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We present a new characterization of dihedral Galois groups of rational
irreducible polynomials. It allows us to reduce the problem of deciding
whether the Galois group of an even degree polynomial is dihedral, and its
computation in the affirmative case, to the case of a quartic or odd degree
polynomial, for which algorithms already exist. The characterization and
algorithm are extended to permutation groups of order 2n containing an
n-cycle.

1. Introduction

Given an irreducible polynomial f ∈ Q[x], we consider the problem of deciding
whether its Galois group is dihedral, and, if so, we compute a minimal set of
generators with its explicit action on the set of roots.

Methods are already known for polynomials of prime degree [Jensen and Yui
1982] and of odd degree [Williamson 1990]. Here we consider the case of even de-
gree polynomials. For it, we provide a characterization of dihedral Galois groups,
based on the behavior of f related to a quadratic subfield K of its splitting field
and a certain prime number. The quadratic subfield must be determined in order
to decide whether the Galois group is dihedral. In the affirmative case, the roots
of f will be expressed as polynomials in a fixed root α and a primitive element of
K over Q. For computing K , we propose to transform f , after certain reductions,
into either a quartic or an odd degree polynomial whose splitting field contains K .
Such reductions are made from the nontrivial central elements of the Galois group.

In Section 2 we state the characterization of dihedral Galois groups, whereas
Section 3 is devoted to the algorithm that decides whether the group is dihedral.
Finally, in Section 4, we extend the results to groups of order 2n containing a cyclic
subgroup of order n, taking advantage of their similarity to dihedral groups.
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Since for every irreducible f ∈ Q[x] there exists a monic and irreducible poly-
nomial in Z[x] with the same Galois group, we will assume throughout this paper
that f is monic and irreducible with integer coefficients.

From now on, we will denote by Gal f the Galois group of f over Q, whereas
GalK f will represent the Galois group over a number field K .

If n is the degree of f , we will consider Gal f as a permutation group of degree
n acting on the set of roots of f . By E f we will denote the splitting field of f over
Q. If L is a subfield of E f and H is a subgroup of Gal f , then L H is the subfield
of elements in L fixed by H . We denote by OL the ring of integers of L and by
Z(H) the center of H .

2. Characterization of dihedral Galois groups

The dihedral group Dn , considered as a transitive subgroup of Sn , is generated by
σ, τ , where σ is an n-cycle, τ has order 2 and τστ = σ−1.

Propositions 2.1 and 2.2 provide a characterization of dihedral Galois groups.

Proposition 2.1. Let f ∈ Z[x] be a monic irreducible polynomial of degree n > 2
satisfying the following conditions:

(i) E f has a quadratic subfield K = Q(
√

a ) for some squarefree a ∈ Z.

(ii) f mod p is irreducible for some odd prime p ∈ Z, and x2
− a mod p splits:

x2
− a ≡ (x + b)(x + c) mod p

with b, c distinct modulo p.

(iii) There exists F ∈ K [x] such that

F(x) ≡ A(
√

a + b)x p
− A(

√
a + c)x pn−1

mod
(

p, f (x)
)
,

where A = (b − c)−1 mod p, and f
(
F(α)

)
= 0 for some root α of f.

Then Gal f = Dn.

Proof. By condition (i) and the Fundamental Theorem of Galois Theory, GalK f
is a normal subgroup of Gal f of index 2.

Since f mod p is irreducible, a Frobenius automorphism σ in Gal f over p is
an n-cycle. Let Q be a prime ideal in OE f lying over p such that

σ(u) ≡ u p mod Q for every u ∈ OE f .

As x2
−a mod p splits, σ fixes K pointwise, so σ is in GalK f . Therefore, GalK f

is transitive of degree n, and f is irreducible over K .
Also by condition (ii), ( p,

√
a +b) and ( p,

√
a +c) are the prime ideals in OK

lying over p. We assume without loss of generality that Q lies over ( p,
√

a + c).
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By condition (iii), F(x) ≡ x p mod
(

p,
√

a + c, f (x)
)
. In particular,

F(α) ≡ α p mod Q.

