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Abstract—Digital Twin (DT) is an emerging technology sur-
rounded by many promises, and potentials to reshape the future
of industries and society overall. A DT is a system-of-systems
which goes far beyond the traditional computer-based simulations
and analysis. It is a replication of all the elements, processes,
dynamics, and firmware of a physical system into a digital coun-
terpart. The two systems (physical and digital) exist side by side,
sharing all the inputs and operations using real-time data com-
munications and information transfer. With the incorporation of
Internet of Things (IoT), Artificial Intelligence (AI), 3D models,
next generation mobile communications (5G/6G), Augmented
Reality (AR), Virtual Reality (VR), distributed computing, Trans-
fer Learning (TL), and electronic sensors, the digital/virtual
counterpart of the real-world system is able to provide seamless
monitoring, analysis, evaluation and predictions. The DT offers a
platform for the testing and analysing of complex systems, which
would be impossible in traditional simulations and modular eval-
uations. However, the development of this technology faces many
challenges including the complexities in effective communication
and data accumulation, data unavailability to train Machine
Learning (ML) models, lack of processing power to support high
fidelity twins, the high need for interdisciplinary collaboration,
and the absence of standardized development methodologies and
validation measures. Being in the early stages of development,
DTs lack sufficient documentation. In this context, this survey
paper aims to cover the important aspects in realization of
the technology. The key enabling technologies, challenges and
prospects of DTs are highlighted. The paper provides a deep
insight into the technology, lists design goals and objectives,
highlights design challenges and limitations across industries,
discusses research and commercial developments, provides its
applications and use cases, offers case studies in industry,
infrastructure and healthcare, lists main service providers and
stakeholders, and covers developments to date, as well as viable
research dimensions for future developments in DTs.

Index Terms—Digital Twin, Digital Transformation, Smart
Manufacturing, Industry 4.0, Structural Health Monitoring, 5G.
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Fig. 1. The Digital Twin’s central role in the Industry 4.0 era.

I. INTRODUCTION

THE Fourth Industrial Revolution is in full bloom, and the
current global Covid-19 pandemic has even further accel-

erated the digital transformation by several years. The travel
restrictions, lockdowns, and pending economic decline have
forced industry executives to adapt their business prospects and
shift their focus from saving costs to increasing investments in
digital development [1]. Additionally, the global viral outbreak
has imposed a dynamic uncertainty upon the economic world,
and companies found themselves compelled to cope with and
quickly adapt to ever-changing conditions and restrictions in
order to survive or even rise above the circumstances [2].
However, even before the sanitary crisis, the efforts towards
digitalization were considerable. Cisco published their annual
Internet report in the first fiscal quarter of 2020, and they
predicted a significant growth in worldwide Internet users
(66% of the population in 2023, compared to 51% in 2018),
networked devices (3.6 devices per person in 2023, as opposed
to 2.4 in 2018), and reduced communication latency that
encourages the development of real-time interactive appli-
cations [3]. This forecast expansion of Internet coverage,
speed, and connections is giving way to an increased rate
of information dissemination, availability, and accessibility, as
well as growing opportunities of development and innovation.

The goals of Industry 4.0 (I4.0) align perfectly with this
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fast-paced and continuously-evolving digital transformation.
I4.0 aims to automate all the traditional, bare-metal industrial
practices, and it hopes to do so by bringing as much of the
of the equipment from the physical space into the virtual
domain. And this is where Digital Twins come into play.
DTs emerged as an experimental technology set to enable
replication of elements, functions, operations and dynamics
of physical systems into digital world, with better control at
testing, analysis, prediction and hazard prevention for sen-
sitive processes. However, the supporting technologies, until
recently, were not advanced enough to develop DTs for com-
plex systems or systems-of-systems. The recent developments
in Machine Learning, Artificial Intelligence, data integration
Virtual/Augmented Reality, sensing, security, cloud storage,
Transfer Learning, data visualization and ultra-reliable low
latency communications (uRLLC) have enabled the implemen-
tation of the DT and its extended applications across several
industries. A technology thought to be capable of dealing
with isolated operations and processes, the DT can now offer
potential applications eventually replicating the processes,
elements, dynamics, firmware, connections and operations of
physical systems in digital world. Figure 1 illustrates the DT
as a supplier of various services across industries in I4.0.

The formation of a mirror image of a physical system in
the digital world offers unlimited possibilities. Interlinking the
physical and digital systems through seamless data transfer
allows the virtual system to exist simultaneously with the
physical system. Real-time data communications between the
physical and digital systems enable a synchronized and co-
herent operation of the real and virtual counterparts. Once in
the digital domain, optimized learning, information transfer,
analysis, visualization, optimization and planning can easily be
incorporated to see the potential improvements with suggested
changes. Thus, the DT can be used effectively to assess,
observe and validate the physical system, suggest changes and
visualize the potential improvements. Previously deemed as an
impossibility, DTs have arisen as one of the key technologies
with potential to reshape the future.

This survey paper aims to shine light on the recent ad-
vancements in the DT paradigm by reviewing the relevant
literature published over the last few years, in order to establish
a common understanding of this technology, explore its market
potential and trends, enumerate its most prominent enabling
technologies, offer an in-depth look at several applications,
frameworks, and case-studies that have been thoroughly doc-
umented, and finally discuss and share the learned lessons and
remaining challenges of this technological pacesetter.

A. Background and Motivation

The Digital Twin gained traction in 2002, after Michael
Grieves held a presentation at the University of Michigan,
which was entitled “Conceptual Ideal for Product Lifecycle
Management”. The original slide containing the proposed
concept was reproduced by Grieves and Vickers in [4] and
it can be noted that the early architecture of what would later
become the DT consisted of three main components:

• the real space,

• the virtual space,
• the link serving as a communication medium between the

two spaces.

The implications of this idea were revolutionary for the
manufacturing industry, and other economic domains would
later pick up on this as well. The most important advantage
of the original DT was the conjoined lifetimes of the real
and virtual entities, starting from the creation of the pair, and
ending in their disposal. This feature suggests that the virtual
asset would, at all times, mirror the most recent representative
characteristics of the physical system, allowing remote moni-
toring throughout the whole lifetime of the physical object. As
such, while it was initially intended as a tool for monitoring the
lifecycle of a manufactured product, academia and the industry
soon realised that the DT concept can be fruitfully applied to
other economic domains as well.

Fig. 2. Interest trend in Digital Twin as seen through Google searches.

As a result of this realisation, research output has surged
and interest and representation of the digital twin has grown.
Figure 2 shows the global trend of interest into the term
“digital twin” as expressed via the normalized number of
Google searches across the last 11 years, and it can be noted
that the last few years have drawn increased attention to the
concept that Michael Grieves introduced back in 2002. The
“interest” shown on the Y-axis takes values between 0 and 100,
where a value of 100 denotes the highest popularity the search
term has seen during one month of the given time window,
and a value of 50 represents half of that maximum popularity.

While the Google Search trend is a representation of the
DT’s increasing general popularity across the years, it is
important to assess and understand how this growing attention
has been reflected in the research output throughout the
same time period. In this regard, we analysed the number
of publications within the Scopus document database that
included the phrase “digital twin”, for each year in the last
decade. Figure 3 shows the results of this analysis and, indeed,
it can be noted that increasing attention has been allocated to
the research and development of this revolutionary paradigm as
well. The bar plot shown in Figure 3 is the result of leveraging
the Scopus Search API to search for articles that contain the
specific phrase “digital twin” in their abstracts. While not
all of the found articles might have been devoted entirely to
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the DT concept, it is still noteworthy that more and more
academics have taken some level of interest in the technology
over the years. It is also important to mention that the search
was accomplished via the “pybliometrics” package of Python,
developed by Rose and Kitchin [5].

Fig. 3. Number of articles in the Scopus database whose abstracts contain
the phrase “digital twin” across the years.

B. Related Surveys

There is currently a considerable number of publications
across literature that are dedicated to advance the concept of a
DT. In fact, there are so many articles that academics have also
put out a number of survey papers that were designed to re-
view the state-of-the-art in DT development, illuminate fellow
innovators on possible research gaps, questions and directions,
as well as guide the industry towards possible DT use cases
that might generate significant business value in their specific
domain. This work aims to complement the other existing
survey efforts and facilitate a complete understanding of the
DT, with its definitions, enabling technologies, applications,
and detailed use-cases and case-studies.

As such, Table I displays a comparison between a collection
of other survey articles covering comprehensive DT-related
literature, and the survey paper at hand. Table I puts in contrast
the contributions of this paper with other surveys’, in order to
highlight the novelty brought by the work at hand. The findings
of this study are analysed below in more detail.

Barricelli et al. [6] propose a study on the DT’s defini-
tions, characteristics, applications, and design implications.
The paper provides full coverage of the DT’s evolution,
from Michael Grieves’ concept to the state-of-the-art at the
time of its publishing. The authors set out to answer three
research questions, regarding the various definitions that the
DT has accumulated across the years, the paradigm’s main
characteristics (feature selection and extraction, that facilitate
the DT-characteristic Big Data analysis, pattern recognition
and ML, predictive and prescriptive analytics, etc.), as well
as the main domains where the DT had been applied at the
time of writing. In particular, the authors detail several DT
implementations across three different application domains:
manufacturing, healthcare, and aviation. The paper ends with

the design implications and challenges that developers should
take into account when considering such a system. In contrast,
this work’s goal is to expand Barricelli et al.’s contributions by
additionally discussing the market potential of the DT, going
into further details on the technologies that enable a DT’s
characteristics, and also providing a closer look at possible
use-cases in different industry domains.

Minerva et al. [7] proposed a comprehensive survey on
the architectural models of a DT, and they also discussed
the technical features of this concept (or, in other words, the
technical “must-haves”) that consolidate the DT definition.
The paper surveys different DT characteristics that were
highlighted in literature pertaining to various technological and
industrial domains, like manufacturing, AR/VR, multiagent
systems, virtualisation, and especially IoT. Additionally, the
authors applied proactive thinking and evidentiated some other
important characteristics of the DT that are often overlooked in
other research works, like data ownership, contextualisation,
augmentation, servitisation, etc. The paper covers the value
of the DT concept, including its market potential, before
diving into various detailed use-cases, like the digital city and
the digital patient. The survey ends with a consolidated DT
architectural model and illuminates the upcoming challenges.
While the article proposed by Minerva et al. contours the
definitions, enabling technologies and applications of a DT,
it does not go into details about which technologies can be
integrated into the DT in order to build those applications.
The survey at hand will attempt to fill that gap.

Löcklin et al. [8] published a survey paper that tackles
the DT’s use for verification and validation (V&V) purposes.
The authors mention that there are multiple DT definitions
in the literature, before settling on one definition that makes a
distinction between the Digital Twin, which is mainly referred
to as a tool for monitoring, verification and validation, and the
Intelligent Digital Twin, that can provide meaningful feedback
to its corresponding asset based on the acquired data. Further-
more, the survey is conducted around three research questions
that tackle how the DT can enable verification and validation,
the industrial domains where the DT is used for V&V, and
a classification of modalities in which the DT is leveraged
in the reviewed papers. As the title of the survey suggests,
it is dedicated to studying the application of verification and
validation within multiple industrial domains.

Biesinger et al. [9] conducted a survey on the necessity
of a DT in the automotive industry’s integration planning
processes. Unlike the previously presented articles, which
focused on reviewing scholarly works, this study has been
conducted by interviewing 22 production planners from var-
ious automotive manufacturing companies. The scope of the
paper, which is a case-study by itself, covers the demand of
an easily accessible and configurable DT for the specific use-
case of integration planning. As such, it is a great indicator of
the market potential that the DT has in this industrial sector,
but it does not delve into the possible solutions or enabling
technologies that could help implement a DT that is compliant
with the definitions that the authors provide in their work.

He et al. [10] proposed a survey focused mostly on the
monitoring and surveillance capabilities of the DT, and their
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TABLE I
COMPARISON BETWEEN THIS SURVEY PAPER’S CONTRIBUTIONS AND OTHER RELATED WORKS IN THE LITERATURE.

Literature

Contributions
Definitions Market Potential Enabling Technologies Applications Case Studies Challenges

[6] �� × � �� × ��

[7] �� � � � �� ��

[8] � × × � × ×

[9] � �� × × � ��

[10] × × � � �� ��

[11] � × � �� �� ��

[12] � � �� �� × ��

[13] � �� � �� × ��

[14] � × �� �� × ��

[15] �� � �� �� × ��

This survey �� �� �� �� �� ��

��- in-depth coverage of the subject;
�- partial coverage of the subject;

× - subject not addressed.

provided definition (“a dynamic digital replica of physical
assets, processes, and systems, which comprehensively mon-
itors their whole lifecycle”) reflects this aspect of the study.
Although the authors do not emphasise the full extent of the
DT definition, they do present the technologies that enable the
DT to become an avant-garde methodology for the specific
application of surveillance. The survey concludes with an
industrial use-case of the DT, dubbed Pavatar, and presents
the technical advantages and challenges of implementing this
project for an ultra-high voltage converter station.

Pires et al. [11] present a compact review of the DT’s
definitions, enabling technologies, and applications, ending
the paper with the exemplification of a case-study of the DT
and the challenges the concept will face before the industry
integrates it into its businesses. The authors also provide a
look at on-going research efforts towards building a DT for
a UR3 collaborative robot. The manuscript at hand aims to
complement this work with a wider array of references and
case studies.

Rasheed et al. [12] created a comprehensive DT survey
that analyses the paradigm from the perspectives of its value
(expressed via services and software platforms), applications,
enabling technologies, and challenges. The paper brings to-
gether works from various domains where the DT has been
tried and tested, as well as potential socio-economic impacts
that such a technology can have (i.e., loss of jobs, training

new workforce in DT specifics).
In [13], Tao et al. introduce a thorough analysis of 50

papers and 8 patents related to the DT. The authors cover the
concept of DT via a study of four perspectives: interaction and
collaboration between its constituents, data fusion, services,
and DT modeling and simulation. Then, the authors describe
the DT’s applicability in three main areas in its most prominent
industry, the manufacturing sector: DTs for product design, for
production, and for prognostics and health management. As
such, the paper draws its lessons from articles that are mostly
focused on the state of the art of DTs in the manufacturing
industry.

In [14], Huang et al. put together a detailed survey on the
AI-driven DTs in the context of smart manufacturing and
advanced robotics. The authors take into consideration the
advantages of using a DT as a driver for sustainability goals
in the manufacturing and robotics, by facilitating production
planning and control, quality control, dynamics control, pre-
dictive maintenance, and many other services. Additionally,
the authors focus on describing how AI techniques specifically
enable DTs across these two domains.

Finally, Fuller et al. in [15] propose an extensive survey on
DT, with a focus on its integration with IoT and data analytics
technologies. The paper also points out that there is a need for
a stable DT definition that consolidates all of the aspects that
make up a true DT. Afterwards, the survey goes on to discuss
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TABLE II
LIST OF ACRONYMS

Acronym Description Acronym Description

AGV Automated Guided Vehicle LOF Local Outlier Factor
AI Artificial Intelligence LSTM Long Short Term Memory
ANN Artificial Neural Network ME-GP Mixture of Experts and Gaussian Processes
AR Augmented Reality MES Manufacturing Execution Systems
ARIMA Autoregressive Integrated Moving Average ML Machine Learning
AUC Area Under Curve MQTT MQ Telemetry Transport
BIM Building Information Modelling MR Mixed Reality
BOCD Bayesian Online Change-point Detection O&M Operations and Maintenance
CNC Computerized Numerical Control OPC Open Platform Communications
CNN Convolutional Neural Networks OPC-UA OPC - Unified Architecture
CoAP Constrained Application Protocol OSA-CBM Open System Architecture for Condition-Based Maintenance
CP-Lab Festo Cyber-Physical Factory PCA Principal Component Analysis
CPPS Cyber-Physical Production Systems PCB Printed Circuit Board
CPS Cyber-Physical Systems PdM Predictive Maintenance
DA Diagnostic Analytics PER Prioritized Experience Replay
DBSCAN Density-based Spatial Clustering of Applications with Noise PLC Programmable Logic Controller
DCNN Deep Convolutional Neural Networks PPO Proximal Policy Optimisation
DDQN Double Q Network RL Reinforcement Learning
DL Deep Learning RNN Recurrent Neural Network
DNN Deep Neural Network ROI Return On Investment
DoS Denial of Service RUL Remaining Useful Life
DQN Deep Q Network SDOF Single Degree of Freedom
DRL Deep Reinforcement Learning SHM Structural Health Monitoring
DT Digital Twin SOA Service Oriented Architecture
GA Genetic Algorithms SSAE Stacked Sparse Autoencoder
HMI Human-Machine Interactions STDT Socio-Technical Digital Twins
I/IoT (Industrial) Internet of Things TL Transfer Learning
I4.0 Industry 4.0 uRLLC Ultra-Reliable Low Latency Communications
IHSC Industrial Hemp Supply Chain V2X Vehicle-To-Everything Communications
KNN K-Nearest Neighbour V&V Verification and Validation
KPI Key Performance Indicator VR Virtual Reality

the DT, its enabling technologies, and applications in three
main use cases: smart city, healthcare, and manufacturing. The
manuscript at hand aims to complement the aforementioned
articles in providing a complete view of the DT.

C. Survey Contributions

To complement the previous works, this work provides a
comprehensive survey on the DT concept, the enabling tech-
nologies involved, the applications and use cases for deploying
DTs across various industries. The main contributions of this
survey paper are summarized as follows:

• Overview of the DT definitions from the literature;
• Comprehensive discussions on the market potential of

DT;
• The enabling technologies for DT are surveyed, such as:

ML, cloud, fog and edge computing, IoT/IIoT, Cyber-
Physical Systems, VR/AR, and modeling technologies;

• Existing solutions of DT frameworks are reviewed across
three use cases examples, namely: smart factory, infras-
tructure, and future directions for 6th Generation Mobile
Networks (6G). Then, we take a closer look at two DT

services, irrespective of use case: anomaly detection and
predictive maintenance;

• Three real use cases of DTs as applied to tea industry
in India, Festo Cyber-Physical Factory in the United
Kingdom, and structural health monitoring for Vietnam
bridges are discussed in details;

• Lessons learned, remaining open challenges and future
directions of DTs are identified.

