

significant value drop compared to the other sensors’ readings

(i.e., 875 lux compared to above 2000 lux). As Fig. 9(f)

illustrates, this sudden change of lighting is visualized by the

building facade digital twin.

VIII. DISCUSSION OF BENEFITS OF THE DIGITAL TWIN

OF BUILDINGS

Several benefits can be found in using the digital twin of

a building, and one of them is the building energy effi-

ciency [61] with regard to the heating and light distribution

when and where required. A digital twin can provide data

regarding the building’s maintenance needs. Moreover, a dig-

ital twin can be used by the architects to improve the perfor-

mance of future buildings. We discuss these applications in

detail in this section.

An air conditioning system can source its air from a cooler

part of a building outdoors rather than expend energy to

cool and recirculate the same air. This requires real-time

monitoring of air pollution and air temperature and relative

humidity of the whole building facade. The digital twin of

a building with sensors measuring air quality, temperature,

and relative humidity can provide the required data for

such a hybrid air conditioning system for the indoor

spaces [74], [75].
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FIGURE 9. Facade digital twin created based on real-time sensor data of lighting.

In addition, an indoor measurement of the ambient light

that is received from the outdoors allows for a fine adjustment

of the lighting level inside the building [53]. As a result,

the amount of energy consumed by the lighting system dur-

ing the daytime can be drastically decreased. For instance,

if operators are aware of the level of light reduction from the

window glass, it would be possible for them to utilize smart

curtains for controlling the level of light on a real-time basis

inside building spaces. Accordingly, the temperature varia-

tions sourced from the sunlight received inside the building

can be purposefully utilized for heating and cooling by the air

conditioning systems.

Moreover, designing a sensor network for the building

facade and obtaining a digital twin enables the building

designers and architects to improve the efficiency of the

building during modifications, renovation, [76] and also

when designing the future buildings. For example, the archi-

tects utilizing the information on the directions of sunlight

andwind obtained at the building facade can design a building

that uses these natural resources to improve the lighting and

airflow inside the building. In this way, they can potentially

design a system that enables energy savings in lighting, venti-

lation, and cooling while offering visual and thermal comfort

for the building tenants.

Another potential application of buildings’ digital twin is

in the creation of accurate city digital twin. By integrating the

components of buildings’ digital twin that are not proprietary,

a more comprehensive and holistic model can be created

which enables city planners to access an unprecedented level

of accuracy for city planning, project implementations and

operations [77].

IX. CONCLUSION

In this research, we presented a method for establishing a sen-

sor network to create a building real-time digital model, also

known as a digital twin. The paper accomplished this through

the collection and analysis of the specific environmental

factors in the exact surroundings of the building. Although

the extent of this study did not go further than utilizing a

limited sensor network and three environmental parameters

for sensing (i.e., light, temperature and relative humidity),

the step-by-step framework introduced in this research can

be utilized to create a more comprehensive digital twin of

a building facade as well as a building interior. This can

be done using different types of sensors and communication

protocols. Some of the technical obstacles in creating the

digital twin of a building were also explained in detail, and

the implementable solutions were proposed. This research

concluded by suggesting a framework to determine the sensor

arrangement on a building facade to enable a digital twin and

by discussing the benefits of the digital twin of a building.

Among the applications of a digital twin, we focused on
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lowering maintenance cost, increasing tenants’ comfort, and

lowering the overall management and operational cost of a

building.

This research was conducted on a building facade, this

means the future research can examine the implementation of

the digital twin for a building interior. Moreover, another area

of exploration for future studies can be the expansion of sen-

sor network presented in this research to includemore sensors

with a higher variety to allow for additional applications for

the digital twin of a building. For instance, the integration of

other sensing devices (e.g., visual or stereoscopic sensors on

a building facade) can have applications in real-time security

and in people movement monitoring while enhancing the

accuracy and resilience of the data feed. In addition to this,

a study of system affordability versus its benefits is also

worthwhile.
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