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Abstract: Digital videos are now low-cost, easy to capture and easy to share on social media due
to the common feature of video recording in smart phones and digital devices. However, with the
advancement of video editing tools, videos can be tampered (forged) easily for propaganda or to gain
illegal advantages—ultimately, the authenticity of videos shared on social media cannot be taken
for granted. Over the years, significant research has been devoted to developing new techniques for
detecting different types of video tampering. In this paper, we offer a detailed review of existing
passive video tampering detection techniques in a systematic way. The answers to research questions
prepared for this study are also elaborated. The state-of-the-art research work is analyzed extensively,
highlighting the pros and cons and commonly used datasets. Limitations of existing video forensic
algorithms are discussed, and we conclude with research challenges and future directions.

Keywords: video tampering detection; passive video forgery; spatial video forensic; temporal video
forensic; video tampering; localization

1. Introduction

The availability of sophisticated low-cost digital video cameras in mobile phones,
gadgets, and a large number of video-sharing websites such as (YouTube, Facebook, and
Dailymotion) play an important role in daily life to disseminate and share visual informa-
tion. The visual data can also serve as powerful evidence before a court of law to verify
or support the testimony of a person being questioned. In the presence of sophisticated
and user-friendly video-editing software, the genuineness of videos cannot be taken for
granted. With advanced editing tools, information manipulation has become easy. Videos
can be edited by inserting or deleting objects/events, with good or bad intentions [1].

Videos are not accepted without their forensic reports as a matter of evidence by law
enforcement agencies. Every instance of video tampering does not have equal significance,
e.g., tampered footage of a pop star is not as harmful as the tampered footage of a crime
scene [2]. The film industry benefits from video editing technologies to add virtual reality in
scenes. Video evidence is also important for news reporting, intelligence agencies, insurance
companies, copywriting, criminal investigations, etc. Forensic analysis of videos and
images is the focus of recent research to ensure the authenticity of multimedia content [3].
Such research is never ending due to the progressive advancement in video editing tools.

Progress in video tampering has a significant effect on our society. Although only a
few digital video forgeries have been exposed, such instances have eroded public trust in
video clips [4].

The objective of video tampering detection is to ensure the authenticity and to expose
the potential modifications and forgeries (i.e., to verify whether a video is authentic or
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not), and to carry out localization (i.e., to find the forged (tampered) area within the
frame, adjacent frame (spatial tampering), or to identify where the frames were inserted,
replaced, reordered, or deleted (temporal tampering) in the video). Several techniques
have been proposed to authenticate and localize tampering in images [5–7], but these
techniques cannot be applied to videos directly due to the following reasons: (a) most
videos are encoded and compressed prior to storage and transmission because of presence
of a massive volume of data in video frames; (b) these reported techniques have high
computational complexity when applied to a video sequence; and (c) temporal tampering
such as frame insertion, deletion, duplication, or shuffling in a video cannot be detected
by applying any image forgery detection technique. However, many techniques appear
in literature specifically for the identification and localization of video tampering. In this
study, we present a systematic literature review of the state-of-the-art video tampering
detection techniques by highlighting their merits and demerits.

Organization of This Study

The remaining part of this study is organized in the following sections. Section 2
describes this study’s distinction from other survey papers. Section 3 elaborates the survey
protocol of this study. Section 4 explains the types of video tampering (forgery). Section 5
provides the detail of video forensic detection approaches. Sections 6 and 7 elaborate the
state-of-the-art spatial and temporal tampering detection techniques, datasets used, com-
parison, and limitations. Section 8 concludes the analysis, and challenges are highlighted.
In Section 9, future directions are presented, and finally, Section 10 concludes this review.

2. Distinction from Other Surveys

Considering the fact that video tampering detection has been maturely developed
and enough research work has been published on passive video detection techniques,
a comprehensive analysis on proposed schemes for passive video tampering detection
and localization is required to determine future research directions. To our knowledge,
this is the first study of systematic literature surveys in the domain of passive video
tampering detection.

Several researchers have reviewed video tampering (forgery) detection techniques.
Details are shown in Table 1 of the works published so far. A few papers [8,9] published in
reputable journals have focused on passive video tampering detection techniques. Journal
papers [4,10,11] partially discussed the video techniques and their focus was on image
tampering detection techniques. Review papers [12–18] are published in conferences and
less reputable journals. Rocha et al. [4] reviewed the video forgery detection and localization
issues by discussing two video tampering techniques, but without highlighting the pros and
cons of video tampering detection techniques. Moreover, the major emphasis of this review
was on image forensics rather than video forensics. Similarly, Milani et al. [11] discussed
video acquisition and compression issues only. This review is also a partial and mixed
representation of image and video forensic analysis. Pandey et al. [10] presented review on
passive techniques of image and video tampering detection but only focused on techniques
that are based on noise features. This survey highlighted that the video tampering detection
domain is facing issues such as video acquisition, post-processing operations (compression,
blurring, noise addition, geometric transformation) and robustness. Sharma et al. [17]
reviewed passive techniques, but their discussion was limited to only copy-move attacks
on digital videos.

Sitara et al. [9] also analyzed passive tampering detection methods and their limita-
tions, but there is no discussion comparing the accuracy of these methods, which is an
important part of our survey paper. Singh et al. in [8] reported that there are few video
forgery detection methods that have been evaluated extensively because of the lack of
availability of large-scale video forgery datasets and base lines for comparison of different
video forgery detection techniques. There is a dire need for a comprehensive collection of
videos for advanced evaluation of video forensic techniques; however, they highlighted
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the non-availability of a large-scale video forensic dataset only. Tao et al. in [18] and
Mizher et al. in [19] reviewed video tampering detection in comprehensive ways, but these
papers were published in 2017 and thus, several current state-of-the-art techniques are
not considered.

Sharma et al. [20] reviewed existing video forgery detection techniques by their func-
tionality. The review has strength in terms of exploring video forgery detection techniques
by their functionality and datasets. Johnston et al. in [21] critically reviewed spatial video
forgery detection techniques based on deep learning. Existing video tampering datasets
used to evaluate video forgery detection techniques were also reviewed. The researchers
highlighted the challenges and trends in video forgery detection in the spatial domain;
however, the research gaps in the temporal domain of video forgery detection still need to
be explored. In a recent survey, Kaur and Jindal [22] explored the current challenges and
trends in the domain of image and video forensics. The review was focused on highlighting
the image copy-move and splicing forgeries, and inter- and intra-frame video forgery
challenges. Issues regarding benchmarking and datasets were also highlighted. This review
presented both image and video forgery issues, but the major focus was on highlighting the
issues in the image forensic domain, and few aspects related to video forgery forensic are
elaborated. Recently, Shelke and Kasana [23] presented a comprehensive survey on passive
techniques for video forgery detection based on features, types of forgeries identified,
datasets and performance parameters. Pros and cons of different passive forgery detection
techniques are elaborated, along with future challenges. Anti-forensics techniques, deep
fake detection in videos and a brief review of existing datasets of video forgery are also
included in this survey paper.

Table 1. Summary of survey papers on video forgery detection.

Major Focus References Conference
/Journal Publisher Publication

Year Citations

Image forgery
detection with partial
focus on video forgery

detection

[4] Journal ACM 2011 305

[11] Journal Others 2012 277

[10] Journal Elsevier 2016 37

Video forgery
detection

[13] Conference - 2012 280

[12] Journal Others 2013 7

[24] Journal Others 2013 3

[14] Conference IEEE 2014 38

[15] Journal Others 2015 15

[16] Journal Others 2015 32

[9] Journal Elsevier 2016 85

[17] Conference - 2016 9

[18] Conference - 2017 3

[19] Journal Others 2017 11

[8] Journal Springer 2018 54

[21] Journal Elsevier 2019 16

[20] Conference - 2019 10

[22] Journal Others 2020 6

[25] Journal Springer 2020 2

[23] Journal Springer 2021 2

The above discussion is summarized in Table 1. The surveys published so far in top-
ranked journals have focused more on image forgery and partially on video forgery. Some
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surveys have only focused on noise-based techniques, some only on spatial tampering
detection techniques and some have not discussed the major challenges faced in video
forgery detection. Therefore, this study covers all these gaps comprehensively.

Contribution of This Work

A comprehensive survey of passive video tampering detection techniques is presented
with the following salient features.

• Almost all published papers in the domain of video forgery/tampering to date are
considered to show the overall picture of research contribution in the field.

• To our knowledge, this is the first systematic comprehensive survey to filter out rich
research contributions in the domain.

• This survey is categorized based on the proposed methodologies for easy comparison
of their performance evaluation and the selection of the most suitable technique.

• This review will be helpful to new researchers regarding the issues and challenges
faced by the community in this domain. Moreover, this paper analyzes the research
gaps found in the literature that will help future researchers to identify and explore
new avenues in the domain of video forensics.

