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ABSTRACT 

In this paper we present two watermarking approaches that are robust to geometric distortions. The first 

approach is based on image normalization, in which both watermark embedding and extraction are 

carried out with respect to an image normalized to meet predefined moment criteria. We propose a new 

normalization procedure, which is invariant to affine transform attacks. The resulting watermarking 

scheme is suitable for public watermarking applications, where the original image is not available for 

watermark extraction. The second approach is based on a watermark resynchronization scheme aimed to 

alleviate the effects of random bending attacks. In this scheme, a deformable mesh is used to correct the 

distortion caused by the attack. The watermark is then extracted from the corrected image. In contrast to 

the first scheme, the latter is suitable for private watermarking applications, where the original image is 

needed during watermark detection. In both schemes we employ a direct-sequence code division multiple 

access (DS-CDMA) approach to embed a multi-bit watermark in the discrete cosine transform (DCT) 

domain of the image. Numerical experiments demonstrate that the proposed watermarking schemes are 

robust to a wide range of geometric attacks. 

Keywords: Digital watermarking, image normalization, geometric attacks, watermark resynchronization, 

mesh modeling, code division multiple access watermarking. 
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I. INTRODUCTION 

With the ever growing expansion of digital multimedia and the Internet the problem of ownership 

protection of digital information has become increasingly important. Although significant progress has 

been made in watermarking of digital images, many challenging problems still remain in practical 

applications. Among these problems is the resilience of watermarking to geometric attacks. Such attacks 

are easy to implement, but can make many of the existing watermarking algorithms ineffective. Examples 

of geometric attacks include rotation, scaling, translation, shearing, random bending, or change of aspect 

ratio (e.g.,  [1],  [2] and  [3]).  Such attacks are effective in that they can destroy the synchronization in a 

watermarked bit-steam, which is vital for most of the watermarking techniques. This is problematic 

especially in applications where multi-bit public watermarking is used, where the original image is not 

available for watermark extraction. 

In the literature several approaches have been proposed to combat geometric attacks. Ruanaidh and 

Pun  [4] proposed a scheme based on the invariant properties of Fourier-Mellin transform (FMT) to deal 

with such attacks as rotation, scaling and translation (RST). This approach was effective in theory, but 

difficult to implement. Aimed to alleviate the implementation difficulty of this approach, Lin et al  [5] 

proposed to embed the watermark in a one-dimensional signal obtained by projecting the Fourier-Mellin 

transformed image onto the log-radius axis. This approach was intended to embed only one bit of 

information, i.e. presence or absence of the watermark. 

In  [6] Pereira and Pun proposed another approach in which an additional template, known as a “pilot” 

signal in traditional communication systems, besides the watermark was embedded in the DFT domain of 

the image. This embedded template was used to estimate the affine geometric attacks in the image. The 

image was then corrected with the estimated distortion, and the detection of the watermark was performed 

afterward. A theoretical analysis was provided in  [7] on the bit error rate for this pilot-based approach 

under a number of geometric attacks. This approach requires the detection of both the synchronization 

pattern and the watermark. A potential problem arises when a common template is used for different 

watermarked images, making it susceptible to collusion-type detection of the template  [8]. 
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In  [9] Bas et al proposed a watermarking approach that is adaptive to the image content. In this 

approach salient feature points, extracted from the image, were used to define a number of triangular 

regions. A one-bit watermark was then embedded inside each triangle using an additive spread spectrum 

scheme. This approach requires the robust detection of the salient points in the image in order to retrieve 

the watermark. 

In  [11] a watermarking scheme was proposed using moment based image normalization, a well-

known technique in computer vision and pattern recognition applications  [10]. In this approach both 

watermark embedding and extraction were performed using a normalized image having a standard size 

and orientation. Thus, it is suitable for public watermarking where the original image is not available. The 

approach in  [11] was used to embed a one-bit watermark. 

In this paper, we propose two watermarking approaches to alleviate the problem of geometric 

distortions. The first is a multi-bit public watermarking scheme based on image normalization, aimed to 

be robust to general affine geometric attacks. Our scheme is different from the one in  [11] in that: 1) we 

address more general affine distortions, where shearing in the x and y directions are allowed rather than 

simple scaling and rotation attacks; 2) we propose a multi-bit watermarking system based on direct-

sequence code division multiple access (DS-CDMA).  

The second watermarking approach is based on a watermark resynchronization scheme, aimed to be 

robust to random geometric distortions and to be used in the context of private watermarking where the 

original image is known. This scheme uses a deformable mesh model for correcting the distortion so that 

resynchronization is achieved. We present and compare two variations of this scheme, which were first 

reported in our previous work in  [13] and  [22], respectively.  

The rest of this paper is organized as follows. In Section II we present the public watermarking 

scheme based on image normalization. In Section III we describe the private watermarking scheme based 

on deformable mesh modeling. In Section IV we present numerical experiments to demonstrate the 

effectiveness of the proposed algorithms. Finally, we give our conclusions in Section V. 
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II. WATERMARKING BASED ON IMAGE NORMALIZATION 

The key idea of this watermarking scheme is to use a normalized image for both watermark 

embedding and detection. The normalized image is obtained from a geometric transformation procedure 

that is invariant to any affine distortions of the image. This will ensure the integrity of the watermark in 

the normalized image even when the image undergoes affine geometric attacks. This watermarking 

scheme is illustrated in Figure 1 using a functional diagram. It is noted that the cover image is not needed 

for the watermark extraction. Thus, this scheme is desirable for public watermarking applications. 

