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Abstract—A software-defined radio (SDR) receiver with im-
proved robustness to out-of-band interference (OBI) is presented.
Two main challenges are identified for an OBI-robust SDR re-
ceiver: out-of-band nonlinearity and harmonic mixing. Voltage
gain at RF is avoided, and instead realized at baseband in com-
bination with low-pass filtering to mitigate blockers and improve
out-of-band IIP3. Two alternative “iterative” harmonic-rejec-
tion (HR) techniques are presented to achieve high HR robust
to mismatch: a) an analog two-stage polyphase HR concept,
which enhances the HR to more than 60 dB; b) a digital adaptive
interference cancelling (AIC) technique, which can suppress
one dominating harmonic by at least 80 dB. An accurate multi-
phase clock generator is presented for a mismatch-robust HR.
A proof-of-concept receiver is implemented in 65 nm CMOS.
Measurements show 34 dB gain, 4 dB NF, and �� � dBm in-band
IIP3 while the out-of-band IIP3 is ��� dBm without fine tuning.
The measured RF bandwidth is up to 6 GHz and the 8-phase LO
works up to 0.9 GHz (master clock up to 7.2 GHz). At 0.8 GHz
LO, the analog two-stage polyphase HR achieves a second to sixth
order �� dB over 40 chips, while the digital AIC technique
achieves �� dB for the dominating harmonic. The total
power consumption is 50 mA from a 1.2 V supply.

Index Terms—Adaptive interference cancellation, adaptive
signal processing, baseband processing, blocker, blocker filtering,
CMOS, cross-correlation, digitally assisted, digitally enhanced,
harmonic mixing, harmonic rejection, interference mitigation,
linearity, LMS, low-noise amplifier (LNA), low-noise transconduc-
tance amplifier (LNTA), mismatch, multiphase, multiphase clock,
nonlinearity, out-of-band interference, passive mixer, polyphase,
receiver, robust receiver, SAW-less, software radio (SWR), soft-
ware-defined radio (SDR), switching mixer, wideband receiver.

I. INTRODUCTION

S
OFTWARE-DEFINED RADIO (SDR) concepts have

recently drawn considerable academic interest and in-

creasingly also industrial interest. Limiting our discussion to

RF transceivers, most work focuses on integrating the function-

ality of multiple dedicated narrowband radios into one radio,

which is reconfigurable by software [1], [2]. This is hoped

to bring cost and size reductions while supporting an ever

increasing set of communication standards in a single device.

The SDR concepts might also allow field upgradable radios

to accommodate emerging standards and become an enabler
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for cognitive radio applications, to improve the efficiency of

utilizing the scarce spectrum resources.

To support the reception of different radio standards, a wide-

band radio receiver seems an obvious solution. Some wideband

receivers have been reported, e.g., for wideband TV receivers

[3], [4] , ultra-wideband receivers [5], [6], and SDR applications

[1], [2]. However, wideband receivers are not only wideband to

desired signals but also wideband to undesired interference.

Traditional wireless standards use dedicated radio bands, so

that in-band interference (IBI) can be distinguished from out-of-

band interference (OBI). For a SDR aiming at covering arbitrary

frequencies, the definition of IBI and OBI may become fuzzy.

Still, we will use the terms IBI and OBI in this paper as: 1) cur-

rent SDR receivers often aim at covering multiple traditional

radio standards which have clear band definitions; 2) even if this

is not the case, e.g., for cognitive radio, a SDR still aims at im-

plementing selectivity, i.e., receive a signal for which baseband

bandwidth is much smaller than . In the latter case OBI can

be interpreted as “out-of-baseband interference”.

For popular mobile communication applications, the IBI can

be as strong as to dBm while the OBI can be as strong

as to 0 dBm [7]. An RF band-selection filter is often em-

ployed to suppress OBI to below the IBI level, requiring high

quality factor and sharp roll-off. These filters are difficult to in-

tegrate on-chip and are often dedicated to one specific band.

In a SDR receiver, the dedicated RF filter is undesired owing

to its poor flexibility. State-of-the-art multi-band receivers [8],

[9] use multiple dedicated RF filters in parallel, which increases

size and cost for every band that is added. This paper aims at

improving the robustness of a radio receiver to OBI in order to

relax the requirement on RF filters, exploiting fully integrated

analog and digitally enhanced mixed-signal techniques.

At least two mechanisms generate in-band distortion due to

OBI: 1) nonlinearity related mixing of strong OBI via, e.g.,

intermodulation or cross-modulation; 2) harmonic mixing of

interferers with LO harmonics due to hard-switching mixers

and/or the use of digital LO waveforms. We will explain these

two mechanisms briefly below as well as review the state-of-

the-art solutions for these problems.

A. Out-of-Band Nonlinearity

Nonlinearity may generate intermodulation and harmonic

distortion falling on top of the desired signal, or may desensitize

a receiver due to blockers and produce cross modulation [10].

Without sufficient RF band-selection filtering, the out-of-band

linearity can become the bottleneck since OBI is much stronger

than IBI. A wideband LNA as used in [1] and [2] amplifies the

desired signal and undesired wideband interference with equal
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gain. A low voltage gain of 6 dB can already clip a 0 dBm

blocker to a 1.2 V supply. The amplified interference also

challenges the nonlinear output impedance of an LNA and the

linearity of a next-stage mixer.

LNA linearization techniques have been proposed [11], [12]

to achieve an IIP3 in excess of dBm but have drawbacks

[13]: 1) they often rely on two nonlinearity mechanisms that

compensate each other but do not automatically match, so that

some kind of fine tuning is needed, compromising robustness to

process spread; 2) they mostly rely on modeling of the weakly

nonlinear region so that high IIP3 is only achieved for low

input two-tone power while limited or no benefit for strong

interference.

Recently, a blocker filtering technique has been presented

[14], achieved by means of an auxiliary feedforward path,

which conducts the undesired interferers and suppresses them

by subtracting them from the main signal path at the output of

LNA. However it comes with some drawbacks: 1) significant

cost arises in terms of noise and power consumption in that

auxiliary path; 2) the blocker filtering effect relies on the

matching between the main path and the auxiliary path. We

will see later in Section II that equivalent functionality can be

achieved with much simpler hardware, i.e., without requiring

additional signal path.

B. Harmonic Mixing

Linear time-variant behavior in a hard-switching mixer, or

equivalently multiplication with a square wave, not only down-

converts the desired signal but also interference around LO har-

monics. This harmonic mixing is of much less concern in nar-

rowband receivers, relying on RF band-selection filters. The

8-phase harmonic-rejection (HR) mixers as described in [15]

can suppress RF signals around second to sixth LO harmonics

but amplitude and phase mismatches limit the achievable HR

ratio typically to 30-to-40 dB [2]–[4], [16]. However, a quick

calculation shows that much more rejection is needed: if we

want to bring harmonic responses down to the noise floor, e.g.,

dBm in 10 MHz for dB, and cope with inter-

ferers of to 0 dBm, a HR ratio of 60 to 100 dB is needed.

State-of-the-art wideband TV tuners rely on RF tracking filters

together with HR mixers [3], [4] to guarantee more than 65 dB

HR ratio. We aim at removing such tracking filters or at least

relaxing their requirements by making HR mixers more robust

to mismatch.

C. Contribution of This Paper

Both out-of-band nonlinearity and harmonic mixing can se-

verely degrade signal-to-distortion ratio.1 Therefore, in our view

a practical SDR should not just be a wideband receiver, but

also have enhanced out-of-band linearity and enhanced har-

monic rejection. This paper will propose an architecture to im-

prove the wideband receiver’s linearity, especially its IIP3 for

OBI and its tolerance to blockers. Moreover, to dramatically

improve HR performance, two alternative HR techniques are

proposed: 1) a two-stage polyphase HR technique implemented

1Signal-to-distortion ratio is so important to software-defined radio that it can
be viewed as another interpretation of “SDR”.