D. Survey Structure

This survey paper is organized as follows: Section II pro-
vides a review and comparison of the existing DT definitions
across the recent literature covered in this paper, as well as our
own comprehensive DT interpretation, Section III evaluates
the DT’s potential for market adoption and current trends
in DT development, Section IV delves into some of the
most prominent DT enabling technologies and reviews how
other researchers used them to build working DTs, Section V
explores various DT frameworks and applications proposed
in the literature, Section VI takes a closer look at three
DT case studies, Section VII draws the lessons we learned
throughout this survey, establishes the current challenges that
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Fig. 4. An overview of the survey paper’s contents.

the DT faces, and contours possible future directions, and
finally Section VIII summarizes the conclusions of this paper.

An overview of the organization and structure of this
paper is illustrated in Figure 4. Table II provides a list of
abbreviations used in this article.

II. DEFINITIONS OF THE DIGITAL TWIN

The Digital Twin is not a new paradigm. The premises
that initiated its advancements have been introduced more
than 50 years ago, amongst NASA’s many efforts of bringing
man in space. Indeed, the idea of virtually simulating real-
life scenarios that would normally require extensive resources
could not have had a more appropriate origin than NASA’s
early space programme, where high-fidelity (relative to the
technology standards at the time) simulators were used to train
astronauts for their upcoming remote journeys in the outer
space. But, surely, there is more to DTs than just simulation,
so the true precursor of this paradigm actually came to light
during NASA’s Apollo 13 [16] mission, when an unexpected
explosion caused a manned spacecraft to deviate from its
intended trajectory, endangering the astronauts on-board. In

response, the ground-based Mission Control was then tasked
to urgently simulate, in almost real-time, the erratic behaviour
of the spacecraft, and make optimal decisions to ensure its
safe return on Earth, in ever-critical conditions. The engineers
used the available spacecraft simulators, animated them with
real data coming from the space-bound physical ship and
its pilots, analysed possible scenarios, then communicated
optimal instructions to the stranded pilots to maneuver their
ship back home safely. The mission was a success.

Michael Grieves, in 2002, proposed a similar idea as a
means to drive forward the Product Lifecycle Management
paradigm (PLM), although, back then, he had not dubbed it as
“digital twin”, but as “Mirrored Spaces Model”. This precursor
of the DT consisted of the same three main pillars that lie at
the base of this technology today: real space, virtual space,
and the communication thread between them.

In the case of the Apollo incident, the real space was
represented by the physical spacecraft stranded in space, the
virtual space consisted of the ground-based simulators, and
the link between the two was characterised by the continuous
communication between the Mission Control, the spacecraft,
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the engineers, and the pilots. It was indeed the DT that saved
the day back in 1970.

The actual definition of the DT has always been at least am-
biguous, and the ever-growing number of publications in the
last few years has only added to the diversity of DT meanings.
It is generally observed, however, that the DT implementation
attempts so far seem to have been accomplished with the
support of a number of common enabling technologies, such
as: ML [17], TL [18], distributed computing (i.e. cloud, fog,
and edge computing) [19], the (Industrial) Internet of Things
(I/IoT) [20], CPS [21], and VR/AR [22].

Consequently, to get a good grasp on the general under-
standing of the DT we analysed the recent literature on the
DT definitions provided. The results indicate that the existing
DT definitions seem to center around five approaches as
summarised in Table III.

Each of the five definitions capture the essence of the DT,
but there is not complete overlapping between them:

• The first definition is a very popular one, and arguably
the oldest one, however it is very generic and it does not
offer insight into the constituent parts of the DT.

• The second definition is more comprehensive, as it de-
mystifies the DT and provides a bit of understanding
regarding two of its components (the physical and digital
objects). However, it claims that the DT is just an
intelligent digital model of a physical asset, with little
to no emphasis on the interaction between the two, its
requirements, and limitations. Some works [23], [24],
however, do make observations about the twinning rate
(i.e. the rate of synchronization between the two objects),
and mention that it is a requirement that depends on the
DT’s use case.

• The third definition completely ignores the bi-directional
communication requirement of a DT, essentially confus-
ing the DT with a digital shadow, which would more
accurately fit that description.

• The fourth definition focuses entirely on the components
of the DT, but it does not hint towards the capabilities of
a DT, making the definition too generic.

• The fifth definition shifts its attention to the services pro-
vided by the DT, but not on its structure and technologies
that enable said services.

To put the five definitions into a better perspective, we will
work through a hypothetical example. Consider the DT of an
autonomous car, where the virtual representation of the car
is able to continuously communicate with the physical asset
and become aware at all times of its state and environment
in order to make appropriate control decisions. The use-case
of autonomous driving imposes some strict requirements on
the DT, the most obvious of which are: ultra-low latency
communication between the real and virtual twins, large data
storage capacity, high processing power to reduce data-to-
insight delays, and high-fidelity virtual rendering of the car
and its environment.

Now, seeing this example through the lenses of the five
definitions, we would find that some of the above scenario’s
very important aspects are omitted. The first and third def-
initions claim that the DT only mirrors the life of its twin,

so they do not envision the other half of the feedback loop
between the two entities, where the DT itself can control the
car based on its real-time data. The second definition comes
close to describing our DT, except that it makes no mention
of the DT’s requirements that might differ from use-case to
use-case: a DT of an autonomous car will need a higher rate
of synchronization than the DT of an industrial water boiler,
for instance. The fourth definition makes no mention of the
DT’s use-case at all, even though it is a deciding factor in the
choice of enabling technologies and other requirements (a DT
for lifetime monitoring of a car would not need a bi-directional
communication medium, unlike a DT for autonomous driving).
Lastly, the fifth definition focuses entirely on the use-case
and the services the DT can provide, but the use-case’s
requirements and the DT components are only implied via
the definitions of the services themselves, and not explicitly
stated as DT characteristics.

It is thus clear that there is a need for a comprehensive
definition of the DT. The definition needs to be specific enough
that it identifies the components of a DT, how they interact,
and what services it should provide, but also generic enough
that it can describe DTs across multiple industrial domains
and use cases.

As such, in this work, and many hereafter, we will refer
to the Digital Twin as a self-adapting, self-regulating, self-
monitoring, and self-diagnosing system-of-systems with the
following properties: (1) it is characterized by a symbiotic
relationship between a physical entity and its virtual represen-
tation, (2) its fidelity, rate of synchronization, and choice of
enabling technologies are tailored to its envisioned use cases,
and (3) it supports services that add operational and business
value to the physical entity.

We believe that this alternative provides a better understand-
ing of the DT concept, as it gives a precise indication of what
the DT is (i.e., a system-of-systems), what its components are
(i.e., physical and digital entities), how they interact (symbiotic
relationship, i.e., a mutually beneficial two-way interaction),
how their interaction is leveraged (i.e., to offer services that
bring operational and business value), how accurate and syn-
chronized the virtual asset should be, and what technologies
should be used to build it (i.e., use case-dependent). Looking
back on the DT example for autonomous driving, it is now
clear to see which are the DT’s components (the car and its
environment are the physical asset, while their virtual model
is the digital asset), that they interact through a bi-directional
communication medium (one for collecting data from the real
space, and another for delivering insights and commands from
the virtual twin), that the DT is supposed to, in our case, assist
the car in driving autonomously, and that this use-case implies
some specific restrictions (low-latency, high security, etc.).

The fundamental characteristics of a DT, which are the
motors that actually bring operational and business value to
the physical entity, lie centrally in the DT philosophy. The
“self-X” constructs distinguish a true DT from digital models
and shadows, and emphasize the usefulness of a DT in I4.0.
These traits are explained below:

• Self-adapting - a DT automatically reacts to changes
in its real twin’s environment and configuration, but it
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TABLE III
THE VARIOUS DEFINITIONS OF DIGITAL TWINS FOUND IN THE LITERATURE.

Definition no. Digital Twin is defined as... References

1

“an integrated multiphysics, multiscale, probabilistic simulation of an

as-built vehicle or system that uses the best available physical models,

sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin.”

[25]–[29]

2

a virtual representation of a physical asset, that continuously consumes

data from the physical asset, processes it, then provides intelligent feedback to its

real counterpart.

[23], [30]–[33]

[24], [34]–[38]

3
an accurate digital representation of a physical asset, offering monitoring

capabilities throughout the whole lifetime of its real twin.

[39]–[43]

[44]–[48]

[49]–[54]

4
the tuple formed by the following components: physical asset, virtual asset, and

a bi-directional communication medium between the two.
[26], [55]–[57]

5
a collection of various services (e.g. monitoring, optimisation, predictive

maintenance, etc.).
[58], [59]

should do so in a way that continually ensures operational
excellence (i.e., as measured via use case-appropriate
performance measures).

• Self-regulating - the changes a DT undergoes while
adapting to its real twin’s environment should not ex-
ceed the physical twin’s own limitations for the sake of
maximising its performance measures (e.g., productivity,
throughput, etc.).

• Self-monitoring - the DT is always aware of its real twin’s
environment and configuration, by means of monitoring
the parameters that are relevant to its use cases.

• Self-diagnosing - the DT should be able to assess its
own health and know, based on its current and historical
conditions, when and why it is no longer able to maintain
optimal operations.

As such, a DT’s services should enable it to be self-adapting,
self-regulating, self-monitoring, and self-diagnosing, or, in
fewer words, self-evolving.

III. MARKET POTENTIALS AND TRENDS

Academic research on the topic of DT has positioned it thus
far as a central player in the race to I4.0. The widely-praised
potential of the paradigm presents attractive opportunities and
challenges that, once overcome, promise to bring benefits that
far outweigh the costs. However, the issue of costs is more
prominent in the industry than it is in the academia. While the
DT is a versatile technology that can be successfully applied to
various domains businesses still remain reluctant to implement
the DT. That is because the Return On Investment (ROI) on a
DT is difficult to quantify, since it is not a product that directly
brings revenue, but rather a technology that aims to reduce and
optimize costs. Nevertheless, this section will detail how the
leaders in the DT market have leveraged its aptitudes, and
whether their results predict a good omen for the future of the
DT.

IBM [60], one of the top DT solutions providers, valued
the DT market at USD 3.1 billion in 2020 [61], and pre-

dicted that the technology would see significant adoption and
economic growth in the following years. Although they do
admit that the creation of a DT is not always a sound financial
investment, IBM’s case studies show encouraging returns and
cost optimisations for DT implementations in manufacturing
and smart buildings. For example, ASTRI [62] used DTs
to validate software packages before their deployment on
the physical twin, reducing 30% of development costs and
expediting deployment by 40%. University of California San
Francisco [63] implemented DTs for a branch of the Mission
Bay Hospital which helped engineers to reduce the diagnosis
and repair process of the building’s pipes from 2-3 days to
just a few hours.

Another big player on the DT market is Ansys [64], who
praise the DT as the bridge between equipment development
and equipment operations, allowing manufacturers to monitor
the behaviour of their product throughout its whole lifetime.
Mecuris [65] have used Ansys products to develop a DT for
tailor-made orthoses and prostheses development to reduce
product testing costs. Similarly, Jet Towers [66] implemented
DTs of modular wireless towers to reduce installation and
design time by 80%.

General Electric [67] lead the DT market in the power
systems industry, where their solution claims to reduce start-
up time by 50% and maintenance costs by 10%, deliver up
to $5 million additional MWhr, and save costs on outages
of up to $150 million per year. In the telecommunications
industry, Spirent [68] are taking the stage as the leading
DT solutions provider for 5G networks. To optimise network
design, testing, and deployment, Spirent propose leveraging
the DT for use cases such as: cellular Vehicle-to-Everything
(V2X) virtual drive testing, private 5G networks for smart
factories, and testing and design for Communications Service
Providers. Another Spirent report [69] praises the DT for
its Predictive Maintenance (PdM) aptitudes in I4.0’s smart
factories, claiming to reduce machine breakdown by up to
70% and save up to 25% of maintenance costs [70].
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A Markets and Markets report [71] highlights attractive
growth opportunities in the DT market and stresses on the
increasing need for PdM and business optimisation. The report
also states that the market in North America recorded as high
as $1.32 billion, the largest share of the overall DT market
in 2019, and it is projected to reach $16.94 billion by 2026.
The paper forecasts that the global DT economy is expected
to grow from $3.2 billion in 2020 to $48.27 billion by 2026
with a Compound Annual Growth Rate of 58%. Another
report by the Institution of Engineering and Technology [72]
echos the idea that the DT market is on the rise, although it
also mentions that industry-agnostic adoption at the time of
publication amounted to only 5% of enterprises. Nevertheless,
the authors are optimistic that the DT should pave the way to
I4.0.

IV. DIGITAL TWIN: ENABLING TECHNOLOGIES

Although it is often referred to as a piece of technology in
and of itself, the DT can be more accurately thought of as
a system-of-systems, a meld of several enabling technologies
that construct an intelligent virtual representation of a phys-
ical entity and support a continuous two-way feedback loop
between the twins. At the same time, the enabling technologies
themselves can take many forms depending on the DT’s use
case. For example, although it is known that a communication
medium is needed between the real and digital twins, the
choice of the specific communication protocol is entirely
dependent on the communication requirements of the DT’s
application. These being said, this section will explore the
most common enabling technologies of the DT and provide
insight into how researchers from various industries have
chosen algorithms and frameworks that were fitting to their
use cases.

A. Machine Learning

One of the advantages of DT is that it brings awareness
(or intelligence, or understanding) to a physical asset that
would otherwise lack it. Of course, we are not referring to
the human understanding of “awareness” [73], but rather a
new kind of specialized intelligence that is able to understand
significant amounts of numerical data and draw domain-
specific conclusions from it faster than a human expert could.
Thus, the DT should be able to infer meaningful and actionable
information from the data that is generated by its physical twin
and its environment. In this scenario, ML techniques represent
the foundation, or the brain, of a DT.

Across the reviewed literature, researchers have employed
the whole array of ML algorithms types in their DT imple-
mentations: traditional ML [74], Deep Learning (DL) [75],
supervised ML [76], unsupervised ML [77], classification ML
[78], regression ML [79], Reinforcement Learning (RL) [80],
etc.

The applications and choices of ML models encountered in
this review are various and they depend on the use cases and
services of the proposed DTs. However, since ML algorithms
are ultimately used to solve optimization problems, one com-
mon approach is to employ data-driven models to minimise

or maximise a given process parameter. For example, in [39],
where the DT of a Mobile Edge Computing system had been
implemented, a Deep Neural Network (DNN) was used to
maximize energy consumption efficiency across the network
based on features like user association and resource allocation.
Similarly, the authors in [40] used Genetic Algorithms (GA) to
predict the circumstances that would favour most devastating
forest fires, such that they could be proactively prevented. In
[55], four ML algorithms (Random Forest, AdaBoost, Light-
GBM, and XGBoost) were able to learn from the equipment’s
sensor data and optimise production yield in the petrochemical
industry. The same approach is especially common in literature
focused on RL, where the algorithm learns by trying to
maximise a reward function. The reward that these models
attempt to maximise could be product quality outcome [23]
or other arbitrary mathematical reward functions [58].

Besides objective function optimisation, another application
of ML within DTs is to make predictions about the future be-
haviour of the physical asset. In this context, Artificial Neural
Networks (ANNs) have been used in [30] to predict future
samples of the active power component based on historical
time series data. However, ML models, and in particular DL
methods, are generally perceived as black-boxes [81]. This is
because they do not offer sufficient transparency into what
is motivating their predictions. On the other hand, in DT
applications, transparency is desirable, and often required (e.g.,
in applications such as fault identification and urgency clas-
sification [41], or anomaly detection and root cause analysis
[82]). Thus, researchers have looked for ways of integrating
both physics-based and data-driven models into the DT. On
this note, the authors in [42] combined these two approaches to
enable a prognosis service that predicts the future parameters
of a physical asset, even though said parameters evolved at
different time scales. As such, physics-based models were
used to preprocess data coming from multiple time-scale data
streams, while the ML models, Mixture of Experts and Gaus-
sian Processes (ME-GP), combined the extracted information
to predict future bahaviours of each time series parameter.

Another use case of ML in DT implementations is applica-
tion security. Indeed, the authors in [56] proposed a DT for
remote surgery services, and used neural networks to protect
the crucial connection between the physical and virtual worlds,
which has stringent requirements for availability and latency,
by detecting and preventing Denial of Service (DoS) attacks.
Whereas in other works, ML is used to bring intelligence to the
virtual representation of a physical asset, the study conducted
in [43] proposed Deep Convolutional Neural Networks (DC-
NNs) to create the digital replicas of fibrous materials from
real and synthetic images, and this constitutes an example of
ML being used to build DTs.

On the note of synthetic data creation, DTs can also be
used to generate artificial training data for ML models [76].
Of course, for such models to be able to generalise well
on real data, the distribution of the synthetic data they were
trained with has to closely resemble the distribution of the real
data from the test set [31]. This requires extremely accurate,
and thus complex, simulation engines. A workaround for this
challenge is offered by TL, where the ML model trained with
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artificial data can be adapted to perform good predictions on a
real test set. TL requires that the distributions of artificial and
real data be somewhat similar, such that only a small amount
of real data is needed to make the model generalise well once
deployed in production [44].

Another important use case of ML in DT implementations is
remote control assistance. In scenarios such as remote surgery
[83], [84] or space station maintenance [85], the DT can help
bridge the distance between the operators and the physical
twin. In the latter paper in particular, the authors proposed
the Hierarchical Attention Single-Shot Detector Network (HA-
SSD) for astronaut gesture recognition. The system is based
on the popular MobileNet architecture [86] for fast and com-
putationally inexpensive feature extractions, which could be
easily deployed on chips with low processing power. Such
a system is ideal for space station DTs where cameras and
surveillance equipment can detect and monitor faces, human
postures, gestures and body language.

Table IV summarizes the findings of integrating ML into
DT. It can be noted that most of the efforts towards DT
implementation come from the manufacturing industry. Con-
currently, the versatility of the technology makes it a promising
tool for other domains as well, such as civil engineering
or robotics. It is actually the vast array of existing and up-
and-coming ML and DL algorithms that grants the DT its
versatility. At the same time, the DT’s reliance on data-driven
analytics imposes some challenges: (1) traditional ML models
are actually built upon a sequence of carefully engineered
functional blocks that are tailored to increase efficiency on
the task at hand. Thus, designing such a pipeline can be a
resource-expensive task; (2) on the other hand, end-to-end DL
techniques remove some of that complexity, but they require
significant amounts of data for training and tuning, while also
offering no transparency into their predictions; (3) finally, on
the note of training data, generative ML models can be used
to create artificial data to compensate for the lack of real data.
However this could also induce bias in predictions if the two
distributions (i.e., real and synthetic) are not aligned.

