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Abstract 

Lipopolysaccharide (LPS) as a major component of Escherichia coli cell wall can cause inflammation and cell death. 

Dihydromyricetin (ampelopsin, DHM) is a natural flavonoid compound with anti-inflammatory, anti-oxidant and anti-

bacterial effects. The preventive effects of DHM against ileum injury remain unclear. Here, we explored the protective 

role of DHM against LPS-induced ileum injury in chickens. In this study, DHM significantly attenuated LPS-induced 

alteration in diamine oxidase, malondialdehyde, reduced glutathione, glutathione peroxidase and superoxide 

dismutase levels in chicken plasma and ileum. Histology evaluation showed that the structure of blood vessels in 

ileum was seriously fragmented and presence of necrotic tissue in the lumen in the LPS group. Scanning electron 

microscopic observation revealed that the surface of the villi was rough and uneven, the structure was chaotic, and 

the normal finger shape was lost in the LPS group. In contrast, 0.05% and 0.1% DHM treatment partially alleviated 

the abnormal morphology. Additionally, DHM maintained the barrier function by restoring the protein expression of 

occludin, claudin-1 and zonula occludens protein-1. DHM inhibited apoptosis through the reduction of the expres-

sion of bax and caspase-3 and restored the expression of bcl-2. Importantly, DHM could reduce ileum NLR family pyrin 

domain-containing 3 (NLRP3), caspase-1, interleukin (IL)-1β and IL-18 expression to protect tissues from pyroptosis 

and inhibited toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signalling pathway. In summary, DHM attenu-

ated the ileum mucosal damage, oxidative stress and apoptosis, maintained barrier function, inhibited NLRP3 inflam-

masome and TLR4/NF-κB signalling pathway activation triggered by Escherichia coli LPS.
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Introduction

Avian pathogenic Escherichia coli (E. coli) is the patho-

gen that is associated with avian E. coli disease and can 

be transmitted through the digestive and respiratory 

tracts [1]. Chickens of all ages can be infected by E. coli, 

especially one-month old chicks [2]. Lipopolysaccharide 

(LPS), the main component of E. coli cell wall, is released 

in large quantities via bacteria or drugs mediated bacte-

rial lysis and triggers inflammatory response and cell 

death [3, 4]. LPS is not only involved in the pathogenic 

process of E. coli, but also one of the main pathogenic 

factors of E. coli.

�ere are numerous complex microorganisms or 

flora in the intestine, which play a key role in develop-

ment and regulation of the immune system, and pre-

vention and control of disease in the host [5]. Moreover, 

because intestinal barrier function can resist pathogenic 
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microorganisms, when the intestine is damaged, it will 

cause an increase in the translocation of pathogens or 

their toxins, thereby resulting in damage to the body. It 

is well known that the small intestine is the main region 

for nutrient absorption and it becomes one of the tar-

get organs for LPS [3]. Importantly, in addition to being 

involved in the pathogenesis of pathogenic E. coli, LPS 

has been shown to cause intestinal barrier dysfunction 

leading to increased intestinal permeability [6]. Under 

these circumstances, pathogenic E. coli or other patho-

gens and toxins are more likely to enter the bloodstream, 

causing damage to the body and eventually forming a 

vicious cycle. �erefore, it is vital for the body to main-

tain the health of the gut.

NLR family pyrin domain-containing 3 (NLRP3) is a 

member of the NOD-like receptor (NLR) family. Study 

has shown that after LPS stimulation, NLRP3 transcrip-

tion increases and enters the cytoplasm to assemble 

with apoptosis-associated speck-like protein containing 

a CARD (ASC) and pro-caspase-1 to form a multi-pro-

tein complex termed the NLRP3 inflammasome that is 

involved in the cell innate immune defence [7]. Currently, 

NLRP3 inflammasome activation is reported to depend 

upon one, or a combination of signals that include  K+ 

efflux, reactive oxygen species (ROS) generation, or 

destabilisation of lysosomal membranes [8]. In turn, 

activated caspase-1 proteolytically cleaves the cytokine 

precursors of interleukin (IL)-1β and IL-18 into active 

mature peptides and promote pyroptosis [7, 9]. In addi-

tion, NLRP3 inflammasome has been widely studied in 

various LPS-induced models [10].

