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Abstract

A novel encryption model for digital videos is presented. The model
relies on the encryption-compression duality of certain types of permuta-
tions acting on video frames. In essence, the proposed encryption process
preserves the spatial correlation and, as such, can be applied prior to the
compression stage of a spatial-only video encoder. Several algorithmic
modes of the proposed model targeted for different application require-
ments are presented and analyzed in terms of security and performance.
Experimental results are generated for a number of standard benchmark
sequences showing that the proposed method, in addition to providing
confidentiality, preserves or improves the compression ratio.

1 Introduction

Application-specific video encryption represents an important problem in multi-
media security. In order to support a wide range of real-world video applications,
an encryption algorithm should be designed within a specific video compression
framework. Conventional encryption is designed for generic data, and as such,
it does not support many specific video application requirements. For instance,
video encryption algorithms that support one or more of the following applica-
tion requirements are often needed:

1. Perceptual quality control. An encryption algorithm can be used to inten-
tionally degrade the quality of perception, but still keep the video visually
perceivable.

2. Format compliance. It could be desired that the encryption algorithm
preserves the video compression format, so that the ordinary decoders
can still decode the encrypted video without crashing.

3. Codec standard compliance. A typical video system is likely to consist of a
premanufactured standard-conforming encoder and decoder modules, and
a video encryption method that requires no modification to either of the
two modules is often desirable.
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4. Minimal processing speed. In many real-time video applications, it is im-
portant that the encryption and decryption algorithms are fast enough to
ensure the minimal processing speed needed for the normal video system
functioning.

5. Constant/near-constant bitrate. It is often required that the encryption
transformation preserves the size of a bitstream, where the output pro-
duced by an encryption-equipped encoder and the output produced by an
ordinary encoder have same or similar sizes.

In general, two basic research methodologies for digital video encryption
are used to provide support to aforementioned application requirements. Selec-
tive encryption algorithms perform conventional or non-conventional encryption
only on certain selected parts of the video bitstream. In this type of algorithms
the encryption step occurs either during or after encoding. For instance, Meyer
and Gadegast [1] proposed to encrypt only the headers of the highest four layers
in MPEG stream (sequence layer, GOP layer, picture layer and slice layer), and
optionally also the first macroblock after each slice header or all I-frames and all
intracoded macroblocks. Spanos and Maples [2] suggested to encrypt I-frames of
all MPEG groups of frames, the MPEG video sequence header (which contains
all of the decoding initialization parameters such as the picture width, height,
frame rate, bit rate and buffer size), and the ISO end code. Bhargava, Shi and
Wang [3] proposed to encrypt only the sign bits of the DCT coefficients and
differential values of motion vectors in P- and B-frames of MPEG video. In
approach by Li et al. [4] only the fixed length coded (FLC) data elements of
a video stream are encrypted. However, the following security issues regarding
selective encryption have been identified: (1) encrypting only I-frames of a video
sequence does not provide enough security against ciphertext-only attacks, since
the unencrypted B- and P-frames can reveal partial visible information [5]; (2)
neither encrypting the sign bits nor encrypting multiple significant bits of the
DCT coefficients is secure enough against ciphertext-only attacks utilizing the
unencrypted bits [6]; (3) if all encrypted DCT coefficients are set to fixed values,
it is possible to recover a rough view of the plaintext frame [7, 8]. In addition,
many selective approaches require modification to both standard encoder and
decoder, and a number of approaches result in a format defiant video stream.

The second type of algorithms use a non-conventional full encryption method-
ology, where the encryption is performed on the entire bitstream using a non-
conventional encryption algorithm. Most of these algorithms are targeted for
speed. Methods relying on fast chaotic maps are promising due to their fast
performance. Although many chaotic encryption approaches were shown to be
insecure, there are chaotic encryption algorithms that, up to date, remain un-
broken, such as the method of Li et al. [9]. An excellent overview of these
approaches, along with their comparative security analysis is presented in [10]
and [11]. There are a few recently proposed fast, hardware-friendly full en-
cryption methods that are based on a class of neural networks [12]. However,
these methods were later shown to be less secure than originally anticipated
[13]. There are also non-conventional full approaches based on other mathe-
matically hard problems, but most of them have been shown insecure due to
oversimplification. For example, Yi et al. [14] proposed a new fast encryption
algorithm for multimedia (FEA-M), which bases the security on the complexity
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of solving nonlinear Boolean equations. The scheme was shown insecure against
several different attacks [15, 16]. In addition to questionable security, most non-
conventional full encryption approaches are applied after encoding which does
not support format compliance requirements. Also many of these algorithms are
obsolete in recent years after the wide adoption of Advanced Encryption Stan-
dard (AES) that offers much faster performance in comparison to the previous
conventional cryptosystems, including Data Encryption Standard (DES).

An approach to video encryption where the encryption step occurs before
encoding is attractive since many of the application requirements are inherently
supported. However, most encryption algorithms have a property to randomize
the source data and thus negatively affect compression performance of an en-
coder. The first attempt to creating an encryption scheme that preserves the
compressibility of the source was made by Pazarci and Dipçin [17], in which the
encryption occurs in the RGB color space using four secret linear transforms
before the video is compressed by the MPEG-2 encoder. However, in [4] it was
shown that the scheme is not secure against brute-force attacks where searching
complexity is estimated to a computationally feasible number of possibilities,
and that the scheme is not secure against known/chosen-plaintext attacks. Also,
the scheme by Pazarci and Dipçin necessarily produces a perceivable output with
degraded quality but does not offer a mode where the output encrypted video
is non-perceivable. An encryption scheme of much stronger security based on
permutations of video frames was proposed in [18], and in this work we extend
this approach to a family of algorithms that can be used for variety of video
applications.