Below we describe the components that define this scheme in details. We begin with some 

background on image moments and geometric affine transforms, which are the necessary tools for image 

normalization. 

A. Image Moments and Affine Transforms 

Let ( , )f x y  denote a digital image of size M N× . Its geometric moments pqm  and central 

moments pqµ , , 0,1,2,p q = " , are respectively defined as 
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An image ( , )g x y  is said to be an affine transform of ( , )f x y  if there is a matrix 11 12

21 22
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=  
 
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 a

a

x x
y y

   
= ⋅ −   

  
A d . (4) 

It is readily seen that rotation, scaling, and translation (RST) are all special cases of affine transforms. 

Other examples of affine transforms include: i) shearing in the x  direction, which corresponds to 

1
0 1 x

β 
=  
 

A A�  in (4); ii) shearing in the y  direction, which corresponds to
1 0

1 yγ
 

=  
 

A A� ; and iii) 

scaling in both x  and y  directions, which corresponds to
0

0 s

α
δ

 
=  
 

A A� . Moreover, it is 

straightforward to show that any affine transform A  can be decomposed as a composition of the 

aforementioned three transforms, e.g., s y x= ⋅ ⋅A A A A , provided that 11 0 and det( ) 0a ≠ ≠A . 

In addition, one can derive the following results (the derivation is omitted for brevity): 

Lemma 1. If ( , )g x y  is an affine transformed image of ( , )f x y  obtained with affine matrix 

11 12

21 22

a a
a a
 

=  
 

A  and =d 0 , then the following identities hold: 
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∑∑ , (5) 
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µ µ− −
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∑∑ , (6) 

where pqm′ , pqm′  are the moments of ( , )g x y , and pqm , pqm  are the moments of ( , )f x y .  

B. Image Normalization 

In this section, we describe a normalization procedure that achieves invariance under affine geometric 

distortions. The general concept of image normalization using moments is well-known in pattern 

recognition problems (e.g., see  [15],  [16] and  [17], where the idea is to extract image features that are 

invariant to affine transforms). In this application we apply a normalization procedure to the image so that 

it meets a set of predefined moment criteria.  

The normalization procedure consists of the following steps: for a given image ( , )f x y , 
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1. Center the image ( , )f x y ; this is achieved by setting in (4) the matrix 
1 0
0 1
 

=  
 

A  and the 

vector 1

2

d
d
 

=  
 

d  with  

 10 01
1 2

00 00

,m md d
m m

= = , (7) 

where 10m , 01m  and 00m  are the moments of ( , )f x y  as defined in (1). This step is aimed to 

achieve translation invariance. Let 1( , )f x y  denote the resulting centered image. 

2. Apply a shearing transform to 1( , )f x y  in the x  direction with matrix 
1
0 1x

β 
=  
 

A  so that the 

resulting image, denoted by 2 1( , ) [ ( , )]xf x y f x yA� , achieves (2)
30 0µ = , where the superscript is used 

to denote 2 ( , )f x y . 

3. Apply a shearing transform to 2 ( , )f x y  in the y  direction with matrix 
1 0

1y γ
 

=  
 

A  so that the 

resulting image, denoted by 3 2( , ) [ ( , )]yf x y f x yA� , achieves (3)
11 0µ = . 

4. Scale 3( , )f x y  in both x  and y  directions with 
0

0s

α
δ

 
=  
 

A  so that the resulting image, denoted 

by 4 3( , ) [ ( , )]sf x y f x yA� , achieves: 1) a prescribed standard size, and 2) (4)
50 0µ > and (4)

05 0µ > . 

The final image 4 ( , )f x y  is the normalized image, based on which subsequent watermark embedding 

or extraction is performed.  Intuitively, the above normalization procedure can also be explained as 

follows: the discussion following equation (4) points to the fact a that a general affine transformation 

attack can be decomposed as a composition of translation, shearing in both x and y directions, and scaling 

in both x and y directions. The four steps in the normalization procedure are designed to eliminate each of 

these distortion components. More specifically step 1 eliminates the translation of the affine attack by 

setting the center of the normalized image at the density center of the affine attacked image, step 2 and 
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step 3 eliminate shearing in the x and y directions by forcing (2)
30 0µ =  and (3)

11 0µ = . Finally,   step 4 

eliminates scaling distortion by forcing the normalized image to a standard size. It is important to note 

that each step in the normalization procedure is readily invertible. This will allow us to convert the 

normalized image back to its original size and orientation once the watermark is inserted. 

Of course, we need to determine in the above procedure the parameters associated with the 

transforms , ,  and x y sA A A . We will address this issue in the next subsection. In the following theorem 

we present the invariant property of the normalized image 4 ( , )f x y  to affine transforms. 

Theorem 1. An image ( , )f x y  and its affine transforms have the same normalized image. 

The proof of this result is deferred to the Appendix. 

To demonstrate this normalization procedure, we show in Figure 2(a) an original image “Lena”; in (b) 

we show this image after an affine distortion; both of these images yield the same image, shown in Figure 

2(c), when the normalization procedure is applied.  

C. Determination of the Transform Parameters 

In this section we show how to determine the parameters associated with the transforms 

, ,  and x s yA A A  so that they achieve their respective normalization goals. 