Along with LPS-binding protein, cluster of differen-

tiation 14 acts to transfer LPS to the toll-like receptor 

4 (TLR4) [11]. After LPS activates TLR4, nuclear factor 

kappa-B (NF-κB) is activated through myeloid differen-

tiation factor 88 (MyD88)-dependent and MyD88-inde-

pendent signal transduction pathways [11]. Activated 

NF-κB enters the nucleus and modulates the induction 

of multiple proinflammatory cytokines, including IL-1β, 

IL-6, IL-8 and tumour necrosis factor-α (TNF-α) [12]. 

Moreover, NF-κB is involved in the occurrence of pro-

grammed cell death [13, 14].

Chinese Rattan tea [Ampelopsis grossedentata (Hand.-

Mazz.) W.T.Wang] is a traditional tea that has many 

effects to promote health. Dihydromyricetin (DHM), 

also named ampelopsin, is a natural flavonoid compound 

extracted from the stems and leaves of Ampelopsis gros-

sedentata (Hand.-Mazz.) W.T.Wang [15]. It exhibits mul-

tiple pharmacological effects, such as anti-inflammation, 

anti-oxidation and anti-bacterial effects [16, 17]. Moreo-

ver, ampelopsin possessed a strong antioxidant activity 

and alleviated LPS-induced oxidative stress in piglets 

[18]. �e preventive effects of DHM against chicken 

ileum injury remain unclear. �erefore, this study 

explored the protective mechanisms of DHM against E. 

coli LPS induced ileum injury in chickens through anti-

oxidants, alleviating intestinal lesions, inhibiting apop-

tosis and NLRP3 inflammasome, and analysed possible 

downstream targets of drug involving TLR4/NF-κB sig-

nalling pathway.

Materials and methods

Reagents and antibodies

Escherichia coli LPS (055:B5) was purchased from Sigma-

Aldrich (St. Louis, MO, USA). DHM was purchased 

from Shanghai Winherb Medical Technology Co., Ltd. 

(Shanghai, China; CAS No. 27200-12-0) and was purified 

(purity > 98.0%) from Chinese Rattan tea by high perfor-

mance liquid chromatography. Anti-claudin-1 antibody 

was purchased from ABclonal Technology (Wuhan, 

China). Anti-glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) antibody was purchased from Huamei Bio-

logical Engineering Co., Ltd. (Wuhan, China). Anti-bax, 

anti-bcl-2, anti-caspase-3, anti-occludin, anti-ZO-1, anti-

TLR4, anti-NF-κB p65 and anti-phospho-p65 antibodies, 

HRP-labeled goat anti-rabbit IgG and HRP-labeled goat 

anti-mouse IgG were purchased from Bioss Biotech Co. 

Ltd. (Beijing, China).

Animals and experimental protocol

One-day-old Hy-line White female chickens were 

obtained from Xianfeng chicken farm situated in Harbin 

(China). Chickens were housed in cages in a controlled 

environment under standard conditions with a 12-h 

light/dark cycle and free access to feed and water. Tem-

perature and relative humidity were provided in accord-

ance with the requirements of chickens.

A total of 90 chickens were randomly divided into 

six groups (n = 5) with 3 replicates: control group, LPS 

group, 0.025% DHM + LPS group, 0.05% DHM + LPS 

group, 0.1% DHM + LPS group and 0.1% DHM control 

group. At 8 days of age, chickens in all DHM groups were 

fed DHM for 14 days. At 22 days of age, chickens in all 

groups excluding control groups were given 60  mg/kg 

LPS by intraperitoneal injection (i.p.). Referring to the 

dose of Huang et al. [14], preliminary tests by our group 

found that 60  mg/kg LPS could induce ileum and liver 

injury in chickens. After 12  h, chickens were sacrificed 

by cardiac puncture and blood was collected following 

euthanasia with sodium pentobarbital. �e plasma was 

collected to determine plasma diamine oxidase activity. 

