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Abstract

Regression techniques can be used not only for legitimate data analysis, but also to infer private 

information about individuals. In this paper, we demonstrate that regression trees, a popular data-

analysis and data-mining technique, can be used to effectively reveal individuals’ sensitive data. 

This problem, which we call a “regression attack,” has not been addressed in the data privacy 

literature, and existing privacy-preserving techniques are not appropriate in coping with this 

problem. We propose a new approach to counter regression attacks. To protect against privacy 

disclosure, our approach introduces a novel measure, called digression, which assesses the 

sensitive value disclosure risk in the process of building a regression tree model. Specifically, we 

develop an algorithm that uses the measure for pruning the tree to limit disclosure of sensitive 

data. We also propose a dynamic value-concatenation method for anonymizing data, which better 

preserves data utility than a user-defined generalization scheme commonly used in existing 

approaches. Our approach can be used for anonymizing both numeric and categorical data. An 

experimental study is conducted using real-world financial, economic and healthcare data. The 

results of the experiments demonstrate that the proposed approach is very effective in protecting 

data privacy while preserving data quality for research and analysis.
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INTRODUCTION

Predictive analytics techniques using personal data have been deployed by organizations in a 

variety of domains, including marketing research, financial analysis, human behavior study, 

and healthcare research. While these techniques are generally used by organizations to better 

understand and serve their customers, there are growing concerns about invasions to privacy 

from the use of these techniques.

In a widely-circulated article, Charles Duhigg, a New York Times reporter, wrote how Target 

Corporation used predictive analytics to conduct targeted marketing (Duhigg 2012). Perhaps 

the most intriguing story in the article is how Target identified pregnant customers. The 
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analytics team started with the shopping records of the Target’s baby gift registry, where the 

customers had voluntarily disclosed their due dates. The team discovered a set of products, 

such as unscented lotion and soap, and calcium and zinc supplements, that pregnant women 

bought in large quantities during different periods of their pregnancy. These items enabled 

Target to calculate a “pregnancy prediction” score and estimate the due date for other 

customers with similar purchase behaviors, and to send coupons timed to specific stages of 

the pregnancy. The model worked very well, perhaps too well in that Target seemed to know 

things that even close family members of a targeted woman did not know. In one instance, a 

father whose teenage daughter was receiving coupons for baby products walked into a 

Target store and complained: “She’s still in high school, and you’re sending her coupons for 

baby clothes and cribs? Are you trying to encourage her to get pregnant?” It turns out the 

man later apologized to the store manager that he was not aware of his daughter’s 

pregnancy. This story took the media by storm, with more than one million views on the 

Internet within days (KDnuggets 2012). The reactions from the public were mostly negative. 

As a privacy expert put it: “This is the exciting possibility of Big Data, but for privacy, it is a 

recipe for disaster” (Ohm 2012).

In this case, Target was using its in-house data for analysis. When the personal data is 

shared with a third party, privacy concerns become even more serious. However, sharing 

and selling of personal data are common today. As an example, the Center for Medicare and 

Medicaid Services, a federal agency, sells individual Medicare and Medicaid claims data to 

third parties for analysis (http://www.resdac.org/). The center’s operations follow the 

guidelines of the Health Insurance Portability and Accountability Act (HIPAA). However, 

studies have shown that the HIPAA rules may be insufficient in protecting patient privacy 

(Sweeney 2002). In fact, secondary use of private data has long been a cause for serious 

concern, and studies have found the majority of the public react negatively to their use 

(Culnan 1993; Angst and Agarwal 2009).

This research concerns regression, which is one of the most widely used predictive 

techniques in business environments. More specifically, our research investigates a privacy 

disclosure problem involving the use of a popular regression technique called regression 

trees. Introduced by Breiman et al. (1984), regression trees build prediction models based on 

recursive partitioning of data. In contrast to the classic linear regression model, regression 

trees are nonparametric in nature and thus very effective in dealing with nonlinear and non-

monotonic relationships in data. They can easily handle both numeric and categorical 

predictor variables. The regression tree models can be converted into a set of rules that are 

easy to understand and interpret. These desirable features have led to their wide use in 

predictive data mining and analysis. An excellent example is the regression tree diagram 

published by The New York Times during the 2008 democratic primary election (Cox 2008). 

The regression tree used a set of demographic, geographic, economic and political variables 

to predict the number of votes (counties) that Barack Obama and Hillary Clinton would win. 

The tree diagram not only showed prediction outcomes, but also clearly described the 

decision rule leading to each outcome.

Regression trees, however, can also be used as a tool to effectively reveal private 

information about individuals. We call this use of regression trees for “mining” personal 
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information a regression attack. To understand such situations, we first distinguish the 

attributes of data on individuals from a privacy perspective. Typically, the attributes can be 

classified into three categories (Machanavajjhala et al. 2006; Li et al. 2007; LeFevre et al. 

2008): (1) explicit identifiers, which can be used to directly identify an individual, including 

name, social security number, and phone number; (2) sensitive attributes, which contain 

private information that an individual typically does not want revealed, such as income, 

medical test results, and sexual orientation; and (3) non-sensitive attributes, such as age, 

gender, education, and occupation; the values of such attributes can often be obtained from 

public sources. Some non-sensitive attributes can be used to identify individuals by 

matching data from different sources, resulting in identity disclosure. Such attributes are 

collectively called a quasi-identifier (QI) in the literature. For example, Sweeney (2002) 

found that 87% of the population in the United States can be uniquely identified with three 

attributes – gender, date of birth, and 5-digit zip code – which are accessible from voter 

registration records available to the public. In data privacy research and practice, the explicit 

identifiers are typically removed from the data (a process referred to as de-identification). 

Data anonymization is applied to QI attributes to further prevent or limit the identity 

disclosure. With identity information properly protected, the sensitive attributes are typically 

released with their original values. For instance, this scheme of handling the three types of 

attributes is adopted by HIPAA. We follow the same scheme in this study.

In analyzing privacy disclosure risk, the literature recognizes two types of disclosure: 

identity disclosure (or re-identification) and value disclosure (Duncan and Lambert 1989; 

Lambert 1993). Re-identification occurs when a data intruder is able to match a record in a 

de-identified dataset to an actual individual. The finding that 87% of the US population can 

be uniquely identified by gender, date of birth and zip code is an example of re-

identification. Value disclosure occurs when an intruder is able to predict the sensitive 

value(s) of an individual record, with or without knowing the identity of the individual. For 

example, suppose all new faculty members in a unionized college receive the same starting 

salary and the college releases the average salary of new faculty. Then the release discloses 

the salary of each new faculty member, even though the individuals are not identified. Thus, 

a technique that protects against identity disclosure does not necessarily prevent value 

disclosure.

The Target example discussed earlier is not an identity-disclosure problem because Target 

already had the explicit identifiers of the customers (due to their using Target credit cards or 

purchasing Target items online, etc.); so there was no re-identification issue involved. 

Instead, the problem is about value disclosure, i.e., predicting the status and timing of the 

pregnancy based on the information independent of the identities. Suppose a retail store does 

not have an in-house analytics team and hires a third-party consulting firm to perform a 

similar study. Even if the customer data provided by the store are anonymized, the 

consulting firm can still build a predictive model for value disclosure. Consequently, the 

group of customers whose demographic and purchase profiles fit the prediction model well 

will be subject to high disclosure risk. Once a customer is determined to belong to this 

group, the sensitive information of the customer is very likely to be compromised even when 
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it is not possible to identify the record in the group that represents this customer (i.e., re-

identification is not feasible).