The rest of the paper is organized as follows. Section 2 introduces permu-
tations and examines their dual role in areas of data compression and data
encryption. The proposed video encryption algorithms based on permutation
transformations are presented in Section 3, while in Section 4 a thorough se-
curity analysis is performed. Experimental results showing the performance of
proposed algorithms are given in Section 5. Finally, Section 6 serves to present
our conclusions and ideas for future work related to this research.

2 Duality of Permutations

Permutation-based transformations are basic building blocks for many compres-
sion and encryption techniques. However, the dual use of these transformations
has not been extensively studied. In this work we analyze the compression-
encryption duality of permutations and develop actual methodologies for the
dual use of certain permutation-based transformations in domain of digital video
compression and encryption. To set the stage for the later discussion, some pre-
liminary definitions are established next.

2.1 Permutations on Sequences

A video frame can be represented in a one-dimensional finite sequence using
raster scan order. A permutation of a finite sequence s is a bijection from s
onto itself. Permutation P is often represented by its Cartesian form or brackets
form denoting the indices for the rearrangement of s:

P = [ i1 i2 . . . in ],
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where ij , 1 ≤ j ≤ n, is a sequence of n unique indices of elements of s, and n
is the size of s. The family of all permutations on a sequence of size n forms
an algebraic group under functional composition, denoted by Sn. P is called
sorting permutation of s if it rearranges s in ascending order. We use sf1

1 , . . . , sfk

k

to denote the histogram of s, where s1, . . . , sk are distinct elements of s in the
ascending order and fi the frequency of element si.

Theorem 1. If a histogram of finite sequence s is sf1

1 , . . . , sfk

k , there are exactly
f1! × . . . × fk! sorting permutations of s.

Proof. Let P be a sorting permutation of s. The indices corresponding to the
positions of s1 appear in the first f1 places of the Cartesian form of P , the in-
dices of s2 appear in the second f2 places, and so on. Thus, one can partition P
into k segments of indices of sizes f1, . . . , fk, and rearranging the indices within
each segment results in another sorting permutation of s since the indices corre-
spond to same values. At the same time, exchanging elements across segments
disrupts ascending order of the resulting rearrangement of s, and the corre-
sponding permutation is not a sorting permutation. Since there are fi! ways of
rearranging indices of the i-th segment of the Cartesian form of P , there are
exactly f1! × f2! × . . . × fk! sorting permutations of s.

Thus, if a frame F is of dimension w × h, rearrangements of pixel values
from F are achieved when permutations from Sw×h act on the corresponding
raster scan sequence. If F has k colors, and f1, . . . , fk are frequency values of
the color histogram of F , then according to Theorem 1 there are f1!× . . .× fk!
permutations in Sw×h that sort frame F .

2.2 Permutations and Compression

Permuting a sequence affects the correlation of the neighboring samples. If a
random permutation acts on a sequence, the correlation of the neighboring sam-
ples is likely destroyed and the compressibility is decreased. On the other hand,
if a sorting permutation acts on a sequence, the sample-to-sample correlation
of the symbols is the best possible, and thus very suitable for RLE coding and
similar compression primitives that exploit such correlation.

Many compression algorithms that assume neighboring sample correlation
in the source, such as the image and video coding methods, are likely to take
advantage of the sorted signal and produce very good compression. Figure 1
illustrates how compressibility of a natural image dramatically changes when
pixel values are rearranged according to either a random permutation or a sort-
ing permutation.

2.2.1 Compressing a Sorting Permutation

Even though certain permutations, such as sorting permutations, can affect the
compression of source data in the positive way, compression of the permutation
itself is usually not efficient. If a permutation P of degree n, i.e. P ∈ Sn, is
to be transmitted, an obvious way is to represent P as a sequence of length n,
consisting of unique log2 n-bit indices corresponding to a Cartesian form of P .
Total transmission cost is in that case n log2 n bits. If an ordering of permu-
tations from Sn is fixed, such as the lexicographic ordering, each permutation
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have its own index according to that ordering. For permutations with small
indices transmitting the index itself could be more efficient, but in the worst
case the cost of this transmission is log2 n!. This approach is analogous to a
fixed dictionary compression approach. Unfortunately, sorting permutations of
a natural image usually do not have lexicographically small index to compress
well. Furthermore, for frames with k-bit color palette, where k < log2 n, it is
cheaper to send an uncompressed frame (nk bits) from which the sorting per-
mutation can be calculated, than to directly transmit the sorting permutation
using n log2 n bits.

Thus, directly compressed source data is usually smaller in size than com-
pressed permuted source data plus the compressed permutation that is used to
recover the original order of the source. If efficient compression can be per-
formed on a source data, which is the case for natural images and video frames,
it is likely that the cheapest way to transmit a sorting permutation is to trans-
mit the compressed source from which the receiver can calculate the sorting
permutation after uncompressing the received data. This reveals the rationale
used in the proposed algorithms.

2.3 Role of Permutations in Data Compression

Permutation-based transformations were considered to serve as a compression
primitive in the past. In [19], Burrows and Wheeler introduced one such trans-
formation, which is referred to as the Burrows-Wheeler transformation (BWT).
The authors presented an approach called Block Sorting Lossless Data Com-
pression Algorithm, which combined BWT with move-to-front coding and a
standard compressor such as Huffman coding or arithmetic coding. The algo-
rithm reportedly achieves compression rates similar to that of content-based
lossless methods, but at execution times comparable to that of the fast general-
purpose lossless compressors, such as Ziv-Lempel techniques. The work by
Burrows and Wheeler was further investigated and improved by Deorowicz [20].
Using the concept of permutation codes, Arnavut and others also studied ap-
plications of permutations and permutation codes to the compression of digital
images [21]. According to study by Arnavut and Otu a good compression is
achieved when BWT is used in lossless compression of color-mapped images

(a) (b) (c)

Figure 1: Compressibility of a natural image affected by permutations: (a) the
original 256×256 greyscale image Lena [GIF=66.5KB], (b) randomly permuted
image Lena [GIF=85.3KB], and (c) sorted image Lena [GIF=7.38KB]
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where pixel values represent indices that point to color values in a look-up table
[21]. In [22], Arnavut and Magliveras introduced Lexical Permutation Sorting
Algorithm (LPSA), a more generalized version of BWT which has better per-
formance than BWT when transmitting permutations. Sample reordering is
used in many transform-based image and video coding methods. Specifically,
in JPEG and MPEG type of image and video compression, a special reordering
(permutation) is used to reorder transform coefficients (e.g. DCT coefficients)
in a fixed order that allows for a more efficient symbol entropy coding. Although
some alternate reorderings exist for certain applications, best performance on
average is expected when the coefficients are permuted according to a zig-zag
ordering.