1.  Sheering matrix
1
0 1x

β 
=  
 

A .  

From identity (6), we have 

 (2) (1) (1) 2 (1) 3 (1)
30 30 21 12 033 3 ,µ µ βµ β µ β µ= + + +  (8) 

where (1)
pqµ  are the central moments of 1( , )f x y .  

Setting (2)
30 0µ = , we obtain 

 (1) (1) 2 (1) 3 (1)
30 21 12 033 3 0µ βµ β µ β µ+ + + = . (9) 

The parameter β  is then solved from (9).  
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Note that equation (9) can have up to three roots in the case that (1)
03 0µ ≠  (which is generally true for 

most of the nature images). In particular, we may have the following two scenarios: 1) one of the three 

roots is real and the other two are complex; and 2) all three roots are real. In the former case, we simply 

set β  to be the real root; in the latter case, we pick β  to be the median of the three real roots. As 

demonstrated in the Appendix, such a choice of β  is to ensure the uniqueness of the resulting 

normalized image.  

Of course, under some very unusual conditions the number of roots of (9) may vary. For example, 

when all the moments involved in (9) are zero, it will have infinite number of solutions. This can happen 

when the image is rotationally symmetric, such as a disk or a ring. We refer to  [16] and  [17] for more 

details on general normalization procedures. 

2. Sheering matrix
1 0

1y γ
 

=  
 

A .  

From identity (6), we have 

 (3) (2) (2)
11 20 11µ γµ µ= + . (10) 

Setting (3)
11 0µ = , we obtain 

 
(2)
11
(2)
20

µγ
µ

= − . (11) 

Thus, the parameter γ  has a unique solution. 

3. Scaling matrix
0

0s

α
δ

 
=  
 

A .  

The magnitudes of scaling parameters and α δ  are determined by resizing the image 3( , )f x y  to a 

prescribed standard size in both horizontal and vertical directions. Their signs are determined so that both 

(4)
50µ  and (4)

05µ  are positive (which can be changed by flipping either horizontally or vertically).  
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D. Effect of the Watermark 

It is noted that for watermark embedding, the normalization is applied with respect to the original 

image, while for watermark extraction it is applied with respect to the watermarked image. It is thus 

important to design the watermark signal so that it has minimal effect on the normalized image. 

Let ( , )w x y  denote the watermark signal added to the original image ( , )f x y . Let ( )w
pqm  denote the 

moments of ( , )w x y .  Then from (7) one can see that it is desirable to have ( ) ( ) ( )
00 10 01 0w w wm m m= = = , so that 

( , )w x y  has no impact on the centering step of the normalization procedure. 

In addition, from Equations (8)-(11) it is desirable to have ( ) 0w
pqm =  for 2 and 3p q+ = , so that the 

watermark does not affect the rest of the normalization transforms. It is assume here that ( , )w x y  and 

( , )f x y  are statistically independent, so their 2nd and 3rd order central moments are additive. 

As will be discussed later, the watermark ( , )w x y  is a CDMA signal generated from a zero-mean 

Gaussian or uniform source that is added to the mid-frequency DCT coefficients of the image. As will be 

seen from our numerical examples, such a watermark nearly satisfies all the desirable properties described 

above, and will have little impact on the normalized image. 

E. Alternative Normalization Procedures 

The normalization procedure described above consists of a sequence of elementary affine transforms 

(i.e., shearing and scaling operations). We point out that other transform procedures can also be 

constructed in a similar fashion to achieve affine-transform invariance in a normalized image. For 

example, one such procedure is the following 

 
cos sin 0 1
sin cos 0 0 1
φ φ α β
φ φ δ

   
=    −   

A , (12) 

which consists of 1) shearing in x-direction, 2) scaling in x and y directions, and 3) rotation by angleφ . 

The parameters in the procedure described in (12) can then be determined by enforcing a set of predefined 

moments for each step. Interested reader can refer to  [15] for details  
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F. Watermarking Algorithm 

The image normalization procedure described above yields a normalized image that is invariant to 

any affine geometric transforms. It is on this normalized image that we perform watermark embedding 

and detection. In this paper, we chose to use the spread spectrum based DS-CDMA watermarking scheme 

 [19], which is well-known for its robustness to common signal processing attacks, though other 

watermarking schemes can be used as well. 

(1) Watermark Embedding 

The watermark embedding procedure is demonstrated in Figure 3 and summarized as follows: To 

embed a watermark into an image, 

1. Apply the normalization procedure to obtain the normalized image. 

2. Create a 2D watermark with the same size as the normalized image. This is accomplished by the 

following steps: a) Generate M 1-D binary pseudo-random sequences ,  1,...,i i M=p , as signature 

patterns using the private key as seed, where M is the number of bits in the watermark message. Each 

of these sequences has zero mean and takes values from a binary alphabet {-1,1}; b) Create a 1-D 

DS-CDMA watermark signature 1W  by modulating the watermark message with the patterns 

generated in a), i.e. 1
1

(2 1)
M

i i
i

m
=

= −∑W p , where im  is the ith bit (i.e., 0 or 1) in the watermark 

message; c) Convert the 1-D signature 1W  into a 2-D signature 2W  in a zigzag scan order; d) Apply 

the inverse discrete cosine transform (IDCT) to the 2-D signature 2W  to produce 1w . 