Then, F(α) − σ(α) ∈ Q. If F(α) 6= σ(α), then the discriminant disc f lies in
Q ∩ Z = pZ, but f mod p is irreducible. Thus F(α) = σ(α). As σ is an n-cycle,
the equality holds for every root of f , so σ ∈ Z(GalK f ); see [Fernández-Ferreirós
and Gómez-Molleda 2004]. Thus, GalK f = 〈σ 〉. Moreover, the order of Gal f is
2n. If τ is a representative of the nontrivial class of GalK f in Gal f , then Q and
Q′

= τ Q are the prime ideals in OE f over p. Then

τ−1στ(u) ≡ u p mod Q′ for every u ∈ OE f

and
(τ−1στ)n−1(u) ≡ u pn−1

mod Q′ for every u ∈ OE f .

Again by condition (iii), F(α) ≡ α pn−1
mod Q′. Reasoning as above we have

F(α) = (τ−1στ)n−1(α) for every root α of f . Then τ−1στ = σ−1.
Finally, since σ is an n-cycle, τ is easily seen to have order 2. �

We state the converse of Proposition 2.1, strengthening the conditions:

Proposition 2.2. Let f ∈ Z[x] be a monic irreducible polynomial of degree n > 2
such that GalQ f = Dn .

(i) There exists a unique quadratic subfield K of E f such that f is irreducible
over K and GalK f is cyclic.

In fact, K = E 〈σ 〉

f for every n-cycle σ ∈ Dn .

(ii) The proportion of integer primes p such that f is irreducible modulo p is
φ(n)/2n, where φ is the Euler function.

If a is a squarefree integer such that K = Q(
√

a ), then for every odd prime
p under this condition, x2

− a splits modulo p, that is,

x2
− a ≡ (x + b)(x + c) mod p

for some b, c ∈ Z distinct modulo p.

(iii) There exists a unique polynomial F ∈ K [x] of degree smaller than n such that
F(α) is a root of f for every root α of f , and

F(x) ≡ A(
√

a + b)x p
− A(

√
a + c)x pn−1

mod
(

p, f (x)
)
,

where A = (b − c)−1 mod p.

Proof. Let σ, τ be generators of Dn as a transitive subgroup of Sn , where σ is an
n-cycle, τ has order 2 and τστ = σ−1.
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(i) 〈σ 〉 is the unique normal subgroup of index 2 in Dn that is cyclic and transitive
in Sn . The statement follows from the Fundamental Theorem of Galois Theory.

(ii) By the Chebotarev Density Theorem, the proportion of primes p such that
f mod p is irreducible is the proportion of n-cycles in the Galois group. The
number of n-cycles in Dn is exactly φ(n).

Since f is irreducible modulo p, the Frobenius automorphisms over p are
n-cycles. Then they fix K pointwise, so x2

− a splits modulo p whenever p does
not divide 4a, the discriminant of x2

− a. If p is odd and p divides 4a, then p
divides a, so it divides the discriminant of OK , and therefore p is ramified in OK .
This is a contradiction since p is unramified in OE f .

(iii) As stated above, the Frobenius automorphisms of E f over p belong to 〈σ 〉. We
can assume without loss of generality that σ is the Frobenius automorphism over
the prime ideal ( p,

√
a+b) in OK . Thus, for the prime Q in OE f over ( p,

√
a+b),

σ(u) ≡ u p mod Q for every u ∈ OE f ,

since the norm of ( p,
√

a+b) is p. Its conjugate, σ n−1, satisfies the corresponding
property for the other prime Q′ over p:

σ n−1(u) ≡ u p mod Q′ for every u ∈ OE f .

Thus,
σ(u) ≡ u pn−1

mod Q′ for every u ∈ OE f .

By the Chinese Remainder Theorem and because pOE f = Q Q′,

σ(u) ≡ A(
√

a + b)u p
− A(

√
a + c)u pn−1

mod p for every u ∈ OE f .

On the other hand, since GalK f is cyclic and f is irreducible over K , the splitting
field of f over K is K (α) for any root α of f . Then σ(α) ∈ K [α], so there exists
a unique polynomial F ∈ K [x] of degree smaller than n such that σ(α) = F(α).
Since GalK f is transitive and abelian, the equality holds for every root of f .