While regression analysis and regression trees are widely used in data mining and business 

analytics, the regression attack problem has not been addressed in the data privacy literature. 

As we elaborate later, existing privacy-preserving data-analysis and data-mining techniques 

are not appropriate for dealing with this problem; some of them could even make a 

regression attack easier. To fill this research gap, we propose a regression-tree-based 

approach that can be used by organizations to protect individuals’ private information 

against regression attacks while preserving the utility of the released data for legitimate data 

analysis. We introduce a novel measure, called digression, to assess the value-disclosure risk 

in constructing regression trees for data partitioning – specifically, an algorithm is developed 

that uses the measure for pruning the tree to limit disclosure of sensitive data. The approach 

can be used with one or more numeric sensitive attributes, and can handle both numeric and 

categorical QI attributes.

To anonymize QI attribute values, a common practice is to generalize the QI values using a 

pre-defined generalization hierarchy (Samarati and Sweeney 1998; Aggarwal and Yu 2008). 

Using a pre-defined hierarchy for generalization, while effective in preventing re-

identification, is quite inflexible and can lead to undesirable information loss. We propose a 

dynamic value-concatenation method, which merges categorical values based on the 

hierarchical structure of the regression tree itself. This method has the potential to 

significantly improve the utility of the anonymized data. Both the disclosure risk 

(digression) measure and associated tree-pruning algorithm, and the value-concatenation 

method, are new to the literature. The proposed approach, which we call MART 

(Multivariate Anonymization with Regression Trees), is computationally very efficient and 

is much faster than traditional k-anonymity algorithms. It is therefore well-suited for 

applications with large datasets.

The rest of the paper is organized as follows. In the next section, we provide a small 

example to illustrate the regression attack problem. We then discuss prior and current 

research related to the problem. Following that, we develop the regression-tree-based data 

partitioning technique and the dynamic value-concatenation method. We then describe a set 

of experiments conducted on real-world data to demonstrate the effectiveness of our 

approach. The final section elaborates the implications of this research and provides 

directions for future research.

AN ILLUSTRATIVE EXAMPLE

A regression attack can be accomplished by building a regression tree using the sensitive 

attributes as the response variables and the QI attributes as predictors. The regression tree 

can then be used to systematically reveal or infer the individuals’ sensitive information 

based on the values of the QI attributes. This can be done even after the dataset is 

anonymized using well-known anonymization techniques.

Consider an example dataset containing information on 14 individuals, as shown in Table 1. 

There are two numeric QI attributes (Age and Years of Education (YearsEdu)), one 

Li and Sarkar Page 4

MIS Q. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



categorical QI attribute (Occupation, with four categories), and two numeric sensitive 

attributes (Income and Asset). Given this dataset, a privacy intruder can build a regression 

tree based on the methods of Breiman et al. (1984) and De’ath (2002), using the two 

sensitive attributes as the responses. The resulting tree is shown in Figure 1, where a leaf 

node (rectangle) represents a partitioned subset (the records included in the subset are listed 

and the ranges of the Income and Asset values for the node are shown below the node). A 

split criterion is specified along with the edge representing the split. With this tree, it is easy 

for the intruder to infer an individual’s sensitive information from Table 1 even though the 

identity information is not included. For example, if the intruder knew that an individual 

with less than 15 years of education and age more than 43 years is included in the dataset, 

then the intruder will find that this record is located in node 4, which includes record 

numbers 3, 4 and 5. The ranges of the Income and Asset values for the records in this node 

are very narrow. Moreover, the intruder may further split this node into child nodes to get 

more specific Income and Asset values if the intruder has more specific information about 

the age, occupation or years of education for the target individuals.

Regression trees are not the only means for an intruder to snoop for sensitive information. 

For instance, the intruder can issue an ad-hoc query to directly search for any targets if the 

intruder knew a few attribute values of the targets. However, because regression trees 

partition the data based on the relationships between the QI and sensitive attributes, 

regression attacks can compromise the data privacy more systematically and intrusively in 

several aspects. With regression trees, sensitive values can often be revealed using only a 

small number of the QI attributes, whereas an ad-hoc query often requires more attributes, 

depending on the sequence in which the attributes are considered. For instance, the 

regression tree in Figure 1 uses two QI attributes (YearsEdu and Age) to predict the 

sensitive values of the first two records, but an ad-hoc query may involve all three QI 

attributes if the search starts with the Occupation attribute. Furthermore, a regression attack 

can simultaneously identify a large number of target individuals. Finally, a regression tree 

shows which targets’ sensitive values can be determined more easily and which QI attributes 

are the critical attributes for disclosure. So, even if the intruder did not have enough 

information for positive disclosure, regression trees can help the intruder identify potential 

targets, or gather additional data on important QI attributes. For example, the regression tree 

in Figure 1 indicates that YearsEdu may be the most important attribute for finding the 

sensitive attribute values. In short, a regression attack can find structural information for 

privacy disclosure that an ad-hoc query cannot; it is a systematic, efficient and proactive 

technique for revealing private information.

Some of the existing anonymization approaches are vulnerable to regression attacks. We 

describe the problem here with a well-known technique called k-anonymity (Samarati and 

Sweeney 1998). A k-anonymity approach aims at anonymizing the values of the QI 

attributes such that the values of these attributes for any individual matches those of at least 

k – 1 other individuals in the same dataset. With k-anonymity, a dataset is partitioned into 

groups with at least k records in each group; the QI attribute values are then anonymized 

using the same generalized value within a group to make the records in the group 

indistinguishable. For a numeric attribute, k-anonymity replaces the original values in a 
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group with the group range. For a categorical attribute, it generalizes the values based on a 

user-defined hierarchy. Figure 2 shows a generalization hierarchy for the Occupation 

attribute in the data in Table 1 (the value of the root node can be any expression that covers 

all Occupation values; we use the symbol * following the convention in the k-anonymity 

literature).

When the data is intended for regression analysis, a regression tree technique appears to be a 

natural choice for dividing the data into groups for k-anonymity. LeFevre et al. (2008) 

propose a method called Regression Mondrian based on this idea. Table 2 shows the 

anonymized data using Regression Mondrian on the example data. When k = 2, the dataset is 

partitioned into six groups (separated by both dash-lines and solid-lines); when k = 4, it is 

partitioned into three groups (separated by solid-lines only). It can be observed from Table 2 

that for many of the 2-anonymized groups, the sensitive Income and Asset values are very 

close within the groups. As a result, the intruder can still obtain the sensitive information 

fairly accurately for the individuals in these groups even though the intruder may not be able 

to positively identify the individuals (which is indicative of value disclosure). For example, 

if the intruder knew that an individual has less than 15 years of education and is older than 

43 years, the intruder can still find the same sensitive information from the anonymized data 

as from the original data using a regression attack (this is because the attack based on the 

anonymized data makes the same partition of the data as in Table 2). Similar situations also 

occur for some of the 4-anonymized groups (e.g., the narrow Income range for the group 

with records numbered 10, 13, 8 and 14). Further, because a regression tree technique 

attempts to partition the data such that the values of a response attribute are close to each 

other within a group (to increase prediction accuracy), the use of regression trees for k-

anonymity could actually make a regression attack easier.