3. Survey Protocol

The objective of this systematic study is to perceive and arrange the strategies, models,
methods, and tools that are used to investigate existing video tampering techniques. The
procedure of systematic study helps us to analyze the available research in the subject
domain. In this study, the guidelines of systematic literature survey [26] are followed and
the survey protocol plan of this study is shown in Figure 1. The following subsections
elaborate the research questions, search string and inclusion/exclusion criteria, extract data
and present their analysis.
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Figure 1. Survey protocol plan.

3.1. Research Questions

The first step of the systematic survey is to define the research questions. Various
research questions were formulated to conduct this survey:

• Q1. What are various types of video tampering?
• Q2. What are the various techniques for video tampering detection available in

the literature?
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• Q3. What are the pros and cons of existing techniques?
• Q4. What are the challenges faced by the researchers?
• Q5. What are the evaluation measures and datasets used to evaluate video tampering

detection and localization?

The answers of the first, second, third and fifth question are explained in Sections 4–7.
The answer to question 4 is elaborated in Section 8.

3.2. Search Strategy

An efficient search strategy is required to extract the appropriate information and
filter out inappropriate studies from the research area. For this purpose, a dynamic search
string was prepared, based on research questions, keywords, and alternate words for major
keywords. The search string is a combination of “OR” and “AND” Boolean operator,
given below.

{(Video forgery) AND (detection OR localization)} OR {(video tampering) AND (detec-
tion OR localization} OR {(localization of OR detection of) AND {(video forgery) OR (video
tampering)}} OR {review on video forgery} OR {review on video tampering}

The search string was applied to different digital resources, i.e., ACM digital library,
Science Director, Springer, Elsevier, IEEE explorer, Google Scholar, and others.

3.3. Research Inclusion/Exclusion Criteria

Firstly, search criteria were set to extract the maximum publications from the selected
sources. The publishing years are limited between the years 2007 to 2021. In order to gather
more relevant papers, the selection criteria are divided into three steps. In the first step, to
remove the duplicate and irrelevant papers, the title of the paper is checked. In the second
stage, we read the abstract of the papers obtained in the first stage to select relevant papers
to the focused area. At the last stage, we read out the detail of each paper and finalized the
papers for this study. A total of 122 papers were selected as the most relevant papers in
the domain of passive video forgery. Similarly, a total of 99 research papers were selected
for the primary analysis. These papers were selected as they are published in reputable
journals or conferences which have more citations. The year-wise details of these papers
published in conferences, journals, and others (books and thesis) are shown in Figure 2,
which depicts an overall pictorial representation of published papers, books, and theses
in the past 15 years on video tampering detection using blind or passive techniques. It
highlights that in recent years, passive techniques for video forgery detection are drawing
significant attention in the research community. There is a demand in many areas such as
judicial forensics, insurance industry, information security, etc., to develop robust, standard,
and economically feasible techniques for the detection of a wide variety of tampering in
digital videos to overcome these challenges related to passive video forgery detection.
Much progress has been achieved over the past few years, but certain important milestones
still remain unmet. That is because of the wide range of possible alterations that can
be applied to digital content that makes it practically indistinguishable from genuine
content. The absence of a universally applicable solution to this problem has gained the
attention of the scientific community and researchers. Table 2 represents the published
papers on passive (blind) forgery detection techniques that are categorized according to
standard journals such as IEEE, Springer, Elsevier and others, or well-known conferences.
Concrete and category-wise discussions on the papers presented in Table 2 are given in
Sections 6 and 7.
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Table 2. Summary of research papers on passive video forgery detection published in different
journals and conference papers.

Years IEEE Springer Elsevier Other
Journals Conferences Total

2007 [27] - - - [28] 2

2008 - - - - [29] 1

2009 [30] - - - [31–33] 4

2010 [34] - - - [35] 2

2011 - - - - [36,37] 2

2012 [38,39] - [40] - [41–43] 6

2013 - - [44] - [45–51] 8

2014 - - [52,53] [54] [55–60] 9

2015 [61] [62–64] [1] [65,66] [67–69] 10

2016 [70] [71] [72,73] - [74] 5

2017 - [75,76] [77,78] [79–81] [82,83] 9

2018 [84–86] [87,88] [89] - [90–96] 13

2019 [97] [98–100] [21,101,102] [103–105] [20,106–109] 15

2020 [110] [111–113] - [22,114–117] - 9

2021 - - [118] [119,120] [121] 4

Total 12 14 14 16 43 99

4. Types of Video Tampering (Forgery)

Videos are usually tampered in the following ways: (a) tampering in the spatial do-
main, (b) tampering in the temporal domain, (c) spatio-temporal tampering and
(d) re-projection [2,122]. Details of spatial, temporal and spatio-temporal tampering are



Mathematics 2022, 10, 168 7 of 38

highlighted in Figure 3. In this figure, Fi represents the ith frame, where I = 1, 2, . . . n,
PHW is the pixel intensity, and H and W are frame height and width, respectively. F′I is the
manipulated ith frame and P′HW is the manipulated pixel intensity. A forger can tamper
source videos spatially (i.e., spatial forgery) by manipulating a block of pixels within a
video frame or in adjacent video frames, as shown in Figure 3b. Furthermore, as presented
in Figure 3c, source videos can be tampered with respect to time (i.e., temporal forgery)
by disturbing the frame sequence through replacement, reordering, addition, and removal
of video frames. Lastly, Figure 3d shows video tampering by combining both spatial and
temporal domains (i.e., spatio-temporal forgery). Re-projection means recording a movie
from the theatre screen by which the forger violates the copyright law.
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5. Video Tampering Detection

Video tampering detection approaches can be broadly classified into active and passive
(blind) [4,11,13–16], as shown in Figure 4 and described in the following subsections.
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Figure 4. Categories of video tampering detection techniques.

5.1. Active Approaches

The active approaches can be further divided into two categories based on approaches
to watermarks and digital signatures [123]. There are several kinds of watermarks. Fragile
and semi-fragile watermarks are used to detect video forgery [124,125]. Fragile watermark-
ing works by inserting invisible information into the video. If an attempt is made to modify
the contents of the video, that invisible information (watermark) is also altered, and hence,
forgery is detected. Semi-fragile watermarking is less sensitive to change as compared to
fragile watermarking. For both the fragile and semi-fragile techniques, a watermark must
be inserted when the video has been recorded, which makes active techniques dependent
on both algorithmic and hardware implementation [2]. All capturing devices may not have
the capability to embed digital signatures or water marks. If this information is embedded
intentionally in videos after the acquisition phase, this method may fail in situations where
tampering is carried out before inserting the signature or watermark. Since most of the
videos reported in datasets for experiments, evaluation of video forgery detection and
localization have no prior information about their watermark or signature, our survey is
focused on passive techniques instead of active techniques, which are highlighted in the
red dotted box in Figure 4.

5.2. Passive Approaches

Passive video tampering detection techniques do not require any prior information
that is embedded in videos, such as digital watermarks or signatures. These techniques
work by exploiting traces left in the frames of the video due to tampering and cannot be seen
with the naked eye. However, the statistical properties are changed during the tampering
process. Due to the change in statistics, the inconsistencies of different features such as
noise, residues, texture, abnormalities in optical flow (OF), etc., can be used in passive
approaches. Furthermore, whenever forensic analysis is required of any video, the source
video is not available and forensic experts must make decisions based on current (under
observation) video. In this case, active techniques are not workable and passive techniques
are the best choice. Passive approaches are further divided into spatial and temporal
tampering detection techniques, which are discussed in Sections 6 and 7, respectively.
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6. Review of Spatial (Intra-Frame) Video Tampering Detection Techniques

Different types of information (artifacts or footprints) are available to forensic experts
for the detection of spatial tampering and localization. According to this information, the
methods are categorized into the following categories, shown in Figure 5: (i) methods
based on deep learning, (ii) methods based on camera source features, (iii) methods based
on pixels and texture features, (iv) methods based on SVD (Singular Value Decomposition),
(v) methods based on compression features and (vi) methods based on statistical features.
These categories are discussed in the following subsections.
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6.1. Methods Based on Deep Learning

Deep learning is a sub-domain of machine learning based on neural networks. Problem-
specific, complex, high-dimensional features can be extracted with the help of deep learning
techniques, which are helpful for classification tasks. Zampoglou et al. [106] applied Q4 and
Cobalt forensic filters with pre-trained ResNet and GoogLeNet networks for the detection
of spatial video forgery. Two datasets, Dev1 and Dev2, are used to evaluate the method.