3. Create a mask image, which is a binary image of the same size as the normalized image. This image 

has 1's within the support of the normalized image and 0's elsewhere. 

4. Generate the watermark signature w from 1w  using the mask image by masking off the boundary area. 

Signature w is the actual final watermark signature.  

5. Apply the inverse of the normalization procedure in Step 1 to the watermark signature w, so that it has 

the same size as the cover image.  
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6. The final watermark signature is embedded into the original image additively with desired 

watermarking strength. This produces the watermarked image. 

The whole procedure is equivalent to embedding the watermark signature w into the DCT domain of 

the normalized image. A note is that in this procedure we choose to transform the watermark signature to 

fit the cover image instead of embedding the watermark into the normalized image. This has the 

advantage that it avoids any distortion which might otherwise have incurred to the cover image. Another 

remark is that the masking step (i.e., discarding the part of the watermark signature outside the support of 

the normalized image) is for the ease of implementation. It will not weaken the correlation property of the 

watermark signature, because the normalized image is simply zero outside its support.  

(2) Watermark Extraction 

The following steps are taken to decode the embedded watermark in an image, 

1. Apply the normalization procedure to obtain the normalized image. 

2. Decode the watermark message in the normalized image. This is accomplished in the following steps: 

a) Regenerate the watermark patterns ,  1,...,i i M=p , using the same key and following the same 

procedure as in step 2 of watermark embedding; b) Apply DCT to the normalized image from Step 1; 

c) Convert the DCT coefficients where the watermark signature is embedded into a 1-D vector, 

denoted as wc , through inverse zigzag scan;  d) Decode the watermark message bit-by-bit using a 

correlation detector. That is, the ith bit of the watermark message is decoded as 

 w i1,     corr( , ) >0
ˆ

0,          otherwise,im 
= 


c p
 (13) 

where w icorr( , )c p is the correlation of the two vectors. 

III. WATERMARK RESYNCHRONIZATION THROUGH DEFORMABLE MESH MODELING 

In practice it may well happen that a watermarked image undergoes a geometric attack that cannot be 

simply described by RST or more general affine transforms. In such a case it is no longer feasible, if not 

impossible, to describe the actual image distortion by a global geometric transformation model. Such 
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geometric attacks may cause hardly noticeable perceptual distortion, but can make many existing 

watermarking algorithms vulnerable.   

As an example, in Figure 4(a) we show the Lena image embedded with a watermark; in Figure 4(b) 

we show this image after attack with StirMark  [12]. In Figure 4(c) we show the difference between the 

two images. In Figure 4(d) we show the effect of this same distortion on a rectangular grid corresponding 

to the image (dashed—before distortion; solid—after distortion). Indeed, the distortion in the image is 

barely visible, though the actual geometric distortion is rather severe. The actual attack in this case 

follows the pattern of an elastic sheet, which is deformed by forces of random magnitude and directions at 

different locations. Such distortions can easily destroy the synchronization (registration) between the 

watermark in the attacked image and the detector.  

A. Watermarking Scheme based on Mesh Modeling  

In this section, we propose to use a deformable mesh model to describe the complex geometric 

distortion in a watermarked image. The deformable mesh serves as a resynchronization tool between a 

distorted image and its original image for watermark detection. A functional block diagram of a 

watermarking system based on such a deformable mesh model is shown in Figure 5. Unlike the scheme in 

Section II, this watermarking scheme requires the knowledge of the original image. Thus, it is suitable for 

private watermarking applications. 

B. Distortion Correction with a Mesh Model 

The concept of mesh modeling is rooted in the field of finite element methods. In a mesh model, the 

domain of an image is divided into a collection of non-overlapping polygonal patches, called mesh 

elements. In a deformable mesh, the mesh elements are allowed to deform between two image frames 

(e.g., one before distortion, and the other after distortion). The deformation of a mesh element is through 

the displacement of its vertices (called mesh nodes).  
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Mesh modeling has recently found many important applications in image processing, including image 

compression, motion tracking and compensation, image processing through geometric manipulation, and 

medical image analysis, see for example  [14], [23].  

(1) Mesh Model of the Image Distortion Field 

In the following we assume that we have a pair of images: one is the original image denoted 

by ( ),f x y , and the other is ( ),f x y  underwent a geometric distortion, denoted by ( )( ) ,df x y . We want 

to characterize the point-wise relative displacement between the two images.  

Let vector ( )d p  denote the relative displacement of a point ( , )x yp �  in the original image. With a 

mesh model, we first partition the image domain D  is into M  non-overlapping mesh elements, denoted 

by mD , with 1,2, ,m M= … . Over each element mD , we model the displacement ( )d p  as: 

 ( ) ( )
1

ˆ
N

n n
n
ϕ

=

= ∑d p p d  (14) 

where nd  is the displacement vector at the nth element node, and ( )nϕ p  is the interpolation basis 

function associated with node n, and N  is the total number of mesh nodes.  

In practice, polygonal elements (such as triangles or quadrangles) are usually used in mesh models 

because of the geometric simplicity and ease of manipulation of these shapes. In this paper triangular 

mesh elements with liner interpolation basis functions are used in (14). 