�e ileum was isolated for histopathological examina-

tion and scanning electron microscopy observation and 

the remaining was stored at −80 °C for detection of other 

indicators, real-time RT-PCR and Western blot.
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Ileum injury speci�c indicators detection

Diamine oxidase (DAO) activity was determined using 

DAO assay kit (Nanjing Jiancheng Institute of Bio-

technology, China) according to the manufacturer’s 

instructions.

Ileum oxidative stress indicators detection

Malondialdehyde (MDA) and reduced glutathione (GSH) 

concentrations and Total superoxide dismutase (SOD) 

and glutathione peroxidase (GSH-Px) activities in ileum 

were determined using MDA assay kit, GSH assay kit, 

Total SOD assay kit and GSH-Px assay kit (Nanjing 

Jiancheng Institute of Biotechnology, China) according to 

the manufacturer’s instructions.

Histological analysis

�e ileum tissue was fixed with 10% neutral forma-

lin buffer for more than 24  h. After dehydration in an 

ascending series of ethanol and clearing in dimethylb-

enzene, the tissues were embedded in paraffin and sec-

tioned transversely at 4  μm. After haematoxylin and 

eosin (H&E) staining, the slides were examined and pho-

tos were taken with an optical microscope (Nikon E100, 

Japan, 100X magnifications).

Scanning electron microscope analysis

�e ileum tissue fixed in 2.5% glutaraldehyde, washed 

with a phosphate buffer solution, dehydrated with a 

gradient concentration of ethanol, replaced with tert-

butanol, and dried. After the tissue was sputter-coated 

with gold, it was observed and photographed using a 

scanning electron microscope (Hitachi S-3400 N, Japan, 

200X and 2000X magnification). �e above steps were 

completed by the electron microscopic laboratory of the 

Life Science Biotechnique Research Centre in Northeast 

Agricultural University.

Total RNA isolation and real-time RT-PCR analysis

Total RNA was isolated from the ileum using TRIzol rea-

gent (Takara, Dalian, China) according to the manufac-

turer’s protocol. �e absorbance ratio of each sample at 

260 nm/280 nm was between 1.8 and 2.0 with acceptable 

quality [19]. First strand cDNA was synthesized using 

PrimeScript™ RT reagent Kit with gDNA Eraser (Per-

fect Real Time) purchased from Takara, Dalian, China. 

Following the manufacturer’s protocol, after removing 

genomic DNA, 1  μg of total RNA in each sample was 

reversed transcribed into cDNA and stored at −80 °C.

Real-time RT-PCR reaction was performed with TB 

 Green® Premix Ex  TaqTM II (Tli RNaseH Plus) obtained 

from Takara, Dalian, China in a Roche  LightCycler® 96 

instrument (Shanghai, China). �e steps for thermal 

cycling were as follows: 95  °C, 30  s for denaturation, 

and then 45 cycles of PCR (95  °C, 5 s; 60  °C, 30 s). �e 

primers are shown in Table 1. Results were expressed as 

relative expression of mRNA levels compared to control 

samples and analysed according to the  2−ΔΔCt method 

[20]. For analysis, target genes expression of each sample 

was normalized to GAPDH that is a suitable household 

gene [21].