The Dev1 dataset contains 30 authentic and 30 tampered videos while Dev2 contains
86 pairs of videos having 44 k and 134 k frames. The accuracy achieved on the union of
Dev1 and Dev2 is 85.09%, and mean average precision is 93.69%. Yao et al. [79] used a CNN
(Convolutional Neural Network) to extract complex high-dimensional features and used
the absolute difference between consecutive frames to reduce the temporal redundancy, a
max pooling layer is introduced to minimize the computational complexity, and a high-pass
filter layer is placed to boost the residual left during the tampering process. One hundred
authentic and one hundred forged videos are used to train and test the method. This
method has achieved forged frame accuracy (FFACC), pristine frame accuracy (PFACC),
frame accuracy, precision, recall and F1 scores of 89.90%, 98.45%, 96.79%, 97.31%, 91.05%
and 94.07%, respectively. Kono et al. [94] combined a CNN and recurrent neural network
to detect video forgery. The authors also developed their own dataset of 89 forged videos,
named Inpainting-CDnet2014, and a dataset of 34 forged videos, named Modification
Database. The method obtained an area under curve (AUC) of 0.977 and an equal error rate
(EER) of 0.061 was achieved. Avino et al. [81] performed detection using auto-encoders
and a recurrent neural network. The authors used only 10 videos for experiments. The
receiver operating curve (ROC) was obtained to investigate the performance of the method.
Kaur et al. [116] developed an inter-frame forgery detection method based on a Deep
Convolutional Neural Network (DCNN). The method classifies the forged and authentic
video frames on the basis of correlation. The system was evaluated on REWIND and
GRIP video datasets and achieved 98% accuracy. The method has significant accuracy;
however, there is a need for cross validation to ensure the generalization. Aditi et al. [114]
developed a spatiotemporal video forgery detection and localization technique based on
CNN. Video frames are detected as tampered or authentic using temporal CNN; latterly, the
forgery in video frames is located using spatial CNN. Motion residual is used to train the
model. The method was evaluated on SYSU-OBJFORG dataset and achieved comparable
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results. Although the method has significant performance, there is still a need for cross
data validation.

The algorithms of this class give high-dimensional features and achieve suitable
accuracy; however, the small size of tampering cannot be detected by employing the
algorithms developed so far.

6.2. Methods Based on Camera Source

During court proceedings, when a video is presented as proof, there is a need to iden-
tify the camera that recorded the presented video. In such situations, source camera-based
features are used by forensic experts. If a source camera exists, then active forgery detection
techniques will be used. Otherwise, camera-based features such as fixed pattern noise
(FPN), photo response non-uniformity noise (PNRU) and sensor pattern noise (SPN) are
calculated from the presented video and used for forgery detection. Different authors have
used camera noise characteristics to detect the spatial (object-based) forgeries [29,33,34].
Hsu et al. [29] detected forgery by calculating the noise residual from high-frequency bands,
wavelet coefficients and Bayesian classifiers. The authors used three videos; each one
had 200 frames with a still background and each was captured using a JVC GZ-MG50TW
digital camcorder. The frame rate is 30 fps. Video resolution of each frame and bitrate
is 720 × 480 pixels and 8.5 Mbps, respectively. The recall, precision, miss rate and false
positive rates are 96%, 55%, 32% and 4%, respectively. This study did not localize the forged
region, the dataset is limited, and videos are prepared under a controlled environment.
Kobayashin et al. [33] detected forged regions by determining the inconsistencies between
noise characteristics of different video frames. In this work, a Point Grey Flea digital
camera was used with 128 grayscale frames. The frame rate and resolution are 30 fps
and 640 × 480 pixels, respectively. During recording, the camera and object are stationary.
The recall and precision are 94% and 75%, respectively. Furthermore, the authors used
a limited video dataset to test the proposed technique and did not detect the temporal
forgery. The proposed algorithm worked only for grayscale videos. For detection of region
tampering in videos, a technique based on utilization of extrinsic camera parameters was
developed by Hu, Ni et al. in [126]. At first step, each frame of the video is divided into
different regions, followed by the computation of extrinsic parameters from these regions
of frames. Then differences between these parameters are calculated. Lastly, a threshold
is selected to identify the tampering. Fayyaz et al. [113] developed a video tampering
detection method based on sensor noise patterns of video frames. The noise patterns were
extracted using denoising video frames; latterly, noise patterns were averaged to detect
sensor noise patterns. Locally adaptive DCT (Discrete Cosine Transform) was used to
determine the sensor noise patterns. Finally, the correlation of noise residues of different
video frames was computed to detect authentic or forged video. The method was evaluated
using noise pattern-based dataset and achieved suitable results, but these results depend
upon the physical properties of the source device.

The algorithms of this category although performed well but are dependent on
the hardware.

6.3. Methods Based on Pixels and Texture Features

A basic element of the frame (image) is called a pixel. The color model of the frame
(image) is defined based on the number of bits per pixel. Various color models are used
in digital media, such as RGB (Red-Green-Blue), YCbCr (Y is the luminance, blue and
red chroma components are Cb and Cr, respectively), HSI (Hue-Saturation-Intensity),
CMY (Cyan-Magenta-Yellow), etc. Different types of information (such as color, gamma,
intensity, hue, contrast, etc.) can be calculated mathematically from these color models.
Several types of features (such as HOG (Histogram of Oriented Gradients), LBP (Local
Binary Pattern), etc.) that are based on pixels can be calculated to detect the passive
forgery [52]. Subramanyam et al. [41] exploited compression features and Histogram of
Oriented Gradients (HOG) to detected spatial forgery. In this approach, the authors used
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6000 frames from 15 different videos for spatial forgery and 150 GOPs (Groups of Pictures)
of size 12 frames each for temporal forgery. The original video is compressed at 9 Mbps
using MPEG-2 video codec. Spatial tampering is carried out by copying and pasting
regions of size 40 × 40 pixels, 60 × 60 pixels and 80 × 80 pixels in the same and different
frames. Detection accuracy (DA) is 80%, 94% and 89% for 40 × 40 pixels, 60 × 60 pixels
and 80 × 80 pixels blocks, respectively. This technique detected spatial forgery with better
accuracy, but training and testing are performed on a small dataset. There are certain
limitations of this algorithm, i.e., it failed to detect forgery when post-processing operations
such as scaling and rotation were applied to forged regions. Moreover, this technique
was unable to localize the forged regions. Al-Sanjary et al. [107] exploited inconsistency
in optical flow to detect and localize the copy-move forged region. This study used nine
videos to test the method and achieved 96% accuracy. The performance of the method is
not sufficient in high-resolution videos.

The algorithms of this class are simple, and length of feature vectors is small. However,
these algorithms do not perform well when various post-processing operations are applied
to hide the forgery.

6.4. Methods Based on SVD

SVD is a factorization technique that extracts geometric features. This algorithm is
widely used to detect the copy-move tampering due to its invariant nature of scaling and
rotation. Su et al. [64] extracted features from a difference between frames using the K-SVD
(K-Singular Value Decomposition) algorithm. Features are then randomly projected to
reduce their dimension. K-means clustering is applied to the reduced features to detect
spatial forgery. In total, 700 videos were prepared using SONY DSC-P10 at 25 fps and
acquired at 3 Mbps for experimentation. Videos were forged using the Mokey 4.1.4 tool.
The accuracy, precision and recall rates for this approach are 89.6%, 89.9% and 90.6%,
respectively. This approach did not localize the forged regions. The algorithms of this
category, although they have simple and small feature vectors, they cannot work for all
types of post-processing operations.

6.5. Methods Based on Compression

Storage space requirements can be optimized with the compression of videos. During
the compression process, different types of artifacts are acquired, such as quantization,
properties of a group of pictures (GOP), motion vector, etc. These artifacts can also be
used for the detection of spatial forgery. Labartino et al. [46] explored video frames
using Double Quantization (DQ) to detect the spatial forgery. This method worked on
assumption that the video is forged (by changing the contents of a group of frames) before
the second compression takes place. In [69], Tan et al. developed an approach for automatic
identification of object-based forgery in videos encoded with advanced video encoding
standards based on its GOP structure. Video clips of two categories are used; one category
is pristine frames and the second is double compressed frames, which have undergone
re-compression after manipulation. CC-PEV feature extractor extracts feature that are
used by an ensemble classifier to classify the frame as pristine or forged based on double
compression. The final decision was made on the basis if all I- and P/B-frames of at least
one GOP are forged, in which case, that video clip is considered as forged. The evaluation
was performed on the SYSU-OBJFORG dataset, but this dataset is not publicly accessible to
the research community. The proposed approach achieved 80% accuracy.

Bakas et al. in [95] presented a forensic solution to detect and localize double compression-
based forgery in MPEG videos by exploiting its I-frames. They introduced CNN architec-
ture that exploits the fact that double compression introduces specific artifacts in the DCT
coefficients of the I-frames of an MPEG video. The model was tested on 20 YUV sequences
in CIF of size 352 × 288 pixels taken from the video TRACE library, available online at
http://trace.eas.asu.edu/yuv (accessed on 20 November 2021). They achieved detection

http://trace.eas.asu.edu/yuv
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and localization accuracy of 90% and 70%, respectively. This method has high computa-
tional complexity.

This class of algorithms depends upon the inherent attributes of cameras instead of
estimating the actual inconsistencies and discontinuities in tampered videos that occurred
during the forgery.