(2) Determination of the Mesh Deformation 

The nodal vectors nd  in the mesh model in (14) are unknown, and have to be determined from the 

image data. The basic idea is to displace the mesh nodes so that the two images achieve the best match in 

terms of their intensity on an element-by-element basis. As a matching criterion the following objective 

function is used: 

 ( )( ) ( )( )2
( )

1

1 ˆ ,
2

m

M
d

d
m D

J f f d Eρ
=

 
= + − + 

  
∑ ∫ p d p p p  (15) 
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where the first term is the matching error accumulated over all M mesh elements between the two images, 

the same as the one proposed by Wang and Lee  [14]. The second term dE  is used to prevent the mesh 

from being overly deformed. In this paper we consider two forms of definition for dE  : one is defined on 

mesh regularity as in  [14], which is defined as 

 2

1

1 ,
2

N

d n
n

E
=

= ∑ t  (16) 

where ( )
n

n n l
l T∈

= −∑t p p , and nT is the set of all the neighboring nodes of node np ; the other is defined 

on deformation regularity, which is defined as 

 
2

1

1 ,
2

N

d n n
n

E
=

= −∑ d d  (17) 

where N  the total number of mesh nodes in the image, and nd  is the average of the displacement vectors 

of all the neighboring mesh nodes connected to node n. This term is used to enforce the local smoothness 

in the distortion field. In what follows we will refer to these two different forms of dE  as variation I and 

II, respectively.  

In (15) ρ  is a regularization parameter used to control the trade-off between matching accuracy and 

deformation regularity. The nodal vectors nd  are determined by numerical minimization of the objective 

function in (15).  In our experiments, a gradient descent algorithm with a line search was used  [18]. 

Once the nodal vectors nd  are found, the distortion can be computed for each point in the image 

according to the deformation model in  (14). The distorted image can then be corrected as: 

 ( ) ( )( )( )ˆ .df f= +p p d p  (18) 

Afterward watermark detection is performed with respect to this corrected image. 

As an example, we show in Figure 4(e) the corrected image from the distorted image in Figure 4(b) 

using the procedure described above. As in Figure 4(c), the difference between this correct image and the 

pre-distortion image in Figure 4(a) is shown in Figure 4(f). One can see that the geometric distortion has 
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been corrected effectively in Figure 4(e). The regular mesh structure shown in Figure 4(d) was used, in 

which mesh nodes were placed regularly every 64 pixels along both dimensions. In addition, the distorted 

image was extended at the boundaries using the mean image value to avoid the boundary effect during the 

gradient search step. 

 

IV. EXPERIMENTAL RESULTS 

A. Image Normalization Based Watermarking 

We present two separate experiments to demonstrate the performance of the proposed watermarking 

scheme: one on multi-bit watermarking, and the other on 1-bit watermarking. In the first experiment, a 

50-bit watermark was embedded into a set of test images (10 of them in total, including “Airplane”, 

“Boat”, “House”, “Peppers”, “Splash”, “Baboon”, “Couple”, “Lena”, “Elaine” and “Lake”) using the 

proposed algorithm. The watermarked images were then distorted by a variety of geometric and common 

signal processing attacks (listed later in detail). The proposed algorithm was applied afterwards to decode 

the embedded watermark messages in these distorted images. The decoding bit-error rate (BER), defined 

as the ratio between the number of incorrectly decoded bits and the total number of embedded bits, was 

then computed and averaged over all the test images.  

The second experiment was designed to test the proposed watermarking scheme for detection of the 

presence or absence of a watermark under geometric attacks: 1) aspect ratio changes of (1.1,1.0), which is 

test case 3(c) in the distortion list given later; 2) shearing of (5%, 5%), test case 5(f) of the list; 3) general 

affine transform, test case 6(a) of the list. In this experiment, 20 different watermarks were generated, and 

embedded into each of the test images separately, resulting in a total of 200 watermarked images; in 

addition, 20 different white noise patterns were created and added into each of the test images, resulting 

in a total of 200 invalid watermarked images. These images were then distorted under the 3 geometric 

attacks. The proposed algorithm was then applied to detect the presence of watermarks in these 600 

images.  
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For comparison, the commercial watermarking software Digimarc ImageBridge was tested using the 

same images with the same distortions in the second experiment. Intermediate results, such as decoding 

error rates or test statistic values are not available from this software. However, we can collect overall 

detection results regarding whether a watermark message as a whole exists or not. A remark here is that 

Digimarc can still detect the presence of a watermark even when the actual watermark message is no 

longer decodable. Thus, the detection performance of the two algorithms can be fairly compared, so long 

as the watermark power is kept at the same level, regardless how many bits are embedded.  In our 

experiment, the watermarking strength was adjusted so that the same signal-to-noise ratio (SNR) was 

achieved by the two algorithms in the watermarked images for the same test image.  

The following is a list of attacks used to distort the images in the experiments (note that not all of 

them are affine transforms):      

1. Line and column removal: (a) (1, 1), (b) (1, 5), (c) (5, 1), (d) (5, 17), and (e) (17, 5), where each 

pair of numbers indicate the number of columns and rows removed, respectively.  The removed 

columns/rows were equidistant.  

2. Scaling by different factors: (a) 0.5, (b) 0.75, (c) 0.9, (d) 1.1, (e) 1.5, and (f) 2. 

3. Aspect ratio change: (a) (0.8,1.0), (b) (0.9,1.0), (c) (1.1,1.0), (d) (1.2,1.0), (e) (1.0,0.8), (f) 

(1.0,0.9), (g) (1.0,1.1), and (h) (1.0,1.2), where each pair of numbers indicate the amount of scaling 

in the x  and y  directions, respectively. 