Fig. 1. Conceptual diagram of the low-pass blocker filtering.

purely in the analog domain [17], [18]; 2) a mixed-signal tech-

nique exploiting digital adaptive interference cancelling (AIC)

[19]. Both improve HR by rejecting harmonics in two successive

steps (“iterative”), and both share the same 8-phase RF-to-base-

band downconverter as a first HR stage. Compared to [17]–[19],

we greatly extend the analysis and show additional experimental

results. Compared to [20], this work derives the interference

estimate in another way, presents measurements and achieves

better performance due to the better interference estimate.

The rest of the paper is organized as follows. Section II intro-

duces a technique using low-pass filtering to mitigate blockers

and improve out-of-band IIP3. Section III proposes a two-stage

polyphase HR concept to improve amplitude accuracy obtaining

high HR robust to mismatch. To improve both amplitude and

phase accuracy, a digitally enhanced HR technique using AIC

is presented in Section IV. The implementations of the analog

front-end and the digital back-end are discussed in Sections V

and VI respectively. The experimental results are presented in

Section VII with a comparison of analog and digital HR tech-

niques as well as benchmarking to other work. The conclusions

are drawn in Section VIII.

II. LOW-PASS BLOCKER FILTERING

Traditionally, narrowband receiver front-ends use LNA-

mixer combinations which can deliver good enough linearity,

typically an IIP3 dBm, for in-band (IB) interference while

an RF band-selection filter takes care of out-of-band (OB) in-

terference. However, in a wideband receiver, since OBI is much

stronger than IBI, the required OB IIP3 is much higher than

the required IB IIP3 and even desensitization can occur due to

strong OB blockers. Therefore, frequency selective amplifica-

tion or attenuation is desired. Tunable bandpass filtering (BPF)

is in principle a solution, but it is difficult to provide sufficient

selectivity and tunability simultaneously with good noise and

linearity, using CMOS on-chip filters. Here we approach the

problem from another angle.

A. Concept

To guarantee low NF, we need amplification early in the re-

ceiver chain. Voltage amplification in an LNA is usually real-

ized via V-I conversion using, e.g., the transconductance of a

transistor, followed by I-V conversion via some impedance or

transimpedance. We can separate the two functional blocks, V-I

and I-V, and insert a passive zero-IF mixer and a low-pass filter

(LPF) in between, as shown in Fig. 1. The LPF drawn is con-

ceptually current-in current-out and internally with no voltage

swing. However in practice, the functions of the LPF and the
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I-V conversion can be merged by using a frequency-dependent

impedance, such as a parallel R and C.

It is crucial to present a low impedance over a wide band to

the output of V-I block, i.e., node B, so that little voltage gain

occurs before filtering, leading to less distortion in the mixer and

the nonlinear output impedance of the V-I block.2 Therefore, the

first voltage gain occurs only at baseband after low pass filtering,

which provides selectivity to mitigate OBI.

To quantify the blocker filtering effect, we may compare the

1 dB compression point for desired signals to the 1 dB

desensitization point for blockers,3 both input-referred.

Assume a third order Taylor series for nonlinearity with and

for the first and third order coefficients respectively. Without

any blocker filtering, it can be derived from [10] that

and ,

if both in amplitude. Therefore, can be calculated based on

, and if without blocker filtering, dB .

The LPF in Fig. 1 can mitigate blockers, and its bandwidth

(BW) and order (n) determines the blocker filtering effect. If

desensitization happens after I-V conversion, which is often the

case due to a high voltage gain and limited voltage headroom,

the suppression of blockers in dB by the LPF corresponds to the

improvement of .

However, for a wideband receiver the situation is more

complicated, as one RF-blocker can be downconverted by

different LO harmonics. For instance, a square-wave LO of

400 MHz converts a 1250 MHz RF signal to 850 MHz and 50

MHz via the first and third harmonic of the LO,respectively.

The strongest downconverted signal depends on the blocker

frequency and the LO frequency , i.e., which LO

harmonic the blocker is closer to. Also it depends on the relative

gain of the harmonic compared to the fundamental (first)

harmonic, i.e., the harmonic rejection ratio .

Assume for simplicity that one blocker component dominates

after downconversion and determines . If

, i.e., the blocker is within the LPF BW after downconver-

sion by the harmonic, we find

dB (1)

If , i.e., the blocker is outside the LPF

BW after downconversion by the harmonic, assuming an

asymptotic filter characteristic, we find

dB

(2)

From (2) we can expect smaller bandwidth (BW) and higher

order (n) of the LPF gives higher , if , and are

fixed. Besides, we can also improve via improving ,

e.g., if compression happens at the receiver output, a lower re-

ceiver voltage gain or a larger output voltage headroom can im-

prove the input-referred , and hence a higher .

2Another motivation for low impedance at RF nodes is to widen the receiver’s
RF bandwidth as exploited in [5].

3� thus defines the desired input signal power at which the receiver gain
drops by 1 dB without applying blockers, while � defines the undesired
input interference (single-tone blocker) power where the receiver gain drops by
1 dB.

Fig. 2. Realization of the low-pass blocker filtering and illustration of
impedance transfer effect.

The LPF can help to relax the OB linearity of the I-V conver-

sion, however not for the V-I conversion. Therefore, the max-

imum achievable is ultimately limited by the of the

V-I conversion minus 3 dB. Thus, linearity of the V-I conversion

is very important and we will return to that point in Section V-A.

Via a similar mechanism, the OB IIP3 can also be enhanced

compared to the IB IIP3.

B. Realization

A specific realization of the general concept (Fig. 1) is pre-

sented in Fig. 2. Zero-IF receivers commonly use an LNA fol-

lowed by a mixer with current output loaded by a LPF to sup-

press interference. We carry this approach one step further by

entirely removing the voltage-gain LNA before the mixer and

instead use a Low Noise Transconductance Amplifier (LNTA)

as the first RF stage for the V-I conversion with input impedance

matching. As mentioned before, maintaining a low impedance

at node B over a wide band is important. This can be real-

ized by using low-ohmic switches in the passive mixers fol-

lowed by transimpedance amplifiers (TIA) built via negative

feedback around operational transconductance amplifier (OTA).

The feedback network consists of R & C in parallel to form a

LPF. At high frequency, the feedback loop gain drops so the

virtual-ground impedance rises. By putting a capacitor

to ground or across the differential virtual-ground nodes, the

impedance at high frequency is reduced. Both and

contribute to the total LPF function.

Fig. 2 also shows, qualitatively, the impedance relationship

between node B and node D , i.e., is roughly

equal to a certain scaling factor times plus the mixer

switch-on resistance and shifted in frequency. Ap-

plying an RF current input, it can be derived [21] that, for an

N-phase mixer driven by 1/N-duty-cycle (non-overlapping)

LO, the impedance at an RF around -LO-harmonic

frequency , i.e., with an offset frequency

from , can be written as

(3)

Please note that (3) holds given that presents strong filtering

effect, e.g., a pole at a much lower frequency than , which

is normally the case for a downconversion mixer. Consider

: for or 4 the coefficient of is about 0.2, and for
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Fig. 3. (a) Block diagram of a traditional HR mixer, and (b) its vector diagram.

, it is about 0.12, showing actually plays a much

larger role in determining . For , the coefficient of

is even smaller.

Besides delivering low impedance, this topology (Fig. 2) can

also bring two other advantages exploited in some narrowband

receivers [22]–[24]: 1) good in-band linearity in the I-V con-

version due to the negative feedback; 2) low 1/f noise from the

mixer switches working in the linear region which carry little

DC current. This work [17] exploits this topology in a wideband

receiver to enhance out-of-band linearity. If the LPF suppresses

the OBI well, the main contributor to the OB nonlinearity will

come from the V-I conversion of the LNTA, which can be quite

linear as we will see later.