B. Cloud, Fog, and Edge Computing

Depending on its use-case, DT can be used to mirror
systems across the whole spectrum of complexity, from unitary
elements, such as the movement axis of the Computerized
Numerical Control (CNC) machine tool [87], to an entire fleet
of aircraft [88]. The virtualisation of composite heterogeneous
machines or services always requires heavy computational
prowess. This demand, coupled with the DT’s characteristic
of real-virtual synchronisation, often calling for almost real-
time responsiveness, illuminates a need for distributed and
parallel computing. For this purpose and many others, cloud,
fog, and edge computing are frequently encountered in DT-
related literature. As such, this subsection will review how
researchers have integrated distributed computing into their
DT implementations, with an emphasis on the reason why this
enabling technology was mandatory for the works’ use-cases.

Table V highlights an overview of the papers reviewed
in this subsection. It is noteworthy that our search indicated

that distributed computing and DT have been conjoined in
works mostly pertaining to the manufacturing sector. Even
papers focusing on DTs for logistics are mainly created to
help the logistics departments of the manufacturing industry,
again showing that there is an overwhelming focus on DT
development in this area.

The unison of cloud computing and DT creates a prosperous
environment for complex simulations, multi-variable analysis,
DL-based analytics, and Big Data storage. In this type of
system, the cloud platform acts as the data warehouse and also
provides heavy-processing capabilities, while the DT deals
with synchronising the physical and virtual assets [25], [32],
[45]. Additionally, a cloud platform allows the harmonious
connection and hosting of the virtual counterparts of the
heterogeneous subsystems that form a complex DT [33]. In the
healthcare industry, the cloud represents a shared information
platform between the medical service provider and the patients
[26], while in the manufacturing domain it can serve as a
common medium where enterprises can share data regarding
the failure modes and maintenance needs of similar equipment
to support DT-enabled Predictive Maintenance [89].

In applications that imply a great amount of data consump-
tion and processing, even the cloud can become overwhelmed.
To prevent this from happening, Hu et al. [90] reduce the
cloud workload by using the MTConnect protocol and a new
Knowledge Resource Centre to manage all communications
with the cloud-hosted DT. Another approach to avoid over-
dependence on the cloud is to use more forms of distributed
computing (i.e, cloud, fog, and edge) to manage different
layers of complex logistics and manufacturing systems [27],
[34].

C. Internet of Things

As previously mentioned, the research communities of
academia and the industry recognise the DT as a system
formed by three functional blocks: the physical asset, its
virtual counterpart, and the communication medium that binds
them together. Any DT proposal that misses or does not
envision the inclusion of any one of these three components
is therefore not a real DT. In this section, the focus will fall
on the role of the two-way connection between the digital and
real twins, and the recent literature works that detail how this
connection benefits the implementation of the DT. Table VI
provides an overview of the articles discussed in this section,
as well as their target domain and main contributions.

In this context, the Internet of Things and the Industrial
Internet of Things are the main enabling technologies that
can perfectly fit in-between the digital and real twins to
converge virtuality and reality. These paradigms are at the
center of I4.0 due to their ability to aggregate data from
multiple heterogeneous data sources via disparate communi-
cation mediums to facilitate data mining and alaytics through
distributed computing frameworks.

The main appeal of these technologies is represented by
the IIoT devices, like smart sensors, RFID tags, and smart
wearables, that are useful and cheap data sources [35] which
can paint meaningful virtual reflections of reality that the
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TABLE IV
OVERVIEW OF REVIEWED LITERATURE INTEGRATING ML INTO DIGITAL TWIN.

Domain ML Algorithm Reference Use and advantages of Machine Learning

Manufacturing

Random Forests,
AdaBoost,
LightGBM,
XGBoost

[55]
The four ML algorithms are used to improve the effectiveness and yield of productions in the petrochemical industry. In this

comparison, the authors tackle latency issues in ML responsiveness, time lag issues, and frequency unification across
time series data. The models are tested on real Big Data from the petrochemical industry.

DCNN [43]
Deep Convolutional Neural Networks are used to analyse uCT scans of reinforcement materials and classify their

pixels accurately to create their digital material twins. The DCNN obtains better results than traditional ML.

DCNN [76]
The DT is used to generate automatically labeled virtual images to construct synthetic datasets for DCNN training. The

model is adapted to classify real images via TL.

SSAE-based
DFDD

[31]

The DT produces artificial data to train a Stacked Sparse Autoencoder (SSAE) to learn the features with the highest
weight on fault diagnosis and life prediction. Data coming from the real twin is used to retrain the model, which has
integrated an Adaptation Layer to mitigate the differences between real and virtual data. The resulting model is called

Digital Twin-assisted Fault Diagnosis using Deep Transfer Learning (DFDD).

LSTM [44]
A Long Short Term Memory (LSTM) network is trained with artificial data to detect anomalies in virtual space. It is

retrained with few hours-worth of real data to detect anomalies in the real asset.

Networking
DNN [39] DNNs are used to optimize energy consumption efficiency based on various Mobile Edge Computing network parameters.
ANN [56] Neural Networks are used to detect DoS attacks on the DT of a remote surgery environment.

Robotics

Natural DQN,

DDQN with PER
[23]

Deep RL (Natural Deep Q Learning, Double Q Networks with Prioritized Experience Replay) algorithms were used to learn
from both synthetic and real data to test various scheduling strategies in a manufacturing robot’s processes to

reduce down time costs, time, and other resources
PPO-based

DRL
[58]

Proximal Policy Optimisation-based (PPO) Deep Reinforcement Learning (DRL) was trained with virtual data from
the DT of a robotic arm. The physical twin learned to complete given tasks thanks to its training in the digital space.

Civil
Engineering

Quadratic
Discriminant

[41]
The DT’s underlying physics-based models generated synthetic failure data which the Quadratic Discriminant then

classified in various urgency levels.

ME-GP [42]
Physics-based modeling, Mixture of Experts and Gaussian Processes were used to predict future machine states by

analysing multiple time-scale time series data.

Electrical
Engineering

ANN [30]
Artificial Neural Networks are used to predict the time series samples of the active power component sensor based on

historical data.

Fire
Protection

Engineering
GA [40]

Genetic Algorithms are used to predict the environmental parameters that would favor devastatic fires, such that
they could be proactively prevented.

Space
Industry

HA-SSD and
MobileNet

[85] Gesture recognition models, such as HA-SSD, are proposed to remotely control physical robots on-board spacecraft.

cloud-based DT can interpret and analyse in order to reduce
manufacturing uncertainty and complexity in fixed-position
assembly islands [57], optimise the functioning of power
equipment switchgear [24], provide PdM for automotive brake
pads [46], and visualise in real time the stress endured by metal
shelving brackets via Augmented Reality [47]. Other use-cases
benefit from these technologies as well, since smart sensors
and wearables can also be integrated in mobile equipment that
people carry, urban infrastructure, and interior appliances. The
richness of heterogeneous data that the IoT sensors bring can
be used to virtualise and visualise cities, allowing structural
simulations for hazards prevention [48], and to remotely
manage safety issues in the workplace [28].

Concurrently, the IoT/IIoT brings more than just data to
the DT system. In [91], the DT is built upon the traditional
IoT framework, and it is split into two parts: one at the edge,
and one in the cloud. Both essentially working also as the
gateways that connect the two corresponding media of the
IoT framework. Furthermore, while the IoT is a powerful
enabling technology of the DT, the DT itself can also act as
a supporting pillar for the IoT by providing a self-adaptive
and self-integrating digital abstraction of the IoT devices to
make the IoT framework resilient to dynamic changes [49],
or by allowing virtual simulations of large sensor networks
[50]. In the context of IIoT, equipping edge devices with ML

solutions can be a challenging task due to the limited resources
on the devices as well as the concerns about communications
with the cloud (low latencies, raw data privacy). As such, the
authors in [93] proposed building a DT of the Edge Network
that was able to leverage Federated Learning (FL) to re-train
aggregated models locally, on edge devices (thus avoiding
raw data transmissions), as well as optimize communication
efficiency using the DT’s updated mirroring of the network.
For additionally improved communication security for the
previously reviewed framework, the authors in [94] proposed
using the blockchain technology to store the aggregated model
parameters of the edge devices on the Base Station, making
the FL process even more robust to data privacy issues.

Another aspect that IoT contributes with into the DT de-
velopment is that it provides a platform that can understand
and translate data from multiple protocols. IoT devices are
usually built with certain communication standards in mind,
like MQTT, CoAP, MTConnect [90], OPC-UA [35], or 5G
uRRLC [92], and IoT is a bridge that connects those standards
with the higher-level abstraction that is the DT. The choice
of IoT devices, communication protocols, and IoT platforms
can influence a very important characteristic of the DT: the
synchronization rate between the real and virtual twins. We
have established before that this synchronization rate will
depend on the use-case of the DT. For time-sensitive applica-
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TABLE V
OVERVIEW OF REVIEWED LITERATURE INTEGRATING DISTRIBUTED COMPUTING INTO DIGITAL TWIN.

Domain Distributed Computing Reference Use and advantages of distributed computing

Manufacturing

Cloud [25] The cloud performs heavy processing tasks while the DT provides the most recent state of the physical asset.

Cloud [33] The cloud platform hosts the DT and allows the interconnection of its heterogeneous subsystems.

Cloud [89] The cloud performs heavy processing tasks and provides a shared medium for multiple enterprises to pool maintenance data into.

Cloud [90] The cloud provides computing power with timely responsiveness enabled by the MTConnect protocol for DT communications.

Cloud, Edge [27] Edge computing pre-processes data and handles small tasks, while cloud computing deals with more demanding analytics.

Logistics
Cloud [32] The cloud performs heavy processing tasks while the DT provides the most recent state of the physical asset.

Cloud, Fog, Edge [34] All distributed computing forms are used for timely layered management of complex logistics system.

Healthcare Cloud [26] The cloud connects the medical services provider with the patient, for real time access to health analytics.

Automotive Cloud [45] The cloud performs heavy processing tasks while the DT provides the most recent state of the physical asset.

TABLE VI
OVERVIEW OF REVIEWED LITERATURE INTEGRATING IOT/IIOT INTO DIGITAL TWIN.

Domain Reference Use and advantages of IoT/IIoT

Manufacturing

[35] IoT devices used as a cheap alternative to legacy sensing equipment to feed data into the DT.

[57] IoT devices used to adapt the DT to the dynamic nature of the structure of fixed-position assembly islands.

[24] Industrial Internet used to synchronise the virtual and real assets, as well as carry Big Data.

[91] The IoT traditional framework serves as a reference for the development of the Digital Twin.

Any

domain

[47] IIoT devices provide data and connectivity to support DT and AR-based real-time monitoring.

[49] The DT serves as an enabling technology for the self-adaptive and self-integrating Elastic IoT.

[50] The DT is an enabling technology for IoT, to allow virtual simulations of large sensor networks.

[92] 5G’s uRLLC is used to connect the digital and real twins, providing reliability, efficiency, and low latency.

[93], [94] The DT is used together with Federated Learning to improve communication efficiency across a network of IIoT edge devices.

Automotive [46] The IoT platform, ThingWorx IoT, is used to facilitate real-time data acquisition and feedback between twins.

Smart City [48] IoT devices and platforms play a central role in transporting and unifying rich, heterogeneous data between twins.

Logistics [28] IoT devices used as an alternative to GPS for indoors location services, supporting a DT in achieving 96.5% accuracy in identifying anomalous behaviours in workers.

tions, ranging from remote healthcare to traffic management in
smart cities, the communication link between the two entities
should include secure uRLLC, while other use-cases where
synchronization latency is not necessarily a problem, like
rarely-used manufacturing equipment, this requirement is not
so stringent.

D. Cyber-Physical Systems

With the advancement towards the digitisation of conven-
tional physical systems, the term Cyber-Physical Systems
has gained ample attention from the academia and industry.
However, in the literature works surveyed in this paper, we
have found that there are at least two definitions that fall under
the span of the CPS abbreviation, and while they are quite
similar in meaning, they still represent different concepts.

In the original vision of CPS, they represent the ubiquitous
and holistic convergence between real complex systems of
heterogeneous systems and their virtual intelligent control
instances. The physical space is represented by an ecosystem
of physical equipment, sensors, actuators, and human operators
that labor together towards the same goal. The cyber elements
are the virtual representations of the physical components
and they offer a layer of intelligence that provides self-
configuration, self-adaptation, and self-preservation to each
physical instance, to ensure that the ecosystem is resilient
to changes and failures that would affect its ability to reach
its goals (this paradigm is sometimes referred to as Cyber-
Physical Production Systems (CPPS) [95]). In other words,
this definition of CPS envisions them as a system of inter-
connected DTs so, in this sense, the DT is an enabling
technology for CPS. This interpretation of CPS leaves a blurry
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boundary between CPS and DTs, as they boast similar features
and advantages and represent the smooth convergence between
reality and virtuality. To clear confusion, a study detailing a
comparison and correlation between the two paradigms has
been conducted in [36].

The second meaning of CPS is more down-to-earth. In
the literature, CPS sometimes refers to physical systems with
varying levels of complexity that are equipped with built-in
sensors, actuators, networking and computation capabilities,
and that are controlled digitally via computer-based algo-
rithms. It is clear that such CPS, compared to the ones in
the previous definition, require a lower level of intelligence
and digitalization. However, they do represent an enabling
technology for the DT, given that they are I4.0-ready physical
equipment that are proficient in reliable data acquisition,
process optimization with feedback inputs, and improved built-
in monitoring and control capabilities. Such CPS are an asset
for DTs to gather data securely from the physical processes
and perform regulatory control operations at the edge.

In the works that reference the first definition of CPS, the
authors rely on a generic architecture of CPS onto which they
build the DT [59], [51]. As such, the DT makes use of the
CPS-specific Service-Oriented Architecture (SOA) and act as
Cyber-Physical System Nodes [29] in the virtual ecosystem,
or it assures managerial independence of heterogeneous inter-
connected systems [37].

The articles that interpret CPS according to the second
definition provided above use the computer-controlled system
as the physical counterpart of a virtual twin. These works dive
deeper into the implementation of adaptable DT simulations
via Functional Mock-up Units [52] or GA for scheduling op-
timization [53]. Others use the CPS-integrated Manufacturing
Execution System (MES) software as a downlink between the
virtual twin and the physical CPS [38], or leverage the DT to
facilitate, control, and monitor highly complex material flows
[54].

Table VII summarizes the contributions and advantages of
the literature works revised in this subsection. Again, the
bulk of CPS-integrating DTs comes from the manufacturing
industry, where significant efforts have been made to turn
conventional factory equipment into CPS by populating them
with sensors and connecting them to their virtual twins that
generate intelligent insight. The SOA, which is a founding
principle of CPS, serves as a decoupling strategy that allows
DT services to interact independently and efficiently.

E. Virtual Reality and Augmented Reality (VR/AR)
The Digital Twin’s goal of virtuality and reality convergence

seems to perfectly align with the driver behind two developing
technologies: Virtual Reality and Augmented Reality. Indeed,
VR aims to improve Human-Machine Interactions (HMI) via
3D computer-generated simulations with which the user can
intuitively interact through wearable electronic devices. In
other words, VR can help immerge human operators into a
digital environment. On the other hand, AR technologies make
use of wearable devices render 3D digital images onto a real-
world background. In essence, AR helps bring virtual informa-
tion in a physical environment. This section will explore how

researchers have leveraged these two cutting-edge technologies
to drive forward the DT paradigm.

In the healthcare industry, Laaki et al. [56] created a DT of
a remote surgery environment. The virtual representation of
the medical equipment in a given location can be accessed via
VR by health professionals from a remote location. In turn,
wearable devices (head-mounted displays) allow the doctors
to control a virtual robotic arm that operates on a dummy
patient. The DT then synchronizes the real and virtual twins of
the robotic arm, such that the user can directly and intuitively
control the physical asset via its DT.

Besides immersive and remote control of the real twin,
VR also enables human operators to interact with the virtual
twins of industrial equipment as they normally would with the
equipment itself, without interrupting the normal functioning
of the real entities. As such, engineers can devise new de-
ployable Circular Economy strategies to be implemented on
the real twin once thoroughly tested in the virtual world [96],
create high-quality artificial training sets for safety training in
scenarios where real data acquisition is risky or costly [97], or
have students and trainees learn how to operate the physical
twin by immersively interacting with and practising on their
DTs [98]–[100].

AR technologies can facilitate quick access to the DT
interfaces of real entities by superimposing their virtual data
and images onto the camera feed [101], when the camera is
pointed at the physical twin itself [102]. This feature allows
human operators to dynamically monitor DTs, without having
to go out of their way and connect to the computer that hosts
them.

According to one study [103], the VR/AR-enabled DT can
address three current challenges in HMI development: high-
fidelity virtual representations of physical assets, availability
of both real and simulated data, and intuitive interfaces for
human operators. However, for a complete merge between
the real and virtual worlds, neither technology is enough
by itself. Both technologies allow the user to interact with
the virtual representation of a physical entity, but they do
not allow the real and virtual surrounding environments to
interact with each other. For such cases, Mixed Reality (MR)
technologies combine the advantages of both VR and AR,
to bring digital models in the physical world and simulate
their processes under real circumstances [104]. Table VIII
summarizes the main findings of this review, highlighting the
main domains where VR/AR/MR technologies have enabled
the DT to provide immersive HMI, training and monitoring.

F. Modeling Methodologies

While not an enabling technology in-and-of-itself, the um-
brella of modeling methodologies covers a great range of
frameworks and software meant to guide developers towards
building a core component of the DT: the virtual representation
of the physical entity. Similarly to the DT definitions, the
modeling approaches also vary greatly across the literature,
that some researchers concluded that there is no consensus on
the subject [13], [105]. The challenge to overcome here sits in
the interdisciplinary and use case-specific nature of the DT. It
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TABLE VII
OVERVIEW OF REVIEWED LITERATURE INTEGRATING CPS INTO DIGITAL TWIN OR VICE-VERSA.

Domain Reference Use and advantages of CPS

Manufacturing

[59] A four-layer CPS architecture is used to integrate a tri-model Digital Twin (Digital Model, Computational Model, and Graph-based Model)

[51] A five-layer CPS architecture (data store, pre-processing, model & algorithms, analysis, user interface) is used to integrate a Digital Twin.