If F̃ also satisfies the same conditions as F , then F(α)− F̃(α)∈ pOE f for every
root α of f . If F(α) 6= F̃(α), then disc f ∈ pZ, which is impossible because f
has no multiple root modulo p. Since the degrees of both polynomials are smaller
than n, they must be equal. �

3. An algorithm to decide whether the Galois group is dihedral

We will describe an algorithm, based on the preceding characterization, to decide
whether the Galois group of a given monic irreducible polynomial f ∈Z[x] of even
degree n > 2 is dihedral, and to determine explicitly the group in the affirmative
case.
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Essentially, the algorithm consists in checking whether or not the polynomial
satisfies conditions (i)–(iii) in Proposition 2.1. In order to discuss condition (i), we
will first determine the center of the Galois group.

The center of the dihedral Galois group. If n is even, the center of Dn has order
2. For determining the center, we use any odd prime p ∈ Z such that f mod p
is irreducible; the proportion of such primes in the dihedral case, according to
Proposition 2.2, is φ(n)/2n.

Proposition 3.1. Let p be a prime such that f mod p is irreducible and σp ∈ Gal f
is a Frobenius automorphism over p. Then Z(Gal f ) ⊆ 〈σp〉.

Moreover, σ k
p is central if and only if there exists H ∈ Q[x] such that

H(x) ≡ x pk
mod

(
p, f (x)

)
,

and, given any root α of f , H(α) is a root of f .
When σ k

p is central, the polynomial H describes the action of σ k
p :

H(α) = σ k
p(α) for every root α of f.

Proof. This follows from the characterizations of Z(Gal f ) given in [Fernández-
Ferreirós and Gómez-Molleda 2004]. �

Lifting x pk
up to a certain power of

(
p, f (x)

)
and checking if the polynomial

obtained permutes the roots of f , we determine the centrality of σ k
p .

Construction of the quadratic subfield. We now show a procedure to either pro-
vide a quadratic subfield K of E f such that f is irreducible over K , or to conclude
that the Galois group is not dihedral. When the group is dihedral, K is precisely
the unique subfield in condition (i) of Proposition 2.2.

In [Williamson 1990], assuming that n is odd, it is proved that if the irreducible
factors of the resolvent R(x1 − x2, f ) are even polynomials of degree dividing 2n,
d is the independent coefficient of any of them and −d is not a square in Q, then
Q(

√
−d ) is a quadratic subfield of E f , otherwise the Galois group is not dihedral.

The method of C. J. Williamson is not applicable to even degree polynomials.
Next we solve the case of quartic polynomials, and give a procedure for reducing
the problem of even degree to either quartic or odd degree polynomials.

Lemma 3.2. Let f ∈ Z[x] be a monic irreducible polynomial of degree 4.

(1) Gal f equals D4 if and only if the center of Gal f has order 2.

(2) If
〈
(1, 3)(2, 4)

〉
is the center of D4, then D4 =

〈
(1, 2, 3, 4), (1, 3)

〉
.

(3) K = E 〈(1,2,3,4)〉
f is a quadratic subfield with f irreducible over K .
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The proof is straightforward.
Once it is known that Gal f = D4, one can quickly determine a primitive element

of E f , since E f is generated by two roots of f , and the number of subfields is only
8. If σ = (1, 2, 3, 4) and γ is a primitive element of E f , not every elementary sym-
metric function of

{
γ, σ (γ ), σ 2(γ ), σ 3(γ )

}
is rational. Any of them not belonging

to Q is a primitive element of K .
If n > 4 is even, we will reduce successively the problem to polynomials of

smaller degree, which we call derived polynomials:

Definition 3.3. Let f ∈ Z[x] be a monic irreducible polynomial of degree n, and
let α be a root of f . If there exists a nontrivial element τ ∈ Z(Gal f ), let β be an
algebraic integer and primitive element of Q(α)〈τ 〉 over Q, and let g ∈ Z[x] be its
minimal polynomial. We call g a derived polynomial from f by τ .