6.6. Methods Based on Statistical Features

Tone, context, and texture are the major parts of any frame (image). During the
spatial video tampering process, the texture of the video is changed, which is always
present in the frame (image). The statistical features can be utilized for the illustration of
this texture [127,128]. Object-based video forgery [27,49,53] has been detected with the
statistical features by many researchers. Richao et al. [53] employed statistical features
for the detection of spatial tampering. First, four moments of the wavelet and average
gradient of each color channel are calculated. These features are feed-forwarded to SVM
for training of the model to classify the forged and original videos. A set of twenty videos
having a resolution of 200 × 240 pixels was utilized for conducting the experiment. The
accuracy and AUC are attained as 95% and 0.948, respectively. An outcome of 85.45%
is represented by the ROC curve. These results are obtained on limited dataset and no
experiment was performed on videos having different compression ratios. Su et al. [86]
detected duplicated regions by using exponential Fourier moments (EFMs) and tampered
regions were localized by utilizing the adaptive parameter-based compression tracking
algorithm. This method achieved detection accuracy of 93.1%.

The algorithms of this class are based on statistical features. The feature vectors of
these methods are small in length as compared to other categories of algorithms but are
unable to detect forgery in presence of different types of post-processing operations. A
summary of different spatial forgery techniques is shown in Table 3.

6.7. Discussion and Analysis of Spatial Video Tampering Detection Techniques

It is not easy task to work with videos as images due to their unique set of complexities.
A main limitation of many state-of-the-art approaches is the lack of cross dataset validation
or validation on realistically forged videos. Every technique presented in the literature
is designed to deal with one type of forgery. As of now, there is no universal tool for
video tampering detection. Hence, to provide a real, practically applicable solution to
forgery detection and localization challenges, a comprehensive, economically feasible and
versatile forensic system is needed, which is a combination of different kinds of video
forgery detection techniques, where each specialized technique is responsible for detecting
the types of forgery it has been developed to tackle. In comparison to the image forensic
domain, the video forensic domain is seriously under-underdeveloped, and research in this
field is required.
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Table 3. Summary of spatial tampering (forgery) detection techniques.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Deep Learning

2019 [106]
Q4 + Cobalt forensic
filters + GoogLeNet+

ResNet networks

30 authentic and 30 forged videos
for dataset Dev1

86 pairs of videos containing 44 k
and 134 k frames for dataset Dev2

85.09% - 93.69% - Cannot detect a small size
of forgery

2017 [79]

CNN + absolute
difference of

consecutive frames +
high pass filter layer

100 authentic and 100 forged videos 98.45% 91.05% 97.31% F1 Score 94.07%
FFACC 89.90%

Cannot detect a small size
of forgery

2018 [94] CNN + recurrent
neural network

89 forged videos, named
Inpainting-CDnet2014

34 forged videos, named
Modification Database

- - - AUC 0.977 and
EER 0.061

Cannot work well in presence
of different types of object

modifications

2017 [81]
Auto-encoder +
recurrent neural

network
10 authentic and 10 forged videos - - - ROC

Cannot work in presence of
different types of

post-processing operations
(scaling, rotation, translation)

Methods Based on Source Camera Features

2008 [29] Noise residual +
Bayesian classifier

Three videos with 200 frames
Camera: JVC GZ-MG50TW

Frame rate is 30 fps, Resolution
720 × 480 pixels, Bit Rate 8.5 Mbps

- 96% 55% FPR 4%.
Miss Rate 32%

Has no robustness to
quantization noise

Technique is
hardware-dependent

Forged regions are not
localized

Performance is measured
relatively on a tiny dataset



Mathematics 2022, 10, 168 14 of 38

Table 3. Cont.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Source Camera Features

2009 [33] Noise characteristics

128 grayscale frames 30 fps
Resolution 640 × 480 pixels

Compressed by Huffyuv, lossless
compression Codec

- 94% 75% -

The algorithm is
hardware-dependent

Limited to spatial forgery only
Dataset was relatively small

Methods Based Pixels and Texture Features

2012 [41] HOG features +
matching module

6000 frames from 15 different
videos for spatial forgery

150 GOPs of size 12 frames each for
temporal forgery

Original video is compressed at
9 Mbps using MPEG-2 video codec
Forgery is performed by copying

and pasting regions of size 40 × 40,
60 × 60 and 80 × 80 pixels in the

same and different frames

94% for
60 × 60 pixels - - -

Forgery is dependent on
block size

Has no robustness to a
geometric operation such as

large scaling.
The algorithm is unable to
localize the forged regions
Only 12 videos are used for

experimentation

2013 [45] Motion residual +
correlation

120 videos
Resolution 320 × 240 pixels with

300 frames
90% - - AUC 0.92

Experiments are performed
only on 10, 15 and 20 percent

compression rates
Relatively poor accuracy with
a compression rate exceeding

up to 30% and more

2018 [86]

Exponential Fourier
Moments fast

compression tracking
algorithm

Video download from internet and
SULFA dataset 93.1% - - - Does not work on different

compression rates

2019 [107] Optical flow 3 videos from SULFA and 6 videos
of video tampering dataset (VTD) 96%

The performance of the
method is not suitable in
high-resolution videos
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Table 3. Cont.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on SVD

2015 [64] K-SVD + K-Means

Camera: SONY DSC-P10
Seven handmade videos

Frame rate 25 fps
Bitrate is 3 Mbps, Forged video are

generated by Mokey 4.1.4
developed by the Imagineer

Systems

89.6% 90.5% 89.9% -

Has not experimented on
different compression rates

Forged objects are not
localized

Dataset is small

Methods Based on Compression

2013 [46] Double Quantization
(DQ)

Download video from http:
//media.xiph.org/video/derf/
(accessed on 22 November 2021)

- - - AUC 0.8.
ROC

Works on assumption that the
video is forged (by changing

the contents of a group of
frames) before the second

compression take place

2018 [95] CNN +DCT

Video TRACE library available
online at:

http://trace.eas.asu.edu/yuv
(accessed on 16 November 2021)

Detection 90%,
Localization 70%

High computational
complexity

Methods Based on Statistical Features

2013 [49]

Correlation
coefficients +

saliency-guided
region segmentation

One video with 75 frames and
Resolutions 360 × 240 pixels High accuracy is claimed without statistical measure Only one video is used for

experimentation

2014 [53] Moment + average
gradient + SVM

20 videos
Resolution 320 × 240 pixels 95% - - AUC 0.948

ROC Dataset is small

http://media.xiph.org/video/derf/
http://media.xiph.org/video/derf/
http://trace.eas.asu.edu/yuv
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7. Review of Temporal (Inter-Frame) Video Tampering Detection Techniques

Forgers tamper a video temporally by inserting, duplicating, deleting or swapping
frames. State-of-the-art temporal tampering (forgery) detection algorithms have been
proposed [12,28,31,34,40,43,44,51,53–56,65,66,129]. These methods are analyzed in this
review. The algorithms used to detect the temporal forgery can be divided into the following
categories, as shown in Figure 6: (i) methods based on statistical features, (ii) methods
based on a frequency domain, (iii) methods based on residual and optical flow, (iv) methods
based on pixels and texture features, (v) methods based on deep learning and (vi) others.
The detail of each category is explained in the following subsections.
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7.1. Methods Based on Statistical Features

When a forger tampers a video, its statistical properties are disturbed, and by investi-
gating these properties, the tampered video is detected. Wang et al. [28] used a correlation
between frames of a video to detect duplicated frames by using accuracy and false positive
rates as evaluation measures. The algorithm was evaluated using only two videos recorded
by SONY-HDR-HC3 having 10,000 frames each. One video sequence is recorded by placing
the camera on a tripod and keeping it stationary throughout video recording, and a second
video is recorded with a hand-held moving camera. Average detection accuracy of 85.7%
and 95.2% is achieved for stationary and moving cameras, respectively, while the false
positive rates were 0.06 and zero for stationary and moving cameras, respectively. The
algorithm was evaluated on a very small dataset and is unable to detect forged videos
when forged by means of frame insertion and deletion process. Wang et al. [54] identified
forgery by calculating Consistency of Correlation Coefficients of Gray Values (CCCoGV)
between frames and used SVM for classification. This technique did not localize the forged
region and the video dataset is also limited. The technique did not produce results for
different compression rates. The accuracy for 25 frames insertion and deletion is 96.21%; for
100 frames insertion and deletion, it is 95.83%. Singh et al. [98] exploited the mean of each
DCT vector of every frame and correlation coefficients to detect the duplicated frames and
duplicated regions. Accuracy of 96.6% and 99.5% was achieved for detection of duplicated
regions and frames, respectively. This method requires high computational time and is not
able to detect a smaller number of duplicated frames and smaller duplicated regions.

Huang et al. [117] proposed the Triangular Polarity Feature Classification (TPFC)
framework to detect frame insertion and deletion forgeries from videos. Input video was
divided into overlapped small groups of frames. Each frame was divided into blocks,
and latterly, Block-Wise Variance Descriptor (BBVD) was applied on groups of frames
to compute the ratio of BBVD. Finally, to classify a video as authentic or forged, gross
error detection from probability theory was employed. The framework was evaluated
on 100 videos and achieved 98.26% recall and 95.76% precision. The framework also
achieved 91.21% localization accuracy. Although the framework has reasonable results,
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cross validation is not explored, which is the ultimate way to expose the strength and
weaknesses of any video forgery detection system.