As mentioned earlier, a limitation of k-anonymity relates to its use of user-defined 

generalization hierarchies for categorical attributes. In this example, if the Occupation 

attribute in a group contains ‘unskilled’ and any other value, the value will have to be 

replaced by the general symbol *, based on the pre-defined hierarchy in Figure 2. For 

instance, the original Occupation values for records #6 and #7 are ‘technical’ and 

‘unskilled’, respectively. When k = 2, they are grouped together (Node 7 in Figure 1). The 

generalized value for ‘technical’ and ‘unskilled’ is the symbol * based on the hierarchy in 

Figure 2. This causes the utility of the released data to deteriorate significantly.

In general, the tradeoff between data utility and anonymity is associated with all privacy-

preserving data-sharing techniques. Our approach addresses this issue directly and, as shown 

subsequently, leads to a better tradeoff than existing techniques.

RELATED WORK

Information privacy has been studied extensively from different perspectives in multiple 

disciplines (Smith et al. 2011). This work focuses on the analysis and design aspects of 

privacy-preserving technology (Aggarwal and Yu 2008; Garfinkel et al. 2007; Sweeney 

2002). Figure 3 provides a conceptual view of the technology in the process of collecting, 

processing and utilizing data, with privacy-related activities highlighted. A central idea 
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behind all approaches along this line of technology is to process and alter the data such that, 

while the identifying and sensitive information for the individuals in the data are well 

protected, the utility of the data is reasonably preserved in the data released for research and 

analysis.

A significant development in the literature on data privacy is the k-anonymity framework, 

proposed by Samarati and Sweeney (1998). As described earlier, the k-anonymity approach 

uses generalization and suppression methods to alter the values of QI attributes such that the 

values of these attributes for any individual matches those of at least k – 1 other individuals. 

In this way, the re-identification risk for an individual is reduced. K-anonymity is a general-

purpose technique for privacy-preserving data publishing. Its original framework is not 

designed to preserve the relationships between the sensitive attributes and the QI attributes. 

From a data utility perspective, therefore, it may not be effective when the anonymized data 

is used for predictive data mining and analysis.

Privacy issues have been studied extensively in the predictive data mining and data analysis 

area (e.g., Agrawal and Srikant 2000; Aggarwal and Yu 2008). A number of studies develop 

privacy-preserving data-mining approaches under the k-anonymity framework. For instance, 

a top-down refinement method for classification problems is proposed in Fung et al. (2007). 

A set of k-anonymity-based algorithms for various data-mining tasks, developed by 

Friedman et al. (2008), covers classification, clustering and association rule mining (but not 

regression).

Besides k-anonymity, Li and Sarkar (2009) investigate the problem of using classification 

trees for privacy disclosure and propose a method to protect against such a “classification 

attack.” The sensitive data considered in that study is categorical and the related approach is 

applicable to classification analysis only. This study, however, considers sensitive numeric 

data and the approach we propose is intended for regression application. In another paper, Li 

and Sarkar (2011) propose a multivariate partitioning method for anonymizing data, which 

can be used for regression analysis. That work focuses on protecting privacy against record 

linkage, an identity-disclosure problem. It does not consider the value-disclosure risk under 

regression attacks. Furthermore, the method proposed in Li and Sarkar (2011) assumes that 

all data attributes are of numeric type. Our proposed approach, however, allows non-

sensitive attributes to be of type numeric, categorical or both. As such, it is conceptually 

more general, and more widely applicable for real-world scenarios.

For regression applications, LeFevre et al. (2008) and Fu et al. (2010) propose k-anonymity 

based approaches using regression trees (along with approaches using classification trees for 

classification applications). The method proposed by LeFevre et al. (2008) first builds a 

regression tree with the minimum leaf size k, and then applies generalization and 

suppression schemes to satisfy the k-anonymity requirement. The objective of the study by 

Fu et al. (2010) is to preserve the regression tree model while anonymizing data. Their study 

focuses on the conditions that result in the same tree structure when the original or 

anonymized data are used, and the computational procedure to satisfy these conditions. 

Neither of these two studies, however, has considered sensitive value disclosure that is 

vulnerable to a regression attack.
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The k-anonymity approach focuses on re-identification risk only and does not consider 

value-disclosure risk. It generalizes different but similar QI attribute values into the same 

value within a group. The new values produced by the generalization operation are still 

correct with respect to the generalized categories. The sensitive attribute values (which can 

be numeric or categorical) remain unchanged in k-anonymity. However, these values 

become more similar within a group. As a result, individuals in a group, who have the same 

generalized QI values, are subject to high risk of value disclosure.

To address this issue, a privacy principle called l-diversity has been proposed 

(Machanavajjhala et al. 2006). The l-diversity principle requires that a sensitive attribute 

should include at least l well-represented values in the k-anonymized data. For example, a 

typical instantiation of l-diversity requires that, for each group, at most 1/l of the records 

have the most frequent sensitive value. The notion of l-diversity, however, does not consider 

the overall distribution of the sensitive attribute. So, when the overall distribution is 

unbalanced, the l-diversity requirement may be difficult to satisfy. Furthermore, since the 

overall distribution is usually public information, the sensitive value disclosure risk can be 

high when the distribution of the l-diversified data deviates significantly from the overall 

distribution. To overcome these problems, another privacy principle called t-closeness has 

been proposed (Li et al. 2007). This principle requires that, for each group, the distance 

between the distributions of the sensitive attribute in the group and the overall distribution 

cannot be larger than a threshold value t.

The l-diversity and t-closeness approaches, however, focus on situations where sensitive 

attributes are categorical. The l-diversity measure is not appropriate for evaluating the 

disclosure risk of numeric values. For example, every record in the example dataset in Table 

1 has a distinct Income or Asset value, so the anonymized data in Table 2 would satisfy any 

l-diversity requirement. However, it is clear that the sensitive value disclosure risks for most 

records are high even though the l-diversity requirement is satisfied. The t-closeness 

measure, although also designed mainly for categorical attributes, can deal with a single 

numeric attribute. However, it is not appropriate for multiple correlated numeric attributes 

because the measure is defined for each attribute independently. Furthermore, the t-

closeness measure concerns value-disclosure risk only; it does not explicitly consider the 

prediction error issue. As a result, the anonymized data might not be suitable for regression 

analysis. In short, because regression attacks involve multiple numeric sensitive attributes 

and are tied to prediction tasks, the l-diversity and t-closeness approaches are not 

appropriate to counter regression attacks.

There has been considerable research in the area of statistical databases (SDB) on inference 

disclosure control (Denning and Schlörer 1983; Adam and Wortmann 1989). Inference 

disclosure is similar to regression attacks in that they both attempt to reveal sensitive values 

without requiring identity disclosure. However, an SDB is designed to provide summary 

statistics, not individual records, to the user. An SDB user cannot retrieve a complete dataset 

and is typically limited to a few types of queries to obtain aggregate statistics. Therefore, 

inference control in SDB focuses on query restriction and output perturbation to prevent or 

limit inference disclosure by queries. This study considers situations where a dataset 

containing individual records is released to a third party for regression and other predictive 
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analyses. Clearly, inference control methods such as query restriction and output restriction 

are not applicable to our problem.