4. Rotation with different angles: (a) -15 D , (b) -10 D , (c) 5 D , (d) 25 D , (e) 35 D , (f) 45 D , and (g) 80 D . 

5. Shearing: (a) (0, 1%), (b) (0, 5%), (c) (1%, 0), (d) (5%, 0), (e) (1%, 1%) and (f) (5%, 5%), where 

each pair of numbers indicate the amount of shearing in the x  and y  directions, respectively. 

6. General geometric affine transformation with matrix: (a)
1.1 0.2
0.1 0.9

 
 − 

, (b)
0.9 0.2
0.1 1.2

− 
 
 

, and 

(c)
1.01 0.2
0.2 0.8

− − 
 − 

. 

7. Horizontal and vertical flipping:  (a) horizontal, and (b) vertical. 
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8. StirMark random bending attack (RBA) [12]. 

9. Common signal processing attacks:  (a) median filtering 2x2, (b) median filtering 3x3, (c) median 

filtering 4x4, (d) sharpening by kernel
0 1 0
1 5 1

0 1 0

− 
 − − 
 − 

, (e) Gaussian filtering by 

kernel
1 2 1

1 2 4 2
16

1 1 1

 
 
 
 
 

, and (f) frequency mode Laplacian removal (FMLR) attack. 

10. JPEG compression with different quality factors: (a) 10, (b) 15, (c) 20, (d) 25, (e) 30, (f) 35, (g) 40, 

and (h) 50. 

The test results from the first experiment are summarized in Tables 1.  We see from these results that 

the proposed algorithm achieves very low decoding BER for all the geometric attacks except StirMark 

random bending attack (test case 8). It is also robust to filtering attacks (test case 9(b) and 9(c)) except for 

median filtering.  

For the second experiment, the histograms of the values of the test statistic (correlation) used for 

detection from the 200 watermarked and 200 unwatermarked images are plotted in Figure 6(a), (b) and 

(c), respectively, for the 3 different geometric attacks detailed above. We notice that the proposed 

algorithm results in perfect detection for all testing images; the histograms for the watermarked and 

unwatermarked cases do not overlap. In contrast, Digimarc failed to detect the watermark in all 200 

watermarked images and there was no false alarm for the 200 unwatermarked images either after the 3 

geometric attacks.   

B. Mesh Model Based Watermarking 

As test images the Lena and Boat images, respectively, were used. A watermark message with 200 

bits was embedded into the mid-frequency DCT coefficients of these images using the CDMA algorithm. 

The watermarked images were then distorted using the StirMark random bending attack [12]. A series of 

experiments were performed to test the proposed watermarking system. In all experiments, the original 
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non-watermarked image was used as a reference for the distortion correction; the following different sizes 

were used for the mesh elements: 32 32× pixels, 64 64× pixels, and 128 128×  pixels, respectively. 

Furthermore, both variations of the penalty term in (16) and (17) were tested; the value of the 

regularization parameter was chosen empirically for each test.  

(1) BER vs. Bending Strength 

In this experiment, the watermark strength is fixed at λ=0.5. The test results are shown in Figure 

7(a), (b). From these results we can see, for both tested images, as expected that as the bending strength of 

the attack increases, the BER increase too and that the BER is rather insensitive to the number of mesh 

elements used.  In  Figure 7(a), (b) we observe that detection performance is rather robust, for small 

amounts of bending, to the number of mesh nodes used. Furthermore, detection performance is more 

sensitive to the number of mesh nodes used for large amounts of bending. However, this is not a very 

serious concern in most practical applications because large amounts of bending are visible and are not 

used for attacks.  

(2) BER vs. Watermarking Strength.  

The bending strength is fixed at 5 in the current experiment, and watermarking strength λ is 

changed from 0.1 to 1.0. The test results are shown in Figure 8(a), (b). With the proposed correction, zero 

error decoding can be achieved when the watermarking strength λ is close to 1.0 for both images.  From 

Figure 8 it is appears that detection performance is very sable to the number of mesh nodes used as the 

power of the watermark changes. These results indicate that the best performance was obtained with mesh 

elements of 64 64×  pixels. 

The minimization algorithm requires about 10 seconds per iteration on Pentium 4 at 1.7GHz. This 

is for image size of 512x512 and regular mesh structure at 64 pixel nodal separation. A typical run takes 

about 10-20 iterations before useful results are produced.  
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V. CONCLUSIONS 

In the first part of this paper we propose a new public watermarking algorithm, which is robust to 

general affine geometric transformation attacks. The proposed algorithm achieves its robustness by both 

embedding and detecting the watermark message in the normalized images. The main result in this part of 

the paper is Theorem 1 in pp. 7 where we show that the normalized image if properly chosen is invariant 

to affine transforms. By numerical experiments we demonstrate that the proposed algorithm has very low 

decoding BER when used with multi-bit watermarks and perfect detection of the presence or absence of 

the watermark when used with single bit watermarks under various affine attacks.  We also compared our 

algorithm with Digimarc and found it to be superior for affine transform geometric attacks.  