The algorithms of this class are based on statistical features and have a feature vector
of small length, but they are not able to detect forgery in the presence of different types
of compressions.

7.2. Methods Based on Frequency Domain Features

Discrete Cosine Transformation (DCT), Discrete Wavelet Transformation (DWT) and
Fast Fourier Transformation (FFT) are widely used to transform into frequency domain
before extraction of features. These techniques are used to verify the small changes.
Su et al. [31] utilized Motion-Compensated Edge Artifact (MCEA) and DCT on GOP
for detection of video forgery by means of frame deletion. In this research work, five
videos, “Bus”, “Stefan”, “Foreman”, “Mother-daughter” and “Flower” were used. TM5
(Test Model 5) was selected as the standard MPEG-2 codec. Consecutive frames in the
range of 3, 6 and 9 are deleted from the original video sequences. Videos sequences are
encoded on a constant bit-rate ranging from 3 Mbits/s to 9 Mbits/s. Dong et al. [40]
also used MCEA to detect the frame deletion based forgery. FFT spikes were used after
double MPEG compression. In this study, four videos, “carphone”, “container”, “hall” and
“mobile” with CIF and QCIF format were used. The third, sixth, ninth, twelfth and fifteenth
frames are deleted and saved with 15 GOPs. The dataset used in this study is limited in size
and the localization of the deleted frames was not exercised. Jaiswal et al. [12] extracted
features through DCT, DFT and DWT from Prediction Error Sequence (PES) techniques and
classification is performed through SVM and Ensemble-based classifier. This algorithm is
unable to detect which frames underwent post-processing operations, such as geometrical
transformations. Huang et al. [89] fused audio channels for video forgery detection, where
discrete packet decomposition and analysis of singularity points of audio are used to locate
forged points. Features are extracted by perceptual hash and Quaternion Discrete Cosine
Transform (QDCT) to locate the forgery position in the video. The proposed technique is
evaluated by creating a database of forged videos, which are taken from SULFA (Surrey
University Library for Forensic Analysis), Open Video Project digital video collection (OV)
and self-recorded videos. Precision and recall rates without fine detection were 0.83 and
0.80, respectively, and with fine detection, these rates were 0.9876 and 0.9867, respectively.
The restriction is that an audio file is required with the video, which is not always available.
Wang et al. [115] proposed a video forgery detection method based on Electronic Network
Frequency (ENF). The cubic spline was used to generate the suitable datapoints of ENF
signals. The forgery in a video was located using phase continuity interruption, which was
observed using correlation between adjacent datapoints of ENF signals. The method has
sufficient performance while detecting video forgery in terms of frame deletion, duplication,
and insertion. The method is evaluated on limited dataset.

The algorithms based on frequency domain features, i.e., DCT, FFT and DWT, are
simple, and the length of the feature vector is small. However, these algorithms are
hardware-dependent because the noise is used as a clue for forgery.

7.3. Methods Based on Residual and Optical Flow

Optical flow is a technique that can be calculated by estimating the apparent velocities
of movement of brightness patterns from a frame of videos. Similarly, motion residual
can also be calculated to estimate the motion in a video [130]. These characteristics can
also be useful to detect modifications in a video. Shanableh et al. [44] extracted features
based on prediction residuals, a percentage of intra-coded macro-blocks, quantization
scales and reconstruction quality of a video. Feature dimension is reduced using Spectral
Regression Discriminant Analysis (SRDA). K-Nearest Neighbor (KNN), Support Vector
Machines (SVM) and Logistic Regression are used to detect the accuracy of the algorithm.
The author used 36 video sequences for testing the proposed work with deletion of 1 to
10 frames. The true positive rates of 94% and 95.4% were claimed using SVM classifier
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with CBR and VBR, respectively, and false positive rates of 5.5% and 8.2% were achieved
by using SVM classifier with CBR and VBR, respectively. The algorithm was tested on
limited compression rates. Chao et al. [43] detected frame insertion and deletion by using
the fluctuation characteristics of optical flow. In this study, test videos are taken from
KTH database and TRECVID Content-Based Copy Detection (CBCD) scripts are used for
insertion of frames. Similarly, the CBCD script is used for the deletion of frames. This
research detected both types of forgery but has not been tested on different compression
ratios. The recall and precision are 95.43% and 95.34%, respectively. Feng et al. [55]
proposed an algorithm based on the total motion residual of video frames to detect the
frame deletion point. The algorithm is tested on 130 raw YUV tampered videos and made
with 5, 10, 15, 20, 25 and 30 deleted frames. True positive and true negative rates were 90%
and 0.8%, respectively. The algorithm localized the deletion point but did not consider
different compression ratios. Fluctuation features were developed by Feng et al. [70] based
on frame motion residual to identify frame deletion points (FDP). Post-processing is used
to eliminate minor interferences (sudden lighting change, focus vibration, frame jitter). The
proposed technique is evaluated on quick and slow-motion videos to detect frame deletion.
The TPR (true positive rate) is 90% if 30 or more than 30 frames are deleted. Performance
decreases if the number of frames deleted is lower. This approach is not effective for
videos with slow-motion content. Kingra et al. [76] proposed a hybrid technique capable of
detecting frame insertion, deletion and duplication exclusively. Multiple features generated
by optical flow (OF) and prediction residual (PR) are combined to identify frame base
tampering under some threshold. The proposed algorithm was tested on surveillance
videos having static background and self-recorded mobile videos. The detection and
localization accuracy were 83% and 80%, respectively. This technique can deal individually
with frame insertion, deletion, duplication and localization, but did not give satisfactory
performance for video sequences that have high illumination. Thorough analysis revealed
certain drawbacks. First, this technique was developed for videos having fixed GOP
structure and it fails when a whole GOP or its multiples undergo some tampering attack.
Second, it is dependent on the number of thresholds that were selected empirically, so there
is a lack of flexibility. Third, the model was tested on self-created video sequences that
were not sufficient to provide a precise estimation of the applicability of this technique
in real scenarios. Jia et al. [85] also used optical flow sum consistency for the detection of
duplicated frames in the video. This study used 115 videos to test the proposed algorithm,
which are tampered with 10, 20 and 40 duplicated frames. Poor performance is achieved
on videos made by a static camera. Joshi et al. [99] exploited frame prediction error and
optical flow to classify the authentic and forged videos. Although this method achieved
accuracy of 87.5%, it cannot work well for videos shorter than 7 s.

The algorithms of this class are also simple, and the length of feature vector is small;
however, they are not able to work on different types of compression rates.

7.4. Methods Based on Pixel and Texture

Texture is an important property of the images that can be used for different types of
classification and identification problems. For texture analysis, the pixels are the basic unit.
Various texture descriptors are available in the literature that can be used for various tasks.
During the tampering process, the texture of the frames of a video is also disturbed and
several authors used texture features to detect the tampering in a video. Zhang et al. [66]
used quotients of correlation coefficients among sequential Local Binary Pattern(LBP)-
coded frames as features and correlation to detect the insertion and deletion of frames.
This approach can detect if forgeries exist or not, but it cannot differentiate between frame
deletion and insertion forgery. Performance reduces if small numbers of frames are inserted
or deleted. Additionally, the forged region is not localized. The precision and recall rates are
88.16% and 85.80%, respectively. The proposed work was not tested for videos compressed
at different compression rates. Liao and Huang [48] extracted Tamura texture features,
which are based on contrast, orientation and roughness of a video frame and combined
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into a 3D feature vector. Euclidean distance is calculated to find the duplicate frame of all
feature vectors of all the frames of a video. The method was tested on 10 videos captured
using stationary and moving hand-held cameras having a resolution of 640 × 480 pixels
and a frame rate of 25–30 fps. The method obtained precision of 99.6%. This method
is weak to detect highly similar and duplicated frames having slow sharpness changes.
Zhao et al. [88] proposed an algorithm that is divided into two stages. In the first stage,
HSV (Hue-Saturation-Value) color histograms are calculated for each frame in a video shot,
and similarities between histograms are compared for the detection and localization of
tampered frames. Once the forged position is obtained, in the second stage, the candidate
frames are double checked by extracting features through SURF (Speeded Up Robust
Features) and FLANN (Fast Library for Approximate Nearest Neighbors) matching as a
similarity analysis. This method used 10 video shots of different lengths. The precision,
recall and accuracy are used as evaluation measures. The method gives suitable results, but
only on a small dataset of 10 shots and does not work on grayscale videos. Bakes et al. [100]
used Harlalick features of a gray-level co-occurrence matrix (GLCM) for detection of
insertion, duplication and deletion of frames. This study used 30 videos tampered with
the insertion, deletion and duplication of 10, 20, 30, 40 and 50 frames. Precision, recall and
F1 score are used to evaluate the method. The main benefit of the proposed approach is
that it does not depend on the size/structure of GOP and the number of deleted frames.
However, this method requires a high execution time and cannot detect frame shuffling
forgery. Furthermore, it does not work well in the presence of different compression ratios.