2.4 Permutations and Encryption

Permutations are used extensively as an encryption primitive in modern
symmetric-key cryptography. In addition, there is a significant number of
permutation-only encryption algorithms proposed in both analog and digital
image and video encryption.

In most modern symmetric-key cryptosystems, permutations are used for
data diffusion. Systems such as AES or DES are essentially a Substitution-
Permutation Networks, or shortly S-P Networks, where permutation transfor-
mations are employed in every round. In fact, most symmetric-key block ciphers
rely on permutations of symbols (e.g. bits) in order to provide data diffusion
[23]. In addition, there are cryptosystems based solely on transformations that
use permutation groups. For instance, cryptosystem PGM (Permutation Group
Mapping) is based on logarithmic signatures of finite permutation groups [24].

Permutations are extensively used in analog video encryption. Techniques
such as scan line shuffling [25] or pixel position shuffling [26, 27, 28] represent
common approaches for analog video encryption. Similarly, in digital video
encryption domain, secret permutations are widely used to shuffle the positions
of pixels [29], but also to shuffle DCT/wavelet coefficients [30, 31], Huffman
table codewords [3], and even blocks or macroblocks [32]. These algorithms are
based solely on secret permutations that are generated by a secret key.

Video encryption algorithms based solely on secret permutations often re-
ceive harsh criticism. In [32] it is pointed out that these algorithms are in-
herently and necessarily insecure against several types of cryptanalysis, includ-
ing known-plaintext, chosen-plaintext and chosen-ciphertext attacks. The au-
thors even discuss cryptanalytic techniques that are universally applicable to
all permutation-only encryption algorithms. While the main proposal of this
dissertation technically belongs to this category of algorithms, there is a crucial
difference between the algorithms proposed here and the previously proposed
permutation-only encryption algorithms. In Section 4 it is discussed in more
detail why this difference makes the algorithms proposed in this work robust
against the various attacks presented in [32].

3 Correlation-Preserving Video Encryption

Most encryption algorithms have a randomization effect on the source data,
and as such, can not be effectively applied before the compression stage. In
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Output Video


Figure 2: Block diagram of an approach where encryption occurs before video
encoding (compression).

this section we present a set of encryption algorithms for spatial-only video
coding based on permutation transformations that have a correlation-preserving
property. Using these algorithms, one can perform encryption prior to video
encoding, as illustrated in Figure 2.

The basic idea behind the permutation-based methodology for correlation-
preserving video encryption is as follows. Sorted, as well as “almost sorted”
frames are strongly spatially correlated. Such permuted frames are in many
instances even more compressible in terms of spatial-only coding than the orig-
inal source frames. When a sorting permutation of the previous frame acts on
the current frame, it produces what we refer to as an “almost sorted” frame.
Transmitting a compressed frame from which the initial permutation can be
computed is efficient. Once an initial permutation is transmitted through a se-
cure channel, the sender uses it to “almost sort” the next frame. In Section 4 it
is shown that, except in rare circumstances, a sorted or “almost sorted” frame
can be safely sent through the regular, non-secure channel. By calculating a
sorting permutation of the received frame, the receiver uses it to recover the
next frame, and so on. This way the spatial correlation within frames of a video
sequence is expected to be preserved, if not improved, when static-camera low-
motion sequences (e.g. video conferencing or telephony) and spatial-only video
codecs (e.g. Motion-JPEG) are used.

3.1 Global System Settings

The system is assumed to have two channels of communication (in physical or
abstract sense). ChR denotes a regular, non-secure channel where all messages
are plain and open for eavesdropping, while ChS denotes a secure channel that
can also be eavesdropped, however, the messages are encrypted using a secure
communication protocol based on a conventional cryptosystem such as AES.
In our model, a video consists of one or more scenes and each scene consists
of a sequence of frames F1, F2, . . . , Fm. For a given frame, there are likely a
large number of sorting permutations of it (see Theorem 1). The system must
fix a method by which a unique sorting permutation is always selected for a
given image. Figure 3 illustrates a method that we used for computing a unique
sorting permutation for a given frame. This particular method is based on a
modification to a recursive quicksort algorithm, however, similar approach can
be used with other sorting methods.
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Initialization: Set a to a copy of w×h frame F , p to [0 1 2 . . . (w×h)− 1]
(the identity permutation with zero-based index), l to 0, and r to (w × h) − 1.
Input: a, p, l and r.

1. Set i = l − 1, j = r, and v = a[r]

2. If r ≤ l return from the algorithm

3. Start an infinite loop and do the following:

(a) Set i = i + 1

(b) While a[i] < v do the following:

i. Set i = i + 1

(c) Set j = j − 1

(d) While v < a[j] do the following:

i. If j = l break from this while loop

ii. Set j = j − 1

(e) If i ≥ j break from the infinite loop

(f) Exchange a[i] and a[j]

(g) Exchange p[i] and p[j]

4. Exchange a[i] and a[r]

5. Exchange p[i] and p[r]

6. Recursively call this algorithm with a = a, p = p, l = l and r = i − 1

7. Recursively call this algorithm with a = a, p = p, l = i + 1 and r = r

Figure 3: Modified recursive quicksort algorithm for computing the unique sort-
ing permutation of a given frame.

