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Abstract. Convex polyhedra it are not determined by (their combinatorics and) their
edge lengths. Convex space-like polyhedra in the de Sitter e determined neither

by their dihedral angles nor by their edge lengths. The same holds of convex polyhedra
in S

1. Introduction

Let P be a compact convex polyhedron in hyperbolic 3-spdéelt is classical to ask:

Question 1. Is P determined, among convex polyhedra, by its combinatorics and its
dihedral angles?

In other terms, if another convex polyhedr@rhas the same dihedral anglesiads
it congruent toP? This question also has an infinitesimal counterpart:

Question I. Does P have a non-trivial infinitesimal deformation which does not
change its dihedral angles?

Questions 1 and Tan be related to interesting problems in hyperbolic geometry. Let
M be a hyperbolic 3-manifold, with cone singularities along geodesic segments (which
might meet at “vertices”) and with angle below around each singular segment. It would
be interesting to know wheth@& can be deformed—among hyperbolic manifolds with
the same kind of singularities—without changing the angles around the singular loci.
The answer is negative when the singularities are along closed geodesics which do not
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intersect (see [HK]) but the general case is open. This question arises when one tries to
put a hyperbolic metric on a manifold by deforming a hyperbolic cone metric, following
the ideas of Thurston.

If P is a convex hyperbolic polyhedron, one can take two copies of its inside and
glue them along their corresponding faces; this produces a hyperbolic cone-manifold
with vertices, and the convexity & means that the angle along each singular segment
is less than 2. A positive answer to Questiori tvould therefore lead to a non-rigid
cone-manifold with vertices, with angle below Zlong each singular segment. Note
that Casson [C] recently gave an example of a non-rigid three-dimensional hyperbolic
cone-manifold with vertices, but in which some singular segments have angles above 2

We do not, in this paper, give any result on Questions 1 &nt¥d do, however, show
that some similar or related questions have negative answers. This might indicate that
some ways of dealing with Questions 1 andie unlikely to succeed.

Questions 1 and tan be reformulated using a duality, almost classical by now (see
[R1]), betweenH? and the de Sitter spac®, which is the unique simply connected
Lorentz space with constant curvature 1. This duality (which we describe in Section 2)
sends convex polyhedrak® to convex space-like polyhedra®, exchanging dihedral
angles and edge lengths. The following is therefore equivalent to Question 1:

Question I’.  Are convex space-like polyhedra Eéf which are duals of convex hy-
perbolic polyhedra, determined by their edge lengths?

Note that it is a result of Rivin (see [R1], [RH], and also [M]) that those polyhedra
are determined by their induced metrics, i.e., by the metric§’ombtained by gluing
the metrics induced on the faces of the polyhedra under consideration. When all faces
are triangles, the edge lengths determine the induced metric, and therefore also the
polyhedron. This leads to the (easy) result that convex polyhedra with all vertices trivalent
are determined by their dihedral angles; this is the case in particular when all (exterior)
dihedral angles are at least2. This was a result of Andreev [An].

Some other special cases of Questions 1 have been considered, e.g., in [D1], which
proves that the answer to Questiohid negative for some combinatorial structures,
i.e., some combinatorial structures contain only polyhedra which are rigid. Diaz also
considered some other related questions; she proved (see [D2]) that the space of dihedral
angles of convex hyperbolic polyhedra is not convex. This contrasts with the results of
Rivin (see [R2], and also [R3]) for ideal polyhedra: ideal polyhedra are determined by
their dihedral angles, and the space of possible dihedral angles is convex. The rigidity
result here is in a way not surprising since, in some sense (see [S1]) the dihedral angles
of an ideal polyhedron determine its “dual metric.”

Not all convex space-like polyhedra 8 are duals of hyperbolic convex polyhedra.
Those which are so, are exactly those which do not bound a compact sulseOuir
first example shows that it is necessary, in Questigrtd.ask for duals of hyperbolic
polyhedra.

Theorem 1. There exist pairs of non-congruent convex space-like polyhediit|s
the same edge lengths
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Still in S}, we can ask the same question asHf about the dihedral angles. The
answer is negative:

Theorem 2. There exist pairs of non-congruent convex space-like polyhedrit!s
the same dihedral angles

Actually, this is just a consequence (using the duality betwé&and S}) of

Theorem 2. There exist pairs of non-congruent convex polyhedrafwkth the same
edge lengths

Similar examples exist also i8%; the next two assertions are duals of each other
by a classical duality (often called “projective”) similar to that betwéehand S}, but
betweenS® and itself.