[29] The Service Oriented Architecture of CPS is used to facilitate the integration of DT in CPPS.

[37] Digital Twins are used to virtually manage individual components’ issues (data ownership, version management, etc.) in a System of Systems.

[52] Functional Mock-Up Units are used to standardize the connection between a CPS and its DT, allowing for facile integration of physical systems in CPS.

[38] The CPS-specific MES software controls the physical CPS and communicates with the Matlab-based virtual twin.

[54]
The DT is built upon an add-on software and communication infrastructure setup that controls, monitors and

connects a real material-handling system with a simulation-based decision support.

Logistics [53]
The DT incorporates the predicted machine health into the production scheduling algorithm (Genetic Algorithm)

to optimize logistics tasks to avoid failure and prolong machine lifetime.

TABLE VIII
OVERVIEW OF REVIEWED LITERATURE INTEGRATING VR/AR INTO DIGITAL TWIN.

Domain VR/AR Reference Use and advantages of VR/AR

Manufacturing

VR [96]
The VR-based DT is used as a safe testing environment for developing new disassembly processes without interfering with

the real twin.

VR [98] The VR-based DT of an industrial robotic cell is used to teach robotics students on how to operate the real twin.

AR [102] AR is used to overlap digital information extracted from the DT onto a camera feed showing the real twin.

VR, AR [103] Both VR and AR are proposed to enhance HMI via intuitive and immersive interfaces for human operators.

VR, AR, MR [104] MR proposed to overlap the user’s perception of the physical and digital twins, converging reality and virtuality.

Healthcare VR [56] VR is used to integrate the medical professional into the DT of the patient and their environment via a head-mounted display.

Safety VR [97] VR is leveraged to create artificial images of humans wearing safety equipment in order to train ML algorithms via TL.

Robotics AR [101]
AR is used to track the movements of a mobile robot via its DT. The virtual image of the robot and its trail are superimposed

on a camera feed, allowing real-time tracking.

Gastronomic VR, AR [99]
VR- and AR-based DT of an ice cream machine is used for real-time monitoring and for training employees on how to

maneuver the real asset.

is indeed difficult to create a one-size-fits-all architecture for
such a versatile technology, given that its application scenario
can impose significant alterations to that architecture. This is
also part of the reason why the DT is also difficult to define.
For example, it is not always the case that the physical twin
is an actual, real object, characterized by a physical geometry.
As such, proposed modeling methodologies that imply the
existence of a physical object would not map well to use cases
like the DT of processes. On this note, the authors in [106]
proposed an architecture for the manufacturing industry that
breaks down the DT into three constituents, namely product
DT, process DT, and operation DT, with each component
having a seemingly different architecture. A different modeling
methodology, presented in [107], summarizes a manufacturing
DT as the synchronization between 3D modeling and mecha-
nism modeling.

Nevertheless, researchers in the field have come up with

DT frameworks that abstract away from the use case-specific
details of implementing. Instead, they take a step back in order
to focus on the components one could reasonably expect to
find in any DT, no matter the application scenario. The authors
in [108] claim that a DT only requires two main components
to be whole, which are: a virtual representation of the physical
entity and an API. The authors also mention that the virtual
model does not require to include the 3D geometry of the
physical object, unless that is required by the DT’s use case.
In addition, other dimensions can be added to the DT, such
as: data storage, access control, methods, events, and a human-
machine interface. Similarly, other works [109] insist on the
importance of creating an API-like middleware that allows the
DT to connect to external systems. Riedelsheimer et al. [110]
proposed a methodology for building DTs for already-built,
complex, inter-disciplinary physical objects, with the aim to
optimize the systems’ sustainability throughout its lifetime.
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With the goal of creating the DT of a smart factory able to
manufacture customizable products, the authors introduced a
planning and development framework that integrates several
design and management frameworks, such as V-IoT, 8D-
Model, Design Elements, SCRUM, etc.

A more common approach to modeling methodologies that
can be found in the literature is the 5-dimensional DT initially
proposed by Tao et al. [111]. According to this work, the
five dimensions of the DT are: physical entity, virtual entity,
communication, data, and services. This break-down of the
paradigm allows for a decoupled architecture with orthogonal
elements, making it easier to understand. For this reason, many
researchers have based their modeling methodology proposals
on Tao’s work. Wang et al. [112] build on top of the 5D
DT to introduce a System Design Digital Twin which aims
at reducing the complexity of model-based system engineering
by closing the gap between the physical and theoretical design
processes. The authors in [113] proposed a DT information
modeling method dubbed GHOST (Geometry, History, Ob-
ject, Snapshot, Topology), representing an expansion of the
data element of Tao’s architecture. Its aim is to provide a
flexible framework for combining multi-source heterogeneous
information in complex DT systems. Wu et al. [114] presented
a methodology for building 5D DT models that is supported by
an improved version of the TRIZ function model. The TRIZ
function model describes a complex system by breaking it
down into various types of elements and relationships. In order
to provide further nuance and fidelity to the model, the authors
enhance TRIZ with behavioural logic via conditional flow
control, rules, and interactions with the external environment.
Finally, other existing architectures partially overlap with Tao’s
methodology. For example, Bazaz et al. [115] defined the DT
as an interconnection of five layers: data store layer, primary
processing layer, model and algorithms layer, analysis layer,
and the user interface component. Judging by the description
of each layer provided in the paper, Tao’s data dimension
corresponds to Bazaz’s data storage layer, the communication
element is similar to the primary processing layer, elements
of the virtual entity dimension can be found in the models
and algorithm layer, while Tao’s services element, it can be
argued, includes both the analysis and user interface layers.

Abstract modeling methodologies have seemingly slowly
begun to converge in the DT-related literature around Tao’s
5D model, depicted in Figure 5. However, the in-depth imple-
mentation details and technologies remain use case-specific. In
[116], the authors took a closer look at the specific frameworks
and software that can be used for DT development.

V. DIGITAL TWIN: USE CASES AND SERVICES

As we have stated previously, the choice of enabling
technologies for the DT will be highly dependent on the
DT’s envisioned applications and services. In this section, we
will present how DT frameworks differ in their components
from one application scenario to another, and it will become
apparent how, even within the same use case, the DT structure
can vary greatly. As such, this section will be divided into
two central characteristics of the DT, as presented in the

Fig. 5. Five-dimensional DT architecture.

definition we provided in Section II, namely DT use cases
and DT services. There are many potential DT services and
use cases; however, within this section, we limit our survey
and discussion to some typical examples in each category to
demonstrate the concept and potential of the DT. This choice
of DT services and use cases also align well with the specific
case studies we present in Section VI.

A. Use Cases

1) Smart Factory and Industry 4.0: The current vision
of I4.0 aims to cut the costs of production, build efficiency
and give companies an increasingly versatile approach to
production. Factory stations now have the ability to com-
municate directly with one another, eliminating the need to
communicate via a central processing controller. This de-
centralisation through modularisation and the IoT increases
flexibility, opportunity and efficiency. Rather than a centralised
control unit delivering instructions to each machine to carry
out linear sequential steps, individual machines now inter-
communicate directly enabling the partly-finished product to
be passed straight on to the next station. As everything is now
processed locally, the production line is equipped to produce
any number of unique products, which was not previously
possible on single unit lines. By not having to communicate
with a centralised unit, the production line can run more
smoothly and efficiently. In addition to increased efficiency,
the new security sensors built into the autonomous modular
systems create a safe working environment for human oper-
atives, ensuring robots halt if they encounter an obstruction.
This has the added benefit of workers being able to touch
a robot to stop its motion without the need to activate an
isolator. The decentralization of manufacturing processes and
the increasing demand for customization leads to a need for
adaptive and intelligent production equipment. The DT aims
to address this challenge.

Makarov et al. in [117] investigated the design concept
of a DT, coining two new types of system and splitting the
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Fig. 6. Digital Twin framework for smart manufacturing.

definition of a DT into four parts. A pre-DT is defined as a
virtual prototype for a system to reduce technical risks and root
out design problems before development. Any issues with the
system found on the virtual twin can be solved and corrected
on the physical system. An adaptive DT uses a user interface,
linking the two systems, allowing the virtual twin to under-
stand the preferences from the human operators in different
scenarios. Finally, an intelligent DT has all the characteristics
mentioned before; however, it contains unsupervised ML for
pattern detection in the physical system environment. The
results found to reduce repair costs and increase quality control
for a lowered amount of product defects.

Lee at al. in [118] proposed a DT framework for smart
manufacturing. More specifically, the authors introduced a
systematic integration of the DT in various levels of shop floor
design: unit level, system level, CPS level, and business level.
Figure 6 displays the workflow of the proposed architecture:
shop floor designs are initially tested against unit level Key
Performance Indicators (KPI) and are only selected for the
subsequent level testing if they satisfy them. Consequently, a
triage-based system filters out the designs that do not meet KPI
requirements at each level during the virtual implementation
of the shop floor. In the physical space, the selected designs
are implemented gradually across all levels, and the real
performance of the designs help optimize the KPIs in the
virtual domain.

In [119], Preuveneers et al. proposed the use of safeguarding
systems throughout the software of the DT system. These
safeguarding systems, coined ”software circuit breakers”, are
designed to handle local system errors to stop faults propagat-

ing through the levels of the DT, as these have the potential
to be catastrophic. Such local failures can include:

• Missing sensor data
– Failed transmissions
– Disconnected sensors

• Broken Sensors
– Hardware failures or disconnected actuators
– Denial of service attacks

The results show that the addition of software circuit break-
ers in DT systems can station errors cascading into higher-level
systems, and keeps the fault local to that physical station. The
goal of this, however, is not directed at stopping the spread of
errors, more to isolate them, as different errors hold different
levels of severity.

In [120], J. Lee et al. investigated a DT-enabled predictive
maintenance framework for a CNC machine tool system using
DL. The authors outlined vital design characteristics and
requirements for integration of DTs in a CPS. The rapid
growth and requirements for IoT and ML mean data transfer
latency has to be as low as possible. The authors suggest 5G
will significantly contribute to the integration of ML and be
the backbone of DT technology. They also indicate that all
sensors should be developed into smart sensors for ease of
plug and play and scalable networking.

G. A. Gericke et al. [121] investigated the efficiency and
latency of communication and production rate of 500ml water
bottles with a cyber-physical bottling plant. Using Open Plat-
form Communication (OPC), they were able to give possible
positions of bottle-necks in production. Using this, the DT can



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 17

also detect drops in production rates. The authors conclude
by pointing out the machines cannot rely on OPC as the
only connection to the physical system due to the significant
latency, ranging from 100ms to 500ms. They also found that
as the system scales, more OPC connections will be needed,
further slowing the system.

W. D. Lin et al. [122] carried out research on the design
and implementation of a DT on a CPS. The authors suggested
there are three layers of modules required to produce a DT
system:

• Operation Layer – used for tracking all physical assets
on the CPS

• Visualisation Layer – used for real-time simulation, tak-
ing the data gathered from the operation layer and pro-
vides a remote-monitoring function to allows companies
to be continuously updated on current production status

• Intelligence Layer – This takes all the information from
the previous two layers to create a historical data bank.
This layer will use this data bank, along with real-time
data, to perform efficiency and health monitoring.

The authors then took this design concept, implemented
it onto a prototype Surface Mounted Technology production
system, built of seven stations. This system worked and acted
as a validation to their prosed three-layer DT design concept.

H. R. Hasan et al [123] investigates the use of blockchain
technology as a way of optimising the DT format on a CPS.
The problem outlined in this paper is with the development
side of DTs. There is a need for monitoring the interaction
between design teams and workflows, so each change made
to the software can be accredited to a specific person, who
can be held accountable. This employs transparent history
monitoring, security and trust and ensures the trusted creation
of virtual models. The blockchain platform used was Solidity
- Ethereum smart contracts.

In [124] Kanak et al presents a blockchain-based model
for distributed and collective DT environments which is be-
coming essential in new “Any 4.0” era. They proposed a
novel approach to use security as a symmetric and asymmetric
cryptographic tool to be implemented at a hardware level. The
DT ecosystem proposed includes “X-by-design” and “X as-a-
service” principles where “X” is security, accountability and
integrity.

Similarly, the authors in [125] developed a simulation-
based CPS DT for blockchain enabled Industrial Hemp Supply
Chain (IHSC), which is utilized to improve the understanding
of a complete process pf supply chain, assist in quality
control verification and fast track the development of secure
and automated supply chain system. They present the two-
layer blockchain based data tracking, information sharing, and
interoperability framework for the end-to-end IHSC which can
greatly improve both security and efficiency.

In [126] a DT for an experimental assembly system based
on a belt conveyor system and an automatized line for quality
production check is proposed. They have created a DT for
Bowden holder from a 3D printer, which is composed of some
plastic components, fastener parts and a stepper motor. The
assembly was positioned in a fixture with ultra-high frequency
tags and IoT devices for identification of status and position.

The inspection system included an industrial vision system
for checking presence of parts, inspecting the dimensions and
looking for errors before and after assembly operation.

Vachálek et al [127] presented a DT model of the production
line based on the simulation tool called Plant Simulation, made
by SIEMENS. This model was a detailed virtual copy of the
physical process involved in assembling the hydraulic pistons.
The goal was to extract the information about the number
of times there has been movement, to the data storage and
OPC data server of SIEMENS have been used to process this
information transfer.

2) Infrastructure: Civil infrastructures are highly valuable
assets, having vital societal roles and involving a large number
of people at every stage of its complex working life from
initial conceptual drawings, 3D numerical model, construction
activities to operational service, as shown in Fig. 7. Thus,
infrastructure management has been a subject of intense re-
search activity, aiming to maximize their safety and service
life while minimizing the building and maintenance costs. In
the following subsection, recent works investigating DT-based
paradigms unifying practical tools and expert knowledge with
novel advanced technologies are reviewed. Furthermore, a DT
application for Structural Health Monitoring developed by the
authors will be described in Section VI.

a) Smart Building:
A building consists of a number of components span-

ning different domains from energy, ventilation, heating, air-
condition, plumbing, mechanics, and so on. Thus, having
effective building management is challenging, especially with
a high-rise building or a commercial complex. Therefore, Lu
et al. [128] have developed a smart O&M management tool
using DT specialized in detecting anomalous behaviors. At
first, a dynamic and distributed data integration component
was built to integrate heterogeneous data from various daily-
updated databases using corresponding object IDs. Secondly,
intelligent anomaly detection functions were implemented
using the BOCD to identify suspected change points, related
time instants, locations, and even elaborate the causes of the
change points.

Lu et al. [129] have developed a dynamic DT in order to
improve asset maintenance and asset failure prediction in a
campus of the University of Cambridge. The DT framework
consists of five layers: (1) first, acquisition layer collecting
data from multiple sources including Building Information
Modelling (BIM), real-time IoT sensor data, asset registry, and
asset tagging data and space management data; (2) second,
transmission layer transmitting data collected from physical
device in the first layer to a central database using WiFi,
5G, low-power wide-area networks, etc.; (3) the third layer
is digital modeling, where different types of digital models
could be developed for various requests in DTs; (4) fourth, the
data/model integration layer provides real-time analysis, then
assess up-to-date asset condition and maintenance status with
the help of AI-based functions; (5) and lastly, the application
layer with visual interface facilitates the interaction between
DT and facility managers.

Thyssenkrupp, in collaboration with Microsoft [130], de-
veloped a DT framework for the elevator system in a high-
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Fig. 7. Digital Twin in infrastructure

rise building in Rottweil, Germany. The new advanced el-
evator, which could move both vertically and horizontally,
was equipped with IoT systems and deployed via the Azure
DT framework. This DT is able to reduce the downtime
of the elevator significantly, provides information related to
elevator occupancy and usage to enhance the availability of
the elevator, which serves more than 10,000 people per day.
Moreover, the DT is reinforced by AI learning to optimize
travel times of frequent users.

b) Smart Infrastructure:
Ganguli and Adhikar [131] thoroughly presented a DT for

a Single Degree Of Freedom (SDOF) dynamic system, in
which a double time-scale system was proposed the first time.
Specifically, the fast time scale reflected the dynamic responses
of the real system and the slow one for the DT, and it was
found that such a multiple time-scales DT was able to capture
effects of mass and stiffness evolution on the SDOF simulta-
neously. Ding et al. [132] proposed a DT for a steel bridge
construction using BIM and IoT data from embedded sensors,
able to dynamically monitor the construction processes and
key related factors such as site resources, business processes,
field workers, as well as their live interaction, thus ensuring a
lean construction.

In order to develop a proactive maintenance system for
bridge structures, Shim et al. [133] proposed twin models
fusing entire lifecycle information from design, construction
to operation, and maintenance. The first model was built from
as-built documents using BIM, while the second model was
generated with the help of the 3D scanning technique using
Unmanned Aerial Vehicles and laser scanner. A maintenance-

oriented digital process connecting two models was also
elaborated to update the structure’s status continuously.

Structural Health Monitoring (SHM) is an important topic
in civil engineering, thus Wagg et al. [134] explored a SHM-
oriented DT. Essentially, data-augmented modeling is imple-
mented to compensate for the discrepancy between numerical
models and physical counterparts, which involves two phases.
First, the discrepancy is qualitatively and quantitatively mea-
sured from the physical entity. Second, bias-corrected models
are calibrated based on the numerical model and measured
discrepancy, yielding augmented outputs which closely ap-
proach the real behavior of the structure over its working life.
Another concrete example of DT application in SHM is the
work of Kaewunruen et al. [135] for railway turnout systems,
which consists of many delicate and complex details and has a
critical role in ensuring the safety of the railway system. The
application is built by expanding the conventional 3D BIM
models to 6D models, involving three geometric dimensions,
time dimension, cost dimension and its sub-categories, and
carbon footprint dimension. Moreover, not only actual oper-
ation information are investigated, but data from historical
phases such as planning, design, pre-assembly to predicted
future action, i.e., maintenance, demolition are also taken into
account. A similar DT approach via 6D BIM is applied to
the renovation management of the King’s Cross station [136],
aiming at a more resource-economic and environment-friendly
model than traditional construction methods such as 2D paper
drawings, or 3D static numerical models.