Western blot analysis

As described earlier [22], ileum tissues were scraped 

and lysed in radio immunoprecipitation assay lysis 

buffer supplemented with 1  mM protease inhibitor 

phenylmethyl sulfonyl. The lysate was centrifuged 

at 12 000 r/min for 10  min at 4  °C. The supernatant 

was collected and the total protein concentration was 

determined using a bicinchoninic acid protein assay 

Table 1 Genes and primers used in this study

Names Accession No. Forward primer (5′ to 3′) Reverse primer (5′ to 3′) Product

GAPDH NM_204305.1 GAC GTG CAG CAG GAA CAC TA ATG GCC ACC ACT TGG ACT TT 122 bp

bcl-2 NM_205339.2 GAG TTC GGC GGC GTG ATG TG TTC AGG TAC TCG GTC ATC CAG GTG 92 bp

bax XM_015290060.2 CGC AAG GTC TAC GCC ATC ATCTC GCA GCA GAC CAG CAC CAA GTAG 165 bp

caspase-3 NM_204725.1 TAC CGG ACT GTC ATC TCG TTC AGG ACT GCT TCG CTT GCT GTG ATC TTC 166 bp

NLRP3 NM_001348947.1 GCT CCT TGC GTG CTC TAA GACC TTG TGC TTC CAG ATG CCG TCAG 150 bp

caspase-1 XM_025142104.1 GTG CTG CCG TGG AGA CAA CATAG AGG AGA CAG TAT CAG GCG TGG AAG 179 bp

IL-1β NM_204524.1 AGC AGC CTC AGC GAA GAG ACC GTC CAC TGT GGT GTG CTC AGA ATC 90 bp

IL-18 NM_204608.1 AGA TGA TGA GCT GGA ATG CGA TGC ATC TGG ACG AAC CAC AAG CAA CTG 97 bp

IL-6 NM_204628.1 ATG GTG ATA AAT CCC GAT GAAG CCT CAC GGT CTT CTC CAT AAAC 153 bp

IL-8 HM179639.1 ACA CTC CTA ACC ATG AAC GGC AAG CTG GCA CCG CAG CTC ATT CC 114 bp

TNF-α AY765397.1 CTC AGG ACA GCC TAT GCC AAC AAG GCC ACC ACA CGA CAG CCA AG 178 bp

IL-10 NM_001004414.2 CAG CAC CAG TCA TCA GCA GAGC GCA GGT GAA GAA GCG GTG ACAG 94 bp
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kit (Beyotime Biotechnology Co., Ltd, Shanghai). The 

protein concentration of each sample was adjusted to 

the same. Subsequently, the sample was mixed with 

5 × SDS-PAGE loading buffer and boiled at 100 °C for 

15 min, and then stored at −80 °C.

The proteins were separated by SDS-PAGE gel elec-

trophoresis. The proteins were then transferred to a 

polyvinylidene fluoride membrane. The membrane 

was washed 3 times with Tris-buffered saline solu-

tion containing 0.1% Tween 20, blocked with 5% skim 

milk for 2  h at room temperature, and incubated 

with mouse monoclonal anti-GAPDH (1:2000, CSB-

MA000071) and rabbit polyclonal anti-ZO-1 (1:400, 

bs-1329R), anti-claudin-1 (1:400, A2196), anti-occlu-

din (1:400, bs-10011R), anti-bax (1:800, bs-0127R), 

anti-bcl-2 (1:800, bs-0032R), anti-caspase-3 (1:800, 

bs-0081R), anti-TLR4 (1:800, bs-20379R), anti-p65 

(1:400, bs-0465R) and anti-p-p65 (1:400, bs-0982R) 

primary antibodies at 4  °C for overnight. After wash-

ing, the membrane was incubated with appropriate 

HRP-conjugated IgG for 1.5  h at room temperature. 

The protein bands were visualized with chemilumi-

nescence reagent (ECL, Affinity Biosciences, USA) 

and then exposed to photographic film. The density of 

each band was measured using Image J software. The 

relative expression level of each candidate protein was 

calculated using GAPDH as the internal normalized 

control with the same calibrator.

IL-1β and IL-18 detection

�e ileum mucosa was scraped and homogenized in ice 

cold normal saline solution with the help of a homog-

enizer. Lysates were then centrifuged at 3000 r/min for 

10  min and the supernatant was collected. IL-1β and 

IL-18 contents were measured by enzyme-linked immu-

nosorbent assay (ELISA, Kenuodi, China) according to 

the manufacturer’s instructions. �e samples were added 

into a 96-well plate and run on a microplate reader (Bio-

Rad iMARKTM, Shanghai, China).

Statistical analysis

Data were expressed as the mean ± SD. Statistical analy-

sis was performed using one-way analysis of variance 

(ANOVA), followed by Duncan test, using the statistical 

package for social sciences (SPSS, version 19.0) software.

Results

E�ects of DHM on LPS-induced ileum injury and oxidative 

stress

�e protective effects of DHM against LPS-induced 

ileum injury and oxidative stress are shown in Figure 1. 