The degree of g is n/r , where r is the order of τ . A proof can be found in
[Fernández-Ferreirós and Gómez-Molleda 2004] along with a simple procedure to
construct derived polynomials.

The following proposition provides a method to compute a quadratic subfield
K of E f for a given polynomial f , or to conclude that Gal f is not dihedral:

Proposition 3.4. Let f ∈ Z[x] be a monic irreducible polynomial of even degree
n > 4 such that Gal f = Dn . If g is a derived polynomial from f by the central
element of order 2, then Gal g = Dn/2 and E 〈σ 〉

f = E 〈σ 〉
g , where σ and σ are an

n-cycle and an n/2-cycle in Gal f and Gal g, respectively.

Proof. Let Dn = 〈σ, τ 〉 with O(σ ) = n, O(τ ) = 2 and τστ = σ−1. The only
nontrivial central element in Dn is ρ = σ n/2, whose order is 2.

Gal g = Dn/S = 〈σ , τ 〉, where S = 〈ρ1, . . . , ρn/2〉 ∩ Dn , and ρ1, . . . , ρn/2 are
the disjoint transpositions of ρ and σ , τ the classes of σ and τ , respectively. Since
σ n/2

∈ S and there is no other power of σ of order 2, whereas every element of S
has order 2, we get O(σ ) = n/2.

We know that g is irreducible of degree n/2, so | Gal g| ≥ n/2. Thus, |S| = 2 or
4. If |S| = 4, then Gal g = 〈σ 〉 and τ σ τ = σ . But τ σ τ = σ −1, and σ S 6= σ−1S
(otherwise n = 4). Therefore Gal g = Dn/2.

As Eg ⊂ E f , σ = σ 〈ρ〉 and ρ fixes Eg pointwise, we conclude that E 〈σ 〉
g ⊆ E 〈σ 〉

f .
Both fields are quadratic over Q, so they must coincide. �

As a consequence of Proposition 3.4, if the Galois group of the given polynomial
is dihedral, the unique quadratic subfield in condition (i) of Proposition 2.2 is that
of any derived polynomial.

In general, if we get a derived polynomial of odd degree or degree 4 whose
Galois group is dihedral, its quadratic subfield K is also contained in E f , and we
have condition (i) in Proposition 2.1. Moreover, f is irreducible over K .
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End of the algorithm. Let p ∈ Z be an odd prime such that f mod p is irreducible
(we have already obtained it for computing the center). If the Galois group is
dihedral, then x2

− a mod p splits by condition (ii) in Proposition 2.2: x2
− a ≡

(x +b)(x +c) mod p. To check condition (iii) in Proposition 2.1, we use quadratic
Newton lifting, which allows the computation of F mod p2k

up to any k.
Notice that F(x) = F1(x)+

√
aF2(x) with F1, F2 ∈ Q[x]. Thus it is simpler to

work in Q[x], and the Newton lifting in Q(
√

a )[x] for the given polynomial is not
much harder than in Q[x].

Bounds are known on the coefficients of F1, F2 (a straightforward generalization
of the results in [Dixon 1990]). Thus, if the polynomial F in the required conditions
exists, it is easily determined from F mod p2k

with k large enough.

Example 3.5. We consider the irreducible polynomial

f (x) = x30
+15 x28

−20 x27
+135 x26

−228 x25
+895 x24

−1080 x23
+2010 x22

− 1870 x21
− 2682 x20

− 840 x19
+ 6735 x18

− 66690 x17
+ 132855 x16

− 331936 x15
+ 637515 x14

− 387270 x13
+ 1466250 x12

− 1155870 x11

+ 82710 x10
− 2939470 x9

− 129075 x8
+ 660750 x7

+ 2836550 x6

+ 1971960 x5
+ 1124850 x4

+ 280300 x3
+ 42300 x2

+ 7500 x + 725.

We have checked that f remains irreducible mod 19. We compute the center, of
order 2, and obtain the derived polynomial

g(x) = x15
−15 x14

+135 x13
−755 x12

+2550 x11
−4290 x10

+2395 x9
−4875 x8

+39975 x7
−74750 x6

+33090 x5
+15675 x4

−6950 x3
−1050 x2

−1500 x−725.