Although voltage amplification is avoided at RF, if the

transconductance of LNTA is big, the receiver-input-referred

noise of the following stages, i.e., mixer and TIA, can be

relatively small, so that the overall receiver NF can still be

good and dominated by LNTA itself. As an example, the whole

receiver in [24] achieves an NF of 2.2 dB based on a similar

topology but in a narrowband configuration.

III. TWO-STAGE POLYPHASE HARMONIC REJECTION

The low-pass blocker filtering technique presented in the pre-

vious section acts after mixing, so it cannot prevent the har-

monic mixing already occurring in the mixer stage. It is known

that using balanced LO can suppress all even-order harmonics.

To also suppress odd-order harmonics, harmonic-rejection (HR)

mixers using multi-phase square-wave LOs driving parallel op-

erating mixers have been proposed before [15], [16]. Fig. 3(a)

shows an example, where the weighted current outputs add up

to approximate mixing with a sine-wave LO. The combination

of an amplitude ratio of 1: :1 and an 8-phase LO4 (equidistant

45 ) can reject the third and fifth harmonics, as shown in the

4Using more LO phases can reject more harmonics, but it complicates LO
generation.

Fig. 4. Chip block diagram implementing the two-stage polyphase HR and the
low-pass blocker filtering.

vector diagram of Fig. 3(b). The seventh harmonic is not re-

jected and still needs to be removed by filtering, but the filter re-

quirement is strongly relaxed compared to the case of a normal

I/Q mixer whose first un-rejected harmonic is the third order.

However, the achievable HR ratio is limited by the accuracy of

the amplitude ratios and the LO phases.

To achieve high HR ratio we need to accurately implement the

desired weighting ratios, in this case the irrational ratio 1:

accurately on chip. There are at least two challenges here: 1)

realizing the right nominal (average) ratio; 2) keeping random

variations due to mismatch small enough. To address these is-

sues we propose a two-stage polyphase HR concept (see Fig. 4)

in which two-stage iterative weighting and summing results in

much higher HR than traditional HR mixers with only one stage.

We will show that this iterative weighting results in a small

product of relative errors for random variations, whereas the use

of suitably chosen integer ratios results in sufficient accuracy to

achieve a HR well above 60 dB.

A. Block Diagram

Fig. 4 shows the block diagram of the two-stage polyphase

HR system, implemented on chip. The irrational ratio 1: :1 is

realized in two iterative steps with integer ratios: a first step with

2:3:2 and a second step with 5:7:5. The first-stage weighting is

realized via 7 unit-LNTAs interconnected in 3 parallel groups

to form the 2:3:2 ratio. The second-stage weighting is realized

via a baseband resistor network “R-net” between the TIA1 and

TIA2 stages. The 5:7:5 amplitude ratio corresponds to the 7:5:7

resistance ratio. The passive mixer array is driven by 8-phase

1/8-duty-cycle (non-overlapping) LO. Via the combination of

the LNTA, mixer and TIA with LPF, the first voltage gain oc-

curs at baseband after LPF for good OB linearity. Since har-

monics can be as strong as blockers, it is important to have sig-

nificant HR before the first voltage gain, especially because the

antiblocker filtering does not reduce harmonic images close to

harmonics of the LO, as shown in (1). The additional more ac-

curate HR follows in the second stage, aiming to bring residual

harmonic images below the noise floor.
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Fig. 5. Weighting factors for the first-stage HR outputs versus time.

Fig. 6. Approximation of 1:
�
�:1 as 29:41:29 via integer ratios.

Fig. 7. Error reduction principle in the two-stage polyphase HR (error ���
becomes a much smaller product of errors: ����).

B. Working Principle

We will now show how we accurately approximate 1: :1

via 2:3:2 and 5:7:5. A key point is that the output of the TIA1

stage has 8 IF-outputs with equidistant phases, i.e., 0 to 315

with 45 step, instead of the conventional 4 phases, i.e., quadra-

ture. This enables iterative HR by adding a second stage. Fig. 5

shows the weighting factor for the 8 outputs of the first-stage

HR versus time (t) for one complete period of the LO (T). If we

weight and sum three adjacent-phase outputs of the first-stage

HR via the second-stage weighting factors 5:7:5, as shown in

Fig. 6, we find 29:41:29. The ratio 41:29 is equal to 1.4138,

which represents only a 0.028% error from . This amplitude

error corresponds to a HR ratio of more than 77 dB, if no phase

error.

The two-stage polyphase HR not only can approximate

1: :1 very closely, but it is also robust to amplitude mis-

match, as illustrated in Fig. 7 via vector diagrams of the two

stages. It shows how, for the desired signal, polyphase contri-

butions from three paths add up, while for the third and fifth

harmonics, they cancel nominally. Assume now that the error

in realizing dominates and model it as a relative error for

the first stage and for the second stage. Also for simplicity,

assume that the desired signal and the third and fifth harmonics

Fig. 8. A block diagram showing the concept of adaptive interference
cancelling.

are equally strong at the receiver input and neglect the relative

strength of different LO harmonics due to a certain LO duty

cycle. After the first stage, the desired signal is multiplied by

and the third and fifth harmonics by ,

leading to a relative error (interference-to-signal ratio) of if

. For the second stage the same derivation holds. As the

two stages are cascaded, the product of the gains determines

the result, i.e., the total gain for the desired signal becomes

and for the third and fifth

harmonics it is . This renders a total relative

error (interference-to-signal ratio) of

(4)

if and . Therefore, the total relative error is the

product of the relative errors for the two stages, and .

If the second stage has an error , ideally this improves

HR by , i.e., 46 dB, which has also been confirmed by

simulation.

Please note that the product of errors, as shown in (4), holds

for both third and fifth harmonics. Moreover, it not just works

for mismatch induced errors but for any amplitude errors, e.g.,

errors introduced by parasitic capacitance or finite LNTA output

impedance.

Theoretically, more than two stages can achieve even better

amplitude accuracy, but practically phase accuracy will often

dominate. To also address the phase error, next we will propose

an alternative HR concept that exploits digital techniques.

IV. DIGITALLY ENHANCED HARMONIC REJECTION

Even for the concept proposed in the previous section, the HR

performance can still be limited by the amplitude and especially

phase mismatches between the paths. In this section, we propose

a digitally enhanced HR architecture exploiting digital adaptive

interference cancelling (AIC). Simply put, this concept adapts

an estimate of the third or fifth order harmonic image in such a

way that after subtraction from the received signal the HR ratio

is increased.

The AIC concept is shown in Fig. 8: the interference estimate,

v(n), is aligned (in phase and amplitude) with the interference in

the received signal, r(n), by an adaptive digital equalizer. Thus,

the equalizer removes the amplitude and phase differences of

the interference between v(n) and r(n). The equalized interfer-

ence estimate is subtracted from the received signal, which can-

cels the interference and produces the output signal, e(n).
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Fig. 9. A system-level block diagram of the analog front-end, the interference estimate generation and the AIC. The equalizer of the AIC is shown in grey.

Fig. 9 shows a system-level block diagram of the proposed

system. The analog front-end used is identical to the first stage

of the two-stage analog HR architecture proposed earlier. It pro-

duces four fully differential signals, which are converted into the

digital domain using four A/D converters, to form signals ,

, and The HR of the analog down-mixer, typically

in the range of 30 to 40 dB, reduces the required dynamic range

of the aforementioned A/D converters.

Two complex-valued IQ pairs are formed using the four real-

valued baseband signals:

where can be considered as the received signal and

is an additional I/Q pair, needed to generate the interference

estimate.

The baseband signals, , , and , produced by

the analog front-end are subject to component mismatches and

LO timing errors, which cause amplitude and phase uncertainty.

As a result, the amplitude and phase difference between the re-

ceived signal, r(n), and the interference estimate, v(n), are sub-

ject to this uncertainty.

