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Abstract. Convex polyhedra inH3 are not determined by (their combinatorics and) their
edge lengths. Convex space-like polyhedra in the de Sitter spaceS3

1 are determined neither
by their dihedral angles nor by their edge lengths. The same holds of convex polyhedra
in S3.

1. Introduction

Let P be a compact convex polyhedron in hyperbolic 3-spaceH3. It is classical to ask:

Question 1. Is P determined, among convex polyhedra, by its combinatorics and its
dihedral angles?

In other terms, if another convex polyhedronQ has the same dihedral angles asP, is
it congruent toP? This question also has an infinitesimal counterpart:

Question 1′. Does P have a non-trivial infinitesimal deformation which does not
change its dihedral angles?

Questions 1 and 1′ can be related to interesting problems in hyperbolic geometry. Let
M be a hyperbolic 3-manifold, with cone singularities along geodesic segments (which
might meet at “vertices”) and with angle below 2π around each singular segment. It would
be interesting to know whetherM can be deformed—among hyperbolic manifolds with
the same kind of singularities—without changing the angles around the singular loci.
The answer is negative when the singularities are along closed geodesics which do not
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intersect (see [HK]) but the general case is open. This question arises when one tries to
put a hyperbolic metric on a manifold by deforming a hyperbolic cone metric, following
the ideas of Thurston.

If P is a convex hyperbolic polyhedron, one can take two copies of its inside and
glue them along their corresponding faces; this produces a hyperbolic cone-manifold
with vertices, and the convexity ofP means that the angle along each singular segment
is less than 2π . A positive answer to Question 1′ would therefore lead to a non-rigid
cone-manifold with vertices, with angle below 2π along each singular segment. Note
that Casson [C] recently gave an example of a non-rigid three-dimensional hyperbolic
cone-manifold with vertices, but in which some singular segments have angles above 2π .

We do not, in this paper, give any result on Questions 1 and 1′. We do, however, show
that some similar or related questions have negative answers. This might indicate that
some ways of dealing with Questions 1 and 1′ are unlikely to succeed.

Questions 1 and 1′ can be reformulated using a duality, almost classical by now (see
[R1]), betweenH3 and the de Sitter spaceS3

1, which is the unique simply connected
Lorentz space with constant curvature 1. This duality (which we describe in Section 2)
sends convex polyhedra inH3 to convex space-like polyhedra inS3

1, exchanging dihedral
angles and edge lengths. The following is therefore equivalent to Question 1:

Question 1′′. Are convex space-like polyhedra inS3
1, which are duals of convex hy-

perbolic polyhedra, determined by their edge lengths?

Note that it is a result of Rivin (see [R1], [RH], and also [M]) that those polyhedra
are determined by their induced metrics, i.e., by the metrics onS2 obtained by gluing
the metrics induced on the faces of the polyhedra under consideration. When all faces
are triangles, the edge lengths determine the induced metric, and therefore also the
polyhedron. This leads to the (easy) result that convex polyhedra with all vertices trivalent
are determined by their dihedral angles; this is the case in particular when all (exterior)
dihedral angles are at leastπ/2. This was a result of Andreev [An].

Some other special cases of Questions 1 have been considered, e.g., in [D1], which
proves that the answer to Question 1′ is negative for some combinatorial structures,
i.e., some combinatorial structures contain only polyhedra which are rigid. Diaz also
considered some other related questions; she proved (see [D2]) that the space of dihedral
angles of convex hyperbolic polyhedra is not convex. This contrasts with the results of
Rivin (see [R2], and also [R3]) for ideal polyhedra: ideal polyhedra are determined by
their dihedral angles, and the space of possible dihedral angles is convex. The rigidity
result here is in a way not surprising since, in some sense (see [S1]) the dihedral angles
of an ideal polyhedron determine its “dual metric.”

Not all convex space-like polyhedra inS3
1 are duals of hyperbolic convex polyhedra.

Those which are so, are exactly those which do not bound a compact subset ofS3
1. Our

first example shows that it is necessary, in Question 1′′, to ask for duals of hyperbolic
polyhedra.