Since the degree of g is congruent to 3 mod 4, its discriminant is not a perfect
square, otherwise the Galois group is not dihedral. Precisely,

K = Q
(√

disc g
)
= Q(

√
−15 )

is a quadratic subfield of the splitting field of g, and therefore a quadratic subfield
of E f . Moreover,

x2
+ 15 ≡ (x + 2)(x + 17) mod 19.

It remains to check whether there exists a polynomial satisfying the third con-
dition in Proposition 2.1. By means of Newton lifting we obtain

F(x) =
78705199522740662980850936383320197413945663132536272567919488639

34390727770780900149705596163521595177782209179717772991415373721887 x29
+ . . . . .

. . . . . . . . . . . . +
35163553259550871700540691155402908776210583552656812429856449486132
4204509037807069297299430251966590006061147830749194817132287069447

+
459064831991645893453417212014726453400732657762700729312997002459

1341238383060455105838518250377342211933506158008993146665199575153593 i
√

15x29
+ .

. . . . . . . +
1079382284032767925968896625335769105239400759039398027924136853840
783891515523351902886334453756482882485976714207476999804324707863 i

√
15,

which transforms a root of f into another root.
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Therefore E f = Q(α,
√

−15 ), where α is any root of f and Gal f is dihedral,
generated by σ and τ such that

σ(α) = F(α), τ (α) = α, σ (
√

−15 ) =
√

−15, τ (
√

−15 ) = −
√

−15.

Example 3.6. Let f (x) = x12
+ 10 x6

+ 5, which is irreducible modulo 7.
A derived polynomial from f by the order 2 central element is

g1(x) = x6
− 10 x3

+ 5.

The polynomial g1 is also irreducible modulo 7, and

g2(x) = x3
− 5

is a derived polynomial from g1. Then K =Q
(√

disc g2
)
=Q(

√
−3 ) is a quadratic

subfield of E f . Moreover,

x2
+ 3 ≡ (x + 2)(x + 5) mod 7.

However, the third condition in Proposition 2.1 is not satisfied (the polynomial
we obtain by Newton lifting does not permute the roots of f ). Thus, by Proposi-
tions 2.2 and 3.4, Gal f is not dihedral.

Note. We could have stopped earlier, since Z(Gal f ) has order 4. Nonetheless, it
is interesting to see that f “almost” satisfies every condition in Proposition 2.1:

F(x) = −
7
8 x +

7
8

√
−3x −

1
8 x7

+
1
8

√
−3x7

∈ K [x]

permutes the roots of f , and

F(x) ≡ 5(
√

−3 + 5)x7
− 5(

√
−3 + 2)x75

mod
(
7, f (x)

)
.

It follows from Proposition 4.1 below that Gal f has order 24 and is generated
by two elements σ, τ , where σ is an n-cycle and τστ−1

= σ 5. Moreover, E f =

Q(α,
√

−3 ), where α is any root of f , and

σ(α) = F(α), τ (α) = α, σ (
√

−3 ) =
√

−3, τ (
√

−3 ) = −
√

−3.

4. Groups of order 2n that contain a cyclic subgroup of order n

The characterization of dihedral Galois groups can be generalized to transitive
subgroups of Sn , of order 2n, containing an n-cycle.

Let G be one of these groups and σ ∈ G an n-cycle. Then there exists an integer
m such that τ−1στ = σ m for every τ ∈ G −〈σ 〉. Since there is no transitive abelian
subgroup of Sn having order larger than n, we have m 6≡ 1 modulo n.

The group G is determined by n and m mod n up to isomorphism, so we write
G = G(n, m). It is simple to prove that (m, n) = 1 and m2

≡ 1 mod n.
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See [Hwang et al. 2003] for a detailed and more general classification of these
groups, where they are not assumed to be subgroups of Sn .

Proposition 4.1. Let f ∈ Z[x] be a monic irreducible polynomial of degree n > 2
satisfying the following conditions:

(i) E f has a quadratic subfield K = Q(
√

a ) for some a ∈ Z squarefree.