Perfect cancelling of the interference requires two conditions

to be met: first, the interference estimate must be a perfect rep-

resentation of the interference and second, the amplitude and

phase difference between the interference estimate and the in-

terference in the received signal must be completely removed

by the equalizer.

Given the above, the equalizer must be adaptive to be able to

cope with the uncertainty in the phase and amplitude in order to

obtain the maximum amount of interference canceling.

The equalizer consists of two single-tap FIR filters, which

are formed by the complex coefficients, , and the two

associated multipliers shown in the grey portion of Fig. 9. The

coefficients are adapted by applying the power-normalized LMS

algorithm [25].

For the single interferer case (only a third or fifth order har-

monic image is present), the signal-to-interference ratio (SIR)

TABLE I
THE NORMALIZED (TO THE DESIRED SIGNAL) RF-TO-BASEBAND TRANSFER

CHARACTERISTICS OF �� , �� AND THE INTERFERENCE ESTIMATE ����

at the output, e(n), of the digital AIC stage is determined by the

inverse SIR of the interference estimate, v(n) [26]:

(5)

To maximize the SIR at the output of the canceller, the SIR

of the interference estimate must be minimized. Therefore, the

aim is to generate an interference estimate that contains the least

amount of desired signal energy and the maximum amount of

harmonic image energy.

A. Generating the Interference Estimate

The analog baseband outputs of the front-end, , ,

and , are formed by 8-phase 1/8-period-shifted LO wave-

forms that approximate a sinusoid, as explained in Section III.

An N/8-period time shift results in a phase shift for the

desired signal and three and five times as much for the third and

fifth harmonic images.5 This property is exploited in the gener-

ation of the interference estimate.

Considering only the relatively large (6%) approximation

error of 1: :1 by 2:3:2 (weighting ratio of the three LNTAs),

the theoretical RF-to-baseband gain and rotation of the desired

and third and fifth order signals are given in Table I. For

instance, it shows that the third harmonic image is attenuated

by dB, with respect to the desired

signal.

5A time-shift is a linear phase operation. Thus, the resulting phase shift scales
linearly with frequency.
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The data for and in Table I can be derived using the

mixer modeling technique used in [20], which uses the Fourier

series of the effective LO waveforms and the LNTA weighting

ratio. Note that the phase and amplitude relations between

and are independent of the actual RF signals, i.e., modula-

tion schemes.

By examining Table I, it follows that the interference esti-

mate, v(n), can be generated by a rotation of , which

aligns the desired signal with respect to . Subtracting the

rotated , i.e., , from results in the cancelling of the

desired signal but leaves the interference:

(6)

The resulting signal components in the interference estimate,

also shown in Table I, can be derived using (6). For instance,

it shows that the third harmonic image is attenuated by

dB. This attenuation is solely due to the

analog HR front-end and the application of (6). The third har-

monic image, in the interference estimate, is 6 dB stronger com-

pared to or owing to a doubling of its amplitude by

(6). This also holds for the fifth harmonic image. In addition,

the desired signal is completely cancelled, despite the 6% error

in 1: :1. Thus, in theory, v(n) can be a good interference

estimate.

B. The Adaptive Interference Canceller

In practical systems, however, the rejection of the desired

signal in v(n) is limited by matching, just like the HR in the

analog down-mixer. Fortunately, the AIC technique does not

require perfect rejection of the desired signal to give good re-

sults. Consider a third harmonic interferer and a desired signal

that are equally strong after passing through the analog HR

down-mixing stage. Given a realistic (matching limited) desired

signal rejection of 40 dB during the interference estimate gener-

ation by way of (6), the SIR of the estimate, , is 40 dB.

Using (5), the theoretical SIR after the AIC, , is 40 dB.

Then the total harmonic rejection is 40 dB plus the rejection ob-

tained by the analog first stage (typically in the range of 30 to

40 dB).

Given the above, it should be clear that the additional har-

monic rejection provided by the AIC is dependent on the SIR

of the baseband signals and , which is equal to the

signal-to-harmonic ratios of the RF antenna signal minus the

HR of the analog front-end.

Interestingly, the performance of the AIC shows a favorable

trend with respect to the interference power: if the interference

power increases, the quality (1/SIR) of the interference estimate

increases, which leads to an increased SIR at the output of the

canceller. In practice, the benefit of this trend is limited by the

nonlinearity of the front-end, including the A/D converters.

Consider again the block diagram of the digital HR stage in

Fig. 9. The interference estimate, v(n), and its complex conju-

gate,6 , are equalized via multiplying by and , re-

6The complex conjugate is needed to remove the I/Q imbalance image [27]
of the harmonic image in addition to the harmonic image itself.

spectively. The equalized signals are subtracted from the re-

ceived signal, r(n), which removes the interference and pro-

duces the output signal, e(n). The filter weights, and ,

are adapted with every new output value of e(n) by means of the

LMS update rule [25]:

(7)

where is the power-normalized step-size, normalized to the

power of the interference estimate v(n), i.e., :

(8)

and the canceller output, e(n), is calculated from the received

signal, r(n), by

(9)

as shown in Fig. 9.

The LMS update rule as in (7) is an iterative process that

aims to minimize the cross-correlation between the output of the

canceller, e(n), and the interference estimate, v(n). Cross-corre-

lation is a measure of similarity, thus, minimizing it results in

the output of the canceller being as dissimilar to the interfer-

ence estimate as possible: the interference at the output, e(n), is

reduced.

The step-size parameter in (8) is chosen somewhat arbi-

trarily. Generally speaking, choosing too small results in slow

convergence and choosing it too big increases the (time-varying)

error of the filter weights [25], which reduces the harmonic

rejection.

The optimum equalizer coefficients, and , for can-

celling the third harmonic image may differ from the optimum

coefficients for cancelling the fifth harmonic image, owing

to different phase and amplitude mismatches for each image.

The dominating interference largely determines the cross-cor-

relation. Therefore, the dominating harmonic image will be

cancelled by the AIC stage. Note that the preceding analog HR

down-mixer stage rejects both images.

The optimum coefficients are independent of the RF signal

modulation scheme, owing to the fact that the amplitude and

phase differences between r(n) and v(n) are independent of the

actual RF signals. Thus, once the filter coefficients to cancel a

specific harmonic image have been found (by application of the

iterative LMS algorithm), they remain valid until the mismatch

introduced by the front-end changes, for instance, when making

large changes in the LO frequency.

V. IMPLEMENTATION OF THE ANALOG FRONT-END

A SDR receiver chip has been implemented in 65 nm CMOS

to verify the three concepts proposed in previous sections. The

digital AIC algorithm is realized in software and will be dis-

cussed later. The block diagram of the chip has been shown in

Fig. 4. The signal path consists of LNTAs, passive mixers, and

two-stage TIAs with second-stage HR-weighting via a resistor

network (R-net). The first voltage gain should be at baseband

after LPF for good OB linearity, as discussed in Section II, and

the realization of two-stage polyphase HR has been described in
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Fig. 10. Low-noise transconductance amplifiers (LNTA) implementing ��

(shown on transistor level) and two blocks of �� (identical schematic).

Section III. The 8-phase LO is derived via a divide-by-8 from an

off-chip signal CLK, i.e., the master clock. The receiver can be

reconfigured to deliver either 8-phase outputs from TIA1 or I/Q

outputs from TIA2. The 8-phase outputs interface to off-chip

ADCs for digitally enhanced HR measurements while the TIA2

stage is switched off. To better understand the implementation,

a more detailed description for some key blocks follows.

A. Linear LNTA

Fig. 10 shows the schematic of a pseudo-differential

unit-LNTA, of which there are 7 units in parallel to form three

LNTAs with 2:3:2 ratio, sharing the same external (large-value)

inductor to GND for DC bias. The common-gate (CG) transistor

M1 provides input matching while the input is also connected

to the AC-coupled inverter consisting of common-source

(CS) transistors M2 and M3. For each single-ended half, all 7

unit-LNTAs together deliver an impedance matching with the

source impedance and a total transconductance

mS mS mS .