We also propose watermark resynchronization scheme based on a mesh model to combat nonlinear 

geometric attacks. The original image and the potentially attacked watermarked image are used to 

estimate a mesh model of the unknown geometric distortion. This approach can be only used for private 

watermarking were the original image is known. Watermark detection is performed using the distorted 

watermarked images after it has been compensated for the geometric attack. In this paper we tested this 

approach only against random bending attacks generated by StirMark. Using numerical experiments we 

demonstrate that the proposed methodology works extremely well. However, the proposed methodology 

is general can be used for other difficult to correct geometric attacks.  

 

Appendix: Proof of Theorem 1 

As pointed out in Section II.A, an affine transform can be decomposed into a composition of the 

following elementary transforms: 1) translation, 2) shearing in the x  direction, 3) shearing in the y  

direction, and 4) scaling in both x  and y  directions. Therefore, it is sufficient to demonstrate only that 

the normalization procedure is invariant to these elementary transforms, i.e., it will yield the same 

normalized image for a given ( , )f x y  undergoing each of these elementary transforms.   
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It is readily seen that the normalization procedure is invariant to the translation transform. This is 

because any translation in ( , )f x y  is removed by first centering the image in the normalization 

procedure.  

Next, we demonstrate the normalized image of ( , )f x y  is invariant for each of the other three 

elementary transforms. Without loss of generality, we will assume that ( , )f x y  is already centered. We 

will use ( , )g x y  to denote the distorted image from ( , )f x y  after an affine transform. In addition, we will 

use ( )a
pqµ  and pqµ  to denote the moments of ( , )g x y  and ( , )f x y , respectively.  

From the normalization procedure described in Section II.B, the normalized image of ( , )g x y  can be 

written as ( , )n ng x y , where 

   n a
s y x

n a

x x
y y

   
=   

   
A A A . ( .19) 

The parameter β  in the matrix xA  in ( .19) is solved from the normalization condition in (8), i.e., 

 ( ) ( ) 2 ( ) 3 ( )
30 21 12 033 3 0.a a a aµ βµ β µ β µ+ + + =  ( .20) 

Also, the parameter γ  in the matrix yA  in ( .19) is solved from the normalization condition in (11), i.e., 

it is determined as 

 
(2) (1) (1)
11 11 02
(2) (1) (1) 2 (1)
20 20 11 022

µ µ βµγ
µ µ βµ β µ

+
= − = −

+ +
. ( .21) 

1.  Shearing in the x  direction 

In this case, ( , ) ( , )a ag x y f x y= , where 

 01
0 1

a

a

x x x
y y y

β      
= =      

     
A .  ( .22) 

Based on this relation we can write the moments ( )a
pqµ  in the normalization condition in ( .20) in terms of 

pqµ  using (6), and, after some algebra, we can rewrite ( .20) as 

 2 3
30 0 21 0 12 0 033( ) 3( ) ( ) 0µ β β µ β β µ β β µ+ + + + + + = . ( .23) 
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Let 1 2β β β′ +� . One can see that β ′  satisfies the equation of the shearing parameter β  for 

normalizing the original image ( , )f x y . Let x′A  denote the corresponding shearing transform, that 

is,
1
0 1x

β ′ ′ =  
 

A .  

Observe that 

 0 01 1 1
0 1 0 1 0 1x x

β β β β+     ′= = =    
    

A A A . ( .24) 

Thus, the shearing normalization on ( , )g x y  using will yield the same image as the shearing 

normalization transform on ( , )f x y .  

2.  Shearing in the y  direction 

In this case, ( , ) ( , )a ag x y f x y= , where 

 
0

1 0
1

a

a

x x x
y y yγ

      
= =      

      
A . ( .25) 

As above, we write the moments ( )a
pqµ  in ( .20) in terms of pqµ , and rewrite the normalization condition as  

 
2 3

30 21 12 03
0 0 0

3 3 0
1 1 1

β β βµ µ µ µ
βγ βγ βγ

     
+ + + =     + + +     

. ( .26) 

Let
01

ββ
βγ

′
+

� . One can see that β ′  satisfies the equation of the shearing parameter β  for 

normalizing the original image ( , )f x y .    

Next, we write the moments ( )a
pqµ  in the normalization condition in ( .21) in terms of pqµ , and obtain  

 0 0 20 0 11 02
2 2

0 20 0 11 02

(1 ) (1 2 )
(1 ) 2 (1 )
γ βγ µ βγ µ βµγ

βγ µ β βγ µ β µ
+ + + +

= −
+ + + +

. ( .27) 

Hence, 

 0

0 0

1 0 1 01 0 1
1 (1 ) 11 0 1y x

βγβ
γ γ γ βγ βγγ

+     
= =      + + +     

A A A .  ( .28) 

Upon some algebraic manipulation, ( .28) can be rewritten as 
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0

0
2 2 11 02 20 11

0 20 0 11 02

1 0
1

10
(1 ) 2 (1 )

y x

βγ
β

βγ
µ β µ µ β µ

βγ µ β βγ µ β µ

+  ′  = +    ′ ′− − +  + + + + 

A A A .  ( .29) 

Observe the following: 1) the second matrix term in ( .29) corresponds to an affine transform that is 

independent of the parameter 0γ ; and 2) the first matrix term in ( .29) corresponding to a scaling 

transform, which will be later absorbed into the scaling matrix sA  in ( .19) to achieve a standard size.  

Therefore, the resulting normalized image of ( , )g x y  is invariant to the affine transformation A  which is 

parameterized by 2γ . 