Theorem 1. There exist pairs of non-congruent convex space-like polyhedra in S3
1 with

the same edge lengths.
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Still in S3
1, we can ask the same question as inH3 about the dihedral angles. The

answer is negative:

Theorem 2. There exist pairs of non-congruent convex space-like polyhedra in S3
1 with

the same dihedral angles.

Actually, this is just a consequence (using the duality betweenH3 andS3
1) of

Theorem 2′. There exist pairs of non-congruent convex polyhedra in H3 with the same
edge lengths.

Similar examples exist also inS3; the next two assertions are duals of each other
by a classical duality (often called “projective”) similar to that betweenH3 andS3

1, but
betweenS3 and itself.

Theorem 3. There exist pairs of non-congruent convex polyhedra in S3 with the same
dihedral angles.

Theorem 3′. There exist pairs of non-congruent convex polyhedra in S3 with the same
edge lengths.

Section 3 contains slightly more precise assertions, as well as infinitesimal versions
of these theorems.

The examples in Theorems 1–3′ are built from a (well-known) one-parameter family
of polyhedra inR3 with the same edge lengths, through a transformation discovered
by Pogorelov forH3 andS3 (and duality to go from edge lengths to dihedral angles).
This procedure does not show, however, the existence of one-parameter families of, e.g.,
convex hyperbolic polyhedra with the same edge lengths, but only the existence of pairs
of polyhedra with the same edge lengths, and of infinitesimal deformations preserving
the edge lengths.

It is possible to give analogous results in the only other non-flat three-dimensional
space-form, i.e. the anti de Sitter spaceH3

1 ; we have left it out since it might carry less
geometrical meaning for most readers.

2. Hyperbolic Tools

The hyperbolic 3-spaceH3 can be seen as a hypersurface of the Minkowski spaceR4
1

(with coordinatesx0, x1, x2, x3 and norm‖x‖2 = −x2
0 + x2

1 + x2
2 + x2

3) as

H3 = {x ∈ R4
1 | x0 > 0∧ ‖x‖2 = −1}.

The de Sitter space is

S3
1 = {x ∈ R4

1 | ‖x‖2 = 1}.
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It is a symmetric space (it can be written asSO(4,1)/SO(3)) and its isometry group is
transitive on orthonormal frames. All its space-like totally geodesic 2-planes are therefore
isometric, and they are isometric copies ofS2.

Let p be an oriented 2-plane inH3. Then p is the intersection withH3 ⊂ R4
1 of

some oriented 3-planeq of R4
1 going through 0. Callq∗ the oriented line orthogonal

to q at 0, andp∗ the (unique) intersection ofq∗ with S3
1 which is on the positive side

from 0. Similarly, if p is a space-like 2-plane inS3
1, it is the intersection withS3

1 of
some 3-planeq containing 0; callp∗ the intersection withH3 of the line orthogonal to
q at 0.

Given a convex polyhedronP in H3, we can now define its dualP∗, which is a
convex space-like polyhedron inS3

1: the vertices ofP∗ are the duals of the 2-planes in
H3 containing the faces ofP, and the faces ofP∗ are (contained in) the 2-planes dual to
the vertices ofP. The same is obviously true for the vertices (resp. faces) ofP relative
to the faces (resp. vertices) ofP∗. Each edge ofP∗ is associated to an edge ofP, and
the dihedral angle of one is the length of the other (see [RH] and [S1]).

The same kind of duality exists, but as a “self-duality,” inS3 and in the anti de Sitter
spaceH3

1 . It is defined as above, but by consideringS3 in R4 in the canonical way, and
H3

1 in R4
2 as

H3
1 = {x ∈ R4

2 | 〈x, x〉 = −1}
and also, changing the sign of the metric onH3

1 , as

H3
1 ' {x ∈ R4

2 | 〈x, x〉 = 1}.

ConsideringH3 as a submanifold ofR4
1 also leads to the classical “projective”—or

“Klein”—model of H3, namely:

Proposition 1. There exists a mappingρ: H3→ B3, where B3 is the unit ball inR3,
sending each geodesic segment of H3 to a geodesic segment of B3.

