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Abstract — The widespread diffusion of hand-held devices with 

video recording capabilities requires the adoption of reliable Digital 
Stabilization methods to enjoy the acquired sequences without 
disturbing jerkiness. In order to effectively get rid of the unwanted 
camera movements, an estimate of the global motion between 
adjacent frames is necessary. This paper presents a novel approach 
for estimating the global motion between frames using a Curve 
Warping technique known as Dynamic Time Warping. The proposed 
algorithm guarantees robustness also in presence of sharp 
illumination changes and moving objects1. 
 

Index Terms —Video Stabilization, Dynamic Time Warping, 
global motion estimation.  
 

I. INTRODUCTION 
Imaging devices offering video recording capabilities have 

gained significant popularity in the recent past. Frames 
resolution, movie-clips length and video quality are all factors 
of which users are becoming progressively more conscious.  
Hence, the request for high-quality video is increasing even 
when small portable devices, such as mobile phones, are 
concerned [1]-[3].  

The assessment of video sequences involves many factors 
and the quality of the single frames is just one of the elements 
to be considered. Temporal incongruities such as compression 
artifacts occurring during scene changes, frame dropping and 
low frame rates are the major annoyances related to video 
quality perception. Nonetheless, even after reducing or 
eliminating the aforementioned problems, it is also necessary 
to consider the way in which video sequences are inherently 
acquired by the user. 

Video quality obtainable using small hand-held devices is 
obviously intrinsically affected by the unsteadiness of the 
user’s hands; therefore, without any correction, the acquired 
video will show unbearable jerkiness. Hence, the removal of 
unwanted camera vibrations is a fundamental element to be 
considered.  

Basically, two main approaches for removing non-
intentional camera motion exist: mechanical and software 
based methods. Mechanical solutions consist in moving the 
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lenses to align frames onto the image sensor thus 
compensating for jerky motion. Similarly, another mechanical 
solution consists in moving the image sensor instead of lens.  

The software based stabilization is more cost-effective in 
that it relies exclusively on image processing techniques, 
avoiding the cost of mechanical moving parts. Software 
solutions generally require the estimation of the global motion 
between frames so that the opposite motion can be applied to 
counteract image shake and realign frames. Hence, the 
estimation of the global motion vector is a critical part of the 
system since this vector must correctly describe the amount of 
unwanted motion between frames.  

In [4] we proposed a method that derives the global motion 
between frames by analyzing the motion vectors obtained 
using block based motion estimation. This paper introduces a 
novel solution that estimates the global motion using a 
technique that finds matches between two curves known as 
Dynamic Time Warping (DTW) [5].  

Our solution addresses the problem of stabilization in 
relation to the translational model  [6] [7]. 

The paper is organized as follows: sections II-III provide a 
description about the frame signatures and DTW. Section IV 
describes the proposed architecture. Section V ends the paper 
showing experimental results. 

 

II. FRAME SIGNATURE CURVES 
Before giving full description of the DTW approach, we 

introduce frame signatures; they are simply obtained by 
processing the rows and the columns of each frame. The basic 
technique to compute frame signatures is known as integral 
projections  [8].  

In its simplest form, the method consists in summing up the 
pixel values of each row and each column generating two 
characteristic curves for each frame as depicted in Fig. 1. The 
value of each summation can be normalized to avoid too big 
values. 

Formally, given a frame F with m rows and n columns, two 
curves Cx and Cy are determined, according to the following 
equations (1): 
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Fig. 1. X and Y signatures for a frame with n rows and m 

columns. 
 
The integral projections method allows estimating the 

global motion between two consecutive frames by shifting 
their CX-curves (CY-curves) in order to find the best alignment. 
The displacement used to determine the best match of the 
curves is representative of the global motion between frames. 

Figure 2 shows the CX-curves of two consecutive frames. 
The two test frames are very similar; hence the shape of the 
two curves is almost equal. The displacement of the two 
curves is caused only by the hand-shake of the user. By 
analyzing the amount of displacement between the two curves 
it is possible to determine the relative component of the global 
motion vector. 