Several studies in the area of privacy-preserving association rule mining refer to the use of 

association rules to infer sensitive information as an “inference” or “inference attack” 

problem (Verykios et al. 2004; Oliveira and Zaiane 2006; Menon and Sarkar 2007; Atzori et 

al. 2008). In a broad sense, such an inference attack resembles a regression attack because 

they both attempt to find sensitive relationships across attribute-values without requiring 

identity disclosure and in both cases the disclosure of sensitive information is not necessarily 

deterministic. However, those studies typically assume that some association rules 

discovered from the data are confidential to the organization that owns the data and need to 

be protected when the data is shared. The problem thus is about confidentiality of 

organizational knowledge rather than individual privacy. Further, association rule mining 

requires all attributes to be categorical; thus, techniques developed to deal with such 

inference problems are not applicable to regression problems, which concern predictions of 

numeric values.

Similar problems have also been discussed in some privacy studies on social network 

analysis and graph mining (Zheleva and Getoor 2009; Cormode et al. 2010; Heatherly et al. 

2013). The problems studied in these works examine inferences that can be made without 

identity disclosure, e.g., the attributes of individuals or the existence of links across entities. 

As is the case for association rule mining, all confidential attributes/values considered are 

categorical; none of these studies involves prediction of numeric attributes with regression, 

and nor do they consider regression attacks.

In summary, the data privacy literature has not addressed the regression attack problem. 

Given the widespread use of regression techniques, it is important to develop an approach to 

counter such an attack.

MART: MULTIVARIATE ANONYMIZATION WITH REGRESSION TREES

The notion of regression trees was introduced by Breiman et al. (1984). Similar to 

classification trees (also known as decision trees), regression trees adopt a divide-and-

conquer strategy to build prediction models. We call a regression tree with a single response 

(dependent) variable a univariate regression tree and one with multiple response variables a 

multivariate regression tree. Given the problem this study focuses on, it is natural to set the 

sensitive attributes as response variables and use the QI and other non-sensitive attributes as 

regression predictors.

∆-Digression: A Value-Disclosure Risk Measure

A commonly used splitting criterion for growing regression trees is the sum of squared 

errors (SSE). Consider the single response attribute case. Let nt be the number of records in 

node t. Let yi(t) (i = 1, …, nt) be the value of the response attribute in the ith record in node 

t, and  be the mean of the response attribute values in node t. The univariate SSE at node 

t is defined as
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(1)

When a node is split, the combined SSE for the child nodes is always smaller than the SSE 

for the parent node. Suppose node t is split into m child nodes, t1, …, tm. The reduction in 

SSE, which is e(t) − [e(t1) + ⋯ + e(tm)], serves as a criterion to select the splitting attribute 

and splitting value. The algorithm searches over all possible trial-splits for each non-

response attribute, and the trial-split that maximizes the reduction in SSE is selected to split 

the data. The process continues until a stopping criterion (e.g., the minimum leaf size) is 

met. This produces a complete regression tree.

There are limited studies of multivariate regression trees in the literature. The splitting 

criteria proposed in these studies are some multivariate versions of the SSE. We use a 

measure, based on De’ath (2002) and LeFevre et al. (2008), that directly extends the 

univariate SSE to the multivariate case. For a problem with r response attributes, let yi(t) = 

[yi1(t), …, yir(t)]′ be the values of the response attributes in the ith record in node t, and 

be the mean vector of the response attributes in node t. All response values are normalized to 

the range [0, 1] to remove the impact of the varying scales in different response attributes. 

The multivariate SSE at node t is defined as

(2)

With this measure, a multivariate regression tree can be built in a manner similar to a 

univariate regression tree. Multivariate regression trees attempt to minimize prediction 

errors for the multiple responses. This explains why each subset partitioned by the 

multivariate regression tree in Figure 1 contains data points that are close to each other in 

the Income and Asset values.

An important stage in constructing a regression tree is pruning. For a traditional regression 

tree, the purpose of pruning is to avoid the over-fitting problem. Therefore, the usual 

pruning method in regression trees aims at minimizing the prediction error. We consider, in 

our problem, both prediction error and disclosure risk while selecting nodes for pruning. 

Clearly, the sensitive value disclosure risk of a record at a node is high when the variation in 

the sensitive attribute values of the records at the node is low. Based on the t-closeness 

principle (Li et al. 2007), the risk is low when the conditional distributions (conditioned on 

the non-sensitive attributes) of the sensitive attributes at the node are close to the overall 

distributions of the sensitive attributes. The t-closeness principle assumes that the overall 

distributions are public information. In other words, when anonymized data is released, it is 

expected that the overall parameters, such as the means and covariances of the response 

attributes for the entire dataset, is the same as or close to the original parameter values. 

Indeed, in many cases, such original parameters are released with the data.
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To measure the disclosure risk in terms of the closeness between a conditional distribution 

and the overall distribution, we propose a measure, based on the scatter matrix of the 

response attributes. The scatter matrix, which is the covariance matrix multiplied by the 

sample size, includes sum of squared errors (or variance) and cross-product (or covariance) 

components. It is an important measure of variation in each attribute and of relationships 

between different attributes (we choose to use scatter matrix instead of the covariance matrix 

merely for convenience, because regression trees use SSE instead of variance for measuring 

errors and the risk-utility tradeoff measure we propose involves comparing the risk measure 

with SSE). A significant difference between the scatter matrix on the data at a node and the 

overall scatter matrix can reveal useful information about the data at the node. The measure 

below evaluates this “digression” of the scatter structure from the overall scatter matrix.

Definition 1—Let S be the scatter matrix of the response attributes on the entire dataset 

and Sjk be the (j,k) element of S. Let S(t) be the scatter matrix calculated on the subset data 

at node t and sjk (t) be its (j,k) element. Let D(t) be a scatter difference matrix with its (j,k) 

element being djk(t) = Sjk − sjk(t). The node digression in scatter, denoted as Δ(t), is defined 

as the determinant of D(t), i.e.,

(3)

The determinant of a scatter matrix is a single number that captures the characteristics of 

both variance and covariance information in a scatter matrix (Johnson and Wichern 2002, p.

125). The node digression measures the amount of deviation between the variance-

covariance structure on the subset at the node and that on the entire dataset (when there is 

only one attribute, the node digression simply measures the variance aspect of the 

deviation). A small digression indicates a small deviation from the overall distribution, 

which implies a low disclosure risk and thus is desirable. If there are no perfect correlations 

between response attributes (which is almost always the case in real-world data), then the 

node digression has the following property:

Lemma 1: The node digression is always a positive number; i.e.,

(4)

The proofs of this lemma and all other mathematical properties are provided in the 

Appendix. Since the node digression is meant to measure the deviation of the covariance 

matrix on the subset at the node from that on the entire dataset, it is not meaningful for the 

measure to be negative (in a sense similar to the notion of variance or standard deviation). 

Lemma 1 justifies the node digression measure from this aspect. The result also enables us 

to define a digression measure for a group of nodes, and compare it with data quality 

measures.