(ii) f mod p is irreducible for some odd prime p ∈ Z, and x2
− a splits:

x2
− a ≡ (x + b)(x + c) mod p

with b, c distinct modulo p.

(iii) There exists F ∈ K [x] such that

F(x) ≡ A(
√

a + b)x p
− A(

√
a + c)x pm

mod (p, f (x)),

where A = (b − c)−1 mod p, and f
(
F(α)

)
= 0 for some root α of f .

Then Gal f = G(n, m).

Proof. The proof is essentially the same as for Proposition 2.1. �

The converse cannot be strengthened as far as for dihedral groups, since the case
8 | n and m = (n/2) + 1 is peculiar:

Proposition 4.2. Let f ∈ Z[x] be a monic irreducible polynomial of degree n > 2
such that GalQ f = G(n, m).

If 8 - n or m 6= (n/2) + 1, then:

(i) There exists a unique quadratic subfield K of E f such that f is irreducible
over K , and GalK f is cyclic.

In fact, K = E 〈σ 〉

f for every n-cycle σ ∈ G(n, m).

(ii) The proportion of integer primes p such that f is irreducible modulo p is
φ(n)/2n. If a is a squarefree integer such that K = Q(

√
a ), then for every

odd prime p under this condition, x2
− a splits modulo p, that is, x2

− a ≡

(x + b)(x + c) mod p for some b, c ∈ Z distinct modulo p.

(iii) There exists a unique polynomial F ∈ K [x] of degree smaller than n such that
F(α) is a root of f for every root α of f , and

F(x) ≡ A(
√

a + b)x p
− A(

√
a + c)x pm

mod
(

p, f (x)
)
,

where A = (b − c)−1 mod p.

If 8 | n and m = (n/2) + 1, there exists more than one cyclic subgroup of order
n in G(n, m). Therefore the quadratic subfield satisfying conditions (i)–(iii) is not
unique. In such a case φ(n)/2n is the proportion of primes p such that f mod p
is irreducible, and x2

− a splits modulo p for a given quadratic subfield Q(
√

a ).
For such primes, condition (iii) holds.
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Proof. It can be proved that a cyclic subgroup of G(n, m) of order n is generated by
an n-cycle. Therefore, it is enough to prove that there exist n-cycles σ, τ ∈ G(n, m)

such that 〈σ 〉 6= 〈τ 〉 if and only if 8 | n and m = (n/2) + 1. The rest is essentially
the same as for Proposition 2.2.

Let τ 6∈ 〈σ 〉.
If τ is an n-cycle and n is odd, then 〈τ 〉 = 〈τ 2

〉 = 〈σ 〉. Assume then that n is
even, σ = (0, 1, . . . , n − 1) and τ(0) = a ∈ {0, 1, . . . , n − 1}. Since τστ−1

= σ m ,
we have τ(i) = a + im mod n for every i ∈ {0, . . . , n − 1}. For 1 ≤ k ≤ n,

τ k(0) =


1
2 k a(m + 1) mod n if k is even,
1
2(k+1)a +

1
2(k−1)am mod n if k is odd.

If m < (n/2)+1, take k = 2(m −1) < n. Since m2
≡ 1 mod n, we have τ k(0) = 0,

and then τ is not an n-cycle. When m > (n/2) + 1 the same reasoning works for
k = 2(n − m + 1). Suppose then that m = (n/2)+ 1 (which implies n ≡ 0 mod 4)
and n 6≡ 0 mod 8, then m + 1 ≡ 0 mod 4. Taking k = n/2 we have τ k(0) = 0, and
again τ is not an n-cycle.

When 8 |n and m = (n/2)+1, we may take a =1, and then τ 2
=σ a(m+1)

=σ m+1.
Since 8 | n, we have gcd(m + 1, n) = 2. Thus σ m+1 has order n/2. Since n/2 is
even and τ 2 has order n/2, we conclude that τ has order n. �

The problem again is how to determine the quadratic subfield.
When 4 - n or m 6= (n/2)+1, we can determine, as in the dihedral case, an irre-

ducible polynomial g of degree smaller than n whose Galois group is the quotient
by the center. The quadratic subfield of E f is that of Eg.