3.2 Basic Algorithms

If F is a frame of size n = width of F × height of F , let P (F ) be a frame
obtained by permuting the elements of F according to a permutation P from
Sn. The inverse of permutation P is denoted by P−1. For a given frame Fi, let
Pi denote the unique sorting permutation obtained by the modified quicksort
method from Figure 3. The encoding of frame F is denoted by E(F ), and D(F )
denotes the decoding of F . The basic algorithm for lossless video coding is
described in Figures 4 and 5 (encryption and decryption, respectively). The
algorithm for spatial-only lossless video encryption faithfully corresponds to
the model from Figure 2 where encryption completely precedes video encoding.
This is achieved by creating “almost sorted” frames that are sent through open
channel ChR. In spatial-only lossless video encoding adaptive dictionary-based
compression primitives are often used to exploit neighboring pixel correlation
prior to applying entropy coding. In particular, this technique is employed in
Animated GIF and Motion PNG coding. Sorted and “almost sorted” data is
well-suited to this type of compression. Compression with a pixel prediction
model, such as the one used in Motion JLS (lossless JPEG), also relies on
correlation of the currently encoded pixel and the pixels in the neighborhood
area. In Motion JLS, for instance, a current pixel is predicted in raster order,
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Input: Raw video sequence (or scene) F1, . . . , Fm.

1. Alice first computes the permutation P1 from frame F1.

2. Alice calculates E(F1) and transmits it through ChS.

3. For each subsequent frame Fi, i = 2, . . . , m, Alice does the following:

(a) She computes the permutation Pi and the frame Pi−1(Fi);

(b) Alice then applies the standard encoder to the frame Pi−1(Fi) and
transmits the encoded frame E(Pi−1(Fi)) to Bob through ChR.

Figure 4: Basic encryption algorithm for lossless spatial-only video coding.

Input: Encoded first frame E(F1) and encrypted encoded subsequent frames
of a video sequence (or scene) E(P1(F2)), . . . , E(Pm−1(Fm)).

1. Bob computes D(E(F1)) = F1 and obtains the permutation P1.

2. For each successive received frame E(Pi−1(Fi)), i = 2, . . . , m, Bob does
the following:

(a) Computes D(E(Pi−1(Fi))) = Pi−1(Fi) and calculates Fi =
P−1

i−1(Pi−1(Ii)) where P−1

i−1 is the inverse permutation of Pi−1;

(b) Calculates the permutation Pi of Fi.

Figure 5: Basic decryption algorithm for lossless spatial-only video coding.

from pixels directly on top, to the diagonal and to the left of the current pixel.
Sorted and “almost sorted” data are also suitable for this compression model.

Similar, but slightly different approach to video encryption can be taken
when dealing with lossy spatial-only video coding. However, to compensate for
the loss of data and to prevent error propagation issues, “almost sorting” permu-
tations must be calculated on the compressed frames which results in somewhat
more involved encryption step. The algorithm (encryption and decryption) tar-
geted for lossy video coding is depicted in Figures 6 and 7, respectively. This
algorithm requires a compression stage as a preprocessing to the encryption, so
technically it does not exactly corresponds to the Figure 2. When compression
is seen as a preprocessing step, the algorithm should still be considered to be
a pre-compression encryption approach, and as such, inherently possesses the
nice properties such as codec-standard compliance and format-compliance.

In lossy transform-based coding of digital images and video frames, typically
a block of pixels undergoes the transformation such as DCT or wavelet. The
given block of pixels represents a small sub-image of the image or frame, thus
containing a set of two-dimensional neighboring pixels. In this setting sorted
and “almost sorted” images and frames compress well. If the sorted and “almost
sorted” data is grouped in to the blocks of the same size that is used in transform
coding, the compression is further improved, as indicated by an example in
Figure 8.

The computational complexity of the proposed method is very low at the
decoder side for both lossless and lossy video coding, since the only additional
computation that has to be performed involves the calculation of a sorting per-
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Input: Raw video sequence (or scene) F1, . . . , Fm.

1. Alice first computes E(F1) and then F ′

1 = D(E(F1)) from which she
obtains the unique sorting permutation P ′

1.

2. Alice sends E(F1) through ChS to Bob.

3. She computes E(P ′

1(F2)) and sends it through ChR to Bob.

4. Next, she computes F ′

2 = D(E(P ′

1(F2))) and then F ′′

2 = (P ′

1)
−1(F ′

2) from
which she calculates the unique sorting permutation P ′′

2 .

5. For each subsequent frame Fi, i = 3, . . . , m, Alice does the following:

(a) Computes E(P ′′

i−1(Fi)), and sends it to Bob through ChR;

(b) Computes F ′

i = D(E(P ′′

i−1(Fi)));

(c) Applies (P ′′

i−1)
−1 to get F ′′

i = (P ′′

i−1)
−1(F ′

i );

(d) Calculates the canonical sorting permutation P ′′

i .

Figure 6: Basic encryption algorithm for lossy spatial-only video coding.

Input: Encoded first frame E(F1), encrypted encoded second frame E(P ′

1(F2))
and encrypted encoded subsequent frames of a video sequence (or scene)
E(P ′′

2 (F3)), . . . , E(P ′′

m−1(Fm)).

1. Bob calculates D(E(F1)) = F ′

1 ≈ F1 and sorting permutation P ′

1.

2. From E(P ′

1(F2)) he computes F ′

2 = D(E(P ′

1(F2))).

3. Bob approximates F2 ≈ F ′′

2 = (P ′

1)
−1(F ′

2).

4. He then recovers the unique sorting permutation P ′′

2 of F ′′

2 .