When a node is split, the response values in its child nodes typically become closer to each 

other. Therefore, the parent node digression should be smaller than the digression of a child 

node. To formally describe this property, we first define some terms.
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Definition 2—A branch Bt is a subsection of a tree that starts at an internal node, t, and 

includes all of its leaf or non-leaf descendant nodes.

In Figure 1, branch B5 consists of nodes 5 (the root of B5), 6, 7, 8, 9, 10, and 11.

Definition 3—Let Bt be a branch having m leaves (ℓ = 1, …, m). The branch digression of 

Bt is defined as the sum of its leaf node digressions, i.e.,

(5)

We will use the term Δ-digression to generally refer to both the node digression and branch 

digression. The branch digression has the following property with respect to the node 

digression.

Lemma 2: The node digression for a leaf ℓ is always greater than that for its parent node t. 

Hence, the branch digression for Bt is always greater than the node digression for t; that is,

(6)

Lemma 2 states that a split of a node always increases digression. In other words, Δ-

digression increases monotonically in the depth of the node (with respect to its ancestor 

nodes). So, pruning a branch into a leaf always reduces digression.

Next, we define the error for a node t and a branch Bt. In fact, the node error e(t) is simply 

the SSE of node t as defined in Equations (1) and (2).

Definition 4—The branch error e(Bt) is defined as the sum of its leaf node errors:

(7)

It is well known that a split always reduces errors, i.e., e(Bt) < e(t) (Breiman et al. 1984). To 

assess the tradeoff between disclosure risk and regression error due to a split, we propose the 

following measure:

Definition 5—The error-digression measure for an internal node t is defined as:

(8)

We describe next how this criterion is used in the proposed pruning algorithm.
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Error-Digression Pruning

During the pruning process, we want the increase in error to be as small as possible to 

preserve prediction accuracy; at the same time, we want the decrease in digression as large 

as possible (which implies that the scatter matrix at the leaf node after pruning is as close to 

the overall scatter matrix as possible) to reduce disclosure risk. So, to achieve the best 

tradeoff between error and digression, the branch having the smallest qt value should be 

pruned first.

The proposed pruning algorithm is recursive in nature. At each iteration, it calculates the 

value of qt for each branch in the current tree. The branch that has the smallest value of qt is 

pruned. The process continues until some pre-specified stopping criterion is satisfied. An 

obvious choice of a stopping criterion is the minimum number of records in a leaf. As 

mentioned earlier, however, this parameter, like the k parameter in k-anonymity, only 

measures re-identification risk. To measure the probability of sensitive value disclosure risk, 

we propose using a measure for testing the equality of two covariance matrices, based on the 

likelihood ratio test statistic (Morrison 1990, p.292), as shown below:

(9)

where  and  are the sample covariance matrices for the entire dataset and the subset at 

node t, respectively, and r is the number of response attributes. The Lt statistic follows a chi-

squared distribution with r(r + 1)/2 degrees of freedom. Therefore, the disclosure risk of the 

records in node t can be evaluated based on the p-value associated with Lt. We also use an 

adjusted Lt for small node size (Morrison 1990, p.292).

The proposed error-digression pruning (EDP) algorithm is provided in Figure 4. This 

algorithm, like usual decision tree algorithms, runs very fast. The time complexity is of O(N 

log N) for tree growing and O(|T|2) for tree pruning, where N is the number of records in the 

dataset and |T| is the number of internal nodes in the unpruned tree T. In summary, the 

MART algorithm has the same time complexity as that of a typical regression tree 

algorithm, which is much faster than a traditional k-anonymity algorithm (Samarati and 

Sweeney 1998; Sweeney 2002).

We explain the EDP procedure using the example shown in Figure 1 and Table 1. We 

provide details of the computations for node 9. The node and branch errors are:

The node and branch digressions are:

The error-digression ratio and the p-value of the likelihood ratio test statistic (denoted p9) 

are:

Li and Sarkar Page 13

MIS Q. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Note that the response attribute values are normalized when calculating these measures. For 

the other internal nodes, we have

Suppose k = 2 and α = 0.05. Then, node 9 will be pruned first, followed by node 2. This will 

result in a pruned tree that includes nodes 1, 2, 5, 6, 7, 8 and 9, with leaf nodes 2, 7, 8 and 9. 

So, given the minimum node size value k, the results of the EDP procedure are often 

different from those of k-anonymity. For instance, with k-anonymity there are 6 groups 

when k = 2, while the EDP procedure partitions the data into 4 groups (leaves) as described 

above. This, however, does not imply that the proposed method will always produce groups 

of larger size than a k-anonymity approach. The user can set a small k parameter along with 

a reasonable α value.

Categorical Value Concatenation

After the data are partitioned into subsets, the QI attribute values are altered to protect 

against re-identification. For numeric QI attributes, traditional k-anonymity approaches 

replace the original QI values in a subset with the range values of the attributes in the subset 

(Samarati and Sweeney 1998; Sweeney 2002). LeFevre et al. (2008) also suggest alternative 

values such as mean and median for replacement. In this study, we focus on anonymizing 

categorical QI attributes. Numeric QI attribute values can be anonymized using one of the 

existing replacement methods.

For categorical QI attributes, traditional k-anonymity approaches use generalization and 

suppression methods for anonymization. Typically, a user-defined generalization hierarchy 

is required. The use of pre-defined hierarchies may be ineffective in preserving data utility. 

For example, with the pre-defined hierarchy shown in Figure 2, many categorical values in 

the anonymized data are essentially suppressed (Table 2). To overcome this problem, we 

propose a dynamic value-concatenation method that merges categorical values based on the 

hierarchical structure of regression trees.

We adopt the binary split method used in Breiman et al. (1984) for splitting a categorical 

attribute. Many decision tree algorithms use a multi-way split method for categorical 

attributes, which routes each category into a branch. This method is not effective for our 

purpose. For the illustrative example, suppose such a multi-way split is made on the 

Occupation attribute at a node having all four Occupation values. The node will be divided 

into four branches, one for each Occupation value. A generalization based on this hierarchy 

will force the suppression of all values. Binary splits, on the other hand, allow more 

flexibility for generalization. For example, the node may be divided into two branches, one 
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with the Occupation value ‘unskilled’, and the other with the rest of the three Occupation 

values. Consequently, a generalization not involving suppression may be performed for the 

records in the second branch (even based on the pre-specified hierarchy in Figure 2).

For an attribute with c categories, there are 2c−1 − 1 possible binary partitions of these 

categories (e.g., there are 7 different ways to partition the four Occupation attribute values in 

our example into two groups). When c is large, it is computationally prohibitive to find the 

best partition. However, for regression trees, Breiman et al. (1984) show that there is an 

efficient way to order the categories in a certain sequence so that there are only c − 1 

(instead of 2c−1 − 1) possible partitions. This method is used in our splitting algorithm.

The value-concatenation method is very easy to implement. It simply concatenates all 

categorical values that appear at a leaf of the pruned tree and then treats the concatenated 

value as one category. If there is a single category in the leaf, then no concatenation is 

needed. The results of using the value-concatenation method for the data in Table 1 are 

shown in Table 3. It is clear that data quality is better preserved with this method than with 

the pre-defined generalization hierarchy (see Figure 2 and Table 2). The semantics of the 

concatenated values are also clear. For example when k = 4, the occupation for the four 

records in the last group are ‘managerial’ or ‘professional’. It is not necessary to provide a 

generalized term for the category.