 

 
 
Fig. 2. CX-Curves of two consecutive frames. The curves 

displacement in pixels gives the corresponding global motion 
vector component. 

 
 

III. DYNAMIC TIME WARPING  
A significant limitation of the simple integral projection 

technique is that it cannot provide accurate results when the 
dynamics of the acquired scene become complex, as for 
example under fast varying illumination conditions and in 
presence of large moving objects. In these cases, the shape of 
the curves, even between consecutive frames, can be quite 
different and an accurate alignment becomes almost 
impossible to achieve. 

For example, Fig.3 shows the CX-curves relative to two 
similar frames in which a large object moves in the center of 
scene. Under these conditions it is not easy to estimate the 
correct displacement between the curves: there is a large 
displacement in the center and very small displacement at the 
periphery. 

 

 
Fig.3.Critical curves for the integral projection method. 

 
In order to properly cope with complex scenes, a more 

robust solution is necessary. Dynamic Time Warping (DTW) 
can provide the required level of robustness  [5] [9].  

In general, the DTW method is used to warp and match 
generic sequences of numbers that can be viewed as curves in 
a proper coordinate system; the aim of DTW is to obtain a 
precise matching along the temporal axis, maximizing the 
number of point-wise matches between two curves. 

Formally, given two sequences X and Y of length n and m 
respectively (2): 
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A distance between the elements of the two curves is 
computed; the Manhattan difference can be used for efficiency 
in that it requires very little computational effort (3): 
 

( ) ji yxjid −=,   (3) 

 
The computed differences are stored into a nxm matrix as 
defined in (4): 
 

( ) ( )jidjiM ,, =    (4) 
 

A subset of the elements in M defines a warping path W 
(5): 
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Each element Wwl ∈  is a pair of indices (i, j) that 
associate an element of the X-series with an element of the Y-
series.  
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The length K of the warping path is defined is such that (6): 
 

( ) 1,max −+<≤ nmKnm   (6) 
 
Clearly, many warping paths exist inside M, but we choose 

the one that minimizes the following functional (7): 
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The elements of the matrix that are chosen for the best 

warping path define an association between the sequences X 
and Y, see Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
Fig. 4. A warping path example between two generic curves. 

The x(y)-axis spans the elements of the first (second) curve. Each 
marked item in the matrix represents a matching between a point 
of the first curve with a point of the second one.  

 
The q-th element of the warping path wq(i,j) indicates that 

the i-th element of the first curve matches with the j-th 
element of the second curve. 

 

IV. PROPOSED ARCHITECTURE 
The proposed method extracts the digital signatures from 

pairs of consecutive frames and warps them to find the best 
point-wise matching. The global motion information from 
frame t-1 to frame t is inferred by analyzing the warping 
parameters that maximize the point-wise matching.  

For any pair of frames t-1 and t, the horizontal and vertical 
digital signatures are extracted: 

 
Ht-1, Vt-1, Ht, Vt 

 
The process starts by storing the two current H/V-signatures 

in memory so that when the next frame carrying its own H/V-
signatures is processed, a DTW warping step is performed: 

 
DTW(Ht-1, Ht) 
DTW(Vt-1, Vt) 

 
Each warping step produces two warping paths: WH, WV, 

relative to the horizontal and vertical dimensions respectively. 
 

The block diagram and data-flow of the algorithm are 
shown in Fig. 5. The process in then repeated for each pair of 
consecutive frames. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.5. Block Diagram of the algorithm 

 
The point-wise matching associated to the horizontal 
signatures of two consecutive frames is illustrated in Fig. 6: 
 

 
Fig. 6. X-Curves of two consecutive frames having different 

illumination.  
 