Kharat et al. [112] proposed a video forgery detection and localization method based
on motion vector, Scale Invariant Feature Transform (SIFT). The forged video frames were
identified using motion vector. SIFT features were computed to compare forged frames.
Lastly, RANSAC was utilized to localize the forged region. This method was evaluated both
on compressed and uncompressed videos. The method achieved overall 99.8% detection
accuracy (DA), which is better as compared to other methods. The method was evaluated
on 20 videos downloaded from YouTube. It has reasonable performance on duplicate frame
detection and localization; however, the method was evaluated on limited authentic and
forged videos. Fadl et al. [111] proposed a framework to detect duplicated and shuffled
frames based on temporal average and gray-level co-occurrence matrix. The framework
achieved 99% precision even in the presence of post-processing operations with high false
positives due to weak boundaries of duplicated frames. The method was evaluated on
SULFA and LASIESTA datasets. Shelke and Kasana [120] proposed a passive algorithm
that utilizes entropy-based texture features, correlation consistency between entropy coded
frames and abnormal point detection to detect as well as localize multiple inter-frame
forgeries. A dataset of 30 original and 30 forged videos was prepared by using original
videos from SULFA, REWIND and VTL. This dataset is not publicly available. Although
detection and localization accuracies are 97% and 96.6% in the case of multiple forgeries,
this accuracy is attained on a small dataset of 60 videos.

The techniques in the category produced suitable results; however, these methods
have long features length and complexity is high.

7.5. Methods Based on Deep Learning

The use of deep learning in the domain of computer vision encourages researchers
and scientists to employ deep learning and machine learning models in the domain of
video forensics.

In the past few years, deep learning-based methods such as CNN have attained great
success in the domain of image processing and computer vision. The reason is that deep
neural networks are capable of extracting problem-specific and complex high-dimensional
features to efficiently represent the information needed. Deep learning-based approaches
have been used recently in many fields, such as camera model identification [131], steganal-
ysis [132], image manipulation detection [133], image copy-move forgery detection [134]
and so on. I3D and Siamese(Resnet152) are used for feature extraction, frame duplication
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detection and localization in videos by Long et al. [109]. Duplicated frames are distin-
guished from original frames by an inconsistency detector using I3D. Evaluation was
performed on self-recorded iPhone videos, VIRAT [135], and Media Forensics Challenge
dataset (MFC18), which is not publicly available. Accuracy of 81% and 84% is obtained
in case of iPhone and VIRAT videos while the MCC (Matthews Correlation Coefficient)
scores for MFC-dev and MFC-eval set were 0.66 and 0.36, respectively. This technique is
capable of detecting just one type of temporal tampering; other manipulation tasks are not
carried out, such as frame dropping, frame shuffling, frame rate variations, and effect of
various video codecs on algorithm accuracy. Zampoglou et al. [106] explored the potential
of two novel filters based on DCT and video requantization error. The output of these
filters is used to train deep learning model CNN to discriminate authentic videos from
tampered. The model is evaluated on two datasets, one is provided by the NIST 2018
Media Forensics Challenge, and the second is InVID Fake Video Corpus. The accuracy is
85% when training and testing are performed on the same MFC dataset and 60% when
testing is performed on the videos of the FVC dataset. Availability of annotated data is one
major requirement in this approach, and localization is not addressed. Johnston et al. [136]
developed a framework using a CNN for tampering detection which extracted features
from authentic content and utilized them to localize the tampered frames and regions. The
CNN was trained to estimate quantization parameters, deblock setting and intra/inter
mode of pixel patches from an H.264/AVC sequence with suitable accuracy. These features
are used for localization of tampered regions in singly and doubly compressed videos
having different bitrates. Fadl et al. [118] proposed a system for inter-frame forgery de-
tection where a video is divided into video shots then spatial and temporal information
is fused to create a single image of each shot. A pre-trained 2D-CNN model is used for
efficient spatiotemporal feature extraction. Then, the structural similarity index (SSIM) is
applied to produce deep learning features of a whole video. Finally, they used 2D-CNN
and RBF Multiclass Support Vector Machine (RBF-MSVM) to detect temporal tampering
in the video. To evaluate the performance of the proposed model, they created their own
dataset containing 13135 videos containing three types of forged videos under different
conditions by using original videos from VRAT, SULFA, LASIESTA and IVY datasets and
achieved TPRs of 0.987, 0.999 and 0.985 for the detection of inter-frame forgery, namely,
frame deletion, insertion, and duplication, respectively. Techniques based on deep learning
are data-driven (i.e., requiring a large volume of data), and they have the capability to
automatically learn high-dimensional features required to detect tampering in the video.

7.6. Others

Some other techniques are also proposed that cannot be categorized. Patel et al. [65]
detected temporal forgery based on the EXIF (Extended Image Format) image tag. By
analyzing the difference between consecutive frames of the video, the authors successfully
identified the tampered region by using the EXIF tag. Although this method localized the
forged region, a large database of EXIF tags is required. Gironi et al. [56] used the Variation
of Prediction Footprint (VPF) tool with some changes for detecting the frame insertion and
deletion. VPF tools are also used for detecting whether the video is encoded or not [42]. This
method works for different compression ratios, but it cannot detect frame manipulations
when the attacker deletes/inserts a whole group of pictures (GOP). Moreover, the accuracy
is 91% but the dataset for training and testing is limited. To overcome the false detections
caused by optical flow features and video jitter noise in inter-frame forgery, Pu et al. [119]
proposed a novel framework for the detection of inter-frame forgery from the videos
with severe brightness changes and jitter noises. A new OF algorithm was introduced to
extract stable features of texture changes. It was based on intensity normalization to reduce
the impact of illumination noises, and motion entropy to detect jitter noises. Different
thresholds are defined for motion entropy to determine whether a video is jittery or not.
Experiments were performed on 200 videos taken from three publicly available datasets:
SULFA, the CDNET video library and VFDD video lab. Accuracy of 89% was obtained.
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Huang et al. [121] proposed a novel cross-modal system that can detect and localize forgery
attacks in each frame of live surveillance videos. They prepared their own dataset by
collecting multimodal data of half an hour in total. For intra-frame attack, Faster-RCNN
is used to detect and crop a human object out and then replace it with the corresponding
blank background segment. Forgery detection accuracy of 95% was found on their test
data. No cross-dataset validation has been carried out. The algorithms discussed in this
section used different methods for feature extraction and classification. Significant temporal
forgery techniques in the literature are summarized in Table 4.

7.7. Discussion and Analysis of Temporal Video Tampering Detection Techniques

There exist many models that exploit unique features in videos, such as motion
features, noise features, video compression and coding features, color models and GLCM-
based features. There are a few limitations of the current strategies, which opens doors
for future researchers to conquer these constraints. The existing models are exclusively
designed to identify specific types of temporal tampering and operate with some assump-
tions on selected data. Therefore, the methods developed for a specific type of tampering
are incapable of addressing real practical applications due to the diversity in traces left by
each type of tampering. There is a serious lack of an efficient approach for the detection
of all kinds of video tampering in this domain. Moreover, existing methods are unable to
detect tampering if a video has undergone multiple types of tampering attacks.

Many investigators have performed experiments on synthetically doctored videos.
While many temporal tampering detection techniques work well on a selected set of videos,
they fail to achieve such performances on other unknown video datasets. Moreover, we
could not compare the accuracy of these methods because they are evaluated on their
own custom-built datasets that satisfy their research assumptions and constraints. In most
studies, the efficiency is not reported. Therefore, developing a robust technique for video
temporal tampering detection which is capable of detecting all types of temporal tampering
and localizing the tampered region is still a cutting-edge research area of video forensics.
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Table 4. Summary of temporal tampering (forgery) detection techniques.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Statistical Features

2007 [28] Correlation coefficient

Camera: SONY-HDR-HC3
Two videos with 10,000 frames

One video, the camera placed on a
tripod and kept stationary

throughout
Second video hand-held moving

camera is used
3, 6 and 9 Mbps bit rate

85.7% and
95.2% - - FPR 6%

Method has not worked to
detect the deletion of frames

Dataset is small

2013 [44]
KNN + logistic

regression + SVM
+SRDA

36 video sequences were used with
deletion of 1 to 10 frames - - - TPR 94%

FPR 5.5%

Has not worked on a
localization of forgery

Only detects frame deletion
Dataset for training is small

2014 [54] Correlation
Coefficients + SVM

598 videos with a frame rate of 25
Five types of videos in the database

Original videos
25 frames inserted

100 frames inserted
25 frames deleted

100 frames deleted

96.21% - - -

Has not worked on a
localization of forgery

Method is not applied on
different compression levels

2019 [98] Correlation Coefficient
+ DCT

24 videos are taken from SULFA
6 videos are downloaded

from internet

99.5% and
96.6% 99% 100% F1 99.4% and

F2 99.1%

Cannot detect a smaller
number of duplicated frames

Not able to detect small,
duplicated regions

2014 [59]
Consistency of

velocity +
Cross-Correlation

120 self-created videos 90% - - - Forge region is not localized
Dataset is small
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Table 4. Cont.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Frequency Domain Features