ρ can be defined by sending each point ofH3 ⊂ R4
1 to the unit ball

B3 ⊂ R3 ' {x ∈ R4
1 | x0 = 1}

along the direction of 0. This map is clearly projective, because the geodesics ofH3 are
the intersections withH3 of 2-planes containing 0 inR4

1, so they are sent to segments
in B3.

In the same way, we define a projective model of a hemisphere ofS3
1:

Proposition 2. There exists a mapping̃ρ: S3
1,+ → R3

1, where

S3
1,+ := {x ∈ R4

1 | ‖x‖2 = 1∧ x1 > 0}

sending each geodesic segment of S3
1,+ to a geodesic segment ofR3

1.

This mapping is built as for Proposition 1, by projecting in the direction of 0 on the
tangent plane toS3

1 ⊂ R4
1 at a point. The same construction works inS3 and inH3

1 .
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Pogorelov [P] has found a remarkable extension ofρ:

Proposition 3. There exists a mapping8: H3× H3→ R3× R3 such that:

(1) the restriction of8 to the diagonal1 ⊂ H3× H3 corresponds toρ (its image is
in the diagonal1′ ⊂ R3× R3);

(2) if g1, g2: [0,1] → H3 are geodesic segments parametrized at the same speed,
and if p1, p2 are the projections ofR3 × R3 on the two factors, then p1 ◦ 8 ◦
(g1, g2) and p2 ◦ 8 ◦ (g1, g2) are geodesic segments parametrized at the same
speed;

(3) there exists a point x0 = ρ−1(0) ∈ H3 such that, for each2-plane p⊂ H3

containing x0,

∀x ∈ p, ∀y ∈ H3, (p1 ◦8)(x, y) ∈ ρ(p).

The proof can be found in [P], except for point (3), which is obvious from the ex-
plicit definition of8 given there. The reader may also find a (different) proof, some
explanations of its existence, and some extensions in [S1].

Note that a mappingα: H3 → H3 is an isometry if and only if, for each geodesic
segmentg: [0,1]→ H3,α◦g is also a geodesic segment parametrized at the same speed.
Applying point (2) of Proposition 3 shows thatp1 ◦8◦ (g, α ◦ g) andp2 ◦8◦ (g, α ◦ g)
are then also geodesic segments parametrized at the same speed. Since this is true for
anyg, there exists an isometryβ: R3→ R3 such that,

∀x ∈ H3, p1 ◦8(x, α(x)) = β ◦ p2 ◦8(x, α(x)),

which says in its way that8 “commutes with isometries” between the two factors on
each side.

We can linearize8 in the neighborhood of1, to obtain:

Proposition 4. There exists a bundle mapϕ: T H3→ TR3 such that:

(1) if v ∈ Tx H3, thenϕ(x, v) ∈ Tρ(x)R3;
(2) if g: [0,1]→ H3 is a geodesic segment, andv is a Jacobi field on g preserving

the parametrization, ϕ(v) is a Jacobi field preserving the parametrization on
(ρ ◦ g);

(3) for each2-plane p⊂ H3 containing x0,

∀x ∈ p, ∀v ∈ Tx p, ϕ(v) ∈ Tρ(x)ρ(p).

Again, the only non-classical point is (3), which is obvious from point (3) of Propo-
sition 3, and also from the following explicit definition ofϕ in the projective modelρ
centered atx0: ϕ acts asρ∗ on the 2-plane orthogonal to the radial direction at each
point, and acts on the radial directions so as to preserve the norm of the radial vec-
tors (the hyperbolic norm of a radial vector is the same as the Euclidean norm of its
image).
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This Pogorelov transformation works in the same way if we replaceH3 by a hemi-
sphere ofS3 (see [P]), or byS3

1,+, or by a hemisphere ofH3
1 (see [LS] and [S2]). For

instance, in the de Sitter case, we have:

Proposition 5. There exists a mapping̃8: S3
1,+ × S3

1,+ → R3
1× R3

1 such that:

(1) the restriction of8̃ to the diagonal1 ⊂ S3
1,+ × S3

1,+ corresponds tõρ (its image
is in the diagonal1′ ⊂ R3

1× R3
1);

(2) if g1, g2: [0,1]→ S3
1,+ are geodesic segments parametrized at the same speed,

and if p̃1, p̃2 are the projections ofR3
1×R3

1 on the two factors, thenp̃1◦8̃◦(g1, g2)

and p̃2 ◦ 8̃ ◦ (g1, g2) are geodesic segments parametrized at the same speed;
(3) there exists a point y0 = ρ̃−1(0) ∈ S3

1,+ such that, for each2-plane p⊂ S3
1,+

containing y0,

∀x ∈ p, ∀y ∈ S3
1,+, ( p̃1 ◦ 8̃)(x, y) ∈ ρ̃(p).

Linearizing this leads to:

Proposition 6. There exists a bundle mapϕt : T S3
1,+ → TR3

1 such that:

(1) if v ∈ Tx S3
1,+, thenϕt (x, v) ∈ Tρ̃(x)R3

1;
(2) if g: [0,1]→ S3

1,+ is a geodesic segment, andv is a Jacobi field on g preserv-
ing the parametrization, thenϕt (v) is a Jacobi field on(ρ̃ ◦ g) preserving the
parametrization;

(3) there exists a point x0 such that, for each2-plane p⊂ S3
1,+ containing x0,

∀x ∈ p, ∀v ∈ Tx p, ϕt (v) ∈ Tρ̃(x)ρ̃(p).

3. Construction of Examples

All our examples are built from the prism, which can be deformed inR3 keeping its
edge lengths fixed. More precisely, fora,b, c ∈ R∗+ with c < 2b andu small enough
(u ∈ (−ε, ε) whereε depends ona,b, c) there existx, y ∈ R+ such that the convex
polyhedronPa,b,c;u with vertices of coordinates(0,0,0), (0,0,a), (x, y,u), (x, y,u+
a), (x,−y,u), (x,−y,u+ a) has all its edges of lengtha,b or c. The only conditions
are that 2y = c and thatx2 + y2 + u2 = b2. The same construction works inR3

1, with
the three edges of lengthsa time-like, and the other edges space-like.

Now we can use this example inR3 to prove Theorem 2′: choose(a,b, c) small enough
so that the polyhedronPa,b,c;0 ⊂ B3. ConsiderPa,b,c;u as the image of a polyhedral
immersionαu of a fixed abstract prismP into B3, with αu inducing the same metric
on each edge ofP for all u, andαu linear on each face ofP (this is possible since the
Pa,b,c;u have the same edge lengths for fixeda,b, c).

Now apply the inverse of the Pogorelov mapping8: H3 × H3 → R3 × R3 to the
pair (α0, αu) for a fixedu 6= 0. This is possible foru small enough, because8|1 = ρ
and Pa,b,c;0 ⊂ B3 = ρ(H3), so that(α0, αu)(P) ⊂ Im(8). Call q1,q2 the projections
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of H3× H3 on the two factors, and set

β1 := q1 ◦8−1 ◦ (α0, αu), β2 := q2 ◦8−1 ◦ (α0, αu).

β1, β2 are sendingP into H3; we have to check that they are polyhedral, convex, and
induce the same edge lengths onP.

Now assertion (2) of Proposition 3 shows that all edges ofP are sent byβ1 andβ2

to geodesic segments of the same lengths. Moreover, the two triangular faces ofP and
the (unique) rectangular face with edge lengthsa andc (for the metric induced byα0)
are isometric for the metrics induced byα0 andαu; therefore, any geodesic segment
on one of those faces is sent byα0, αu to two geodesic segments parametrized at the
same speed, and, by assertion (2) of Proposition 3, it is sent byβ1, β2 to geodesic
segments. This shows thatβ1 and β2 send thoses faces to totally geodesic planes
in H3.