It is important to note that the value-concatenation method does not cause higher re-

identification risk than the user-defined hierarchy even though it can provide more detailed 

information in the released data. Based on the k-anonymity principle, the reidentification 

risk is the same for the anonymized data in Table 3 as for that in Table 2. Given the 

parameter k (as a constraint), the objective of a k-anonymity-based approach is to minimize 

information loss caused by generalization and suppression. So, for the same k, an 

anonymized dataset with more detailed information in the QI attributes (e.g., Table 3) has 

better data quality than that with less detailed information (e.g., Table 2).

EXPERIMENTAL STUDY

An experimental study was conducted on several real-world financial, economic and 

healthcare datasets (these applications are well-documented as having some privacy 

implications). The proposed approach is compared with a current state-of-the-art technique. 

Performances are evaluated in terms of re-identification and value-disclosure risks under 

regression attacks, as well as data quality for performing regression analysis using two 

regression methodologies, linear regression and regression trees.

Because the experimental evaluation is conducted in the context of regression analysis, we 

select the response attributes such that they are most likely to be the output variables for 

prediction. Furthermore, the response attributes in each dataset are considered as the 

sensitive attributes since this is how regression attacks would be conducted. This is 

appropriate for assessing the tradeoff between anonymizing QI information and preserving 

data quality for regression analysis. Suppose a non-sensitive attribute is set as a response. If 

the relationship between a sensitive attribute that is not a response and this non-sensitive 

response is insignificant and negligible, then it is likely that the sensitive attribute will not 
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appear (or will appear very infrequently) as a splitting attribute for the tree. Consequently, it 

will be difficult to evaluate the impact of anonymization on the relationships between this 

sensitive attribute and the other non-sensitive attributes. We describe the data below.

Offer

The Association for Information Systems conducts annual surveys of MIS faculty salary 

offers (Galletta 2004). We selected the offer data from 1999 to 2002 (attributes are 

consistent for these four years and somewhat different for the other years). This dataset 

consists of 509 applicants who received offers during the period. There are 13 attributes, 

with three of them numeric and 10 categorical. The attributes are: salary offered, position, 

course load, number of years teaching, education, public or private, campus type, campus 

region, school’s highest degree, accreditation, respondent accepted offer or not, respondent 

revealed identity or not, and the year of survey. Salary offered and course load were 

considered as the response (and sensitive) attributes.

Alcohol

This dataset was taken from Kenkel and Terza (2001), who study factors affecting 

individuals’ drinking behaviors. It includes data on 2,467 male individuals, each with 17 

attributes (3 numeric and 14 categorical): age, race, education, marital status, region, 

employment type, income, drinking frequency, having health insurance or not, insurance 

type, insurance source, having activity limit or not, having diabetes or not, having heart 

condition or not, having stroke history or not, visiting same doctor or not, and doctor’s 

advice on drinking. The attribute drinking frequency was the response attribute in the 

original study (Kenkel and Terza 2001). We have added the attribute income as the second 

response (and sensitive) attribute.

Credit

This is a credit evaluation dataset (Bache and Lichman 2013). It has 1,000 records of 

customers, with 20 attributes (7 numeric and 13 categorical), used by a bank to evaluate 

credit applications. Some attributes are demographic or economic in nature, and include age, 

gender, marital status, length of employment, occupation type, housing status, housing 

liability, length of residence, other personal property status, foreign worker or not, having a 

phone number or not. Other attributes are banking and credit related, and include checking 

account status, savings account status, credit history, credit purpose, number of existing 

credits at this bank, other debtors, credit duration, installment, and credit amount. The 

attributes credit duration, installment and credit amount were considered as the response 

(and sensitive) attributes.

Experiment Design and Performance Measures

We compare our proposed MART method with the Regression Mondrian (RM) method 

proposed by LeFevre et al. (2008), which is, to our knowledge, the only existing data 

anonymization method that considers multi-response regression. As discussed earlier, there 

are two key differences between MART and RM: (1) MART considers sensitive value 

disclosure while RM does not; and (2) for categorical QI attributes, MART uses dynamic 
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value-concatenation while RM uses generalization that requires a user-defined hierarchy. 

We defined a generalization hierarchy for each categorical attributes in a dataset, based on 

the ideas provided by LeFevre et al. (2008). For simplicity, we assume all non-sensitive 

attributes are QI attributes and thus are subject to anonymization. For numeric QI attributes, 

we replace the original values by the group averages for both MART and RM methods. The 

values of sensitive attributes are not changed, following the k-anonymity protocol.

In the k-anonymity studies, re-identification risk is measured by minimum group size k, 

which often serves as a control measure to facilitate comparisons on the other risk and utility 

measures. We followed this common practice and used three typical group size values for 

RM and MART: k = 10, 20, and 30. The performances of the two techniques are then 

evaluated on a sensitive value disclosure risk and a data utility measure, which are described 

next.

To assess the sensitive value disclosure risk, we use a measure called relative squared 

distance (RSD), based on Liew et al. (1985). The RSD for a sensitive attribute Yj is defined 

as:

(10)

where M is the total number of groups (leaves), nt is the number of records in group t,  is 

the value of Yj in the ith record in group t,  is the mean of the Yj values in group t, and 

is the overall mean of the Yj values (all values are normalized). The rationale for this 

measure is that once an intruder has used a regression attack and identified a target group t, 

the intruder will most likely use the group average  to estimate . So the numerator 

evaluates the closeness of the disclosure. The denominator represents the closeness when 

is used, which can be assumed as public information. Clearly, a larger RSD value implies a 

smaller disclosure risk (i.e., more difficult for the intruder to determine the sensitive values 

after identifying the group). For multiple attributes, the RSD measure is calculated as the 

average of the individual RSDj.

Data utility is measured by the mean absolute percentage error (MAPE), defined for a 

response attribute Yj as

(11)

where H is the number of records in the test set (we describe how to separate test data from 

training data next), yij is the value of the jth response attribute for the ith record in the test 

set, and  is the estimate of yij based on the regression model built on the anonymized 

training data. For multiple responses, the MAPE value is calculated as the average of the 

individual MAPEj. As MAPE measures the relative distance between the predictions of the 

model built from the anonymized data and the values in the test data, a smaller MAPE value 

is desirable.
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Two regression methods, linear regression and regression trees, were used in the experiment 

for testing the performance in data quality. We built regression models using the 

anonymized data and then evaluated the utility of the regression models based on prediction 

accuracy. More specifically, we designed a 10-fold cross-validation experimental 

methodology, which is similar to the experimental scheme used by LeFevre et al. (2008), 

described below:

1. Divide the entire dataset into 10 equal-sized blocks using random sampling. The 

experiment will run 10 times, each using one of the blocks in turn as a test set and 

the remaining data as a training set.

2. For each run, reserve a block and call it the original test set; call the remaining data 

the original training set. Apply an anonymization technique (i.e., MART or RM) to 

the original training set to obtain an anonymized training set. During this process, a 

tree structure for partitioning data is created.