A common-mode feedback (CMFB) loop using high-ohmic

resistors and an amplifier “A” controls the PMOS transis-

tors and ensures all three LNTA outputs are biased around

. In total the three differential LNTAs draw

14 mA from a 1.2 V supply.

The noise behavior of the LNTA can be understood by

studying a single-ended half, which consists of a CG transistor

M1 and two CS transistors M2/M3, sharing the same input

. Considering the LNTA output noise in the current do-

main, the noise factor can be written as

(10)

The second term considers the partial noise cancelling of the

CG transistor noise [28] and the third term considers the noise

from the CS transistors. If take , mS,

mS, and mS into (10), we get

. If is in the range of 2/3 to 1,

the noise figure (NF) would be 2.2 to 3 dB.

For wideband operation, minimum-length transistors are used

to achieve dB to more than 6 GHz RF (simulation).

Since the input impedance of a CG transistor depends on its

drain impedance [29], a wideband low impedance at its output,

Fig. 11. Simulated LNTA IIP3 versus load impedance (� for each of the
three LNTAs) at different process corners (sn: slow-NMOS, sp: slow-PMOS,
fn: fast-NMOS, fp: fast-PMOS).

i.e., node B in Fig. 2, is desired for wideband input matching.

This fits well to what is desired for linearity as discussed in

Section II.

Since the LPF improves the OB linearity of I-V conversion

(Fig. 1), the V-I linearity sets the ultimate limit of OB linearity.

To obtain a good V-I linearity, high and high

is desired. In our design, is larger

than 250 mV and is 600 mV. Fig. 11 shows IIP3 simulation

results (considering process spread), where each of the three

LNTAs is loaded by a pair of resistors to model the input

impedance of the next stage mixers. To average out the effect

of different LNTA transconductance (2:3:2), the simulation is

carried out with all three LNTAs combined together as well as

their individual . The two input tones are at 801 MHz and

802 MHz. Simulations predict an IIP3 of more than 15 dBm

if and only dB variation over different process

corners, indicating that high LNTA linearity robust to process

spread is possible if we keep voltage gain low (small ).

Actually, it turns out that the addition of the CG-stage in par-

allel to the inverters has a nonlinearity cancellation effect that

improves IIP3 for between about and , which de-

termines the -related distortion terms (for the case without a

CG-stage, see the grey curve in Fig. 11). Simulation and analysis

indicate that it is mainly the pre-distortion at the inverter inputs

introduced by the CG-stage via its source current, to cancel the

distortion generated by inverter itself. Nevertheless, since we are

interested in using a low value, produced by mixer switches,

to deliver signal current into the TIA stage, here we do not dis-

cuss this effect further.

A differential LNTA requires an off-chip balun if a single-

ended antenna or RF filter is used. Compared to an LNTA with

single-ended input, although the differential one may double the

power consumption [30], it can render better IIP2. Besides, the

input voltage swing on each of the differential inputs is lowered

by 3 dB, which improves LNTA IIP3 and by 3 dB.

Using the same setup as for Fig. 11, simulations with an ideal

balun and (the designed input impedance of the

mixer) show input-referred dBm, dB (only
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including noise from LNTA), and voltage gain dB for

each single-ended output (low gain as desired for good linearity)

with dB bandwidth GHz. This wide RF bandwidth ben-

efits from the low impedance (real part) at the output of LNTA,

which means the dominant pole is located at a very high fre-

quency given a certain capacitance.

B. Passive Mixer

Each of the three LNTAs with 2:3:2 ratio connects to 8 passive

current-commutating mixers driven by 8-phase LO, as shown

in Fig. 4. The mixers are DC-coupled to the LNTAs for wider

bandwidth compared to AC-coupled, which introduces para-

sitic capacitance. Each mixer receives 3 differential inputs from

LNTAs and together they deliver 4 differential outputs to TIA1,

i.e., 8-phase signals with 45 interval.

The passive mixer simply consists of NMOS switches, with

bulk tied to source. The gate of the mixer switch is AC-coupled

to a clock driver and biased so that the maximum .

The mixer switch-on resistance is in the order of

and all mixer switches have the same dimension for good phase

accuracy. Besides, the same and different LNTA output

impedance (3:2:3) also introduce a current division effect which

brings the actual first-stage weighting ratio different from 2:3:2

but closer to the ideal 1: :1 ratio, good for the overall ampli-

tude accuracy.

For good NF, we need to minimize clock overlap to avoid a

low-ohmic path between TIA inputs that will amplify TIA noise

[22]. For the case with 8 TIA inputs this leads to a maximum

LO duty cycle of 1/8. Both sides of the mixer, i.e., the output

of LNTA and the input of TIA, are biased at the same DC level

(around half VDD) ensuring that little DC current flows for a

low 1/f noise from the mixer switches.

C. Accurate Multiphase Clock

Since the amplitude accuracy can be ensured by the two-stage

polyphase HR, the phase inaccuracy is likely to dominate. Based

on the Appendix, if the LO duty cycle is “d”, the resulting third

HR is

(11)

where and are the standard deviation in the amplitude

and phase respectively. For and negligible amplitude

error due to the two-stage technique as in (4), to reach

60 dB HR , the required phase error is .

To build a multiphase clock generator with low phase mis-

match, two design principles are applied: 1) to use a common

master clock to derive all phases; 2) to minimize the path from

the common master clock to the mixer switches therefore to

minimize mismatch accumulation.

Fig. 12 shows a divide-by-8 ring counter using eight dynamic

transmission-gate (TG) flip-flops (FF). The same master clock

(CLK), with 8 times the LO frequency, drives all FFs. Only one

inverter (INV2) is used as a buffer to minimize the path from

CLK to mixer.

A preset data pattern is required to deliver the wanted 1/8 duty

cycle. Each LO phase controls six mixer switches connecting to

Fig. 12. An 8-phase clock generator with low phase mismatch (with one cell
shown on transistor level).

Fig. 13. Histogram of the simulated phase difference between two adjacent LO
outputs (240 Monte Carlo results).

differential outputs of three LNTAs. The gates of all six switches

are connected together and driven by the same buffer, i.e., INV2,

to minimize buffer mismatch.

In a ring counter, all flip-flops “see” the same environment.

However, a loop is not convenient in layout and it may need

different wiring lengths between each two flip-flops, degrading

phase accuracy. A careful layout strategy is adopted to minimize

the wiring differences. Moreover, when the critical LO edges

occur, the largest part of the wiring is isolated from the output

of INV2 via TG2, decreasing rise and fall times and reducing

the effect of wiring mismatch.

The phase error reported in [17] is found to be too pessimistic

due to an incorrect simulation test-bench. Fig. 13 presents the

simulated phase deviation from 45 between two adjacent

0.8 GHz LO phases due to mismatch, including the contribu-

tion from mixer switches. The histogram shows a maximum

phase error of only 0.07 and it yields , i.e., 0.08 ps

for 0.8 GHz. This clock performance is hence compatible with

dB .

The master clock CLK comes from an off-chip generator fol-

lowed by a pair of inverters as on-chip buffer. Simulation shows,

at 0.8 GHz LO, the power consumption of the divider is 5.4 mA

at 1.2 V supply and the input buffers consume 8.9 mA driven by

6.4 GHz differential input clock.

In simulation, the divide-by-8 can work up to 1.25 GHz LO

(10 GHz CLK) in nominal case although it can vary with process

corners. The up-side LO frequency is mainly limited by the large
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division ratio, i.e., 8. If a higher LO frequency is wanted, a di-

vide-by-2 may be used to generate 4-phase (quadrature) LO in-

stead of the divide-by-8, and then the receiver in Fig. 4 can be re-

configured to a quadrature wideband receiver without HR [21],

when harmonic mixing is less to be a problem at higher bands.