2009 [31] MCEA + DCT
5 videos

3, 6, or 9 consecutive frames are
deleted from the original

Impact Factor α is used
Has not worked on

localization of forgery
Dataset is small

2012 [40]
MCEA + FFT spikes

used after double
MPEG compression

4 videos with CIF and QCIF format
3rd, 6th, 9th, 12th and 15th frames

are deleted
Save with the same GOP = 15

The quantitative measure was not used
Has not worked on

localization of forgery
Dataset is small

2018 [89]
Quaternion Discrete

Cosine Transform
(QDCT) feature

SULFA: 101 videos
OV (Open Video Project Analysis
digital video collection): 14 videos

Self-Recorded: 124 videos

- 98.47% 98.76% -

Audio file is required with
videos

Poor localization
No evaluation on unknown

dataset

Methods Based on Residual and Optical Flow

2014 [55] Motion residual
130 raw YUV videos tampered and
made a video by deleting 5, 10, 15,

20, 25, 30 frames
- - - TPR 90%

FAR 0.8%

Only localized frame deletion
point

No work on frame insertion

2016 [73]

Variation of prediction
residual (PR) and the

number of intra
macro-blocks (NIMBs)

Self-created video - 81% 88% F1 score 84%

This method failed when the
size of deleted frames was

small, and video was in slow
motion

2016 [72] Motion residual+
wavelet 22 YUV raw video 92.73% - - ROC Did not work well on low

compression rate

2013 [43] Optical flow

TRECVID Content-Based Copy
Detection (CBCD) scripts are used
with 3000 for frame insertion and

deletion in KTH database

- 95.43% 95.34% - Has not localized the forge
region
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Table 4. Cont.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Residual and Optical Flow

2016 [70]
Optical Flow + IPE

(Inra-Prediction
Elimination) Process

Group 1: 44 YUV raw files with
slow motion content

Group 2: 78 YUV raw files with
quick motion

5, 10,15, 20, 25, 30 frames are
deleted

- - -
True Positive

Rate
90%

Not applicable to slow-motion
videos

False alarm rate is high for
long video sequences

No machine learning scheme
is applied

2017 [76]
OF gradient + PR

(Prediction Residual)
Gradient

Raw videos taken from DIC Punjab
University (videos of surveillance

camera and Xperia Z2 mobile)
Tampered frames: 1% to 6%

Detection
accuracy 83%
Localization

accuracy 80%

- - -
Performance decreases when

applied on videos having high
illumination

2018 [85] Correlation coefficient
+ optical flow

Downloaded 115 videos and
self-forged with 10, 20,
40 duplicated frames

- 5.5% 98.5% - Poor performance on videos
taken from static cameras

2019 [99] Frame prediction error
+ optical flow 200 videos 87.5% Cannot work well for videos

less than 7 s long

Methods Based on Pixels and Texture Features

2013 [12]

DCT+ DFT + DWT
from Prediction Error

Sequence (PES) +
SVM, ensemble-based

Classifier

20 videos
Resolution 176 × 144 - - - ROC

Limited to detect frame
deletion

Has not localized the forged
region

Dataset is small for training
and testing

2013 [48] Tamura texture +
Euclidean Distance

10 videos captured using stationary
and moving hand-held cameras

Resolution 640 × 480
Frame rate 25–30 fps

- - 99.6% -

Weak to detect highly similar
frames

Weak to detect duplicate
frames if sharpness changes

slowly
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Table 4. Cont.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Pixels and Texture Features

2015 [66] Local Binary Pattern
(LBP) + correlation

599 videos with a frame rate of 25
Five types of videos in the database

Original videos
25 frames inserted

100 frames inserted
25 frames deleted

100 frames deleted

- 85.80% 88.16% -
Forge region is not localized

Not tested on different
compression rates

2018 [88] SVD + Euclidean
distance 10 videos 99.01% 100% 98.07 - Does not work on grayscale

videos

2019 [100] Harlalick features
30 videos from different sources

with 10, 20, 30, 40, 50 frame
insertion, deletion

96% 86% F1 score 91% Does not work in presence of
compression

Methods Based on Deep Learning

2019 [109] 13D + ResNet network

Media Forensics Challenge dataset
(MFC18) 231 videos in MFC-Eval

and 1036videos in MFC-Dev,
static camera raw videos from

VIRAT: 12 videos
Self-recorded iPhone 4 videos:

17 videos
Videos of length 0.5 s, 1 s, 2 s, 5 s
and 10 s are inserted into same

source video

- - - AUC 99.9%

Performance is degraded in
presence of multiple sequences
of the duplicated frames in a

video
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Table 4. Cont.

References Methods Dataset
Evaluation Measures

Limitations/Issues
Accuracy Recall Precision Others

Methods Based on Deep Learning

2019 [106] CNN

NIST 2018, Media Forensics
Challenge2 for the video

manipulation detection task,
116 tampered and 116 original

35 real and 33 fake videos are taken
from InVID Fake Video Corpus

85% - - -
Labeled video data are

required
Localization is not completed

2020 [136] CNN
Face Forensics

VTD
Dataset provided by [81]

- - - MCC: 0.67
F1: 0.81

Only proposed for videos that
have fixed GOP size and still

background
It can only deal with single

type of tampering

2021 [118] 2D-CNN + SSIM +
RBF-MSVM

Raw videos taken from
VRAT, SULFA, LASIESTA and IVY

datasets

TPR in ins, del
anddup forgery
are: 0.999, 0.987,

0.985

Cross dataset evaluation was
not performed on unknown

dataset

Others

2014 [56] Variation of Prediction
Footprint

14 videos
Resolution 352 × 288 pixels

1250 frames
100, 300, 700 frames removed

and inserted

91% - - -
Has not worked to localize the

forged object
Dataset is small
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8. Research Challenges

Given our analyses of the existing literature on passive video tampering techniques,
this field of research faces the following challenge.

8.1. Benchmark Dataset

Performance of every recognition system depends on its training, testing and evalua-
tion. The dataset is the key for proper training, testing and evaluation for any proposed
algorithm. To the best of our knowledge, existing video forgery datasets are not appropriate
due to being small in size and lacking post-processing operations such as rotation, scaling,
blurring, compression, etc. [137]. The details of existing datasets for video forensic analysis
are presented in Table 5. Many researchers have developed their own datasets [70,73,85] to
conduct experiments for inter-frame forgery detection, but these datasets are not available
for other communities/researchers to evaluate the performance of the proposed algorithms.
This portrays video tampering detection as a solved problem on specific, self-created, small
datasets with high accuracy, which may discourage other researchers from publishing their
work with less accuracy. In this regard, a great effort has been made for image forensics
and source device identification [138]. On the contrary, no benchmark dataset is available
for video forensics. To prepare tampered videos manually is a highly time-consuming
process, so many authors used synthetically doctored videos for their experiments, such as
Panchal et al. in [139].

Therefore, a benchmark dataset for proper training and testing needs to be developed
that could give an unbiased and neutral platform for comparison of various techniques
with existing state-of-the-art video tampering (forgery) detection techniques.

8.2. Performance and Evaluation

Most video forgery algorithms are based on camera source identification; therefore,
the results can be negatively affected by increasing the number of cameras. Moreover,
the camera source identification methods are noted to be dependent on intrinsic camera
hardware features such as lens and charge-couple device (CCD) sensor characteristics
that can degrade performance of the algorithm. Video double compression artifacts add
difficulty to the localization of the video forgery, especially when the video being analyzed is
compressed by a low-quality factor, which is seen in most of the recent methods. Similarly,
video forgery detection depends on post-processing operations such as edge blurring,
compression, noise, scaling, rotation, etc., and can cause high false positives. Most of the
existing methods on video forgery detection have no resistance to such post-processing
operations. All these aspects degrade the performance of the techniques.

The existing methods are evaluated with different metrics; that’s why they can’t be
compared with each other. Thus, there is a need for standard evaluation measures based
on inconsistent lighting and correlation between pixels, so that comparisons can be easily
carried out between different algorithms.

8.3. Automation

Existing methods of video forgery detection and localization are not fully automated
and require human interpretation, which results in poor accuracy.
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Table 5. Details of existing video forgery datasets.