Compared to the control group, LPS enhanced (p < 0.01) 

plasma DAO activity while 0.05% and 0.1% DHM 

reduced (p < 0.01) plasma DAO activity compared to the 

LPS group.

Compared to the control group, LPS decreased ileum 

DAO activity (p < 0.01), enhanced ileum MDA con-

tent (p < 0.01), reduced GSH content, SOD and GSH-Px 

Figure 1 E�ects of 0.025%, 0.05% and 0.1% DHM on LPS-induced ileum injury and oxidative stress. Changes of DAO activity (A) in plasma, 

DAO activity (B), MDA content (C), SOD activity (D), GSH content (E) and GSH-Px activity (F) in ileum after 60 mg/kg LPS exposure for 12 h followed 

by 14 days of 0.025%, 0.05% and 0.1% DHM treatment. Values are expressed as the mean ± SD for each group (n = 5). *p < 0.05 and **p < 0.01 

represented all groups compared with the control group. #p < 0.05 and ##p < 0.01 represented all groups compared with the LPS group.
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activities (p < 0.01). In contrast, 0.05% and 0.1% DHM 

increased ileum DAO activity (p < 0.01), reduced ileum 

MDA production (p < 0.01), restored GSH storage 

(p < 0.01), and increased SOD and GSH-Px activities 

(p < 0.01).

E�ects of DHM on ileum pathology of chickens exposed 

to LPS

�e histopathological micrographs of ileum tissues meas-

ured by H&E staining are shown in Figure 2. �e ileum 

villi structure in the control group was complete and 

clear in shape. In the LPS group, the intestinal villi were 

broken, and numerous inflammatory cells infiltrated, the 

structure of blood vessels was fragmented and necrotic 

tissue was observed in the lumen (as shown in Figure 2B). 

�e morphology and structure of ileum villi gradu-

ally improved with the gradual increase of the preven-

tive dose of DHM. Among them, 0.05% and 0.1% DHM 

(Figures  2D, E) had better preventive effects. Mucosal 

shedding was significantly reduced compared to the LPS 

group, and the morphology and structure of the mucosa 

were relatively normal, but there was still a small amount 

of inflammatory cells infiltration.

Scanning electron microscope observation

�e observation of ileum tissue by scanning electron 

microscopy is presented in Figure 3. As seen from pan-

els A and D, the intestinal villi were neatly arranged, 

finger-like, with wrinkles of different size on the sur-

face, the microvilli were closely arranged and goblet 

cells were scattered in the control group. In the LPS 

group, the surface of the villi was rough and uneven, 

the structure was chaotic, and the normal finger shape 

was lost (shown in Figures  3B and E). With gradual 

increase of preventive doses of DHM, the microstruc-

ture of intestinal villi appeared normal. Among them, 

as shown in Figures  3C and F, in 0.025% DHM + LPS 

group, some intestinal villi returned to normal. �e 

0.05% and 0.1% DHM had better protection for intesti-

nal villi than 0.025% DHM. It can be seen in Figures 3G, 

H, J, and K that the intestinal villus structure had basi-

cally returned to normal, but a small amount of damage 

was still visible.

DHM maintained the barrier function in ileum

To clarify the protective effects of DHM interven-

tion for the integrity of tight junctions, ileum ZO-1, 

occludin and claudin-1 protein expression levels were 

determined (Figure  4). LPS decreased (p < 0.01) ZO-1, 

occludin and claudin-1 protein expression levels com-

pared to the control group. Compared to the LPS 

group, 0.05% and 0.1% DHM increased (p < 0.01) ZO-1, 

occludin and claudin-1 protein expression levels to 

maintain intestinal barrier function.

Figure 2 Chickens ileum pathology. Ileum sections were stained by haematoxylin and eosin. All the ileum sections were examined by light 

microscopy and the images were displayed at 100X the original magnification. (A) Control group; (B) LPS group; (C) 0.025% DHM + LPS group; (D) 

0.05% DHM + LPS group; (E) 0.1% DHM + LPS group; (F) 0.1% DHM group.
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DHM resisted LPS-induced ileum apoptosis

To investigate whether DHM protects LPS-induced 

ileum apoptosis, we detected bcl-2, bax and caspase-3 

mRNA and protein expression levels. As shown in Fig-

ure  5, LPS reduced (p < 0.01) bcl-2 mRNA and protein 

expression levels and increased (p < 0.01) bax and cas-

pase-3 mRNA and protein expression levels compared to 

the control group. On the contrary, 0.05% and 0.1% DHM 

increased (p < 0.01) bcl-2 mRNA and protein expression 

levels and inhibited (p < 0.01) bax and caspase-3 mRNA 

and protein expression levels.