D. High-Swing TIA and Baseband R-net

Since the voltage gain occurs at the outputs of the TIA1 stage

where interference is only partly suppressed, we choose an OTA

topology [21] being able to handle large voltage swing, which

helps tolerate large blockers. It is a two-stage class-AB-output

OTA based on [31]. The input pair uses NMOS transistors in

weak inversion for high and a big size leading to low 1/f

noise. For the OTA second stage, a class-AB push-pull output

stage is used, which can handle more than 2 V peak-to-peak

differential output voltage swing. Each OTA draws 3 mA from

1.2 V supply.

A parallel RC feedback network implements a simple first

order LPF to perform blocker filtering (Fig. 4). Each TIA stage

has a LPF dB bandwidth of 20 MHz and together they

determine the receiver IF bandwidth of 12 MHz, which may

accommodate most mobile communication standards. The vir-

tual-ground impedance of the TIAs is about around DC and

peaks to around 700 MHz. The simulated gain after the

TIA1 stage is 27 dB and after the TIA2 stage 34 dB.

The resistor network (R-net) provides the second-stage

weighting for HR. It also converts 8-phase outputs of the TIA1

stage into quadrature inputs of the TIA2 stage. To form a 5:7:5

amplitude ratio, 19 unit-resistors form a resistance ratio of 7:5:7

in three paths. Harmonic rejection at baseband (via R-net) can

also reduce errors due to parasitic capacitance compared to at

high frequency.

VI. IMPLEMENTATION OF THE DIGITAL BACK-END

The analog front-end used in the digitally enhanced HR ar-

chitecture consists of the first stage HR mixer driven by the

multi-phase clock generator of the two-stage analog HR archi-

tecture. The reader is referred to the previous section for the

implementation details of the analog circuits.

The four fully differential baseband outputs provided by the

TIA1 stage (Fig. 4) are converted into the digital domain using

a commercial A/D board comprising four 14-bit ADCs (Fig. 9).

Unfortunately, the input range of the used A/D board was more

than 15 times greater than the output swing provided by the

front-end, resulting in less than 10 effective bits.

The baseband processing, including the interference estimate

generation and the adaptive interference canceller were imple-

mented in software on a PC and use floating-point arithmetic.

To allow real-time processing, a sampling rate of 4 MS/s was

chosen. This gives 2 MHz bandwidth for each analog baseband

signal and 4 MHz bandwidth in the digital domain using quadra-

ture signals. Fig. 9 gives a system-level overview of the setup.

The interference estimate generation is implemented using

two real adders and the phase shifter, shown in Fig. 14. This

reduced-complexity shifter exploits the fact that the cosine and

sine of a 45 angle are of equal magnitude. Thus, it needs two

real multipliers (instead of four) and two real adders. Thus, the

Fig. 14. Reduced complexity ��� phase shifter.

Fig. 15. Reduced complexity interference canceller.

total complexity of the interference estimate generation is two

real multipliers and four real adders.

The complexity of the canceller indicated by (9) can be re-

duced from eight multipliers and eight adders to four multipliers

and four adders, by applying the following substitutions:

where the filter coefficients, and , are split in their real

and imaginary parts, , , etc. The resulting canceller and

the new LMS update rules are shown in Fig. 15. If the step-size

is rounded to the nearest power of 2, four multipliers in the

“LMS Weight update” become a shift operation. As a result, the

update mechanism only needs four multipliers and four adders.

Then, the total arithmetic complexity of the digital HR stage is

10 multiplications and 12 additions per sample.

While the digital algorithm was implemented only in soft-

ware, a fixed-point VHDL version was synthesized using a

65 nm CMOS standard cell library. The tools reported a dy-

namic power of less than 10 mW at 100 MS/s and 1.2 V supply

voltage.

VII. EXPERIMENTAL RESULTS

The circuit shown in Fig. 4 is fabricated in 65 nm CMOS and

the micrograph is shown in Fig. 16. The total area, excluding

bond-pads, is about mm . Capacitors ( and in Fig. 2)

take a large portion of area in the TIA, and also the OTA input

pair is big to achieve a low 1/f noise corner. With 1.2 V supply,

the analog power consumption is 33 mA (LNTA: 14 mA, TIA1-

stage: 12.8 mA, TIA2-stage: 6.4 mA) while the clock power

consumption is 8 mA at 0.4 GHz LO and 17 mA at 0.9 GHz

LO, including the clock input buffers.

The chip is packaged in a 32-pin heat-sink very-thin quad

flat-pack no-leads (HVQFN) package. To prove the receiver is

robust to OBI, all measurements are performed on PCB without

any external filter. Two SMD inductors are mounted on the PCB

to bias the LNTA (Fig. 10). Both the receiver inputs and clock

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on January 13, 2010 at 18:27 from IEEE Xplore.  Restrictions apply. 



RU et al.: DIGITALLY ENHANCED SOFTWARE-DEFINED RADIO RECEIVER ROBUST TO OUT-OF-BAND INTERFERENCE 3369

Fig. 16. 65 nm CMOS chip micrograph indicating some functional blocks.

Fig. 17. Measured voltage gain and DSB NF of the two-stage receiver as a
function of the LO frequency.

inputs are differential and wideband hybrids (balun) were used

to interface to single-ended measurement equipments. The

IF-output voltages are sensed by a differential active probe that

performs differential to single-ended conversion and impedance

conversion to . The characteristics of all components and

cables for testing are de-embedded from the results.

The divide-by-8 works up to 0.9 GHz LO, and the measured

is lower than dB up to 5.5 GHz. This means the HR

measurement is valid for 0.9 GHz LO up to its sixth harmonic.

The measured IF bandwidth is 12 MHz and the baseband 1/f

noise corner is 30 kHz thanks to the passive mixer with little

DC current and the OTA with a large-sized input pair.

A. Gain, NF, RF Bandwidth, and In-Band IIP2/IIP3

Fig. 17 shows the measured voltage gain and DSB NF over an

LO frequency of 0.4 to 0.9 GHz. The voltage conversion gain,

measured for an IF of 1 MHz from the input of the balun to the

differential outputs of receiver, is above 34 dB over the whole

band and is quite flat ( dB variation), indicating a much

wider RF bandwidth. The NF is measured for an IF of 10 MHz

since the available NF analyzer (Agilent N8973 A) starts from

that frequency. The DSB NF is below 4 dB except for 0.4 GHz

where 1/f noise from the LNTA starts to dominate.

Fig. 18. Measured in-band IIP2 and IIP3 versus LO frequency.

The divide-by-8 limits the LO frequency range up to 0.9 GHz

(master clock @ 7.2 GHz), but the signal-path dB RF band-

width is much wider, up to 6 GHz. To verify it, we conducted a

gain measurement for the seventh harmonic, i.e., the first non-

canceled high-order harmonic. Ideally, using 1/8 duty-cycle LO,

the strength of the seventh harmonic should be 1/7 of the fun-

damental harmonic, so we expect the seventh harmonic should

ideally have a gain that is 16.9 dB (1/7) lower from 34 dB, i.e.,

17.1 dB. Indeed, the gain drops from 17 dB at 0.7 GHz RF to

14.3 dB at 6 GHz RF (LO: 0.1 to 0.85 GHz), which means the

OBI will only be attenuated a little by the frequency roll-off at

RF. It also indicates that the receiver can be readily expanded to

cover higher bands by extending the LO range as discussed in

Section V-C.

Fig. 18 shows the measured in-band (IB) IIP2 and IIP3 over

LO frequency, with two tones close to the LO frequency so that

they are not affected by IF filtering (IIP2: MHz and

MHz; IIP3: MHz and MHz).

After downconversion, the IM2 component at 3.01 MHz and

the IM3 component at 2.99 MHz are measured. The IB IIP3 is

around dBm, which is good given the high gain of 34 dB,

thanks to only voltage gain at baseband with negative feedback.