5. For each received frame E(P ′′

i−1(Fi)), i = 3, . . . , m, Bob:

(a) Decodes E(P ′′

i−1(Fi)) into F ′

i = D(E(P ′′

i−1(Fi)));

(b) Approximates Fi ≈ F ′′

i = (P ′′

i−1)
−1(F ′

i );

(c) If i < m he calculates a sorting permutation P ′′

i of F ′

i .

Figure 7: Basic decryption algorithm for lossy spatial-only video coding.

mutation. The algorithm from Figure 3 used to calculate the unique sorting per-
mutation of a given frame has a computational complexity of only O(N log N).
Inverting or applying a permutation is equivalent to a table lookup.

The basic algorithms proposed in this section can be extended to accommo-
date for additional application requirements. For instance, these algorithms do
not offer perceptual quality control, cannot handle global camera motion such
as translation, and do not support VCR-like functionality. Next, we introduce
several extensions to the basic algorithms in order to support these additional
application requirements.

3.3 Extensions to Basic Algorithms

The following extensions to the basic algorithms from Figures 4, 5, 6 and 7 are
established in order to broaden their applicability:
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(a) (b) (c)

Figure 8: Improving compressibility by adhering to block size used in transform-
based coding: (a) 256 × 256 greyscale image Lena [JPEG=6.95KB], (b) sorted
image Lena in raster order [JPEG=1.81KB], and (c) image Lena fully sorted
and arranged according to 8 × 8 blocks conforming to the encoder’s transform
coding block size [JPEG=1.09KB]. The compression quality parameter of JPEG
encoder was set to 50 (where 0 is the best quality and 100 the worst).

• Block-based extension for perceptual quality control

• Extension for handling global camera translational motion

• Extension for hiding the histogram

• Extension for enabling VCR-like functionality and better error resilience

3.3.1 Block-Based Approach

The proposed algorithm can be applied on individual blocks within a frame the
same way it is applied on the entire frame. By doing so, two different features
are achieved: (1) the algorithm is more robust to high motion within a frame as
long as the motion is limited to small number of blocks, and (2) by controlling
the block size one can also control the degree of perception in the sense that the
video becomes degraded (blocky) but perceivable for smaller blocksizes. This
algorithmic mode is illustrated in Figure 12 (g), (h) and (i).

3.3.2 Extensions for Handling Global Camera Motion

Unfortunately, the basic algorithms cannot handle camera motion well, since
the sorting permutation of the previous frame will, in the case of global motion,
not create almost sorted data when applied to the data of the current frame.
However, if a global translational camera motion is known, for instance by using
some motion estimation methods as a preprocessor, it is possible for the receiver
to readjust the sorting permutation accordingly by sending this information to
the receiver’s side.

Assuming that the camera moves in a simple translational motion, as illus-
trated in Figure 9, where x and y represent the amount of pixels that camera
moved within x-axis and y-axis respectively, the sorting permutation can be
readjusted to almost sort the current frame provided that the values of x and y
are given.
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Figure 9: Translational camera motion.

Input: Sorting permutation Pi of w × h frame Fi, and a global horizontal and
vertical camera translational motion from frame Fi to frame Fi+1, denoted by
x and y respectively.

1. Set c = 0 and d = w × h

2. For 0 ≤ k < w × h do the following:

(a) Set i = x + Pi[k] mod w

(b) Set j = y + bPi[k]/wc

(c) If j < h, j ≥ 0, i < w and i ≥ 0 then set P ′

i [c] = j × w + i and
increment c by 1

(d) Otherwise, set P ′

i [d] = (j mod h)×w + (i mod w) and decrease d
by 1

Figure 10: Permutation readjustment algorithm to handle global translational
motion.

Suppose a scene in which no movement occurred is captured with a camera
that solely moved horizontally on x-axis a distance that translates to exactly
x pixels and vertically on y-axis a distance that translates to exactly y pixels.
Note that the value of x is positive if the camera moves to the right, and negative
if it moves to the left, while value of y is positive if the camera moves down,
and negative if it moves up. The algorithm presented in Figure 10 is used for
readjusting the sorting permutation of frame Fi, represented with zero-based
index and denoted by Pi, into P ′

i to make it more suitable “almost sorting”
permutation of the next frame Fi+1.

3.4 Histogram-Hiding Extension

Histogram information in the basic model is known when the “almost sorted”
frames are sent through the regular channel. Thus, from a security point of view,
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(a) (b) (c) (d)

Figure 11: Readjustment of the sorting permutation: (a) previous frame, (b)
current frame with global motion x = 6, y = −4, (c) frame sorted with a sorting
permutation of the previous frame, and (d) frame sorted with a readjusted
sorting permutation of the previous frame.

it is a good idea to hide the histogram from the adversary. Since the original
histogram is actually secret, it is possible to hide the rest of the video his-
tograms by subtracting the sorted image (the histogram) of the previous frame
from the currently “almost sorted” frame, which introduces some computational
overhead in order to compute the differences. This extension can be combined
with a block-based extension to either provide some limited perceptual encryp-
tion and to restrict the motion-related permutation noise to the block where
motion occurred, as illustrated in Figure 12 (k) and (l). This transformation
is equivalent to applying a secret permutation (or secret permutations in the
case of block-based approach with histogram-hiding extension) on the ordinary
frame differences, where a given permutation changes significantly from frame
to frame.

Given two w × h video frames I and J , the frame difference between I and
J , denoted by ∆(I, J), is defined as follows:

∆(I, J)[x, y] = clip(I[x, y] − J [x, y] + b
xpeak

2
c), 1 ≤ x ≤ w, 1 ≤ y ≤ h,

where I[x, y] denotes the pixel value of I at coordinates (x, y), xpeak the max-
imum pixel value (e.g. 2n − 1 for n-bit-per-pixel frames), and clip(·) is the
following function:

clip(x) =







xpeak, x > xpeak;
0, x < 0;
x, 0 ≤ x ≤ xpeak.