Theorem 3. There exist pairs of non-congruent convex polyhedrafiwigh the same
dihedral angles

Theorem 3. There exist pairs of non-congruent convex polyhedr&iwigh the same
edge lengths

Section 3 contains slightly more precise assertions, as well as infinitesimal versions
of these theorems.

The examples in Theorems Y-a8e built from a (well-known) one-parameter family
of polyhedra inR® with the same edge lengths, through a transformation discovered
by Pogorelov forH?® and S® (and duality to go from edge lengths to dihedral angles).
This procedure does not show, however, the existence of one-parameter families of, e.g.,
convex hyperbolic polyhedra with the same edge lengths, but only the existence of pairs
of polyhedra with the same edge lengths, and of infinitesimal deformations preserving
the edge lengths.

It is possible to give analogous results in the only other non-flat three-dimensional
space-form, i.e. the anti de Sitter spadg; we have left it out since it might carry less
geometrical meaning for most readers.

2. Hyperbolic Tools

The hyperbolic 3-spackl® can be seen as a hypersurface of the Minkowski spdce
(with coordinateo, X1, Xz, Xs and norm||x||2 = —x3 + XZ + X3 + X3) as

H®={(xeR}|x >0A [x]|>=—1}.

The de Sitter space is

S ={xeR}|IxI?=1).
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Itis a symmetric space (it can be written&6X4, 1)/ SO(3)) and its isometry group is
transitive on orthonormal frames. Allits space-like totally geodesic 2-planes are therefore
isometric, and they are isometric copiesS3f

Let p be an oriented 2-plane iH3. Then p is the intersection witH® c R of
some oriented 3-plang of R} going through 0. Calf* the oriented line orthogonal
to g at 0, andp* the (unique) intersection af* with S} which is on the positive side
from 0. Similarly, if p is a space-like 2-plane i, it is the intersection witts} of
some 3-plang containing 0; callp* the intersection wittH? of the line orthogonal to
gatO.

Given a convex polyhedro® in H3, we can now define its dud@*, which is a
convex space-like polyhedron Bf: the vertices ofP* are the duals of the 2-planes in
H? containing the faces d?, and the faces dP* are (contained in) the 2-planes dual to
the vertices ofP. The same is obviously true for the vertices (resp. face$) mdflative
to the faces (resp. vertices) Bf*. Each edge oP* is associated to an edge Bf and
the dihedral angle of one is the length of the other (see [RH] and [S1]).

The same kind of duality exists, but as a “self-duality,Shand in the anti de Sitter
spaceH?. It is defined as above, but by consideri&gin R in the canonical way, and
H2inRj as

HE = (x e R} | (x,x) = —1}

and also, changing the sign of the metrickibf\, as
H3~ (x e Ry | (X, x) = 1}.

ConsideringH? as a submanifold oR? also leads to the classical “projective™—or
“Klein—model of H?3, namely:

Proposition 1. There exists a mapping H3 — B3, where B is the unit ball inR3,
sending each geodesic segment dftela geodesic segment of B

p can be defined by sending each pointbt C R} to the unit ball
B2CcR¥®~{xeR}|x =1
along the direction of 0. This map is clearly projective, because the geodesicsaoe
Fhe i3ntersections withH 3 of 2-planes containing 0 iR%, so they are sent to segments
" lI3n .the same way, we define a projective model of a hemisphe®: of
Proposition 2. There exists a mapping S}, — R}, where
S, ={xeR}|IX|?=1Ax% >0}

sending each geodesic segmentﬁt ® a geodesic segmentRf.

This mapping is built as for Proposition 1, by projecting in the direction of 0 on the
tangent plane t& C R{ at a point. The same construction worksShand inH3.
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Pogorelov [P] has found a remarkable extensiop:of

Proposition 3. There exists a mapping: H® x H® — R® x R® such that

(1) the restriction of® to the diagonalA ¢ H3 x H?3 corresponds to (its image is
in the diagonalA’ ¢ R3 x R3);

(2) if g1, g2: [0, 1] — H?2 are geodesic segments parametrized at the same speed
and if py, p, are the projections oR® x R® on the two factorsthen p o ® o
(01, 02) and p o @ o (g1, go) are geodesic segments parametrized at the same
speed

(3) there exists a pointx= p~1(0) € H? such thatfor each2-plane pc H3
containing %,

Vxep, VyeH:  (pLo®)(X ) € p(p).