3. Build a regression model (i.e., a linear regression equation or a regression tree) 

using the anonymized training set.

4. Partition the original test set using the tree structure created in Step 2. Anonymize 

the partitioned test data to obtain an anonymized test set.

5. Test the regression model built in Step 3 using the anonymized test set and 

compute prediction accuracy or error accordingly.

6. Repeat Steps 2 through 5 for each of the 10 blocks. Report the average results over 

the 10 cross-validation runs.

Experimental Results

The results of the experiments are shown in Table 4. As mentioned above, we report the 

average MAPE results over the 10 cross-validation runs. For comparison, we also report the 

average MAPE results using the original data. It is observed that, for the same group size, 

the RSD values with MART are larger than those with RM in all datasets. This indicates that 

given the same re-identification risk, MART produces anonymized data with lower value-

disclosure risk for the sensitive attributes than RM does. This can be explained by the use of 

the Δ-digression measure in MART for reducing the value-disclosure risk.

With respect to data utility, the MAPE value resulting from MART is smaller than that from 

RM in each scenario, using either linear regression or regression trees, which indicates that 

overall MART outperforms RM for regression analysis. One reason for this is that MART 

uses dynamic value-concatenation method to generalize categorical QI attribute values, 

which is better in preserving data quality than the pre-defined generalization hierarchies. 

The differences in the MAPE results between MART and RM are relatively small in some 

cases but fairly large in others. To examine if the differences are statistically significant, we 

performed a paired t test (Mitchell 1997) for each scenario, using significance levels of α = 

0.05 and α = 0.1. The results are shown in Table 4. Overall, the differences are statistically 

significant in about half the comparisons at α = 0.05 and in more than half at α = 0.1.
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Both RM and MART algorithms ran very fast and completed the procedures within one or 

two seconds. They are much faster than the traditional k-anonymity algorithms (Samarati 

and Sweeney 1998; Sweeney 2002). The runtimes for the two algorithms were almost the 

same, which is expected because they use similar regression tree algorithms.

Experiment on a Large Dataset

We have provided a computational complexity analysis indicating that the proposed MART 

algorithm is suitable for large-data applications. The datasets used in the primary experiment 

above are small or moderate in size. To test the performance of MART in a large-data 

setting, we conducted an additional experiment using a census dataset (Bache and Lichman 

2013), which contains 95,130 individual records with 42 attributes (8 numeric and 34 

categorical).

We use a classical k-anonymity algorithm developed by Sweeney (2002) as the baseline 

algorithm for comparison. We also included the RM algorithm for completeness (RM uses 

regression trees as well and is as efficient as MART). While the computational times for 

MART and RM do not depend much on the number of QI attributes, most of the traditional 

k-anonymity algorithms, including the baseline approach, have exponential time complexity 

in the number of QI attributes. Therefore, it is practically very difficult to run the baseline 

with many QI attributes. Consequently, from the 42 attributes, we selected age, gender, race, 

education, occupation and marital status in the Census data to be the QI attributes (these are 

also frequently considered as QI attributes in other k-anonymity studies). The wage attribute 

was considered as the response (and sensitive) attribute. Because it is very time consuming 

to run the baseline algorithm, we only tested for group size k = 30. Also, we performed a 2-

fold cross validation procedure (instead of 10-fold cross validation). Given the large size of 

this data, we believe the results would not differ much if a different group size and number 

of folds were used.

The results of the experiment on the Census data are shown in Table 5. It is very clear that 

MART and RM run much faster than the baseline and are well-suited for large data 

applications. MART is slightly slower than RM because of the extra computation related to 

the digression values. MART and RM also outperform the baseline in terms of data quality 

for both linear regression and regression trees. This is because the baseline algorithm is not 

designed to preserve the relationships between the predictors (QI attributes) and the 

responses (sensitive attributes) for regression analysis. Furthermore, the RSD value with 

MART is considerably larger than that with RM, indicating that MART produces 

anonymized data with lower value-disclosure risk for the sensitive attributes than RM does. 

The RSD value with MART is also slightly better than that of the baseline. This experiment 

used only a single response variable (wage). Therefore, the results also demonstrate that the 

proposed approach is effective for a regression problem with one response variable.

Discussion

While MART outperforms RM in all the experiments, the performance of these approaches 

vary considerably in terms of data utility (MAPE) across the different datasets when 
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compared to those on the original data. For the Offer data, the MAPE results produced by 

MART and RM are very close to those based on the original data. For the Alcohol data, the 

results are a little further apart. For the Credit data, however, the error results based on the 

anonymized data by MART and RM are considerably larger than those on the original data. 

This suggests that it is relatively hard to preserve data utility for the Credit data when it is 

anonymized. A likely explanation is that the relationships between the responses (sensitive 

attributes) and the predictors (QI attributes) are very sensitive to changes in the QI values in 

the Credit data. There is another factor, however, that impacts the ability to preserve data 

utility. In the reported experiments, we have assumed that all of the non-sensitive attributes 

in the data were the QI attributes and thus were subject to anonymization. This assumption 

is reasonable for the purpose of experimental evaluation because it avoids potential bias due 

to the selection of the QI attributes, and is used in a consistent manner for the different 

approaches. In practical situations, it is usually unnecessary to anonymize all non-sensitive 

attributes. To further investigate this scenario, we randomly selected half the non-sensitive 

attributes as the QI attributes and then anonymized them using MART. The resulting MAPE 

values dropped to about 0.42 (from around 0.46 ~ 0.47 when all the non-sensitive attributes 

are anonymized), which is much closer to the MAPE values on the original data (about 0.37 

~ 0.38). This suggests that the utility of anonymized data depends on the strength of the 

relationships between the sensitive and non-sensitive attributes and on the number of non-

sensitive attributes being anonymized. Therefore, when using MART, the user can begin by 

anonymizing all non-sensitive attributes. If this causes considerable deterioration in data 

utility, then the user can restrict the QI attributes to achieve acceptable levels of data utility.

The size of the dataset also impacts the ability to preserve data utility. For example, for the 

large dataset (Census data) the MAPE results from MART and RM are very close to those 

based on the original data. Given a k value, a dataset with larger size allows more groups. 

Subsequently, there will be more variation in the QI attribute values across the groups, and 

the generalization of the QI values within each group will have a relatively small impact on 

the characteristics of the entire dataset. As a result, it should be easier to preserve the data 

utility for larger datasets when they are anonymized.

When there is an outlier (i.e., an extreme value) in a predictor/QI attribute, traditional 

regression trees may create a leaf node containing only the outlier. This situation will 

usually not occur in MART because the final group size will be greater than one. However, 

if the group size k is considered only at the pruning stage, it is possible that the outlier will 

be merged with other nodes at a very high level in the tree, potentially resulting in a group 

size much larger than k. This can increase the prediction error considerably. One way to 

address this problem is for the user to first inspect whether there exist outliers in the data. If 

outliers are detected, a larger stopping size, say m (1 < m ≤ k), should be specified to grow 

the regression tree. This will force MART to select the splits that ensure at least m records in 

each child node, avoiding any node that contains only an outlier.
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CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH AND 

PRACTICE

Regression techniques have been widely used not only as a tool for business analytics in 

private and public domains, but also as a research method in management and social science 

studies, which often involve using personal data. Therefore, the regression attack problem 

we investigate is vitally important. This kind of an attack has not been examined in prior 

research, and extant approaches to preserve privacy are not designed to address this issue. 