With regards to the offshore structures, Akselos [137] has
developed a holistic DT framework coupling with parallel
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cloud computations, which can provide real-time risk-based
decisions in response to time-varying uncertainty encountered
by offshore structural engineering involving wave, wind, ma-
rine environment, and so on. As one of the leaders in the
power plant industry, General Electric has been devising a
sophisticated DT framework, a.k.a. Predix, [138] including
a spectrum of aspects of the physical entity ranging from
thermal, mechanical, material, electrical, economic, statistical,
environmental. This DT is expected to perform a wide range of
applications such as optimizing profitability, maximizing plant
safety, accurately forecasting productivity, profiling customers,
synchronizing operations of many machines on plants. For
this purpose, various advanced technologies have been im-
plemented in Predix: firstly, multimodal data analytics are re-
quired to automatically collect, update, and store a vast amount
of heterogeneous data involving: parametric data (temperature,
pressure), graphical data (infra imaging, camera), spectral data
(spectroscopy), time-series data (sensors, accelerometers), text
data (service records), historical data (maintenance database),
and so on. Secondly, the company deploys a number of digital
models encompassing physics-based models, i.e., thermody-
namic model, combustion model, transient dynamic model,
and data-driven models such as statistical process control, ML-
based anomaly detection, and DL regression and classification.
Finally, a knowledge network, called Expert Twin is explored
to connect experts across the enterprise around the world for
sharing data, knowledge, solution, and best practice.

c) Smart City:
In an attempt towards sustainable growth of the city as

well as a better quality of life for citizens, Francisco et
al. [139] investigated a DT paradigm for Smart City using
spatio-temporal data. At first, a digital replica of the city is
rebuilt in a virtual space using the Unity cross-platform; after
that, the researcher can navigate across the virtual city via VR
devices. In addition, an AR crowd-sourcing module allows for
integrating feedback of citizens about real infrastructures into
the platform parallelly. By doing so, the triangle interaction
human-infrastructure-technology is captured, analyzed, and
updated, serving to improve the sustainability and wellness
of the city.

Ruohomaki et al. [140] explored a Smart city platform using
DT for the city of Helsinki to enhance city management in var-
ious aspects, including urban landscape, energy consumption,
environment. At the base of the platform is the 3D city models
called CityGML integrating geographic information, geometry,
topology, and appearance. Next, sensor data are linked to city
models via an IoT platform called SenSorThings, composed of
two main parts: sensors for observation and thing, i.e., API,
for connection to the network. By doing so, the initial 3D
model is transformed into a semantic ecosystem with high
interoperability. Du et al. [141] presented a Proof of Concept
of DT for Smart City’s Information System at an individual
level, namely, Cog-DT, to reduce the cognitive overload for
residents and workers in the city. The first step of Cog-DT
involves using VR technology to gather personal cognitive
information such as neuroimaging, physiological, ergonomic.
Then, the second step is to simulate human cognition in
response to various information stimuli. Finally, an adaptive

information system is implemented to display engineering
information adjusted in a real-time fashion. In an attempt to
improve the long-term performance of the O&M service of
building and other infrastructure, Lu et al. [142] developed a 5-
layer DT architecture and applied it to the West Cambridge site
with more than 20 buildings and other facilities. The proposed
DT architecture can be extended further up to a city-sized
application. Their five main layers are data acquisition layer
including sensor data, weather, energy, security, culture, policy
data and so forth; transmission layer via the Internet, 4G/5G,
HTTP; digital modeling layer with the help of BIM, en-
ergy simulation model, weather simulation model; data/model
integration Layer powered by data analytics and AI; and
finally service layer providing multiple services such as energy
management, asset management, security management, etc. at
different levels for different stakeholders. Lin et al. [143] ex-
plored a DT application for Smart City’s underground parking
garage using Wireless Sensor Networks (WSN) in conjunction
with BIM technologies for improving environmental manage-
ment. The WSN was composed of various sensors able to
monitor gas, temperature, the humidity of the garage, whose
data were later transferred to a central host with the help of
communication routers. On the other hand, a BIM model of the
garage is built by Autodesk Revit and Naviswork, providing a
detailed digital representation. When coupling the BIM model
with environmental data from sensors, the risk status, i.e., CO
gas level, user comfort level, are lively represented and can be
visually noticed with green/red color code.

3) Towards 5G/6G with Digital Twin: The future Industry
5.0 paradigm envisages removing any physical limitations and
building in virtual connectivity and capabilities that will enable
the seamless interaction between devices, humans and infras-
tructure [144]. Even though this digital transformation across
various industries will enable applications that serve different
purposes, they all have something in common: dependency
on reliable and strong connectivity enabled by the underlying
next generation network infrastructure (e.g., 5G/6G). The fifth
generation networks is already a key component in I4.0, since,
even in the DT technology, the connection of components and
devices is of utmost importance and communication latency
is expected to be less than a few milliseconds. In this context,
the relationship between 5G/6G and DT can be seen from two
different point of views. The first one, sees the 5G/6G network
as an enabler for different DT applications, while the second
one sees the DT as an enabler for 5G/6G by looking at the
DT of the network itself. Both point of views are addressed
in this section.

Communication technology is going to be the foundation of
industrial IoT, hence in [145] authors have presented a detailed
overview of 5G wireless transmissions and their application
prospects according to cyber-physical-based manufacturing
systems. Furthermore, a novel 5G-based industrial IoT archi-
tecture for smart manufacturing is proposed. In [146] authors
have taken an industrial robotic arm as a use case and have
performed an analysis of simulated robot with the effects of
simulated network for CPPS. The key contribution of the study
is the comparison and analysis of effects of using different
kinds of network types in a Gazebo simulated robot. The three
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types of networks used between robot controller and robot
are wired link, public LTE and the 5G uRLLC network. The
results showed that 5G outperforms LTE and wired network in
terms of productivity as well as the processing time increased
by 50%.

Furthermore, 5G (and beyond) and the DT can revolutionize
the cooperative vehicle infrastructure. The authors in [147]
have explored the implications of 5G based communication to
the intelligent V2X system called Providentia and proposed
scene detection, fusion and object detection strategies. The
vehicles in the Providentia system play two roles, first being
the source of information about the current state of vehicle and
its surroundings, second as a user of the DT system. All the
communications in this infrastructure is realized through on-
board 5G modems as well as 4G LTE. Similarly in [148] 5G
communication networks, more specifically edge devices, are
recommended for the real time data collection in DTs designed
for traffic congestion avoidance. The proposed solution for
road connectivity infrastructure involves real time situational
information gathering, collection of driver history using ML
algorithms, data lake, intelligent transport system, DTs and
blockchain services for vehicles. The application domain of
the DT technology is very vast, as the authors in [149] have
optimized the services of mobile edge computing using DT
and DL algorithms. Achieving ultra-reliable and low-latency
in mobile edge computing can be challenging because of
the possibility of losing the packets in case of deep fading
channels. Thus, in order to optimize the offloading probability,
a DT is developed in [149] which can evaluate the normalized
energy consumption, reliability of user association schemes
and delays. The DT will save the optimal option and store
it in memory as a training data for DL algorithms. Tactile
Internet or 5G will also revolutionize the traditional multi-
modal applications. Research has been carried out to evolve the
current state of the art media to multimodal media, where DTs
can facilitate the high quality interactions, like touching and
smelling the objects of remote environment [150]. Moreover,
the DT and 5G/6G will also play a vital role in autonomous
navigation systems [151] where autonomous ships can easily
be commanded and decisions regarding navigations are made
easy.

Smart manufacturing is one of the most important vertical
industries identified by 5GPPP and with the maturing of
network virtual functions and 5G, use of Virtual Network
Functions (VNF) in smart manufacturing is gaining popularity
in research community. To this context the authors of [152]
have presented a use case in the manufacturing industry
using the experience of a manufacturing company named
Weidmuller Group. The manufacturing network services in
the proposed use case are composed of different VNFs and it
is developed using SDK and 5GTANGO lightweight Network
Function Virtualization (NFV) prototyping platform. Similarly,
in [153], an efficient solution is proposed, called MIGRATE,
that implements virtual functions and virtual mobile devices
to represent physical processing devices. MIGRATE ensures
the successful and seamless transfer of software entities. Con-
nectivity in the future is highly dependent on development of
DT environments [154] that are actual representation of their

physical counter parts. With the advent of future generation
networks, it is expected from the DT technology to represent
not only physical objects, but the biological world as well.

Fig. 8. The vision for DT-enabled next generation communications.

With the rapid advancements in smart technologies and
applications like holographic projection, VR, AR as well as
mission critical applications like remote surgery, that have
strict Quality of Service (QoS) requirements, current networks
including 5G will no longer be able to meet these expectations.
Although the deployment of 5G networks is not yet completed
at a large scale, many industry pioneers and technology leaders
are looking ahead at defining the next generation networks,
6G. 6G envisions interactions between three worlds: the hu-
man world (e.g., senses, bodies, intelligence, etc.), the digital
world (information, communication, computing, etc.); and the
physical world (objects, organisms, processes, etc.) [155].
Furthermore, 6G envisions network speed of 100 to 1000
times faster than that of 5G for accommodating new service
classes like further enhanced mobile broadband (FeMBB),
ultra-massive machine type communication (umMTC), and
enhanced ultra-reliable and low latency communication (eU-
RLLC) [156] and latency less than 1ms for ensuring safety in
mission critical communications and IIoT applications [157].
DT has great potential to provide for a digital environment
where future generation networks like 6G can evolve. Integrat-
ing DT within mobile networks is gaining popularity in the
industry from major tech companies like Ericsson, Huawei and
Nokia [158]. In this context, DT has the capability to contin-
uously monitor and analyze the performance of the network,
predict any unanticipated failures and optimize the network
performance by triggering intelligent decisions accordingly.
Figure 8 illustrates a vision of the 6G DT that facilitates the
live virtual replica of the whole or parts of the 6G network
to perform continuous monitoring and assessment through a
closed loop process between the physical entities and the
digital counterparts. The 6G DT powered by AI will enable
design and performance improvements and real time optimized
operations enforced on the physical 6G network.

B. Services

1) Anomaly Detection: The Digital Twin has gained its
significance in I4.0 by virtue of its intuitive and insightful role
in integrating data analytics into traditional manufacturing
facilities [15]. Through the analysis of run-time data incurred
from the physical systems, DTs have enabled smart factories’
engineers to know their facilities better. One of the many
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Fig. 9. DT application: Anomaly Detection Framework

strategies involved in analysing the data and discovering
better insights is Diagnostic Analytics (DA), i.e., having a
profound look at the data to observe and interpret the causes
of events and behaviors. An effective and popular technique
recognized for DA is anomaly detection [159]. Anomaly
detection is a technique of fault diagnosis that detects sections
of data disobeying the normal, expected behaviour [160],
[161]. The DT-enabled anomaly detection has proven itself
an asset for the Operation and Maintenance (O&M) phase
of smart factories. As illustrated in the subsequent literature,
it is clear that incorporation of anomaly detection in DT
architectures has had a significant impact on the popularity
of DTs in the I4.0 ecosystems.

The anomaly detection work flow followed by researchers
in general is represented pictorially in Figure 9. Workflow
of Anomaly detection application with most common key
phases involved are shown in the Figure 9. It is observed that
uni variate or multi-variate models with single or multi step
detection models have significant effect on Anomaly detection
applications performance. The primary sources of data for
such anomaly detection applications are derived from industry
run-time data from the connected IoT devices or historical
data from database logs available. The DT models close to
their physical counterparts in an industry may also simulate
the data required along with the run-time and historical data
available.Data set identification and creation based on the user
specific applications is also determining factor to improve the
performance of the anomaly detection application. Anomalies
can be visualized with a right choice of algorithms based
on standard machine learning models. The choice among

supervised, unsupervised and semi supervised learning models
is based on the availability of labelled data versus large data
requirements for the training. The DT application can arrive at
the next level PdM suggestions from the observations derived
from the anomaly detection outcomes shown in Figure 9.

In [162], the authors proposed an IoT-enabled “Living
Digital Twin” for additive manufacturing. The twin essentially
rooted for assuring higher productivity by monitoring the
system with analog sensors such as acoustic, vibration,
magnetic, etc. The basic protocol might seem rudimentary
due to the sensor-actuator action involved, but the twin
had a significant contribution in the aspect of anomaly
detection. The digital counterpart introduced the concept of
a fingerprint library to detect anomalies. The fingerprints
are the run-time values of asset parameters that compared
with the instantaneous IoT data from the physical systems to
detect potential anomalies.

A DT-enabled anomaly detection mechanism was proposed
in [163] for built asset monitoring. The detection process
asserted the need for cross-referencing the multiple data
sources for building facilities information. Owing to the data
inter-operability and re-usability aspects of the task, DT was
accepted as a comprehensive solution for the data integration
problem. Storing the data from heterogeneous sources into a
single, integrated format eased the detection process, meant
for every key asset in the building structure. The run-time
data of the assets, acquired in various data forms, was
encapsulated in a single data format that invariably assisted
the detection process many-fold.
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An extensive amount of research has been followed
up in implementing anomaly detection with various ML
algorithms. As a consequence, several research problems
have been encountered by the researchers. Andrea et al. [164]
implemented anomaly detection on industrial data with a
semi-supervised learning approach. The dataset under study
consisted of a major portion of unlabelled data (unsupervised
learning) and a smaller portion of labelled data (supervised
learning). The choice of hybrid dataset for the said study
was influenced from the following facts: i) for the supervised
approach, additional efforts need to be invested in labelling
the data that is prone to be impractical for larger datasets,
and ii) an unsupervised algorithm learns by the means
of bulk statistics of majority behaviour, thus a smaller
unlabelled dataset might result in an ambiguous output. A DT
framework, by virtue of its simulation capabilities, generated
the unlabelled portion of dataset with normal samples that
simulated normal industrial operation. The latter half of
the dataset comprised of anomalous samples derived from
a real factory data. The article claims to have achieved a
higher score in its performance indices for semi-supervised
approach than the fully unsupervised approach (AUC scores
0.872 and 0.756 respectively). Maurizio et al. [165] proposed
a reference model using DTs for risk assessment analysis
in industrial process plants. They put forth a framework
for a smart factory that would enhance its productivity
while prioritizing the safety of human operators. The risk
identification and assessment aspect of the model called
for inclusion of an “Anomaly Detection and Prediction”
tool in the twin. The tool was developed while being fairly
inclusive of the twin-enabling technologies: i) development of
a communication and control system with sensors-actuators
at the edge and Programmable Logic Controllers (PLCs) at
controller station, where the wireless sensor networks helped
to gather the ground-level data to the twin, ii) development of
ML models by employing the received data to analyse, predict
the risk factors and educate the DT to invoke precautionary
actions. Notably in [88], a framework was proposed for
the monitoring and diagnostics of a fleet of aero-engines.
The framework implemented anomaly detection for fault
detection, isolation and identification. A physics-based model
of a three-shaft turbofan engine was developed and simulated
in-house. The simulation data for the said model and the
signatures of potential component faults were generated
by a DT. In order to simulate an entire fleet of engines,
production scatter simulation was implemented by the twin
that cloned multiple replicas of the engines with minimal
random variation.

The capability of DTs to analyse temporal data in real time
has proven to be a greater asset for targeting spurious events.
This statement has been validated by Xie et al. [166] who
have proposed a DT framework for crucial asset monitoring
in a building facility. The multi-layered twin architecture
mainly featured: i) the Digital Modelling layer that acquired
time series data in real-time and stored simulation data as
well as historical data, and ii) the Data/Integration layer
that analysed the data at hand and took informed decisions.

The said analysis was assisted by the Bayesian Online
Change-point Detection (BOCD) algorithm that detected
suspicious instances upon investigating the sudden variations
in the time-series (change-points). The framework has
been demonstrated in a DT demonstrator laboratory at the
University of Cambridge. The experiment was conducted
on two identical cooling pumps for vibration monitoring
and the twin successfully identified anomalous vibrations.
On the similar lines, a group of researchers put forth a
blueprint for a unified DT for anomaly detection in Smart
Manufacturing [167]. A novel aspect of the said architecture
was a DT platform consisting multiple twins for every crucial
process/entity. A demonstration on a CNC facility proved
the significance of an anomaly detection scheme developed
by framework. A range of limits is devised by the twin
after thorough analysis of historical data. The instantaneous
values are referred against this range and dubious instances,
if any, are reported by the twin prior to unfortunate tool
damage. Further protocol dictates switching the device state
as “faulty”, requesting for maintenance and reconfiguration
of the facility topology until the device maintenance is
completed. Through this article, the eminence of machine
failure prediction by anomaly detection, reconfiguration and
rescheduling has been emphasized.

From the literature discussed above, it is observed that DT
proves its expertise in the field of anomaly detection owing
to its varied capabilities. The various problems or limitations
encountered in anomaly diagnostics such as the generation of
a reference model for comparison based on past data, lack of
simulation datasets, development of early prediction models
for analysis in real-time etc. have been addressed efficiently by
the DT. In conjunction with the enabling technologies, the DT
showcases capabilities such as flexibility to include analytical
tools in its core architecture [165], [166], [167], simulation of
training dataset [164] and anomalous dataset [88] for better
model training, compatibility with heterogeneous data and its
pragmatic integration [163], real-time analytics [166], [167]
and generation, preservation of signature copies of every entity
in extensive sensor networks [162] to resolve the problems that
are confronted with.

2) Predictive Maintenance: Another service that the Digital
Twin promises to provide is Predictive Maintenance. The
advantages in terms of cost, time, and resources that PdM can
demonstrably bring to the industry have been long sought-
after. Thus, significant research effort has already been in-
vested into developing working architectures that can accu-
rately predict a machine’s failure (i.e., self-diagnosing). For
example, Motaghare et al. [168] proposed a basic architecture
that outlines the components of a PdM system’s pipeline: data
acquisition, data analysis & state detection, health assessment
and prognosis, and maintenance actions & alerts. Although at
a first glance these functional blocks might seem rudimentary,
they in fact represent the founding pillars that support PdM
services, and they are predominant in many framework pro-
posals to this day. For example, the authors in [169] present a
PdM architecture for nuclear infrastructure whose components
greatly resemble the ones in the previously referenced work.
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Fig. 10. DT-based PdM scheme using hybrid modeling.