DHM inhibited NLRP3 in�ammasome formation 

and pyroptosis activation triggered by LPS

To investigate whether DHM inhibits the formation 

of NLRP3 inflammasome and pyroptosis activation in 

Figure 3 Scanning electron microscope (SEM) observation. SEM observation for ileum after 60 mg/kg LPS exposure for 12 h followed by 

14 days of 0.025%, 0.05% and 0.1% DHM treatment. (A/D) Control group (200X/2000X); (B/E) LPS group (200X/2000X); (C/F) 0.025% DHM + LPS 

group (200X/2000X); (G/J) 0.05% DHM + LPS group (200X/2000X); (H/K) 0.1% DHM + LPS group (200X/2000X); (I/L) 0.1% DHM group (200X/2000X).



Page 7 of 12Chang et al. Vet Res           (2020) 51:72  

LPS-induced ileum injury, we measured the mRNA 

expression levels of NLRP3, caspase-1, IL-1β and IL-18 

and content of IL-1β and IL-18. Figure 6 showed that LPS 

triggered formation of NLRP3 inflammasome and pyrop-

tosis activation relative to the control group, NLRP3, cas-

pase-1, IL-1β and IL-18 mRNA expression and IL-1β and 

IL-18 contents increased (p < 0.01). In contrast, 0.05% 

and 0.1% DHM prevention inhibited the expression of 

NLRP3, caspase-1, IL-1β and IL-18 mRNA and IL-1β and 

IL-18 contents (p < 0.01).

DHM resisted in�ammatory response through TLR4/NF-κB 

signalling pathway

Subsequently, we measured the protein expression levels 

of TLR4, the activation of NF-κB and the mRNA expres-

sion levels of IL-6, IL-8, TNF-α and IL-10. As shown 

in Figures  7A–C, compared to the control group, LPS 

caused an increase in TLR4 protein expression levels 

and p-p65/p65 ratio (p < 0.01). In contrast, 0.025% DHM 

reduced p-p65/p65 ratio (p < 0.01).

In addition, LPS induced (p < 0.01) the mRNA expres-

sion of IL-6, IL-8 and TNF-α, and inhibited (p < 0.01) the 

mRNA expression of IL-10 (shown in Figures  6D–G) 

compared to the control group. In contrast, 0.05% and 

0.1% DHM could resist these inflammatory responses, 

reduced the mRNA expression of IL-6, IL-8 and TNF-α 

(p < 0.01), and increased the mRNA expression of IL-10 

(p < 0.01). 0.1% DHM alone treatment markedly enhanced 

the mRNA expression of IL-10 (p < 0.01), but there was 

no significant effect on other inflammatory factors.

Discussion

Although the body has some resistance to pathogenic 

E. coli, infection occurs when different stress factors 

cause the body’s resistance to decrease. E. coli disease 

is mainly characterized by systemic inflammation, 

causes severe damage to the host and even death [23]. 

In addition, intestinal inflammatory disease is a com-

mon intestinal tissue disease that seriously disturbs the 

health of livestock and poultry [24]. �e main clinical 

symptoms such as digestive dysfunction, abdominal 

Figure 4 0.025%, 0.05% and 0.1% DHM maintained the barrier function in ileum. Original blots for ZO-1, occluding, claudin-1 and GAPDH 

(A). Changes of ZO-1 (B), occludin (C) and claudin-1(D) protein expression levels in the ileum after 60 mg/kg LPS exposure for 12 h followed 

by 14 days of 0.025%, 0.05% and 0.1% DHM treatment. Values are expressed as the mean ± SD for each group (n = 5). *p < 0.05 and **p < 0.01 

represented all groups compared with the control group. #p < 0.05 and ##p < 0.01 represented all groups compared with the LPS group.
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pain, diarrhoea and blood in the stool were noted in 

intestinal tissue damage [24, 25]. LPS is released in 

large quantities via bacteria or drugs mediated bacte-

rial lysis and triggers inflammatory response [26]. After 

LPS is recognized and bound by TLR4, NF-κB signal-

ling pathway is activated. �is pathway leads to inflam-

matory responses and apoptosis [27].