When 4 | n and m = (n/2)+1, such a polynomial does not exist. This is a con-
sequence of the following lemma, which provides an important relation between
the center and G

(
n, (n/2) + 1

)
:

Lemma 4.3. Let G = G(n, m) and let σ be any n-cycle in G.

(i) Z(G) equals 〈σ i
〉, where i is the least positive integer such that

i(m − 1) ≡ 0 mod n.

(ii) Z(G) is trivial if and only if n is odd and G is dihedral.

(iii) G/Z(G) is abelian ⇔ σ 2
∈ Z(G) ⇔ 4 | n and m = (n/2) + 1.

Proof. (i) It can be easily proved that Z(G) is a subgroup of 〈σ 〉 for every n-cycle
σ ∈ G. Now σ i

∈ Z(G) if and only if σ i
= τ−1σ iτ = (σ i )m for any τ 6∈ 〈σ 〉, if

and only if i ≡ im mod n.
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(ii) Since m2
≡ 1 mod n, we have σ m+1

∈ Z(G). If Z(G) is trivial, then σ m+1

is the identity and therefore m ≡ −1 mod n, so G is dihedral of odd degree. The
converse is well-known.

(iii) The quotient G/Z(G) is abelian if and only if, for any τ 6∈ 〈σ 〉, τ−1στ Z(G)=

σ Z(G). This is equivalent to σ m−1
∈ Z(G), or yet to σ 2

∈ Z(G), because the proof
of (ii) showed that σ m+1

∈ Z(G)
)
. Further, σ 2

∈ Z(G) ⇐⇒ 2(m − 1) = 0 mod n
(from the proof of (i)). Since 1 < m < n, this last condition is the same as m =

(n/2) + 1. This implies that n is even, so m is odd, which implies n/2 is even, so
4 | n. �

Proposition 4.4. Let f ∈ Z[x] be a monic irreducible polynomial of degree n >

2 such that Gal f = G(n, m) and Z(Gal f ) is not trivial. Let g be a derived
polynomial from f by Z(Gal f ). Then

Gal g = Gal f/Z(Gal f ) ⇔
∣∣Z(Gal f )

∣∣ < n/2.

If
∣∣Z(Gal f )

∣∣ < n/2, then Gal g = G(n′, m′), where n′
= n/

∣∣Z(Gal f )
∣∣ and m′

≡

m mod n′. Moreover, E 〈σ 〉

f = E 〈σ 〉
g , where σ is an n-cycle in Gal f and σ its class

in the quotient.

Proof. Assume that
∣∣Z(Gal f )

∣∣ < n/2. Then Gal g = (Gal f )/S, where

S =
{
ρ ∈ Gal f : ρ(β) = β for every β ∈ Eg

}
⊇ Z(Gal f ).

Let σ be an n-cycle in Gal f . If σ k
∈ S, then σ k fixes(

x − σ i (α)
)(

x − σ 2i (α)
)
. . .

(
x − σ |Z(Gal f )|i (α)

)
,

and therefore σ k
∈ 〈σ i

〉 = Z(Gal f ).
If S 6= Z(Gal f ), then τ ∈ S for some τ 6∈ 〈σ 〉. Since τ−1στ = σ m and S is

normal in Gal f , then σ m−1
∈ S. Thus σ m−1

∈ Z(Gal f ).
We refer to the proof of Lemma 4.3 to conclude that σ 2

∈ Z(Gal f ), a contra-
diction. Therefore S = Z(Gal f ).

Assume that Gal g = Gal f/Z
(
Gal f

)
. If

∣∣Z(Gal f )
∣∣ ≥ n/2, then by Lemma 4.3

Gal f/Z(Gal f ) is abelian. But then its order is

deg g =
n∣∣Z(Gal f )

∣∣ ,
a contradiction.