Another PdM architecture that is rooted in the principles
of the one presented by Motaghare et al. is Cheng et al.’s
proposal in [170]. The paper introduces a solution for a bearing
production line, and its framework is based on Edge-Cloud
cooperation. In this architecture, the data pre-processing is
done at the edge-level, and the processing-heavy tasks, like
Remaining Useful Life (RUL) prediction, is delegated to the
cloud. This type of structure is preferable when the ML
algorithm used is actually a DL method. In that case, the
training can be too computationally-intensive to perform at
the edge, so instead it is deployed in the cloud. Indeed, for
the estimation of the RUL parameter, the authors used a DL
mixed algorithm, named in the paper ARIMA-LSTM model
(Autoregressive Integrated Moving Average - Long Short Term
Memory). In this system, ARIMA handles the prediction of
the linear part of the time-series data, while LSTM predicts
the non-linear components, which are then summed up to
offer a final prediction. ARIMA is also employed in [171]
as a technique of extracting the underlying trends in various
data streams coming from sensors. The trends identified in
heterogeneous time series data are then fed as features to a
Principal Component Analysis (PCA) algorithm that extracts
the most uncorrelated features to be fed into the RUL predictor.
For remaining life estimation, the authors propose the use of
a regression technique called the Support Vector Regression
model. Cachada et al. [172] presented a complex and detailed
architecture of an intelligent and PdM system that explores
the interdependent modules that would constitute a functional
block in a PdM framework. As such, the paper explains
how different approaches are needed for the data acquisition
block, depending on the type of input data: automated, semi-
automated, or manually introduced by an operator; it also
presents an offline data analysis scheme that also relies on
the LSTM DL algorithm for prediction of machine state, a
dynamic monitoring block that deals with visualisation and
early detection of failures, and an intelligent decision support
system for maintenance intervention that guides the operator

through simple instructions and visualisations, in a way that
reduces the need for technical knowledge, leaving room for
focus on the maintenance task at hand. In this scheme, adjacent
blocks communicate with each other in a sequential manner,
but as-needed communication between non-adjacent blocks is
also allowed for further automated optimisation.

As an overview of the proposed Predictive Maintenance
frameworks in the literature up to date, it seems that they
adopt the MIMOSA Open System Architecture for Condition-
Based Maintenance (OSA-CBM) [173], either completely, or
only the main parts of it.

For example, a variation of the OSA-CBM architecture is
proposed in [174], where the integration of CPS, DT, and DL
extensively rely on each other’s advantages to reduce the need
of human intervention usually required in a PdM scheme. In
fact, the work suggests a great reliance on DL algorithms
to completely remove manual feature engineering from the
PdM architect’s list of responsibilities. Instead, the introduced
framework claims DL algorithms can single-handedly manage
state detection (through automatic feature extraction), health
assessment, RUL estimation, and advisory generation through
closed feedback loop connections between different functional
layers of the architecture. Such an implementation would
undoubtedly require large amounts of resources in terms of
storage space, computational power, and smart equipment.

Liang et al. in [175] proposed a layered architecture for a
low latency deployment of a Convolutional Neural Network
(CNN) – based prognosis system. The proposed scheme
consists of three layers that share responsibilities effectively,
keeping high-speed processing capabilities on the terminal and
fog layers, close to the manufacturing equipment, and leaving
the training of the CNN to the cloud layer. Drawing the line,
it seems like the focus has shifted from the development
of extremely intricate mathematical health prognosis models,
which were tailored to be specific to the equipment, towards
data-driven models which predominantly rely on ML and, of
course, Big Data. The ability to reliably and quickly transport,
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store, and process huge amounts of data has opened new
doors in the world of PdM, immensely facilitating the task.
However, that is not to say PdM has become an easy job.
The new approach presents other challenges in terms of time,
resources, and sets of skills that are required to deliver accurate
predictions of the RUL parameter.

A compromise between the complex, but transparent
physics-based models and efficient, but opaque data-driven
models, are hybrid models, where researchers have used both
approaches simultaneously in order to leverage the advantages
from both of them. In this context, Luo et al. [176] have
proposed a DT-based PdM scheme that uses physics-based
degradation and simulation models to generate theoretical
baselines for the machine state, as well as data-centric models
that consume real-time streams of data from the sensors
installed in the machine. This work has been summarised in
Figure 10, and the results of the hybrid model outperformed
both physics-driven and data-driven models in predicting the
tool wear of a CNC Machine Tool.

In order to achieve satisfying accuracy, PdM schemes that
rely solely on Big Data more often than not require massive
amounts of historical failure data. For example, Choi et al.
[177] proposed a method for predicting the maintenance needs
of an induction furnace with the help of neural networks.
Due to the nature of the ML algorithms used, as well as
the data-hungry aspect of PdM, the authors ended up using
a data set that consisted of measurements across 24 months.
Even then, the conclusion of the article admits that collecting
data during faulty scenario was deemed nigh impossible, as
running experiments with a failed induction furnace could have
been fatally dangerous. As such, the solution to this problem,
according to the researchers, was to place focus in their future
work on generating and simulating erroneous data, instead of
measuring it. In [168], Wang et al. introduced a two-part PdM
scheme for the China’s High-Speed Railway equipment using
LSTM-RNN. As stated before, any DL approach requires
tremendous amounts of data for training. Of course, there is
plenty of data that can be generated by a nation-wide business
like China’s railway system, however it should be kept in
mind that the work’s target equipment, the Traction Power
Supply System, is engineered to be sturdy enough to have as
few failures as possible per year. As such, gathering historical
failure data proved once again to be a prolonged challenge.
In this direction, the authors proposed splitting the PdM
framework into two: a proactive maintenance system, and
a predictive maintenance system. The proactive maintenance
system deals with analysing the failure modes of the physical
asset to generate new failure data through stochastic modeling.
The PdM system is then trained using solely simulated data,
and the overall method is then validated using both simulated
data and field data. While it turns out that the model performs
predictably better on artificial test data rather than on real data,
the performance is still very good and it shows promise in the
direction of simulation-assisted PdM. Gugulothu et al. in [178]
invented an innovative and practical approach to RUL estima-
tion. Their work proves to be robust to noise, sensor inter-
dependencies across time, as well as data unavailability, which
are all issues that are very present in various data repositories

in the industry. The proposed system uses “embeddings”, or
rather, hidden features extracted by a RNN encoder after it was
fed a fixed window-sized signal input from different sensors,
to extract the Health Index which will then be used to predict
the RUL. The remaining life estimation is done by comparing
the extracted Health Index with its previously seen values from
the training data. The work delivers on its promises, providing
a robust RUL estimator that can show good results, as long as
enough training data is provided.

It can be noted that many works in the literature are re-
searching ways to compensate for the low amount of historical
failure data made available by their target monitored physical
system. It becomes apparent that the quality of the data and,
equally important, the quantity of data are extremely important
boxes to check when developing failure prognosis solutions.
Over the years, the focus has shifted from model-based PdM,
where researchers came to the conclusion that developing a
stochastic model for a complex system can be nigh impossible,
towards data-driven approaches, where an algorithm can learn
from tremendous amounts of historical failure data. And this
shift in research direction can be justified. As an example
of model-based PdM, where limited amounts of data is not
considered a hard constraint, Wang et al. [179] proposed a
fault prognosis system for wind turbine bearing by making
use of analytical tools like the wavelet transform (for de-
noising and feature extraction), and Bayesian statistics for
providing RUL predictions backed by 90% credible intervals,
whose accuracy would increase over time. However the goal
in I4.0 is to bring PdM to all equipment, including those that
are too complex for statistical modeling, which is why the
data-driven approach has gained significant traction. And this
approach, as the name states, requires large amounts of data
that is not always available, especially in old machinery where
maintenance records have not been kept, or in equipment
whose uptime is so crucial that no run-to-failure scenarios
were allowed.

VI. DIGITAL TWIN: CASE STUDIES

This section will take a closer look at DT applications
and services by detailing three DT case studies that represent
main research directions carried out at the London Digital
Twin Research Centre1. The subsequent subsections will thus
summarize the research goals, findings, challenges, and future
directions for each case study in part.

A. A Look at the Tea Industry in India

An important case study that we carried out is from a multi-
national tea manufacturing company. It is a semi-automated
manufacturing company involving machines and human beings
to control them, who bring in several inaccuracies in their
processes. The tea bag manufacturing machine operated daily
on an average of 20 hours and 2 hours of rest period. Fig. 11
shows the snapshot of the different activities in the conveyor
belt of the tea manufacturing company; starting with tea
and herbs, dosage, blending, etc. Notably, there is a separate

1LDTRC website: https://dt.mdx.ac.uk/

https://dt.mdx.ac.uk/
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Fig. 11. Conveyor Belt Snapshot of a Tea Manufacturing Plant

Fig. 12. Steps in the Process of Tea Manufacturing

placeholder for filter paper along with its cutting, folding, etc.
There are two transport wheels: upper and lower where the
operation of thread stitching and the cardboard using needle
is being done. This different steps in the process can be
clearly understood from the different steps in the process of
the tea manufacturing, as shown in Fig. 12. There are several
sequential steps and a relation between each step, right from
adding tea and herbs, or filter paper to packaging, checking
the weight of each box and also investigating rejections and
possible reuse of the materials.

There were 6 to 8 downtimes per day over a 24 hour period,
each lasting around 15 minutes. The activities during the
downtime included: change of product, loading new feed of
raw materials, equipment/mechanical failure, misalignments
of material feed, effect of new product on machine, etc.
Also, an accurate supervision of the facility during night
shift is difficult. The tea-bag manufacturing process was
studied in detail to detect and keep record on their anomalies,
observe any patterns, identify prospects for twin modelling
and predicting the maintenance needs of the machines. The
seven major anomalies identified included: (1) Thread knot
Anomaly; (2) Outer envelope print not centered; (3) No filter
bag in the outer envelope; (4) Tag paper print not centered;
(5) Outer envelope paper missing; (6) Faulty filter paper
tube; (7) Filter paper slicing. Given the varying nature of
the anomalies, they could be detected using multiple step
dedicated anomaly detection technique, typically, an N -step

approach.

One of the major concerns for a DT is the quality of data
being fed. The lack of noise-free data being administered
has severe consequences such as sub-standard performance
of the twin [15]. This compels the DT to eliminate potential
aberrations from the data in order to keep up with its per-
formance. The demand for noise-free data has paved a way
for anomaly detection algorithms that would filter spurious
instances from datasets. The need for faster and more accurate
results obliges the algorithm to have an equilibrium between
the two performance parameters: accuracy and execution time.
The service of anomaly detection integrated within a virtual
twin demonstrates three of the DT’s main characteristic traits
enumerated in the definition we provided in Section II, namely:
self-adapting, self-monitoring, and self-diagnosing. Through
anomaly detection, the DT of the tea factory raises alarms
whenever its external environment changes in a way that the
DT is not able to recognize, allowing the operator or other
pre-defined routines to handle the exceptional anomalies. At
the same time, implementing anomaly detection implies the
existence of a monitoring mechanism that continuously ingests
data and checks for divergent behaviour within it. Lastly,
anomalies can be a sign of degradation in some of the physical
asset’s systems, so they could trigger pre-defined maintenance
pipelines to address these system health issues.

In order to validate this, a two-step anomaly detection
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technique was developed by Shetve et al. [180] and was
evaluated for its data pre-processing capability.

The main drawback of the two-step approach was the dimin-
ishing accuracy with increasing outliers. Hence, the two-step
approach could be generalized to “N -step approach”. Each
step would have its own technique that would be followed
by another technique in a sequential manner. The N -step
approach has been developed based on following key aspects:

1) Analysis of individual data instances
2) Evaluation of the relationship between neighboring points
3) Identification of the anomalies in dataset by the detection

algorithm
4) Evaluation of the performance of N -Step
The techniques selected for each step are as follows: Step

1: DBSCAN (Density-Based Spatial Clustering with Appli-
cations in Noise) [181]; Step 2: Isolation Forest; Step 3:
LOF (Local Outlier Factor) [182]; Step 4: KNN (K-Nearest
Neighbour); Step 5: Hierarchical Classification based methods.

The reason for choosing the N -step approach in a particular
way is as explained. DBSCAN would provide a very good
separation of outliers from the overall data points, removing
all false positives. Isolation Forest removes the few left over
outliers that are located isolated from one another. Similarly,
LOF and other following techniques would remove only the
boundary located nodes; thereby removing the True negatives
and false positives, if any and increasing the success ratio.
A careful design of the N -step approach would result in
higher accuracy/success ratio with a minimal increase in the
computation time.

B. Festo Cyber-Physical Factory

Aside from anomaly detection, another important aspect
of DTs in manufacturing, which is also the DT’s original
purpose, is continuous real-time monitoring of equipment and
processes. It is important that smart factory workers have
access to always-available digital factory status reports that
are intuitive and remotely-accessible. This core feature of DTs
enable equipment owners and factory executives to oversee
the good functioning of their products and processes. Besides
actual operators, the monitoring service can be used by the
DT itself in order to maintain awareness, at all times, of its
physical asset’s current state and environment. This service
enables a core principle of the DT, detailed in Section II,
namely the ability to self-monitor.

On this premise, the work we conducted in [183] developed
a DT framework of a real production line, in order to establish
a continuous monitoring mechanism for the kinematics of the
factory. The physical twin in question is the Festo Cyber-
Physical Factory for I4.0 (CP-Lab) located at Middlesex Uni-
versity, a didactic model of an assembly line for mock mobile
phones. The smart factory is composed of six functional
stations, each equipped with a Human-Machine Interface,
and two transport (or bridge) stations. Figure 13 depicts the
physical twin on its left side, and it can be noted that it is
composed of two islands, each equipped with four stations. On
the first island, the first station is tasked with placing the back

plastic cover of the mock mobile phone onto the carrier, which
is then carried to the next islands via a conveyor belt. The
second station is the manual station, where a human operator
will place a Printed Circuit Board (PCB) onto the back cover.
The third station visually inspects the product automatically, to
verify that the PCB that was previously added corresponds to
the correct order specifications. Lastly, a bridge station takes
the carrier and passes it on to an Automated Guided Vehicle
(AGV) that transports it towards the second island with its
next four stations. The second island is also equipped with a
bridge station that intercepts the AGV and sends the carrier
to the island’s second station, which places another plastic
cover on top of the product. The next station applies a pre-
defined pressure onto the product to seal the two plastic covers.
Finally, the last component of the assembly line is the furnace,
where the product is heated up to a user-defined temperature
to complete the order.

The kinematic model of this assembly line, which initially
only mirrored one station of the CP-Lab, was later migrated to
the Unity game engine, where the whole structure and motion
of the smart factory was modeled (right side of Figure 13).
In addition, the virtual model captures streams of sensor data
flowing from the CP-Lab via the TCP protocol. This led to the
development of a DT-based PdM framework that includes a
monitoring dashboard for the machine’s sensors (temperature
and power data) [184]. The framework makes use of real data
coming from the CP-Lab, as well as configuration data stored
on the DT, to better position the working regime, identify
working stations, and assess the health of individual stations
via data pertaining to the whole island. More specifically, the
framework targets the health of the furnace station of the sec-
ond island. Being that it is equipped with a powerful heating
element, the malfunctioning of this station could potentially
lead to a fire hazard, so it stands to reason that guaranteeing
its good health is a necessity. For this reason, the furnace
is also equipped with a “Safety Shutdown” mechanism, that
will completely halt operations if the temperature inside its
chamber surpasses 80oC, however, this system is also not
infallible. As such, the framework captures temperature data
from inside the furnace, as well as the power data pertaining
to the whole second island, to predict if, or when, the Safety
Shutdown mechanism will be triggered, in order to proactively
prevent it. The DT provides the configuration data of the
heating station (i.e., its real-time state) to help the framework
extract the furnace’s power consumption from the second
island’s power measurements. As such, in case the temperature
sensor or element inside the heating chamber are faulty, the
normal behaviour of the station can still be verified via its
power data. The DT of the CP-Lab can increase productivity
by preventing the unnecessary or anomalous triggering of the
Safety Shutdown mechanism, as well as promote safety by
predicting when the temperature inside the heating chamber
of the Tunnel Furnace Station reaches critical levels.

C. Structural Health Monitoring for Vietnam bridges

In this subsection, the Digital Twin framework for SHM
developed at London Digital Twin Research Centre, dubbed
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Fig. 13. Digital Twin in I4.0.

Fig. 14. Cloud Digital Twin Structural Health Monitoring web application

cDTSHM is presented, including its main components, case
studies, and its application to bridges, mainly in Vietnam.
The cDTSHM consists of four components: the real structures
equipped with sensors along their body providing data related

to their operational services, a fog layer with local compu-
tational servers preprocessing measured data, a cloud layer
involving data storage services, and data analytic components
leveraging both mathematical models and machine learning-
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based model, and a web application visualizing the data and
computed results. The cDTSHM is developed with the help
of the AWS cloud services; most of the programs are written
in Python, the ML-based model is implemented using the DL
library Pytorch, and the main input data for the framework are
the vibration data from accelerometer sensors. Fig. 14 depicts
the interface of the cDTSHM, including case studies carried
out.

The first case study to demonstrate the applicability of the
framework is a toy model of the Sydney Harbour bridge built
by using K’nex interlocking plastic rods. Next, one manually
excites the model by hand-shaking, where its vibration is
recorded by using a set of accelerometer sensors MPU-6050
uniformly distributed across the model. The SHM database
was empirically generated by hand-shaking the model; then
vibration data were collected through an array of accelerom-
eter sensors MPU-6050 and a microcontroller board Arduino
Uno. The damaged states of the model were introduced by
randomly removing one or two truss rods. After that, two data
analytic algorithms, including a lite mathematical model and a
ML-based model are developed to detect the structure status.
Furthermore, the latter could spatially localize the damage’s
location and quantize the damage severity.

The second case study used to validate the correctness of
the framework is a simplified laboratory model of a stayed-
cable bridge whose physical and numerical models are shown
in the corner of Fig. 14. The SHM procedure is realized
similarly to the first example, but the experiment data, in-
cluding excitation, vibration data, structure’s deformation are
controlled and measured more rigorously. The model is excited
by introducing an impulse force of very short duration through
an impact hammer; the structure’s status is then assessed
based on the loss level of prestressing strands which can be
manually modified by alternating the anchor bolts tightness. As
a result, the sDTSHM can provide highly accurate SHM results
with much less CPU time while bypassing the cumbersome
preprocessing modal analysis as in the conventional structural
identification methods.

For the third case study, the performance of the SHM
framework is tested with real data collected from the Z24
bridge in Switzerland [185]. For such a real structure, using
a lite mathematical model or shallow ML cannot provide
reliable SHM results. Thus, a highly modular architecture has
been devised, allowing switching different DL algorithms and
combining data from different sensors in a straightforward
way [186]. The results demonstrate that the data analytic
component of the cDTSHM outperforms competing methods
with a structural damage detection result of 90.1% with low
time complexity and budget memory storage.