One should note the following property regarding frame differencing and
permutations. For two given w×h frames I and J and a permutation P ∈ Sw×h,
the following holds:

∆(P (I), P (J)) = P (∆(I, J)).

In the proposed extension, it is more efficient from the computational point
of view to perform the transformation Pi(∆(Fi, Fi+1)) than the transformation
∆(Pi(Fi), Pi(Fi+1)).

In the histogram-hiding extension, the spatial correlation is likely improved
over the base approach (see Section 5). When additional computation is allowed,
this extension usually reduces bitrate. A sole frame differencing technique can
be used to achieve a limited form of perceptual encryption provided that the
initial frame is kept secret, however, it is not an effective perceptual encryption

13



mechanism since difference frames carry too much visible information about
the content and additional encryption transformation is necessary to provide
confidentiality. When combined with block-based extension, histogram-hiding
approach achieves perceptual encryption with a considerably limited quality
control. Thus, the recommended use of this extension is with the basic algo-
rithms where entire frames are permuted.

3.5 Extension for Enabling VCR-like Functionality and

Improved Error Resilience

Just like in MPEG video coding, there is a need for having self-decodable frames,
ones that are independent of previous or future frames. In the base scheme,
the current frame is always recoverable from the sorting permutation of the
previous frame, and as such, the scheme cannot handle VCR-like functionality
or frame dropping caused by noisy channels or other communication errors.
However, these functionalities can be achieved in the following way. The sorting
permutation of the first frame (the key frame) can be used to “almost sort”
every k-th frame. The loss in compression gain is expected to be small since
the assumption that all frames are part of a single scene holds. By doing so,
the receiver can fast forward or rewind the video up to a k-th frame, and frame
dropping will affect only frames up to the next k-th frame. This strategy is
analogous to the strategy used in MPEG-like algorithms, where GOP (group of
pictures) with repetitive I-frames are utilized.

4 Security Analysis

This section serves to analyze security aspects of the proposed methods. The
security strengths and weaknesses are pointed out.

Brute-Force Attack. Brute-force attack is based on exhaustive key search,
and is feasible only for the cryptosystems with relatively small key space. In
our case, the brute-force attack consists of two possible venues: one could either
attack the underlying conventional cryptosystem used for encryption in channel
ChS, or the proposed permutation-based method used in channel ChR. For
that reason, it is recommended to use a strong conventional symmetric-key
cryptosystem, such as AES with 128-bit or stronger keys. The size of the key
space related to our permutation-based method is equivalent to the following:
given a color histogram of an w × h image F , how many different images can
be formed out of the histogram color values? Note that F is just one of these
images.

Let sf1

1 , . . . , sfk

k be the histogram of frame F . In [18] it was shown that the
number of different images that can be formed by permuting F is equal to the
size of the Sw×h-orbit of F , denoted by Sw×h(F ), under the group action of
Sw×h on the set of all possible images of dimension w × h. Since

|Sw×h(F )| =
(wh)!

∏k
i=1

fi!
,

there are exactly (wh)!/
∏k

i=1
fi! different images with the same color histogram

sf1

1 , . . . , sfk

k . These distinct images determine the effective key space of our
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12: 150-th frame of the following sequences: (a) original Akiyo, (b)
sequence obtained by encrypting Akiyo with the basic encryption algorithm
for lossless coding and decoding it without decryption, (c) sequence obtained
by properly decrypting an encrypted Akiyo with lossless coding, (d) sequence
obtained by encrypting Akiyo with the basic encryption algorithm for lossy M-
JPEG coding (with quality 90) and decoding it without decryption, (e) sequence
decoded from a regular, not encrypted encoded Akiyo (compressed size 16KB,
PSNR 45.198dB), (f) sequence obtained by properly decrypting an encrypted
Akiyo using the proposed basic algorithm with M-JPEG coding (compressed
size 12KB, PSNR 41.737dB), (g)(h)(i) sequence obtained by encrypting Akiyo
with the block-based approach (blocksizes 32×32, 16×16 and 8×8, respectively)
for lossless coding and decoding it without decryption, and (j)(k)(l) sequence
obtained by encrypting Akiyo with the histogram-hiding approach combined
with the basic encryption algorithm and the block-based approach (blocksizes
32 × 32 and 8 × 8, respectively) for lossless coding and decoding it without
decryption.
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method. If one uses an n-bit conventional cryptosystem to encrypt key frames
in channel ChS, the actual key space of the proposed method is

min(2n,
(wh)!

∏k
i=1

fi!
).

The size of the key space depends on the color histogram of the encrypted
frame. As one can see, this number is extremely large when considering any
meaningful images of reasonable dimensions, and it is usually much larger than
brute-forcing 2n keys of the used conventional symmetric-key cryptosystem.

In the case of block-based algorithmic mode, the attacker is faced with a
smaller key space. If a blocksize of b×c is used, there are wh/bc blocks within a

frame. Suppose each i-th b× c block in F has the color histogram sfi1

i1 , . . . , sfik

ik .
Then, the size of the key space is

min(2n,

wh/bc
∏

j=1

(bc)!
∏k

i=1
fji!

),

which is for reasonable blocksizes, such as 8 × 8 or larger, still computationally
infeasible.

Known/Chosen-Plaintext and Chosen-Ciphertext Attacks. Permuta-
tion-only video encryption is considered weak against known/chosen-plain-text
attack, and a chosen-ciphertext attack [32]. However, all of the previously pro-
posed methods rely on generating the secret permutation using a secret key.
Under this scenario, all of the aforementioned attacks are trying to recover the
secret key (or a part of it) that was used for the current or future encryptions.
Our scheme does not rely on such a principle, and there is no secret key upon
which a permutation is generated. Our method relies on the sorting permutation
of the previous frame, and thus, a key is directly dependant of the plaintext.
Under a chosen-plaintext attack, the adversary can compute the sorting per-
mutation for the chosen frame, but this gives no information about the sorting
permutations for the unknown frames. Under a chosen-ciphertext attack, the
adversary can recover the unsorting permutation for the chosen encrypted frame,
but this gives no information regarding other unknown ciphertexts.