To fill this research gap, we have presented a novel approach for protecting against sensitive 

value disclosure from such an attack. We have also proposed a dynamic value-concatenation 

method to limit re-identification risk.

We have shown analytically that the proposed Δ-digression measure has some important 

properties that help to evaluate value-disclosure risk when multiple numeric sensitive 

attributes are targeted. In addition, the proposed value-concatenation method better 

preserves data utility than user-defined generalization schemes used in existing approaches. 

Our experimental study demonstrates that the proposed approach is very effective in 

protecting data privacy and preserving data quality. Our approach can be applied to 

applications that have numeric and/or categorical data types. That enhances the breadth of 

applicability of our approach which has been a limitation for several related approaches that 

attempt to restrict disclosure of private information.

Future research could investigate alternative methods to anonymize the partitioned data. 

Particularly, the proposed value-concatenation method can be extended to include frequency 

information into the concatenated categories. For example in Table 3, when k = 4, the 

Occupation values for the five records in the first group can be coded as 

‘unskilled4+technical1’ (based on the original count in Table 1). When the data is 

anonymized with this “weighted-value-concatenation” method, the frequency distributions 

of the categorical attributes can be completely preserved (it is easy to code a program that 

decomposes the concatenated values). This method would work well for data released for 

simple publishing purposes such as summary statistics reporting. However, it can be 

difficult to use for more advanced analysis such as regression, because there will be 

significantly more concatenated categories than the original ones. Therefore, developing a 

weighted value-concatenation method for predictive data mining and analytics is an 

interesting challenge deserving further study.

This work has important implications for future research beyond a strict regression setting. It 

will be useful to develop an integrated framework to deal with “predictive data mining 

attacks” that considers both classification attacks (Li and Sarkar 2009) and regression 

attacks. In this framework, re-identification risks can be assessed independent of the type of 

the sensitive attributes (i.e., numeric or categorical). The assessment for value-disclosure 

risks will depend on the type of the sensitive attributes: the digression measure proposed in 

this work can be used for sensitive numeric attributes while the entropy-based divergence 

measure proposed by Li and Sarkar (2009) can be used for sensitive categorical attributes. 

The most challenging situation is when the sensitive attributes include correlated numeric 

and categorical data. This problem clearly warrants more extensive research.

Li and Sarkar Page 21

MIS Q. Author manuscript; available in PMC 2016 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our work has significant practical implications. Using the approach proposed in this work, 

organizations can assess the disclosure risks of the data to be released and take actions to 

reduce the risks. The first step is to identify the sensitive attributes in the data. In general, 

the sensitive attributes contain private information that an individual typically does not want 

revealed. Given a dataset, the sensitive attributes are those that cannot be found from public 

or external sources and they typically constitute the centerpiece of the information in the 

data (e.g., salary in a salary survey). After identifying the sensitive attributes, the proposed 

MART algorithm can be applied to the data to identify which non-sensitive attributes are the 

important QI attributes that can be used to re-identify individuals. MART also provides a 

measure to assess the value-disclosure risk for the individuals in a group and the value of the 

measure increases as the group size decreases. Therefore, the risks of both identity 

disclosure and value disclosure can be controlled by adjusting the group size. As a final step, 

the proposed value-concatenation method, which provides better data utility than the 

traditional generalization method, can be applied to anonymize the grouped data for release.
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APPENDIX

Proof of Lemma 1

Let M be the total number of subsets partitioned by the tree, and nt (t = 1, …, M) be the 

number of records in subset t. Consider any two responses Yj and Yk. Let  be 

the value of Yj in the ith record in subset t,  be the mean of the Yj values in subset t, and 

be the overall mean of the Yj values. Notation for Yk is denoted similarly. Consider

Multiplying the left and right hand sides of the above two equations respectively, we have:

(A1)

Summing over all the records (first within a subset and then over all subsets), and noting that 

the summations for the middle two terms in the right-hand side of (A1) equal zero, we get:

(A2)
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The term on the left is the scatter Sjk defined in Definition 1. The first term on the right is the 

between-subset scatter while the second term on the right is the sum of within-subset 

scatters, which can be written as  (following notation in Definition 1). Let t′ be 

the node under consideration. Then,

(A3)

If the response values  and  are replaced by  and  respectively, then,

(A4)

In this case, the sum of within-subset scatters can still be written as , and djk (t′) 

in (A3) can be expressed in a form analogous to (A2). In other words, D(t′) is the scatter 

matrix when the response values in node t′ are replaced by the subset averages. Since the 

determinant of a scatter matrix is always positive, this completes the proof.

Proof of Lemma 2

Let Bt be a branch rooted at t with m leaves. Let nℓ (ℓ = 1, …, m) be the number of records in 

leaf ℓ. Let  be the value of Yj in the ith record in leaf ℓ,  be the mean of the 

Yj values in leaf ℓ, and  be the mean of the Yj values in Bt’s root node t. Denote these 

quantities similarly for another attribute Yk. Following the same algebraic manipulation in 

the proof of Lemma 1, we have

(A5)

The term on the left is sjk (t) while the second term on the right can be written as 

. Denote the first term on the right (the between-leaf scatter) as bjk. Then, (A5) 

can be written as

(A6)

Now, consider any leaf ℓ′. Equation (A6) can be written as

(A7)

Rearranging (A7) and adding Sjk to both sides, we have
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(A8)

That is

(A9)

Let D(ℓ′), D(t) and b be the matrices with their (j, k) element being djk (ℓ′), djk (t) and 

, respectively. Then,

(A10)

It follows from the Minkowski determinant theorem (Marcus and Minc 1992) that

(A11)

Based on the same argument as in the proof of Lemma 1, b is a form of scatter matrix and 

thus |b| > 0. Therefore,
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Figure 1. 
A Regression Tree Built on Data in Table 1
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Figure 2. 
Generalization Hierarchy for Occupation Attribute
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Figure 3. 
A Conceptual View of Privacy-Preserving Technology
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Figure 4. 
The Error-Digression Pruning (EDP) Algorithm
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Table 1

Illustrative Example: Original Data

No. Age YearsEdu Occupation Income
($000)

Asset
($000)

1 27 12 unskilled 38 65

2 39 14 unskilled 42 70

3 46 14 unskilled 45 79

4 59 12 technical 50 84

5 64 13 unskilled 51 88

6 33 16 technical 59 94

7 35 16 unskilled 52 85

8 42 18 professional 74 137

9 45 18 technical 66 116

10 30 18 managerial 69 124

11 48 16 technical 68 129

12 62 16 unskilled 60 110

13 56 17 managerial 72 133

14 51 20 professional 77 143
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Table 5

Results of Experiment on Census Data

Method Time
(second)

RSD Linear Regression
MAPE

Regression Tree
MAPE

Original 0.8135 0.8161

Baseline 8345.0 0.8098 0.8904** 0.8876**

RM 10.1 0.5492 0.8286** 0.8267**

MART 10.5 0.8234 0.8192** 0.8236**

**
The results of the pairwise comparisons across the three methods are all statistically significantly different at α = 0.05.
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