Dataset Name
and Reference

Number of
Videos

Video Length
(in s) Video Source Static/Moving

Camera
Type of Video

Forgery
Scenario (Mor,

Eve, Night, Fog)
Available in

Public Domain

TDTVD,
Panchal, Shah

et al., 2020 [139]

Original: 40
Tampered: 210 6–18 s SULFA, YouTube Static and

moving

Frame insertion,
deletion,

duplication, and
smart tampering

N/A Yes

Pu, Huang
et al., 2021 [119]

Original +
Tampered: 200 N/A

CDNET Video Library, SULFA,
VFDD Video Library (Video Forgery
Detection Database of South China

University of Technology Version 1.0)

Static and
moving

Frame deletion,
insertion,

replacement, and
copy-move

N/A No

Shelke and
Kasana

2021 [120]

Original: 30
Tampered: 30 N/A SULFA, REWIND, and VTL Static and

moving

Frame insertion,
deletion,

duplication, and
frame splicing

N/A No

Test Database,
Ulutas

et al. [140]

Original
+Tampered: 31 SULFA and different movie scenes Static and

moving Frame duplication N/A Yes

Le, Almansa
et al., 2017 [141] Tampered: 53 N/A N/A

Static and
moving
camera

Video in-painting N/A Yes

VTD dataset,
Al-Sanjary,

Ahmed et al.,
2016 [142]

Original: 7
Tampered: 26 14–16 s YouTube

Static and
moving
camera

Copy-move,
swapping frames,

splicing
N/A Yes
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Table 5. Cont.

Dataset Name
and Reference

Number of
Videos

Video Length
(in s) Video Source Static/Moving

Camera
Type of Video

Forgery
Scenario (Mor,

Eve, Night, Fog)
Available in

Public Domain

Feng, Xu et al.,
2016 [70]

Original: 122
Tampered: 732 N/A

YUV files
http://trace.eas.asu.edu/yuv/

http://media.xiph.org/video/derf/
ftp://ftp.tnt.uni-hannover.de/pub/

svc/testsequences/ *
http://202.114.114.212/quick_
motion/yuv_download.html *,

(accessed on 16 November 2021)

Static and
moving
camera

Frame deletion N/A No

SYSU-
OBJFORG,

Chen et al. [61]
Total: 100 11 s Commercial Surveillance Cameras Static camera Object-based N/A No

Su, Huang et al.,
2015 [64]

Original +
Tampered: 20 N/A SONY DSCP10 Static camera Copy-move N/A No

REWIND
PROJECT,

Bestagini et al.,
2013 [45]

Original: 10
Tampered: 10 7–19 s Canon SX220, Nikon S3000, Fujifilm

S2800HD Static camera Copy-move N/A Yes

SULFA Dataset,
Qadir, Yahaya

et al., 2012 [137]

Original: 166
Tampered: 5 4–18 s Canon SX220, Nikon S3000

Fujifilm S2800HD Static camera Copy-move N/A No *

* Given link is not accessible.

http://trace.eas.asu.edu/yuv/
http://media.xiph.org/video/derf/
ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/
ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/
http://202.114.114.212/quick_motion/yuv_download.html
http://202.114.114.212/quick_motion/yuv_download.html
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8.4. Localization

Video forgery detection makes a user aware of if the video is authentic or not, but when
a user knows which part of the video is forged, the trustworthiness of forgery detection
systems will increase. To determine the accurate location of video tampering is another big
challenge. Some of the developed approaches are capable of localizing the tampered region
in a video, but accuracy rates were inadequate; furthermore, in many studies, little attention
has been paid to localizing the tampered region. Moreover, no remarkable results have been
observed in existing methods to localize the traces of forged regions in tampered videos.
As existing methods have not modeled the structural changes properly, this occurred in
videos after spatial forgery. Due to these reasons, the accuracy of localizing the forged
region is still a challenge.

8.5. Robustness

An algorithm is known to be robust if it detects and localizes every type of forgery in
general and not specifically on a certain dataset. Most of the reported algorithms have high
accuracy on certain datasets on which they are evaluated but not in general, which makes
it difficult to perform comparative analyses among existing techniques. An important
limitation of existing methods is the lack of sufficient validation of standardized datasets.
Thus, there is a need to establish benchmarks for the detection and localization of all types
of forgery in videos by ensuring high accuracy so that it would be appropriate to deploy in
real practical applications.

9. Future Directions

A standard dataset may be developed to benefit the research community to train,
test and evaluate their algorithms. Video forgery may be detected and localized in the
following ways. The whole process of video tampering detection and localization is
elaborated in Figure 7. Initially, features can be extracted through different multi-resolution
techniques, namely, local binary pattern (LBP) [143], Weber’s law descriptor (WLD) [144]
and discriminative robust local binary pattern (DRLBP) [145]. Complementary features can
then be integrated from these techniques to gather more discriminative features. Principle
component analysis (PCA) is likely to be used for selecting the most suitable or unique
features out of the extracted features [146]. These selective features can then be passed to
an SVM to classify the video as forged or authentic [147].

Edges are tampering artifacts and give better representation of the objects. The edge
irregularity caused by tampering can be noticed in chrominance channels. The YCbCr
color model was used by Muhammad et al. in [148] as a pre-processing step to extract
features from Cb and Cr channels to represent the structural changes. The reason to
extract features using Cb and Cr components is to gather discriminative features which
represent the information of edges caused by tampering, because edges appeared sharply
in the Cb or Cr channel. Although LBP gives texture information, it failed to retrieve
edge information. Since DRLBP and WLD contain both edge and texture information and
produce discriminative features to represent the clues of forgery, more accurate results
are expected than LBP in detecting video tampering in the spatial domain. Similarly, the
spatial/temporal forged region can be localized by using either block-based or clustered-
based techniques.
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Efficiency is another major concern due to the high volume of video frames under
observation. For better accuracy and efficiency, Convolutional Neural Network (CNN)-
based algorithms such as deep learning (DL), auto encoder or deep belief networks (DBN)
can also be evaluated [149] due to their success in artificial intelligence (AI) tasks such
as image recognition [150], speech recognition [151] and natural language processing
(NLP) [152].

Deep learning [153] has inspired other machine learning techniques to foresee the
activity of potential drug molecules [154], reconstruct brain circuits [155], online particle
detection [156], predict the effects of mutations in non-coding DNA on gene expression and
disease [157], and many other applications. CNN [158] is specialized as fully connected
layers and is also easy to train. Major technology companies including Google, Facebook,
Yahoo!, Twitter, Microsoft, and IBM have used CNN-based algorithms.

CNN on the large scale is not extremely fast; therefore, CNN-based hardware chips are
developed by NVIDIA, Mobil eye, Intel, Qualcomm, and Samsung to reduce the training
time. For better efficiency, we also need to think about the extreme learning machine (ELM).
ELM not only achieves state-of-the-art results but also shortens the training time from
days (spent by deep learning) to several minutes without scarifying the accuracy. Extreme
learning is successfully performed in applications such as soft-sensing in the complex
chemical process [159], face recognition [160] and many more.

Transfer learning [161,162] is another topic of ongoing interest in the machine learning
community. It is the process of the improvement of learning in a new task where training
data are limited through the transfer of knowledge from a related task that has already
been learned. This shortage of training data can be due to several reasons, such as data
being fitful, costly to collect and label or being unavailable. Many applications of machine
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learning are successfully applied transferring learning for image classification [163], human
activity classification [164], event classification from a video [165], software prediction [166],
multi-language text classification [167] and many others. Since the benchmarked forged
video datasets are not available, a learning system for video tampering analysis can be
developed through transfer learning techniques by using existing partially or closely related
learning models.

10. Conclusions

Digital video forensics is still in its infancy and the reliability of digital video as a
reference in court is questionable due to tampering (forgery). Numerous video editing tools
such as Adobe’s (Premier and After Effect), GNU Gimp, Premier and Vegas are readily
available to tamper videos. Several techniques have been proposed in the literature to
detect tampering, and they all suffer from their share of limitations. In this study, we
carried out a systematic review of digital video forgery detection techniques and provided
answers to the research questions guiding this work. The existing passive video forgery
detection and localization techniques are categorized into spatial and temporal techniques.
These spatial and temporal techniques are further categorized based on their features. We
performed in-depth investigations of methods, their comparative analysis and the merits
and demerits of each category, and we debated challenges extracted from video forensics
literature. The review of related work illustrates that various features can be exploited to
detect and localize forgery. LBP, frame motion residual, noise features, SURF and optical
flow give suitable detection accuracy, but their performance is reduced due to presence of
illumination, static scenes, tampering of small number of frames, video quality and variable
GOP sizes. Even though techniques based on deep learning are convincing, few researchers
have adopted it due to the unavailability of large video forgery datasets. Secondly, the
detection of inter-frame forgeries has been addressed exclusively, highlighting the need
to establish benchmarks for detection and localization of all kinds of temporal tampering
in videos by ensuring high accuracy. Thirdly, to the best of our knowledge, no work is
available in the public domain that can detect tampering if a video has undergone multiple
types of tampering attacks. The detection of multiple types of tampering in a video is an
area of research that needs to be explored. Fourthly, manually producing tampered videos
is very time-consuming task, which is why most researchers performed their experiments
on synthetically doctored video sequences. Finally, an important limitation of existing
methods is the lack of sufficient validation on standardized datasets.
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