Known Weaknesses. A limited known-plaintext attack is applicable to our
method, because the adversary can recover all frames that follow the known
frame until the scene changes and key frame is updated. This, however, only
reveals that one scene, since the key is completely changed as soon as the scene
changes. This is a feature of all systems whose key depends on the plaintext.
In addition, if the adversary has the information on the possible videos to be
encrypted, he or she may be able to recognize which video sequence is being
transmitted from Alice to Bob by observing the publicly given pixel value his-
tograms of frames. Another related problem is the adversary’s ability to analyze
the properties of a given histogram for rough clues about the content. Namely,
cartoon pictures and real photos have different histograms, and photos of hu-
man faces usually have narrower histograms than photos of natural scenes [33].
Although limited, these attacks are unavoidable in the proposed scheme and
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the scheme should not be used when conditions are such that these attacks are
possible to launch by an adversary.

Histogram-hiding extension of the proposed algorithms is much more robust
against the second type of the known histogram attack since the adversary does
not have the actual color histograms of the frames needed to analyze the proper-
ties of a given histogram for rough clues about the content. Source recognition
attack still holds since the adversary have the access to the distribution of frame
differences in the encrypted video, a statistics that can reveal the previously
known video.

Even though some weaknesses have been identified, the proposed video en-
cryption algorithms are applicable to a majority of real-word video security
scenarios.

5 Experimental Results

To evaluate the performance of our method in terms of compression, experiments
are performed on six benchmark sequences in CIF (352×288) and QCIF (176×
144) formats. Table 1 shows the technical summary of the used sequences. The
following is a legend of acronyms used in Tables 2, 3, and 4:

• basic – basic algorithm operating on entire frames

• blk32 – block-based extension operating on 32 × 32 blocks

• blk16 – block-based extension operating on 16 × 16 blocks

• blk8 – block-based extension operating on 8 × 8 blocks

• basic+hh – basic algorithm with histogram-hiding extension operating on
entire frames

• blk32+hh – block-based extension operating on 32×32 blocks with histogram-
hiding extension

• blk16+hh – block-based extension operating on 16×16 blocks with histogram-
hiding extension

• blk8+hh – block-based extension operating on 8×8 blocks with histogram-
hiding extension

• none – encoding without encryption

Table 1: Sequences used in the experiments.

Sequence # of frames Format Bits/pixel

Hall Monitor 250 CIF 8
Akiyo 250 CIF 8
Mother Daughter 250 CIF 8
Grandma 100 QCIF 8
Claire 100 QCIF 8
Miss America 100 QCIF 8
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Table 2: Compression performance of the proposed encryption algorithms with
lossless spatial-only video coding.

Animated GIF
Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

basic 0.746 0.433 0.745 0.685 0.776 0.867
blk32 0.959 0.597 0.955 – – –
blk16 0.976 0.655 0.968 0.845 0.908 0.981
blk8 0.980 0.745 0.975 0.877 0.941 0.990
basic+hh 0.633 0.254 0.634 0.438 0.475 0.683
blk32+hh 0.657 0.264 0.654 – – –
blk16+hh 0.657 0.262 0.652 0.444 0.487 0.686
blk8+hh 0.658 0.259 0.650 0.445 0.487 0.688

Motion PNG
Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

basic 0.813 0.421 0.789 0.695 0.765 0.891
blk32 0.993 0.555 0.969 – – –
blk16 1.007 0.631 0.982 0.869 0.941 0.995
blk8 1.011 0.738 0.993 0.915 0.990 1.011
basic+hh 0.699 0.302 0.709 0.510 0.571 0.729
blk32+hh 0.713 0.314 0.713 – – –
blk16+hh 0.715 0.310 0.710 0.517 0.587 0.740
blk8+hh 0.716 0.307 0.708 0.518 0.583 0.743

Motion JLS
Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

basic 1.113 0.693 1.135 0.757 0.954 1.131
blk32 1.120 0.691 1.122 – – –
blk16 1.128 0.750 1.132 0.818 1.037 1.142
blk8 1.150 0.854 1.147 0.882 1.135 1.163
basic+hh 1.053 0.441 1.085 0.662 0.789 1.069
blk32+hh 1.049 0.445 1.056 – – –
blk16+hh 1.048 0.440 1.047 0.660 0.794 1.064
blk8+hh 1.046 0.433 1.035 0.664 0.797 1.064

Each sequence from Table 1 was encrypted with the proposed video en-
cryption algorithms and encoded with both lossless and lossy spatial-only video
coding. The encrypted sequences are evaluated in terms of compression per-
formance, and in case of lossy coding, also in terms of resulting PSNR. The
goal was to measure how the proposed correlation-preserving algorithms affect
compressibility. Tables 2 and 3 show the ratio of encrypted encoded bitsize and
the unencrypted encoded bitsize.

Finally, Table 4 shows the resulting PSNR for the lossy coding case. There is
often a modest loss of quality due to slight salt-and-pepper noise that is added to
the reconstructed (decrypted) video due to quantization, as depicted in Figure
12 (e) and (f).
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Table 3: Compression performance of the proposed encryption algorithms with
lossy spatial-only video coding.