The proof can be found in [P], except for point (3), which is obvious from the ex-
plicit definition of ® given there. The reader may also find a (different) proof, some
explanations of its existence, and some extensions in [S1].

Note that a mapping: H® — H?2is an isometry if and only if, for each geodesic
segment: [0, 1] — H3,«xogis also a geodesic segment parametrized at the same speed.
Applying point (2) of Proposition 3 shows thpt o ® o (g, @ o g) andpao ® o (g, € 0 Q)
are then also geodesic segments parametrized at the same speed. Since this is true for
anyg, there exists an isometgy. R® — R® such that,

vx € H3, Pro @ (X, a(X)) = B o pro D(X, a(X)),

which says in its way tha® “commutes with isometries” between the two factors on

each side.
We can linearized in the neighborhood oA, to obtain:

Proposition 4. There exists a bundle map T H® — TR3 such that

(1) if v e TxH3, theng(x, v) € T,R%;
(2) if g: [0, 1] — HZ3is a geodesic segmermindv is a Jacobi field on g preserving
the parametrizationg(v) is a Jacobi field preserving the parametrization on

(poQ);
(3) for each2-plane pc H? containing X,

VX ep, VYveTyp, p) € T,p0p(P).

Again, the only non-classical point is (3), which is obvious from point (3) of Propo-
sition 3, and also from the following explicit definition ¢fin the projective modep
centered aky: ¢ acts asp, on the 2-plane orthogonal to the radial direction at each
point, and acts on the radial directions so as to preserve the norm of the radial vec-
tors (the hyperbolic norm of a radial vector is the same as the Euclidean norm of its

image).
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This Pogorelov transformation works in the same way if we replaédy a hemi-
sphere ofS® (see [P]), or byS} ,, or by a hemisphere dfi? (see [LS] and [S2]). For
instance, in the de Sitter case, we have:

Proposition 5. There exists amapping: S, x §, — R x R} such that

(1) the restriction of® to the diagonalA ¢ Si+ X Sf+ corresponds t@ (its image
is in the diagonalA’ c R$ x R3); '
(2) ifg1, g2 [0,1] — Sf”Jr are geodesic segments parametrized at the same speed
andif py, P, are the projections dr x R$ on the two factorghen o ®o(gs, g2)
and p, o ® o (g1, g2) are geodesic segments parametrized at the same speed
(3) there exists a pointgy= 5-1(0) € Sf,Jr such thatfor each2-plane p c qu+
containing y,

vxep, VyeS, — (Pro®)(X.y) €p(p).
Linearizing this leads to:

Proposition 6. There exists a bundle map: TS, — TR] such that

(1) ifv e TS, , thenpt (x, v) € TR,

(2) if g: [0,1] — S} is a geodesic segmernd v is a Jacobi field on g preserv-
ing the parametrizationthen ¢t (v) is a Jacobi field on(p o g) preserving the
parametrization

(3) there exists a pointgsuch thatfor each2-plane pc Sf:+ containing %,

VX € p9 VU € TX ps ‘Pt (U) € Tﬁ(X)ﬁ(p)

3. Construction of Examples

All our examples are built from the prism, which can be deforme&3irkeeping its
edge lengths fixed. More precisely, farb, c € R% with ¢ < 2b andu small enough
(u € (—¢, ¢) wheree depends om, b, c) there existx, y € R, such that the convex
polyhedronP, . ¢,y With vertices of coordinate®, O, 0), (0, 0, @), (X, y, U), (X, Y, U+
a), (X, =Yy, u), (X, —y, u+ a) has all its edges of lengtl b or c. The only conditions
are that = c and thatx? + y? + u? = b% The same construction works R%, with
the three edges of lengthgime-like, and the other edges space-like.

Now we can use this exampleR? to prove Theorem’2chooséa, b, ¢) small enough
so that the polyhedro, p .0 C B3. ConsiderP, .y as the image of a polyhedral
immersiona, of a fixed abstract prisn® into B2, with «, inducing the same metric
on each edge oP for all u, ande, linear on each face d? (this is possible since the
Pab.c.u have the same edge lengths for fixed, c).