This line of reasoning does not show that the other two rectangular faces ofP (with
edge lengthsa and b) are sent byβ1, β2 to totally geodesic 2-planes. This follows,
however, from point (3) of Proposition 3, because both those faces containx0. Therefore,
β1 andβ2 are polyhedral maps. Now from the remark following Proposition 3,β1 and
β2 are not congruent, otherwise the isometry sending one to the other would come from
an isometry sendingα0 to αu in R3.
α0(P) is convex and8|1 = ρ is projective; takingu = 0 would lead toβ1 = β2 with

β1(P) convex. Ifu is small enough,β1(P) andβ2(P) are still convex, and this finishes
the proof of Theorem 2′. Theorem 2 is a consequence using the duality in Section 2.

The same construction can be used inS3
1 (with Proposition 5 instead of Proposition 3)

and leads to Theorem 1. It also works inS3, and gives Theorem 3′ and, using the projective
duality in S3, Theorem 3.

Note that we cannot obtain by this method pairs of non-congruent space-like polyhe-
dra in S3

1 with the same edge lengths which are duals of hyperbolic polyhedra, because
ρ̃ is only defined onS3

1,+, which does not contain any polyhedron dual of a hyperbolic
polyhedron. It is possible to define a projective model and a Pogorelov transforma-
tion on a domain ofS3

1 containing such polyhedra, but they have no “center” (i.e., 0
is not in the image of this projective model) so that the construction above does not
apply.

Repeating the proof above but for infinitesimal deformations, and using Propositions 4
and 6 instead of 3 and 5, leads to the following:

Theorem 1∗. There exists a convex space-like polyhedron in S3
1 which admits a non-

trivial infinitesimal deformation preserving its edge lengths.

Theorem 2∗. There exists a convex space-like polyhedron in S3
1 which admits a non-

trivial infinitesimal deformation preserving its dihedral angles.

Theorem 2′∗. There exists a convex polyhedron in H3 which admits a non-trivial in-
finitesimal deformation preserving its edge lengths.
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Theorem 3∗. There exists a convex polyhedron in S3 which admits a non-trivial in-
finitesimal deformation preserving its dihedral angles.

Theorem 3′∗. There exists a convex polyhedron in S3 which admits a non-trivial in-
finitesimal deformation preserving its edge lengths.

We have actually found much more than one example in each case; for each value
of a,b, c (which can be chosen anywhere in some open subset) we could have used the
polyhedraPa,b,c;u andPa,b,c;v for any choice ofu, v small enough. This provides us with
a two-parameter family of pairs of polyhedra such that, in each pair, both polyhedra have
the same edge length/dihedral angles.

A geometric interpretation of this can be given in the spaceP of convex polyhedra
P with six vertices inH3 (for instance). By a well-known result of Aleksandrov [Al],
P can be identified with the spaceM of metrics onP with curvature−1 outside the
six vertices, where the singular curvature is strictly positive.P has dimension 12 and
contains a codimension 2 submanifoldS of polyhedra which are combinatorially prisms.
There is also a submersions: U → R10, whereU is a neighborhood ofS inP, sending a
polyhedron to the lengths of the edges of the prism (that is, forgetting those edges which
appear when deforming a polyhedron away fromS). Thens is neither transverse toS
(this corresponds to the infinitesimal statement) nor even one-to-one in a neighborhood
of any of the polyhedraρ−1(Pa,b,c;u).

Acknowledgments

This paper has benefited from important remarks from Igor Rivin, as well as from
anonymous referees.

References

[Al] A. D. Aleksandrov.Convex Polyhedra. GITTL, Moskow-Leningrad, 1951. Russian;Konvexe Polyeder.
Akademie-Verlag, Berlin, 1958. German.

[An] E. M. Andreev. Convex polyhedra in Lobacevskii space.Mat. Sb. (N.S.), 81(123):445–478, 1970.
[C] A. Casson. An example of weak non-rigidity for cone manifolds with vertices. Notes of a talk, Third

MSJ Regional Workshop, Tokyo, July 1998.
[D1] R. Dı́az. A characterization of Gram matrices of polytopes.Discrete Comput. Geom. 21(4) (1999),

581–601.
[D2] R. Dı́az. Non-convexity of the space of dihedral angles of hyperbolic polyhedra.C. R. Acad. Sci. Paris
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