Motion JPEG (Quality 90)

Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

basic 0.923 0.797 1.035 0.602 0.756 1.015
blk32 0.904 0.826 1.010 – – –
blk16 0.925 0.863 0.999 0.716 0.947 1.003
blk8 0.945 0.876 0.987 0.779 0.954 0.995
basic+hh 0.741 0.373 0.801 0.349 0.397 0.732
blk32+hh 0.709 0.340 0.700 – – –
blk16+hh 0.690 0.327 0.666 0.324 0.361 0.691
blk8+hh 0.664 0.305 0.636 0.317 0.346 0.658

Motion JPEG (Quality 70)

Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

basic 0.825 0.796 0.968 0.589 0.687 0.999
blk32 0.803 0.870 0.972 – – –
blk16 0.845 0.886 0.955 0.740 0.913 0.984
blk8 0.888 0.893 0.937 0.805 0.945 0.976
basic+hh 0.524 0.314 0.527 0.261 0.328 0.570
blk32+hh 0.487 0.309 0.460 – – –
blk16+hh 0.465 0.301 0.434 0.256 0.321 0.538
blk8+hh 0.449 0.288 0.418 0.255 0.316 0.522

Motion JPEG (Quality 50)

Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

basic 0.764 0.750 0.889 0.580 0.657 0.938
blk32 0.763 0.849 0.917 – – –
blk16 0.822 0.867 0.911 0.757 0.895 0.962
blk8 0.882 0.885 0.893 0.814 0.939 0.951
basic+hh 0.403 0.340 0.442 0.291 0.356 0.550
blk32+hh 0.374 0.332 0.409 – – –
blk16+hh 0.364 0.325 0.395 0.291 0.356 0.542
blk8+hh 0.372 0.320 0.390 0.293 0.355 0.535

6 Conclusions and Future Work

In this work, we present a methodology for encrypting a video content before the
compression phase, without significantly impacting the compression ratio. In
its core, the proposed approach is based on permuting the current frame with
a specific sorting permutation of a previous frame. The proposed algorithms
preserve, and in some instances even improve the spatial correlation of the source
data since “almost sorted” frames on average have a better spatial sample-to-
sample correlation than the actual frames. Therefore, spatial-only video codecs
can be enhanced with an encryption-equipped preprocessor and a decryption-
equipped postprocessor that can result in similar, slightly worse, or slightly
better compression performance but in the same time providing a significant
level of computationally provable security. In effect, the algorithm produces fully
application-friendly output and requires no modification to the codec modules.
Both security and performance analysis of the proposed method show that the

19



Table 4: Resulting PSNR (in dB) with lossy spatial-only video coding.

Motion JPEG (Quality 90)

Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

none 43.03 45.10 45.05 40.62 44.74 45.18
basic 38.76 41.50 39.61 41.14 41.81 41.14
blk32 39.03 43.04 40.64 – – –
blk16 39.94 43.17 40.93 41.66 43.16 42.10
blk8 40.23 43.25 41.22 41.40 43.16 42.37
basic+hh 39.98 46.15 41.35 45.05 46.12 43.47
blk32+hh 40.37 46.66 42.13 – – –
blk16+hh 40.57 47.00 42.47 45.44 46.80 43.96
blk8+hh 40.85 47.52 42.82 45.63 47.18 44.32

Motion JPEG (Quality 70)

Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

none 37.97 40.23 40.73 36.11 39.46 41.10
basic 33.38 36.04 34.27 35.98 36.23 35.61
blk32 34.90 37.42 35.42 – – –
blk16 35.42 37.70 35.88 36.34 37.26 36.70
blk8 35.72 38.03 36.39 36.19 37.35 37.18
basic+hh 36.09 42.91 38.36 43.47 43.53 40.67
blk32+hh 36.74 43.19 38.90 – – –
blk16+hh 37.13 43.56 39.27 43.72 44.11 41.03
blk8+hh 37.64 44.15 39.79 43.90 44.49 41.49

Motion JPEG (Quality 50)

Algorithm Hall Monitor Akiyo Mother Grandma Claire Miss Am

none 35.80 38.04 38.71 34.46 37.13 39.32
basic 31.27 33.84 32.33 33.72 34.01 33.49
blk32 32.76 35.03 33.47 – – –
blk16 33.25 35.43 33.98 34.05 34.83 34.55
blk8 33.63 35.81 34.61 33.99 35.04 35.10
basic+hh 34.95 41.02 37.51 42.35 42.09 39.78
blk32+hh 35.42 41.14 37.88 – – –
blk16+hh 35.82 41.39 38.21 42.51 42.49 39.93
blk8+hh 36.43 41.82 38.73 42.65 42.78 40.32

algorithms are computationally efficient and resistant to typical cryptanalytic
attacks.

There are several obvious applications in practice for which the proposed
algorithms are suitable. Industrial and business-related video telephony and
videoconferencing often requires confidentiality. The types of videos and price
of spatial-only codecs, such as M-JPEG, clearly suit the requirements of the
proposed encryption approach. Surveillance video monitoring is also a suit-
able application. In this application it is important not to use motion-based
coding since motion coding tends to reduce the spatial resolution, but more
importantly, interpolated video is inadmissible as evidence in many legal juris-
dictions. Due to recent terrorist attacks on western countries such as United
States and United Kingdom, airplane cockpits and other public transportation
places are monitored by their governments. Here, M-JPEG is currently the pre-
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ferred method as it allows each picture to be wholly compressed into a data file,
whereas MPEG derives frames from a sequence, storing mainly the differences
and use interpolated frames which really do not stand up in court [34]. Digital
multimedia captured for medical purposes is likely to be encoded with lossless
video coding and without any kind of interpolation since the highest precision is
necessary for correct diagnosis, and many medical multimedia videos are indeed
represented by a single scene with low-motion.

Future directions should include an investigation of extending or modifying
this principle to achieve efficiency in exploiting temporal correlation as well,
in order to achieve applicability to more advanced video codecs such as H.26x
and MPEG family. The proposed algorithms could be combined with an ob-
ject segmentation approach to improve robustness against movement of objects
within the scene. In this approach it is possible to use sorting permutations
from previous frame for each object in the scene (including background). An-
other possibility for future research include the extension to spatial selectivity
(e.g. to achieve anonymity) where only objects of interest (such as human face,
etc.) are encrypted, while other objects are kept unencrypted.
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