3.  Scaling in both x  and y  directions 

In this case, ( , ) ( , )a ag x y f x y= , where 

 0

0

0
0

a

a

x x x
y y y

α
δ

      
= =      

      
A . ( .30) 

Again, we write the moments ( )a
pqµ  in terms of pqµ , and rewrite the normalization condition ( .20) as  

 
2 3

0 0 0
30 21 12 03

0 0 0

3 3 0.δ δ δµ β µ β µ β µ
α α α
     

+ + + =     
     

 ( .31) 

Let 0

0

δβ β
α

′ � . One can see that β ′  satisfies the equation of the shearing parameter β  for 

normalizing the original image ( , )f x y .    

Next, we write the moments ( )a
pqµ  in the normalization condition ( .21) in terms of pqµ , and obtain 

 
2

0 0 11 0 02
2 2 2
0 20 0 0 11 0 022

α δ µ βδ µγ
α µ βα δ µ β δ µ

+
= −

+ +
. ( .32) 

Hence, 

 0 0 0

0 0 0

01 0 1
0 (1 )1 0 1y x

α α βδβ
δ α γ δ βγγ

     
= =      +     

A A A .  ( .33) 

Upon some algebraic manipulation, ( .33) can be rewritten as 
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 2
0

11 02 20 112 2 2
0 20 0 0 11 0 02

0
1

0
2

y x

α
β

α δ µ β µ µ β µ
α µ βα δ µ β δ µ

 
′  =    ′ ′− − +  + + 

A A A .  ( .34) 

Again, the second matrix term in ( .34) corresponds to an affine transform that is independent of the 

parameters 0 0,α δ ; and 2) the first matrix term in ( .34) corresponding to a scaling transform.  Therefore, 

the resulting normalized image of ( , )g x y  is invariant to the affine transformation A  which is 

parameterized by 0 0,α δ . 

4.  Uniqueness under a general affine transform 

Finally, consider the case that the image ( , )f x y  undergoing a general affine transformation. We 

decompose the transform matrix A  as  

0 0

0 0

0 1 0 1
0 1 0 1
α β

δ γ
   

=    
   

A . ( .35) 

Similar to ( .23), ( .26) and ( .31), we can derive, 0
0

0
0

1'β βα γ
δ β

= +
+

, where β ′  is a root of the 

normalization condition ( .20) that corresponds to the original image ( , )f x y , and β  is roots corresponds 

to the affine transformed image. Therefore, 

 

0

0

0
0

1

α
δβ

γ
β β

=
−

′−

. ( .36) 

From ( .36) we see that β  is real if and only if β ′  is real. Thus, if ( .20) has only one real root 

(or three real roots) for the original image ( , )f x y , then it also has only one real root (or three real roots) 

for any of its affine transforms.   

Furthermore, β is a monotonic function of β ′  for 0
0

1β β
γ

′ < + . In such a case, if β ′  has three real 

roots, then its median will correspond to the median of β .  
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We note that the condition that 0
0

1β β
γ

′ < +  is not restrictive in practice. For example, for meaningful 

distortions, we will likely have 0 0.2β < , and 0 0.2γ <  (less than 20% shearing in the x-direction or y-

direction). In such a case, 0
0

1 4.8β
γ

+ > . This, of course, leaves enough room for the shearing 

parameter β ′ .  
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Table 1:Decoding performance of the proposed algorithm (in BER) 

Attacks\Cases (a) (b) (c) (d) (e) (f) (g) (h) 

1. Removal 0 0.004 0 0.004 0    
2. Scaling 0 0 0 0 0 0.048   
3. Aspect ratio 0 0 0 0 0 0 0 0 
4. Rotation 0 0 0 0 0 0 0  
5. Shearing 0 0 0 0 0.002 0   
6. Linear transform. 0 0 0      
7. Flip 0 0       
8. StirMark RBA 0.506        
9. Common signal processing 0.066 0.23 0.232 0.064 0 0.018   
10. JPEG 0.052 0.052 0.004 0.006 0.004 0.004 0 0 
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Figure 1. Image normalization based watermarking system. 
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Figure 2: (a) Original Lena image; (b) Lena image in (a) after distortion; (c) Normalized image from both 
(a) and (b). 
 

key 

 Original 
image 

masking 
 

 

 
 

 
 

Normalized 
image 

 
Watermarked 

image 

Prototype 
signature 

 
Figure 3: Illustration of watermark embedding process.  

( ~  indicates step 1 ~ step 6)  
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 (a) (b)  (c) 

   
 (d) (e) (f) 

. 
Figure 4: Images to demonstrate the watermarking process; (a) Watermarked image with PSNR=38.4dB 
(b) Attacked watermarked image (c) Difference between (a) and (b) (d) Regular mesh and mesh generated 
from (b) (e) Deformation compensated watermarked image (g) Difference between (a) and (f). 
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Figure 5. Mesh model based watermarking system 
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(a) (b) 

 
 (c) 
Figure 6. Histogram of the values of the test statistic (Normalized cross correlation) used for detection (a) 
under aspect ratio change (b) under shearing geometric (c) under general affine transformation attacks for 
200 watermarked images (left) and 200 unwatermarked images (right).  
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(b) 

Figure 7: BER vs. random bending strength (a) Lena (b) Boat.   
Note: gridstep of 64 means the mesh nodes are placed 64 pixels apart uniformly.  
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(b) 

Figure 8: BER vs. watermark strength (a) Lena (b) Boat 
 

 