The IB IIP2 is above dBm.

B. Out-of-Band IIP2/IIP3

We also measured the out-of-band (OB) IIP2 and IIP3. Due

to the LPF behavior, the measured OB linearity depends on the

distance from to the two RF tones used. For sufficient dis-

tance, the LPF will suppress the downconverted two-tone inter-

ference so the OB nonlinearity is mainly contributed by the V-I

of the LNTA.

The OB IIP3 is tested via two tones at 1.61 GHz and 2.40 GHz

with an LO at 819 MHz, so that the IM3 is at 820 MHz RF

and 1 MHz IF. The results of both IB (0.8 GHz LO) and OB

IIP3 are shown in Fig. 19. Without fine tuning, the measured

OB IIP3 is dBm, which agrees with the simulated results

in Fig. 11. Compared to the IB IIP3 of dBm, the OB IIP3

is dramatically improved because the TIA was dominating the

IB IIP3, due to the high voltage gain at the output. As shown

in the figure, the range for which IM3 follows the extrapolation

line is also improved by almost 20 dB (upper limit of dBm
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Fig. 19. Measured in-band (IB) and out-of-band (OB) IIP3 for 800 MHz LO
demonstrating OB linearity improvement.

for IB versus dBm for OB). This is crucial to tolerate large

OB interference.

The OB IIP2 is dBm, tested via two tones at 1.80 GHz

and 2.40 GHz while LO at 601 MHz, so that the IM2 is at

600 MHz RF and 1 MHz IF.

C. 1 dB Compression Point and Blocker Filtering

To quantify the effect of the blocker filtering, we measured
the 1 dB compression point and the 1 dB desensitization
point , both input-referred.

First we measured the without applying any blockers,
which is dBm. The result is reasonable since dBm
input power plus 34 dB gain is equal to 12 dBm output power
(referring to ), differentially. The single-ended voltage
swing is about 1.27 V peak to peak, just exceeding the 1.2 V
supply. This means the limitation is at the receiver output and
the can be improved by automatic gain control (AGC).

A more serious problem is to receive a weak signal at the
same time with a strong interferer: a so-called blocker test. In
this situation AGC does not help since the maximum gain is re-
quired to maintain sensitivity. The measurement was carried out
with the LO at 400 MHz and the desired RF signal at 401 MHz
with dBm input power. The blocker frequency is varied
from 402 MHz to 4.002 GHz. Fig. 20 shows versus the
blocker frequency. As predicted by (1) and (2), we see two ef-
fects in the figure: 1) the tolerable blocker power depends on
the frequency distance between the LO and the blocker, due to
the LPF behavior;7 2) HR also plays a role in blocker filtering,
as two dips occur around seventh and ninth harmonic of the LO
frequency, both of which are not rejected well by the 8-phase
HR. From the figure, we can observe that is better than

dBm except very close-by blockers (402 MHz) and
the maximum is more than 0 dBm, showing the blocker
filtering is indeed effective.

D. Two-Stage Polyphase HR

We will verify the analog two-stage polyphase HR here and

the digitally enhanced HR in Section VII-E. These two alterna-

tive approaches will be compared in Section VII-F.

7The actual behavior of the LPF is more complicated than (2), since our base-
band filter is cascaded in two stages, which does not follow a simple first order
or second order filtering behavior.

Fig. 20. Measured input-referred 1 dB desensitization point �� � versus
blocker frequency.

Fig. 21. Measured HR ratio versus LO frequency: Comparison between HR
with only one-stage and total two-stage (two-stage polyphase HR).

First we look at the two-stage polyphase HR. The HR ratio

can be measured by comparing the gain difference between the

desired signal and the harmonic image. At the receiver input, the

desired signal power was dBm while the harmonic image

power was dBm.

Fig. 21 shows, for one chip, the HR of one-stage, at the out-

puts of the TIA1, and the total two-stage HR, at the outputs of

the TIA2, versus LO frequency. The HR of one-stage is between

30 and 40 dB and the HR of two-stage is around 70 dB, repre-

senting a 30 dB improvement for both third and fifth HR thanks

to the two-stage polyphase HR technique. Generally, the HR

improvement from one-stage to two-stage is in the range of 20

to 40 dB as observed from multiple chips. The large improve-

ment also shows that it is the amplitude error dominating the

first-stage HR.

To identify the effect of mismatch, we measured the HR of

two-stage for 40 chips at 0.8 GHz LO, as shown in Fig. 22. The

minimum third order HR is 60 dB and the minimum fifth order

HR is 64 dB. The second, fourth, and sixth HR is also mea-

sured, over 20 chips. The minimum second order HR is 62 dB,

while the minimum fourth and sixth order HR are both 67 dB.

These results are achieved without calibration, trimming, or RF

filtering.
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Fig. 22. Measured HR ratio of 40 randomly selected chips at 800 MHz LO
(two-stage polyphase HR).

Fig. 23. The measured third order HR of the analog stage and the combined
stages versus the LO frequency. Desired:����� dBm RF power, third harmonic
image: ����� dBm RF power (digitally enhanced HR).

Since the signal-path dBm RF bandwidth has been char-

acterized to be up to 6 GHz, the contribution of the frequency

roll-off to the HR result should be small. According to (11), the

simulated phase error means a minimum HR

of 62 dB if the amplitude error is eliminated, fitting well with

the measured HR as well as the Monte Carlo simulation results.

This also suggests that phase error can indeed be the limitation

now.

E. Digitally Enhanced HR

Consider now the digitally enhanced HR architecture. The

harmonic rejection for the third harmonic image versus LO

tuning range (0.4 to 0.9 GHz) was measured, see Fig. 23. At

the receiver input, the desired signal RF power was dBm

and the harmonic image RF power was dBm. The analog

HR mixer provides more than 36 dB HR for the third harmonic

image, which is higher than the 32.4 dB predicted by Table I.

We attribute this difference to the finite output impedance of the

three LNTAs. Thus, the effective weighting of the 2:3:2 ratio is

closer to the ideal 1: :1, resulting in a higher measured HR.

Given a SIR of dB at RF, the digital AIC increases the

harmonic rejection provided by the analog HR mixer from 36 dB

to over 80 dB across the entire LO tuning range. The HR mea-

surements are calculated based on the difference in power be-

tween the desired signal and the harmonic image. At the output

Fig. 24. The measured third and fifth order HR of the analog stage and com-
bined stages, for 10 randomly selected chips, at 800 MHz LO (digitally en-
hanced HR).

of the digital canceller, the harmonic image is below the noise

floor. Instead of the harmonic image power, the noise floor was

taken. Thus, the actual HR is greater than what is shown in

Fig. 23.

A second indicator that the HR is higher comes from the SIR

of the interference estimate, v(n), which was measured to be

over 52 dB (limited by noise floor of equipment) across the

entire LO tuning range. Given (5), the (theoretical) SIR at the

output of the canceller is also 52 dB. The power ratio between

the desired signal and the harmonic image (at RF) is dB,

which makes the theoretical HR greater than 98 dB! Unfortu-

nately, the height of the noise floor at the output of the canceller,

which is largely determined by the quantization noise of the A/D

board, prevents this to be verified.

The third and fifth order harmonic rejection for multiple (ran-

domly selected) chips is shown in Fig. 24. The desired signal RF

power was dBm at 800 MHz LO. The RF power of the

third and fifth order harmonic images was dBm. The re-

sults show more than 36 dB of analog harmonic rejection and

more than 80 dB of combined harmonic rejection, for all chips.

Thus, the digitally enhanced AIC technique performs well under

varying mismatch conditions.

To show the effectiveness of the AIC technique against a

modulated interferer, an FM modulated third harmonic image

interferer was applied to the system. Fig. 25 shows the baseband

spectrum of the received signal (top), r(n), and the AIC output

(bottom), e(n).