Afterwards, the cDTSHM framework is applied to the Nam
O railway bridge located in central Vietnam. The bridge is
60 years old and constantly undergoes unfavorable factors
involving the corrosive maritime environment, dynamic and
heavy train loadings, etc. From the structural perspective,
the structure’s mode shapes and their high-order derivatives
are sensitive to damages; therefore, a knowledge-enhanced
deep 1D-CNN has been developed for automatically extracting
modal characteristics from raw vibration data to accurately

detect and quantify connection stiffness reductions. The real-
ization steps and implementation details can be found in [187].
The results show that the framework could achieve accuracy up
to 95% even with minor damage (5% of stiffness reduction)
with faster convergence speed and more stable results than
counterparts, including the Multi-Layer Perceptron and other
DL architectures.

The four case studies illustrated in this subsection demon-
strate that the enabling technologies supporting a DT will vary
greatly, depending on the DT’s use-case, as also mentioned
in our definition, provided in Section II. Additionally, the
cDTSHM framework has been developed to exhibit self-
diagnosing and self-monitoring capabilities within several case
studies of bridges.

VII. LESSONS LEARNED, RESEARCH CHALLENGES AND
FUTURE DIRECTIONS

The previous sections provided a comprehensive view of
the DT, commencing with its definition, market potential, en-
abling technologies, frameworks and applications, and, finally,
three case studies. Throughout the literature surveyed in this
manuscript, as well as our own experience in developing DTs,
we have learned important lessons and encountered significant
challenges that will contour future directions for us and the
research community. This section will delve into the most
significant of these concepts, detailing the obstacles that the
DT needs to overcome in order to realize its potential.

A. Investment costs

As mentioned in Section III, businesses still remain reluctant
to implement the DT because of its envisioned development
costs and difficult-to-quantify ROI. As a matter of fact, it is
rather challenging to put a price on the DT because of its
multi-disciplinary nature and use-case-specific particularities.
Additionally, the DT is rarely a product that generates direct
profit, since its core philosophy focuses primarily on saving
costs. With the exception of DT solution providers and the
healthcare industry, where the DT can indeed be a source
of revenue, other entrepreneurs will need detailed and long-
term plans of investment that emphasize the merits of DT
development before diving into such expenditures.

One important aspect that must be factored into the costs
when planning for DTs, is the ongoing maintenance require-
ments, such as: software updates that affect the DT, changes
to the physical asset, etc. Considering the total life cycle
of the DTs, one could anticipate that the maintenance and
management cost might represent the largest proportion of the
investment costs.

B. Social and ethical challenges

Digital Twin technology and applications are experiencing
a shift from engineering/physics based domains, where closed
equations are an appropriate modelling abstraction, to one
where the problem domain is socio-technical, leading to the
notion of Socio-Technical Digital Twins (STDT). Such a
problem domain utilises systems that comprise complex inter-
action between humans, machines and the work environment
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[188]. This class of system is characterised by heterogeneous
networked agents, adaptive and goal oriented with respect to
the environment and joint optimisation and evolution of both
technical and social systems [189]. These properties are also
those that are characterised by agent based systems and make
such technologies ideal for representation of STDTs despite
computational cost [189], [190]. Hence, STDTs generate new
and different research challenges.

DTs of phenomena that include human interactions and
behaviours acquire complexity simply due to the involvement
of multiple disciplines. For example, DT models of cities for
monitoring pandemic behaviour have included social geogra-
phers, economists, medical practitioners as well as computer
scientists. Arriving at a shared understanding, common lan-
guage and a way of working demands new methodological
approaches as well as intuitive access to underpinning theory
from different disciplines [191].

Moving away from closed equations to systems that model
emergent behaviour presents expected validation challenges.
Recognising that a STDT has purpose beyond prediction
such as explanation is the first response [192]. STDTs can
be used for discovering new questions, demonstrating trade-
offs or experimentation with prevailing theories that lack
empirical understanding. Hence they represent a move away
from closed form analytical models. Models are a form of
theory building [193] and as such they can only be invalidated
so a more useful target is a form of accredited or accepted
model based on standardised criteria and metrics [194]. As
STDTs become more established, policy oriented domain-
specific practice could lead to to libraries of accepted models,
encoding existing knowledge, that do not need to change
and are much less volatile. Given the emergent properties
of STDTs, such models need to be defined at both micro,
meso and macro levels. Building libraries of STDT models is
reminiscent of component based development practice and its
inherent challenges [195].

Validation of a model for STDT is closely related to
abstraction concerns and in particular the challenges that
arise from establishing an appropriate framing structure. The
complexity, multi-level and range of modelling required to
represent a socio-technical problem domain within a DT
require choices to be made in determining the scope and detail
of the environment to be modelled. This choice we can refer
to it as a conceptual problem frame. For example, Barat et
al. [191] in their city DT of Pune, for modelling the COVID-
19 pandemic, observe that existing agent based systems for
pandemic modelling do not show sufficient granularity of types
of people and their movements within the city, raising concerns
of model completeness.

Perhaps the most striking challenge that needs to be ad-
dressed is that arising from STDTs that include ML or other
algorithmic decision making. Ethical concerns come to the
fore when (1) conclusions drawn from inference are probable
and therefore an epistemic limitation; (2) traceability between
the input data and conclusion is not accessible and open to cri-
tique; (2) conclusions are dependent upon the quality of data;
or (4) the actions based on conclusions are discriminatory even
if well-founded [196]. Underpinnning these epistemically-

based ethical issues is the encoding of value systems such
as privacy, transparency, security and so on. Understanding
value sensitive concerns and related approaches that explore
more fundamentally the nature of social requirements and
(unintended social impacts) of software remains an ongoing
project in software engineering [197] and requires study in
the context of STDTs.

C. Fidelity and rate of synchronization

A common misconception about the DT is that the virtual
twin should reflect the physical twin in its entirety, and that it
should gather and process all of its data in almost real-time.
However, these feats are not currently feasible, and certainly
not always necessary. As specified in our definition of the
DT, provided in Section II, the virtual representation’s fidelity
and rate of synchronization are specific to the DT’s use-cases.
For instance, for ambitious, nation-wide project like the U.S.
Air Force’s DT for weapon system development, the required
fidelity and responsiveness might impose prohibitive costs
[198]. On the other hand, for the purposes of traffic relief,
a DT that stores the coordinates and synchronization rates of
traffic lights, as well as the real-time traffic density, might
arguably perform almost as well as a DT that completely 3D
models the city’s infrastructure. As such, the DT’s granularity
and twinning rate requirements can be more, or less, lenient,
depending on its applications. The more stringent demands
for real-time, granular mirroring could be encountered in the
healthcare industry, for scenarios where the DT is used to
facilitate remote surgery.

D. Standardisation efforts

One of the most important features that could accelerate the
adoption of DTs within various industries is their modularity.
This could enable the rapid reproduction of DT processes and
their components. However, this dynamic environment could
become very complex, with different digital twins custom
built for different purposes, specific equipment type, specific
manufacturers, etc., these represent factors that could inhibit
the adoption and implementation of DTs across multiple
industries. These complexities could be eliminated through
standardisation.

Recently, one of the subcommittees (SC 412) of the Joint
International Organization for Standardization (ISO) and Inter-
national Electrotechnical Commission (IEC) Technical Com-
mittee (JTC 1)3 has widened its scope and terms of references
to include DT, looking now into standardization in the area of
IoT and DTs, including their related technologies.

The ISO 23247-14 standard for DT framework for manu-
facturing is currently under development. The first part of the
standard provides general principles and defines the require-
ments for developing DTs in manufacturing.

Similarly, the National Institute of Standards and Technol-
ogy (NIST) in an attempt to standardize the DT technology,

2SC 41: https://bit.ly/3tf0hSM
3JTC 1: https://jtc1info.org/
4ISO 23247-1 Digital Twin Framework for Manufacturing:

https://www.iso.org/standard/75066.html
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have released a draft NISTIR 8356 [199] covering the defini-
tion, common low-level operations, usage scenarios, and use-
cases examples.

Another initiative that has as a primary objective to influ-
ence the requirements for DT standards is the Digital Twin
Consortium5. The consortium consists of members from indus-
try, government, and academia that form a global ecosystem
aiming to accelerate the development, adoption, interoperabil-
ity, and security of DTs.

One proposed solution by Harper et al. [200] could be to
define a set of standardised Application Process Interfaces
(APIs) that could evolve over time. The advantage of this
approach is that different DTs could be developed using
different software and processes as long as they support the
defined set of APIs.

Microsoft developed the Digital Twin Definition Language6

(DTDL) that is used in their commercial services, such as IoT
Hub, IoT Central and Azure Digital Twins. However, DTDL
does not resource discovery and access and deals with resource
description only.

Consequently, the current lack of standardised approaches
when modelling digital twins open up new challenges when
dealing with their interoperability in order to maximize the
interconnectivity.

E. Data ownership and governance

Apart from standardisation, another closely related chal-
lenge is the data ownership and governance, that brings a new
question, specifically: Who owns the DT information? One
can anticipate that with the advancements in technologies, the
industry is moving towards a connected data ecosystem of DTs
with potential different owners of the physical assets as well
as the DTs. Additionally, the potential existence of an ecosys-
tem of DTs implies the need for a shared communication
framework for standardized data exchange between multiple
heterogeneous data sources. This scenario brings technical,
financial and legal aspects challenges that need to be clarified.

One solution would be to adopt the Industrial Data Space
(IDS)7 concept that has been introduced in [201] to cater for
all these issues within the I4.0 framework. The IDS concept
represents a virtual data space that enforces data ownership
within a distributed environment, based on open standards
and existing technologies as well as common governance
models for data economy. As DTs are seen as part of I4.0,
the IDS model could be the answer for DTs data ownership
and governance. In parallel, an effort for constructing an
Information Management Framework (IMF) for the National
Digital Twin is carried out in [202], where the goal is to create
a common national information resource that can sustain a
country-wide DT.

F. Data security

There are two ways to approach the discussion on security
issues in DTs. The first one addresses the security of the

5Digital Twin Consortium: https://www.digitaltwinconsortium.org
6Digital Twin Definition Language: https://bit.ly/3jJ3EOV
7Industrial Data Space: https://internationaldataspaces.org

DT itself, starting from the physical servers that host the
DTs up until the safety and integrity of the software and
data communication links that animate the DT. The second
approach is about how the DT itself can provide security to
its real twin, as an additional valuable offering. This section
will touch on both of these aspects of security within DTs.

One of the central components of a DT is the communica-
tion medium that enables the symbiotic relationship between
the physical and virtual twins. This link effectively transports
all the data between the two entities, so it stands to reason that
it needs to guarantee impeccable data security. Every time data
flows to, and from, the real twin, or in-between the servers
hosting the DT itself, the risk of losing important information
is high, which calls for increased attention to preserving
data integrity [203]. This communication medium becomes
a potential area of weakness in front of data corruption and
theft, and it can create disturbances for businesses. As such,
data security principles, like privacy, authentication, integrity,
and traceability, need to be taken into account during DT
development. Some important measures that provide security
features are data encryption, access privileges, source code
automated scanning, penetration testing, and routine checkups
[204]. Emerging approaches to deal with these issues include
using blockchain technologies to ensure data privacy in the
communication between DT systems-of-systems [94]. Yaqoob
et al. [205] conducted an extensive research on how blockchain
has been integrated in the DTs across literature to also ensure
trust and transparency in various use cases.

Given that the DT is still an emerging technology, the
related literature still lacks a consensus on its security require-
ments. As we have discovered throughout this research work,
the use case and services envisioned for the DT can dictate
the architecture of the virtual twin. According to Gehrmann et
al. in [206], security measures should also be at the forefront
of the DT architects’ minds since they can have a significant
impact on the final DT model’s structure as well. The authors
also introduced the idea of using the DT as an enabler of
security in the communication between the physical twin and
other cloud-based services, of which DTs might make use.
In their work, all external communication with the physical
twin would be carried out exclusively via the virtual model,
through a synchronization gateway that filters all traffic to the
real twin, effectively isolating it from bad agents. A similar
approach was taken in [207], where the authors proposed using
the DT to filter out incoming commands to a smart inverter
and ensure that only the non-malicious ones are carried out.

G. Artificial General Intelligence, beyond human performance

In Section II of this manuscript, we have described the
DT as a self-adapting, self-regulating, self-monitoring, and
self-diagnosing system-of-systems, a definition which places
it under the span of another, broader category of human
ambitions: Artificial Intelligence. In fact, the idea of self-
improving artificial systems was part of the original proposal
made by McCarthy et al. in 1955 for the Darthmouth Summer
Research Project on AI, a project which is also sometimes
dubbed as the birthplace of AI [208]. Since then, significant
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progress has been carried out towards realizing the objectives
laid out in said proposal, and the term “AI” has now become
so popular that some voices have raised concerns about the
implications of integrating AI into our society [209]. However,
as Shevlin et al. emphasize in [210], there is an important
distinction to be made between the original meaning assigned
to AI by McCarthy et al. in 1955, and AI as it is understood
and marketed today. McCarthy’s proposal identified AI as a
machine that behaves “in ways that would be called intelligent
if a human were so behaving”, whereas nowadays, AI is
sometimes used to refer to systems that reach or surpass
human performance in specific tasks [211], [212]. The former
interpretation corresponds to what is today understood as
Artificial General Intelligence (AGI), while the latter is an
appropriate example of Artificial Narrow Intelligence (ANI)
[210].

However, although there is a great overlap between the
DT and AGI, there are some differences that stand out and
can make the DT an even more challenging task than AGI.
First, the versatility of the DT paradigm across industries
implies that it will, by definition, have a specialized kind of
intelligence that cannot be generalized to other domains, but
trains and excels in every possible task that pertains to the
physical twin’s use cases, including hypothetical scenarios.
In order for the DT to become truly self-evolving, just like
humans and animals are, it needs to be able to implement a
level of creativity that can make maximal use of its physical
twin’s unique features (i.e., learn to become as resourceful
with its physical structure as an animal is with its body).
This implies that, just like there is a need for standardized
benchmarks for validating human AGI, or animal intelligence-
mimicking AGI [210], there is also a requirement for perfor-
mance measures and benchmarks that can accurately evaluate
the DT for each industry and application. Validation metrics
aside, while current AI systems can definitely learn to perform
tasks even beyond human-level performance, they also lack
comprehension, and therefore cannot offer transparency into
their “reasoning” [213]. This lack of transparency invokes
skepticism, and can even impede development of DTs or AIs
due to lack of trust.

VIII. CONCLUSIONS

This paper took an in-depth look at the existing and expand-
ing Digital Twin-related literature, and we drew some lessons
that will help the researchers in this field consolidate their
understanding of the DT and choose future directions that
need further development. In Section II, we took a look at
the variety of DT definitions that the papers reviewed in this
manuscript provided and we clustered them together according
to their similarity; then, we introduced a new, comprehensive
definition for the DT that covers important aspects that the
others might have missed. In Section III, we evaluated the
current level of adoption of the DT in the industry, and how
this paradigm is currently valued by various leading businesses
in this field. Section IV then dove into the technical aspects
of the DT, namely its enabling technologies, and how they
are being used to support the DT in delivering business value

across various industries. Consequently, in Section V, we
described how the previously presented technologies help the
DT in providing a handful of services, ranging from smart
manufacturing to new generation communication technologies.
Section VI offered a closer look at three DT case studies in
order to present how the technology can be leveraged and what
requirements and limitations appear, based on the use case.
Finally, Section VII summarized the lessons we have learned
throughout this review, in order to point out interesting new
challenges to be addressed in the research community.

Overall, the DT finds itself accelerating in full force towards
I4.0, and its endless perceived potential makes it a central and
evermore popular player in the race. Its enabling technolo-
gies are continuously evolving, and each step towards their
improvement brings us closer to making true DTs a reality.
As the DT attracts research interest, the number of attempts at
developing it contour some common and persisting obstacles.
In the era of AI, the focus falls on the data, and the DT finds
itself in the middle of an information loop: it needs to be fed
carefully considered data to power its complex ML algorithms,
and then it further allows a better understanding of that data
via its interactive and predictive feats. With some challenging
puzzles in the way, the DT is steadily heading towards the
automation of industrial processes.
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[33] L. López-Estrada, M. Fajardo-Pruna, S. Gualoto-Condor, J. Rı́os, and
A. Vizán, “Creation of a micro cutting machine tool digital-twin
using a cloud-based model-based plm platform: first results,” Procedia
manufacturing, vol. 41, pp. 137–144, 2019.

[34] Y. Pan, T. Qu, N. Wu, M. Khalgui, and G. Huang, “Digital twin based
real-time production logistics synchronization system in a multi-level

computing architecture,” Journal of Manufacturing Systems, vol. 58,
pp. 246–260, 2021.

[35] E. Hinchy, N. P. O’Dowd, and C. T. McCarthy, “Using open-source
microcontrollers to enable digital twin communication for smart man-
ufacturing,” Procedia Manufacturing, vol. 38, pp. 1213–1219, 2019.

[36] F. Tao, Q. Qi, L. Wang, and A. Nee, “Digital twins and cyber–physical
systems toward smart manufacturing and industry 4.0: Correlation and
comparison,” Engineering, vol. 5, no. 4, pp. 653–661, 2019.

[37] M. Borth, J. Verriet, and G. Muller, “Digital twin strategies for sos
4 challenges and 4 architecture setups for digital twins of sos,” in
2019 14th annual conference system of systems engineering (SoSE),
pp. 164–169, IEEE, 2019.

[38] E. Negri, S. Berardi, L. Fumagalli, and M. Macchi, “Mes-integrated
digital twin frameworks,” Journal of Manufacturing Systems, vol. 56,
pp. 58–71, 2020.

[39] R. Dong, C. She, W. Hardjawana, Y. Li, and B. Vucetic, “Deep learning
for hybrid 5g services in mobile edge computing systems: Learn from a
digital twin,” IEEE Transactions on Wireless Communications, vol. 18,
no. 10, pp. 4692–4707, 2019.

[40] T. Zohdi, “A machine-learning framework for rapid adaptive digital-
twin based fire-propagation simulation in complex environments,”
Computer Methods in Applied Mechanics and Engineering, vol. 363,
p. 112907, 2020.

[41] T. Ritto and F. Rochinha, “Digital twin, physics-based model, and ma-
chine learning applied to damage detection in structures,” Mechanical
Systems and Signal Processing, vol. 155, p. 107614, 2021.