For the rest we refer to the proof of Proposition 3.4. �

Let f ∈ Z[x] be a monic irreducible polynomial of degree n > 2. In order to
determine whether its Galois group is G(n, m) for some m, we propose to construct
a chain of derived polynomials up to a polynomial g whose Galois group has a
trivial center or

∣∣Z(Gal g)
∣∣ =

1
2 deg g.
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If Z(Gal g) is trivial, then either Gal f is not G(n, m) or, by Lemma 4.3, the
degree of g is odd and Gal g is dihedral. In this case, its unique quadratic subfield
K is computable [Williamson 1990] and, by Proposition 4.4, K is a quadratic
subfield of E f .

If
∣∣Z(Gal g)

∣∣= 1
2 deg g, we assume that 4 |deg g, otherwise Gal f is not G(n, m)

by Lemma 4.3(c). Let ρ ∈ Z(Gal g) be the order 2 element, and compute h a derived
polynomial from g by ρ. Since Gal h is cyclic, all the roots of h are expressible
as polynomials in a fixed root γ . Now, γ ∈ Q(β) for some root β of g. Since
| Gal g| > deg g, there must exist another root βi of g such that

(x − βi )(x − ρβi ) ∈ Q(γ )[x] ⊂ Q(β)[x]

is irreducible over Q(β), so Q(β, βi ) has degree 2 deg g over Q.
We consider g̃ the minimal polynomial of a primitive element of Q(β, βi ) over

Q, which is easily constructible from the p-adic expressions of β and βi , where
p is a prime such that g mod p has at least one linear factor, but does not split
completely. Notice that g̃ and g have the same splitting field over Q.

Then compute a derived polynomial h̃ from g̃ by the whole center. It has degree
4 with Galois group Gal g/Z(Gal g), which is known to be abelian. If Gal f =

G(n, m), then Gal g = G
(
deg g, 1

2 deg g +1
)
. In these conditions, it is not difficult

to prove that Gal h̃ = C2 × C2.
Now let p be a prime such that f is irreducible mod p. Let σp ∈ Gal h̃ be

the Frobenius automorphism over p, which is the class of a certain n-cycle σ in
Gal f . The derived polynomial from h̃ by σp has degree 2. Its splitting field is
E 〈σp〉

h̃
= E 〈σ 〉

f , the quadratic subfield we are looking for.
It is important to choose p such that f mod p is irreducible, in order to avoid

problems with the nonuniqueness of the required quadratic subfields.

Example 4.5. We consider the irreducible polynomial

f (x) = x20
+ 16 x19

− 28 x18
− 1472 x17

− 2632 x16
+ 51140 x15

+ 151148 x14
− 782420 x13

− 2812591 x12
+ 4620332 x11

+ 21703286 x10

−1147220 x9
−48329142 x8

−1527032 x7
+116408438 x6

+80220212 x5

−3606076 x4
−7107004 x3

+150730188 x2
+152657360 x +149376809.

We have checked that Z(Gal f ) has order 10, so m must be 11.
Since there is a central element of order 5 prime to 2, we can compute a derived

polynomial of degree 4 whose Galois group is of the same type and such that its
quadratic subfield is that of f . Such a polynomial is

g(x) = x4
− 16x3

+ 96x2
− 256x + 1506.
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Using its central element of order 2, we have computed a polynomial of degree
8 with the same splitting field:

h(x) = x8
− 96 x7

+ 4032 x6
− 96768 x5

+ 1434020 x4
− 13094592 x3

+ 68487552 x2
− 165694464 x + 1043664196.

Constructing a derived polynomial by the center we obtain a quartic polynomial
and then a quadratic one whose splitting field is precisely the quadratic subfield
sought, Q(i). The polynomial

F(x) =
−203657846929166631640254369287606596139803767697204

23760715438552464057848719335711299203856363538332256307507 x19
+ . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . −
133191442385620997771967483976193957704236471999394299511252
23760715438552464057848719335711299203856363538332256307507

+
6152086964541718808900648055367126359050484928

1782098210346693471675445836324255546677894212730237479 i x19
+ . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . −
268301349420812722971881680384918728929034563047278584

1782098210346693471675445836324255546677894212730237479 i

satisfies the third condition in Proposition 4.1.
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