Now apply the inverse of the Pogorelov mappibg H® x H® — R3 x R3 to the
pair (ao, ay) for a fixedu # 0. This is possible fou small enough, becauskx = p
andPapco C B® = p(H?), so that(ao, ay)(P) C Im(®). Call gy, g, the projections
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of H® x H?3 on the two factors, and set
/31 = ql o (I)_l o ((XOa Olu), /32 = q2 o CD_l © (a()’ QU)'

B1, B2 are sending® into H2; we have to check that they are polyhedral, convex, and
induce the same edge lengths®n

Now assertion (2) of Proposition 3 shows that all edgeP @fre sent by, and g,
to geodesic segments of the same lengths. Moreover, the two triangular faesdf
the (unique) rectangular face with edge lengatendc (for the metric induced bw)
are isometric for the metrics induced by and«,; therefore, any geodesic segment
on one of those faces is sent by, oy, to two geodesic segments parametrized at the
same speed, and, by assertion (2) of Proposition 3, it is senfh b§, to geodesic
segments. This shows thgi and 8, send thoses faces to totally geodesic planes
in H3.

This line of reasoning does not show that the other two rectangular fa¢e¢vath
edge lengths andb) are sent byg;, B, to totally geodesic 2-planes. This follows,
however, from point (3) of Proposition 3, because both those faces coptdinerefore,

B1 and g, are polyhedral maps. Now from the remark following Propositio;3and
B2 are not congruent, otherwise the isometry sending one to the other would come from
an isometry sendingp to o, in R3.

ao(P) is convex andb |, = p is projective; takingi = 0 would lead tg3; = B, with
B1(P) convex. Ifu is small enoughs;(P) andg,(P) are still convex, and this finishes
the proof of Theorem’2Theorem 2 is a consequence using the duality in Section 2.

The same construction can be use&rwith Proposition 5 instead of Proposition 3)
and leadsto Theorem 1. It also workssh and gives Theoreni and, using the projective
duality in S®, Theorem 3.

Note that we cannot obtain by this method pairs of non-congruent space-like polyhe-
dra in S with the same edge lengths which are duals of hyperbolic polyhedra, because
o is only defined orSer, which does not contain any polyhedron dual of a hyperbolic
polyhedron. It is possible to define a projective model and a Pogorelov transforma-
tion on a domain ofS? containing such polyhedra, but they have no “center” (i.e., 0
is not in the image of this projective model) so that the construction above does not
apply.

Repeating the proof above but for infinitesimal deformations, and using Propositions 4
and 6 instead of 3 and 5, leads to the following:

Theorem 1*. There exists a convex space-like polyhedronimaich admits a non-
trivial infinitesimal deformation preserving its edge lengths

Theorem 2. There exists a convex space-like polyhedronimBich admits a non-
trivial infinitesimal deformation preserving its dihedral angles

Theorem 2*. There exists a convex polyhedron irf Which admits a non-trivial in-
finitesimal deformation preserving its edge lengths
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Theorem 3. There exists a convex polyhedron if Bhich admits a non-trivial in-
finitesimal deformation preserving its dihedral angles

Theorem 3*. There exists a convex polyhedron ifd\8hich admits a non-trivial in-
finitesimal deformation preserving its edge lengths

We have actually found much more than one example in each case; for each value
of a, b, ¢ (which can be chosen anywhere in some open subset) we could have used the
polyhedraP; p c.u andPap ¢, fOr any choice oli, v small enough. This provides us with
a two-parameter family of pairs of polyhedra such that, in each pair, both polyhedra have
the same edge lengfttiihedral angles.

A geometric interpretation of this can be given in the spRoaf convex polyhedra
P with six vertices inH? (for instance). By a well-known result of Aleksandrov [All],

‘P can be identified with the spacde! of metrics onP with curvature—1 outside the

six vertices, where the singular curvature is strictly positiehas dimension 12 and
contains a codimension 2 submanifdl@f polyhedra which are combinatorially prisms.
There is also a submersisnU — R, whereU is a neighborhood &f in P, sending a
polyhedron to the lengths of the edges of the prism (that is, forgetting those edges which
appear when deforming a polyhedron away fr&in Thens is neither transverse 6

(this corresponds to the infinitesimal statement) nor even one-to-one in a neighborhood
of any of the polyhedra=*(Pap.c.u)-
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