[42] S. Chakraborty and S. Adhikari, “Machine learning based digital
twin for dynamical systems with multiple time-scales,” Computers &
Structures, vol. 243, p. 106410, 2021.

[43] M. A. Ali, Q. Guan, R. Umer, W. J. Cantwell, and T. Zhang, “Deep
learning based semantic segmentation of µct images for creating digital
material twins of fibrous reinforcements,” Composites Part A: Applied
Science and Manufacturing, vol. 139, p. 106131, 2020.

[44] B. Maschler, D. Braun, N. Jazdi, and M. Weyrich, “Transfer learning
as an enabler of the intelligent digital twin,” Procedia CIRP, vol. 100,
pp. 127–132, 2021.

[45] Z. Wang, X. Liao, X. Zhao, K. Han, P. Tiwari, M. J. Barth, and
G. Wu, “A digital twin paradigm: Vehicle-to-cloud based advanced
driver assistance systems,” in 2020 IEEE 91st Vehicular Technology
Conference (VTC2020-Spring), pp. 1–6, IEEE, 2020.

[46] P. Rajesh, N. Manikandan, C. Ramshankar, T. Vishwanathan, and
C. Sathishkumar, “Digital twin of an automotive brake pad for predic-
tive maintenance,” Procedia Computer Science, vol. 165, pp. 18–24,
2019.

[47] R. Revetria, F. Tonelli, L. Damiani, M. Demartini, F. Bisio, and
N. Peruzzo, “A real-time mechanical structures monitoring system
based on digital twin, iot and augmented reality,” in 2019 Spring
Simulation Conference (SpringSim), pp. 1–10, IEEE, 2019.
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[181] A. Nowak-Brzezińska and T. Xieski, “Outlier mining using the dbscan
algorithm,” Journal of Applied Computer Science, vol. 25, no. 2,
pp. 53–68, 2017.

[182] Z. Cheng, C. Zou, and J. Dong, “Outlier detection using isolation forest
and local outlier factor,” in Proceedings of the conference on research
in adaptive and convergent systems, pp. 161–168, 2019.

https://www.mimosa.org/mimosa-osa-cbm/
https://www.mimosa.org/mimosa-osa-cbm/


IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 36

[183] M. Raza, P. M. Kumar, D. V. Hung, W. Davis, H. Nguyen, and
R. Trestian, “A digital twin framework for industry 4.0 enabling next-
gen manufacturing,” in 2020 9th International Conference on Industrial
Technology and Management (ICITM), pp. 73–77, IEEE, 2020.

[184] S. Mihai, W. Davis, D. V. Hung, R. Trestian, M. Karamanoglu, B. Barn,
R. Prasad, H. Venkataraman, and H. X. Nguyen, “A digital twin
framework for predictive maintenance in industry 4.0,” 2021.

[185] H. V. Dang, M. Raza, T. V. Nguyen, T. Bui-Tien, and H. X. Nguyen,
“Deep learning-based detection of structural damage using time-series
data,” Structure and Infrastructure Engineering, pp. 1–20, 2020.

[186] H. V. Dang, H. Tran-Ngoc, T. V. Nguyen, T. Bui-Tien, G. De Roeck,
and H. X. Nguyen, “Data-driven structural health monitoring using
feature fusion and hybrid deep learning,” IEEE Transactions on Au-
tomation Science and Engineering, 2020.

[187] H. V. Dang, M. Raza, H. Tran-Ngoc, T. Bui-Tien, and H. X. Nguyen,
“Connection stiffness reduction analysis in steel bridge via deep cnn
and modal experimental data,” Structural Engineering and Mechanics,
vol. 77, no. 4, pp. 495–508, 2021.

[188] E. Trist and F. Emery, Socio-technical systems theory. Oxford, UK:
Pergamon, 1960.

[189] B. Heydari and M. J. Pennock, “Guiding the behavior of sociotechnical
systems: The role of agent-based modeling,” Systems Engineering,
vol. 21, no. 3, pp. 210–226, 2018.

[190] E. Bonabeau, “Agent-based modeling: Methods and techniques for
simulating human systems,” Proceedings of the national academy of
sciences, vol. 99, no. suppl 3, pp. 7280–7287, 2002.

[191] S. Barat, R. Parchure, S. Darak, V. Kulkarni, A. Paranjape, M. Gajrani,
and A. Yadav, “An agent-based digital twin for exploring localized non-
pharmaceutical interventions to control covid-19 pandemic,” Transac-
tions of the Indian National Academy of Engineering, vol. 6, no. 2,
pp. 323–353, 2021.

[192] J. M. Epstein, “Why model?,” Journal of artificial societies and social
simulation, vol. 11, no. 4, p. 12, 2008.

[193] B. S. Barn and T. Clark, “Revisiting naur?s programming as theory
building for enterprise architecture modelling,” in International Con-
ference on Advanced Information Systems Engineering, pp. 229–236,
Springer, 2011.

[194] J. Oden, T. Belytschko, J. Fish, T. Hughes, C. Johnson, D. Keyes,
A. Laub, L. Petzold, D. Srolovitz, and S. Yip, “Simulation-based
engineering science: revolutionizing engineering science through sim-
ulation. report of the national science foundation blue ribbon panel on
simulation-based engineering science,” 2006.

[195] B. Barn, A. W. Brown, and J. Cheesman, “Methods and tools for
component based development,” in Proceedings. Technology of Object-
Oriented Languages. TOOLS 26 (Cat. No. 98EX176), pp. 385–395,
IEEE, 1998.

[196] B. D. Mittelstadt, P. Allo, M. Taddeo, S. Wachter, and L. Floridi, “The
ethics of algorithms: Mapping the debate,” Big Data & Society, vol. 3,
no. 2, p. 2053951716679679, 2016.

[197] B. Barn, R. Barn, and F. Raimondi, “On the role of value sensitive con-
cerns in software engineering practice,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, vol. 2, pp. 497–500,
IEEE, 2015.

[198] T. D. West and M. Blackburn, “Is digital thread/digital twin affordable?
a systemic assessment of the cost of dod’s latest manhattan project,”
Procedia computer science, vol. 114, pp. 47–56, 2017.

[199] J. Voas, P. Mell, and V. Piroumian, “Considerations for digital twin
technology and emerging standards,” NIST Internal or Interagency
Report (NISTIR) 8356 (Draft), 2021.

[200] E. Harper, C. Ganz, and S. Malakuti, “Digital twin architecture and
standards,” Industrial Internet Consortium Journal of Innovation, 2021.

[201] C. Lange, “Industrial data space – digital sovereignty over data,” 2016.
Invited talk at the Taipei Tech Workshop of the Vienna Data Science
Group.

[202] J. Hetherington and M. West, “The pathway towards an information
management framework-a ‘commons’ for digital built britain,” 2020.

[203] M. Dietz, B. Putz, and G. Pernul, “A distributed ledger approach to
digital twin secure data sharing,” in IFIP Annual Conference on Data
and Applications Security and Privacy, pp. 281–300, Springer, 2019.

[204] M. Hearn and S. Rix, “Cybersecurity considerations for digital twin
implementations,” IIC J. Innov, pp. 107–113, 2019.

[205] I. Yaqoob, K. Salah, M. Uddin, R. Jayaraman, M. Omar, and M. Imran,
“Blockchain for digital twins: Recent advances and future research
challenges,” IEEE Network, vol. 34, no. 5, pp. 290–298, 2020.

[206] C. Gehrmann and M. Gunnarsson, “A digital twin based industrial au-
tomation and control system security architecture,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 1, pp. 669–680, 2019.

[207] T. Hossen, M. Gursoy, and B. Mirafzal, “Digital twin for self-security
of smart inverters,” in 2021 IEEE Energy Conversion Congress and
Exposition (ECCE), pp. 713–718, IEEE, 2021.

[208] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A
proposal for the dartmouth summer research project on artificial
intelligence, august 31, 1955,” AI magazine, vol. 27, no. 4, pp. 12–
12, 2006.

[209] P. K. McClure, ““you’re fired,” says the robot: The rise of automation
in the workplace, technophobes, and fears of unemployment,” Social
Science Computer Review, vol. 36, no. 2, pp. 139–156, 2018.

[210] H. Shevlin, K. Vold, M. Crosby, and M. Halina, “The limits of machine
intelligence: Despite progress in machine intelligence, artificial general
intelligence is still a major challenge,” EMBO reports, vol. 20, no. 10,
p. e49177, 2019.

[211] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[212] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue,” Artificial
intelligence, vol. 134, no. 1-2, pp. 57–83, 2002.

[213] G. Marcus and E. Davis, Rebooting AI: Building artificial intelligence
we can trust. Vintage, 2019.

Stefan Mihai is currently a PhD researcher working
on the Digital Twin Modelling for Automation,
Maintenance and Monitoring in Industry 4.0 Smart
Factory project. He received his BSc degree in
Telecommunications from Politehnica University of
Bucharest, and his MSc degree in Telecommunica-
tions Engineering from Middlesex University. His
research interests include machine learning, Digital
Twin, and Predictive Maintenance

Mahnoor Yaqoob received her BSc degree in
Software Engineering from Fatima Jinnah Women
University Pakistan in 2016 and an MSc degree in
Computer Engineering from Middle East Technical
University Northern Cyprus Campus in 2020. She is
currently pursuing a PhD within the discipline of De-
sign Engineering at Middlesex University London.
Her current research interests include Digital Twin,
blockchain, machine learning and artificial intelli-
gence, wireless cellular communications, computer
networks, analytical modelling and queueing theory.

Dang V. Hung received his M.Sc. and Ph.D. degrees
in Structural Dynamics from the University of Lyon,
France in 2009 and 2013, respectively. His research
interests include structural dynamic, numerical sim-
ulation, structural health monitoring, data analysis,
machine learning and digital twin. He has published
his research works internationally in France, Italy,
USA, HongKong, Morocco, UK.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 37

William Davis is currently a Master by Research
Student working on the Digital Twin Modelling for
Automation, Maintenance and Monitoring in Indus-
try 4.0 Smart Factory project. He received his BEng
degree in Mechatronics Engineering. His current
research interests include Blockchain, Digital Twin,
Mechatronics Systems.

Praveer Towakel received his B.Sc. degree in
Physics from the University of Mauritius in 2016,
and is currently pursuing a PhD within the discipline
of Design Engineering at Middlesex University. His
current research interests include Gesture Recogni-
tion, Radar Systems and Machine Learning.

Mohsin Raza is a senior lecturer at Department
of Computer Science, Edge Hill University, UK.
Prior to this, he worked as a Lecturer (2019-20)
at Northumbria University, UK, as a post-doctoral
fellow (2018-19) at Middlesex University, UK, as a
Demonstrator/Associate-Lecturer and Doctoral Fel-
low (2015-17) at Northumbria University UK, Ju-
nior lecturer (2010-12) and later as Lecturer (2012-
15) in Engineering department at Mohammad Ali
Jinnah University, Pakistan, and Hardware Support
Engineer (2009-10) at Unified Secure Services, Pak-

istan. He completed his PhD at Math, Physics and Electrical Engineering
Department, Northumbria University (NU), UK and BS (Hons) and MS
degrees in Electronic Engineering from Mohammad Ali Jinnah University
(MAJU), Pakistan. He served as a technical committee member for ICET
2012, SKIMA 2015, SKIMA 2017, WSGT 2017, CSNDSP 2018, SKIMA
2018, ICT 2019 and CSoNet 2019. He has also been a guest editor to
special issue on Heterogenous Internet of Medical Things in Int. Journal of
Distributed Sensor Networks and reviewer of several journals including IEEE
Access, IEEE Comm. Letters, MDPI Sensors, Elsevier Vehicular Comms. and
Springer AJSE. His research interests include IoT, 5G and wireless networks,
autonomous transportation systems, machine learning, Industry 4.0 and digital
twins.

Mehmet Karamanoglu is currently serving as the
Head of Department of Design Engineering and
Mathematics in the Faculty of Science and Tech-
nology at Middlesex University and Professor of
Design Engineering. He is a member of several
professional bodies and societies, including a Fel-
lowship at Institution of Mechanical Engineers and
the Royal Society of Arts. He has spent significant
length of time working in collaboration with industry
in a variety of sectors and has managed numerous
Knowledge Transfer Partnership projects in the field

of Manufacturing Engineering and Automation. His research interest includes
engineering education, interplay between art, design and engineering, ad-
vanced manufacturing including optimisation, mechatronics and robotics. His
recent work included mass customisation, developing autonomous systems
and he is currently working on mathematical optimisation techniques and
cognitive manufacturing. In his wider area of work, he is the UK national
expert for Mechatronics and Automation competitions for WorldSkills UK.

Balbir Barn is Professor of Software Engineering
in the Computer Science Department at Middlesex
University. Balbir has extensive commercial research
experience working in research centres at Texas
Instruments and JP Morgan Chase as well as leading
on academic funded research (Over £2.5 million).
Balbir’s research is focused on model driven soft-
ware engineering where the goal is to use models as
abstractions and execution environments to support
complex decision making. In collaboration with TCS
research labs, Balbir is working on model driven

approaches for supporting Manufacturing 4.0 contexts through the design
and implementation of a simulation environment for Digital Twins that
accommodates value sensitive design principles. Balbir has published over
120 peer-reviewed papers in leading international conferences and journals
and is currently editing a book on the “Digital Enterprise” with IGI-Global.

Dattaprasad Shetve worked as a Junior Research
Fellow on the Digital Twin Modelling for Automa-
tion, Maintenance and Monitoring in Industry 4.0
Smart Factory project. He obtained his MTech de-
gree in Industrial Automation and Robotics from
Manipal Institute of Technology, Manipal (2019) and
BE in Electronics Engineering from Goa College of
Engineering. His area of interest includes Embedded
Systems, Real-Time Operating Systems, Bare Metal
Programming, Embedded Linux, Device Driver De-
velopment.

Raja Prasad obtained his Ph.D. degree from Indian
Institute of Technology Hyderabad in the year 2016
under the supervision of Dr.P. Rajalakshmi. He is
currently working as an Assistant Professor with
Indian Institute of Information Technology, Sri City.
His research areas are centered on Wireless Sensor
Networks, Wireless Sensor and Actuator Networks,
Smart Buildings, Net Zero Energy Buildings, Wire-
less Protocols for IoT applications, Smart Cities au-
tomated wireless sensor networks, Green networks,
and Internet of Things.

Hrishikesh Venkataraman did his MTech from IIT
Kanpur, from 2002-04 and his MTech thesis from
Vodafone Chair for Mobile Communications, TU
Dresden, Germany in 2003-04.Subsequently, he did
his PhD from Jacobs University Bremen, Germany
where he was awarded the best Graduate Student in
September 2007. Dr. Venkataraman’s area of interest
is in wireless communication, connected cars and
device-to-device communication. Dr. Venkataraman
has more than 13 years of industry and research
experience, having worked with Irish national cen-

tre–RINCE (Research Institute for Networks and Communication Engineer-
ing), CTO Office of Tech Mahindra and Microverse Automation Pvt. Ltd. Dr.
Venkataraman is currently an Associate Professor and Faculty-in-Charge for
RD activities at Indian Institute of Information Technology (IIIT) Sri City, AP,
India. He has 3 PhD students and several research Honours students working
under him. Dr. Venkataraman has more than 60 publications in different
international conferences and journals, including in ACM, Elsevier, IEEE,
IET and Springer. He has edited 3 books, has one granted US patent, one
contribution in European Telecom Standards Institute (ETSI) and has been an
Editor of European Transactions of Telecommunications (ETT) for 5 years.



IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 38

Ramona Trestian is a Senior Lecturer with the
Design Engineering and Mathematics Dept., Mid-
dlesex Univ., London, UK. She received her Ph.D.
degree from Dublin City Univ., Ireland in 2012. She
published in prestigious international conferences
and journals and has five edited books. Her research
interests include mobile and wireless communica-
tions, quality of experience, multimedia streaming,
handover and network selection strategies, digital
twin modelling, etc. She is an Associate Editor of
the IEEE Communications Surveys and Tutorials.

Huan X. Nguyen (M’06–SM’15) received the B.Sc.
degree from the Hanoi University of Science and
Technology, Vietnam, in 2000, and the Ph.D. degree
from the University of New South Wales, Australia,
in 2007. He is currently a Professor of Digital
Communication Engineering at Middlesex Univer-
sity London (U.K.), where he is also the Director
of the London Digital Twin Research Centre and
Head of the 5G/6G & IoT Research Group. He leads
research activities in digital twin modelling, 5G/6G
systems, machine-type communication, digital trans-

formation and machine learning within his university with focus on industry
4.0 and critical applications (disaster recovery, intelligent transportation, e-
health, and smart manufacturing). He has been leading many council/industry
funded projects, publishing 130+ peer-reviewed research papers, and serving
as chairs for international conferences (ICT’21, ICEM2021, ICT’20, ICT’19,
IWNPD’17, PIMRC’20, FoNeS-IoT’20, ATC’15).


	Introduction
	Background and Motivation
	Related Surveys
	Survey Contributions
	Survey Structure

	Definitions of the Digital Twin
	Market Potentials and Trends
	Digital Twin: Enabling Technologies
	Machine Learning
	Cloud, Fog, and Edge Computing
	Internet of Things
	Cyber-Physical Systems
	Virtual Reality and Augmented Reality (VR/AR)
	Modeling Methodologies

	Digital Twin: Use Cases and Services
	Use Cases
	Smart Factory and Industry 4.0
	Infrastructure
	Towards 5G/6G with Digital Twin

	Services
	Anomaly Detection
	Predictive Maintenance


	Digital Twin: Case Studies
	A Look at the Tea Industry in India
	Festo Cyber-Physical Factory
	Structural Health Monitoring for Vietnam bridges

	Lessons Learned, Research Challenges and Future Directions
	Investment costs
	Social and ethical challenges
	Fidelity and rate of synchronization
	Standardisation efforts
	Data ownership and governance
	Data security
	Artificial General Intelligence, beyond human performance

	Conclusions
	References
	Biographies
	Stefan Mihai
	Mahnoor Yaqoob
	Dang V. Hung
	William Davis
	Praveer Towakel
	Mohsin Raza
	Mehmet Karamanoglu
	Balbir Barn
	Dattaprasad Shetve
	Raja Prasad
	Hrishikesh Venkataraman
	Ramona Trestian
	Huan X. Nguyen