By analyzing how matching is distributed and how 

frequently it occurs, the components of the Global Motion 
Vector (GMVH, GMVV) are determined and added to the 
Absolute Global Motion Vector (AbsGMV) which is the 
motion computed in relation to the reference frame (9): 
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Hence, the vector AbsGMV accumulates the global motion 

starting from the reference frame. Finally, the digital stabilizer 
block stabilizes the current frame according to the new 
AbsGMV. It is worth mentioning the fact that not all detected 
motion is unwanted; the user may intentionally move the 
device to perform panning. To this end, a low pass filtering of 
the detected motion is usually performed  [10]. 
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V.  EXPERIMENTAL RESULTS 
In order to confirm the validity of the proposed algorithm, a 

series of experiments have been performed comparing our 
approach with other digital stabilization techniques based on 
integral projections  [8] and block matching  [4].  

The sequences used for the experiments were taken from 
two different sets:  

 
• SET 1: sequences containing large moving objects; 
• SET 2: sequences showing fast illumination changes. 

 
The video sequences of both sets do not originally contain 

jerky motion. 
In order to scientifically measure the effectiveness of the 

proposed solution, hand-shake motion was artificially added 
to the original sequences by using a series of known global 
motion vectors representing typical real user hand vibrations. 

The difference between the true motion vector used to 
introduce jerkiness and the DTW-estimated motion indicates 
the precision of the proposed solution (10): 
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where ( )•t

trueGMV  and ( )•t
estGMV  are the real and the 

estimated motion vector components respectively.  
 

A. Experiment with large moving objects. 
 

The first illustrated experiment is relative to a sequence 
from SET 1; it contains a crowd moving from right to left 
(Fig. 7). Figures 8 and 9 show that both integral projections 
and block matching approaches do not correctly estimate the 
motion vector components. On the contrary, the Dynamic 
Time Warping based solution generates a better estimate of the 
motion vector components (Fig. 8).  

 
 

 
 
 
 
 
 

Fig. 7. A frame taken from a SET-1 sequence presenting large 
moving objects (sequence 1). The crowd is moving from right to 
left. 
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Fig. 8. Integral projection estimation error along x (red) and y 

(green) axes for sequence 1. 
 

Block Matching Error
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Fig. 9. Block based estimation error along x (red) and y 

(green) axes for sequence 1. 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Dynamic Time Warping estimation error along x (red) 
and y (green) axes for sequence 1. 

 
 

 
B. Experiment in fast changing illumination conditions. 

 
Our second illustrated experiment is relative to a sequence 

of SET-2. Fast illumination changes are exaggerated by 
dropping frames and increasing the speed at which the sun 
goes beyond the horizon (Fig. 11).  

The integral projection approach, finds incorrect matching 
between the frame signatures yielding inaccurate global 
motion estimation (Fig. 12). On the contrary, both Dynamic 
Time Warping and block matching based approaches, yield 
better results (Figg.13 and 14). In particular, it can be seen 
that no errors occurred along the x-direction. 
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Fig. 11. A frame taken from a sequence with brightness 
variation in the scene due to the sunset (sequence 2). 
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Fig. 12. Integral projection estimation error along x (red) and 

y (green) axes for sequence 2. 
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Fig. 13. Block matching estimation error along x (red) and y 

(green) axes for sequence 2. 
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Fig. 14. Dynamic Time Warping estimation error along x (red) 
and y (green) axes for sequence 2. 
 

 
The experiments proved that the integral projection 

technique suffers in presence of sharp brightness variations or 
large moving objects in the scene. Conversely, Dynamic Time 
Warping is robust enough and obtains results similar to, or 
better than, the block based approach. The proposed DTW 

technique also allows using only one frame buffer instead of 
two. 

 

VI.  CONCLUSIONS 
A new approach for the estimation of global motion 

between frames has been proposed. The solution can be 
incorporated in a system for video-stabilization for hand-held 
devices. The proposed technique is based on the Dynamic 
Time Warping techniques; hence it is robust in case of 
changing illumination conditions and moving objects which 
interfere with the shape of the frame signatures. Future work 
consists in optimizing the method in terms of speed and 
memory consumption.   
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