In the received signal (Fig. 25, top), the third harmonic image

signal at MHz (baseband) causes interference to a (sinu-

soidal) desired signal at MHz (baseband). The I/Q im-

balance image of the third harmonic interferer is also visible at

MHz (baseband).

At the output of the canceller (Fig. 25, bottom), the third har-

monic interferer is below the noise floor, which is a suppression

of more than 40 dB. Assuming at least 36 dB of analog har-

monic rejection, the combined harmonic rejection is thus more

than 76 dB. This is less than 80 dB because the FM modulated

interferer was weaker than the sinusoidal interferer used during

the previous measurements.
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Fig. 25. (top) The measured baseband spectrum of the (discrete-time) received
signal, r(n), and (bottom) the output of the canceller, e(n).

Fig. 25 also shows signals which are caused by ground loop

problems and spurs emanating from the switching power supply

of the PC, which housed the A/D converter board.

Note that the I/Q imbalance image of the third harmonic in-

terferer, see Fig. 25 (top), is suppressed to below the noise floor,

revealing the I/Q imbalance image of the desired signal, see

Fig. 25 (bottom), at MHz (baseband).

After convergence of the LMS algorithm, which takes around

50000 samples (12.5 ms), the equalizer coefficients were

and .

The measurements show that the digitally enhanced HR ap-

proach is indeed a powerful one; it produces unprecedented HR

figures, irrespective of (small) analog mismatches that exist in

the analog front-end.

F. Comparing the Alternatives

The two-stage polyphase HR implemented in analog ap-
proach helps both third and fifth HR via improved amplitude
accuracy and achieves a minimum rejection of 60 dB and 64 dB
respectively. The digitally enhanced HR based on AIC algo-
rithm consistently shows more than 80 dB of HR for a single
harmonic image (either the third or the fifth) by correcting
both amplitude and phase of that harmonic image. The other
harmonic image is rejected by at least 36 dB, not improved
from the analog first stage. They share a similar limitation on
even-order HR.

On the implementation level, compared to the two-stage
polyphase HR, the digitally enhanced HR architecture requires
two additional A/D converters, which may increase the power
considerably. Fortunately, the converters for and
(Fig. 9) may be switched off when the analog HR stages can
provide enough harmonic rejection.

Table II summarizes the results and properties of the two al-
ternative approaches.

G. Performance Summary and Benchmark

Table III summarizes the measured performance. As a bench-

mark, Table IV shows a comparison to other recently published

TABLE II
COMPARISON OF TWO ALTERNATIVE HR TECHNIQUES ROBUST TO MISMATCH

TABLE III
SUMMARY OF MEASURED KEY PERFORMANCE

wideband receivers with HR. Since it is difficult to characterize

the exact overhead of the part implemented in software (dig-

ital AIC), here we only compare the part implemented on chip

(Fig. 4) to other work.

There are two outstanding parameters of this work, i.e., lin-

earity and harmonic rejection. Comparing all work including an

LNA, [2], [4], and [33] shows an IIP3 around dBm while

this work shows an IIP3 of dBm and a competitive NF.

The OB IIP3 of our work is even higher dBm , but we did

not find a good way to benchmark it. For HR, only [32] and [33]

reported numbers comparable to this work. However, [32] only

reported results from one chip while consuming large power due

to a different structure of the HR mixer. [33] reported results for

10 chips, but relying on hand calibration, and the calibration is

only effective for either third or fifth HR but not for both at the

same time. Thus, we conclude that our design has both good lin-

earity and good HR at moderate power consumption, thanks to

the proposed techniques.

VIII. CONCLUSION

This paper identified out-of-band (OB) nonlinearity and har-

monic mixing as two main problems for out-of-band interfer-

ence (OBI), and proposed solutions to reduce their effects. First,
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TABLE IV
BENCHMARK WITH OTHER RECENT WORK

OB nonlinearity can be improved by implementing low-pass fil-

tering, simultaneously with voltage gain only after downconver-

sion, to improve the OB IIP3 and the desensitization point due

to blockers. Second, two “iterative” harmonic-rejection (HR)

techniques are presented to reduce harmonic mixing in a way

which is robust to mismatch. An analog two-stage polyphase

HR concept is proposed to greatly enhance the amplitude ac-

curacy for both third and fifth harmonics so that the total am-

plitude error becomes product of errors. Alternatively, digitally

enhanced HR based on adaptive interference cancelling (AIC)

can be applied to improve HR of the analog first-stage further

by correcting both amplitude and phase errors for one dominant

harmonic, either third or fifth. To guarantee a mismatch-robust

HR for both analog and digital approaches, a simple but accu-

rate ring counter is presented to generate the multiphase clocks

driving the HR mixer.

We have verified the proposed techniques via a SDR receiver

in 65 nm CMOS, with RF bandwidth up to 6 GHz and 8-phase

LO frequency up to 0.9 GHz (master clock up to 7.2 GHz). The

1 dB compression point is dBm while the maximum 1 dB

desensitization point is more than 0 dBm, showing the low-pass

blocker filtering is effective. In terms of IIP3, dBm for OBI

is measured without fine tuning for sufficient frequency spacing,

e.g., LO at 819 MHz while two-tone at 1.61 G and 2.40 GHz,

versus an in-band IIP3 of dBm. Without any trimming

or calibration, the two-stage polyphase HR technique achieves

60 dB minimum HR ratio at 0.8 GHz LO for both third and fifth

harmonics over 40 randomly selected chips, and all even-order

HR ratios are measured above 60 dB as well. The digital AIC

HR achieves a steady 80 dB HR for either third or fifth harmonic

for 10 chips, indicating the power of adaptive digital techniques

to solve analog problems.

APPENDIX

Effect of Random Amplitude and Phase Errors to Harmonic

Rejection: This Appendix aims at estimating the HR ratio and

its sensitivity to amplitude and phase errors. These effects have

been partly considered in [2] and [15], however, the statistical

nature of mismatch and the effect of using balanced RF or bal-

anced LO have not been included so far. We will also consider

the effect of LO duty cycle “d”.

Suppose we have three signal paths to the output (as in

Fig. 3 to Fig. 7) and the signals are represented by vectors as in

Figs. 3(b) and 7. The resulted first and third harmonics can be

respectively written as

(A.1)

where and are the Fourier series coefficients of a

pulse-wave LO with duty cycle “d”

If , , , are small and uncorrelated, we can

approximate the variance in as shown in (A.2), the first equa-

tion at the top of the next page. If and

, then results (A.3), the second equation shown

at the top of the next page. Since , taking the

ratio, we obtain

(A.4)

Please note that is the standard deviation of amplitude error

in percentage and is the standard deviation of phase error in

radians.

For a double-balanced HR mixer, which creates the output

during one half period from 0 to T/2 with the positive-sign

RF-LNTA path then the other half from T/2 to T with the

negative-sign RF-LNTA path, the first harmonic adds up in

amplitude while the third harmonic adds up in power (as the
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(A.2)

(A.3)

error is uncorrelated between two half periods for both ampli-

tude and phase). Therefore, the ratio is improved by 3 dB for a

double-balanced HR mixer compared to (A.4), i.e.,

(A.5)

If the duty cycle of the LO is 50% or 25%, i.e., or 0.25,

we get

(A.6)

If there is no amplitude error, 50% or 25% duty cycle results in

a -HR3 of 70 dB if . If the duty cycle is 1/8, i.e.,

, as in our case, we get

(A.7)

Without amplitude error, the -HR3 is now 62 dB.

A similar derivation for fifth order HR of a double-balanced

HR mixer renders

(A.8)

where the phase term would have been multiplied by 5 in

(A.4) due to the 5-times phase shift of compared to .

Nevertheless, without amplitude errors, this leads to the same

numerical result : a -HR5 of 62 dB for 1/8

duty cycle LO.
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