In addition to the general properties of flavonoids, 

DHM has protective effects on liver ischemia–reperfu-

sion injury, chemical liver injury and alcoholic liver dis-

eases [28]. DHM regulates inflammation, proliferation, 

and down-regulation of target genes associated with 

TNF-α-induced apoptosis by inhibiting NF-κB activation 

[29]. �erefore, this study explored the effects of DHM 

on E. coli LPS induced ileum injury, oxidative stress, bar-

rier dysfunction, apoptosis and NLRP3 inflammasome 

activation. It provided a vision for maintaining the intes-

tinal health of livestock and poultry and resisting the 

toxic effects of LPS.

�e activity of DAO in intestinal mucosa and blood 

putatively reflects the maturity and integrity of intestinal 

epithelial cells [30]. MDA, SOD, GSH and GSH-Px were 

the common indicators to reflect oxidative stress [31, 32]. 

�is study showed that DHM reduced plasma DAO and 

caused increased ileum DAO activity. Moreover, DHM 

could resist oxidative stress caused by LPS, reduce MDA 

content and increase SOD and GSH-Px activity and GSH 

reserve in ileum. Similarly, both histopathological exami-

nation and scanning electron microscopic observations 

showed that different doses of DHM provided different 

degrees of protection against LPS-induced damage, of 

which 0.05% and 0.1% DHM had better protective effects.

Tight junctions (TJs) plays a key role in preventing 

the translocation of pathogenic antigens or other harm-

ful substances from intestinal tract into circulating sys-

tem [33]. Occludin, ZO-1 and claudin-1 were members 

of transmembrane proteins, peripheral membrane pro-

teins and backbone proteins of TJs, respectively, which 

Figure 5 0.025%, 0.05% and 0.1% DHM inhibited LPS-induced ileum apoptosis. Changes of bcl-2 (A), bax (B) and caspase-3 (C) mRNA 

expression levels in ileum after 60 mg/kg LPS exposure for 12 h followed by 14 days of 0.025%, 0.05% and 0.1% DHM treatment. Original blots for 

bcl-2, bax, caspase-3 and GAPDH (D). Changes of bcl-2 (E), bax (F) and caspase-3 (G) protein expression levels in the ileum after 60 mg/kg LPS 

exposure for 12 h followed by 14 days of 0.025%, 0.05% and 0.1% DHM treatment. Values are expressed as the mean ± SD for each group (n = 5). 

*p < 0.05 and **p < 0.01 represented all groups compared with the control group. #p < 0.05 and ##p < 0.01 represented all groups compared with the 

LPS group.
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together maintained TJs integrity and intestinal barrier 

function [34, 35]. Some studies have shown that the sig-

nificant down-regulation of TJs protein expression is the 

main reason for intestinal barrier dysfunction [6, 36]. 

LPS significantly decreased expression of TJs molecules 

ZO-1, occluding and claudin-1 and induced barrier dys-

function in this experiment. In contrast, DHM main-

tained the barrier function by increasing the expression 

of these proteins. Interestingly, the protein expression 

levels of occludin and claudin-1 were slightly increased 

by the action of 0.1% DHM alone (shown in Figures 4B 

and D), suggesting that DHM may maintain the integ-

rity of intestinal barrier function by upregulating their 

expression. Similarly, histology evaluations and scanning 

electron microscope observations confirmed that after 

0.1% DHM alone treatment, the ileum villi were arranged 

more neatly and the surface was appeared flatter.

Caspase-3 is a crucial apoptotic protease in the final 

common pathway of the apoptotic cell death [37]. Bcl-2 

and bax are important regulators of apoptosis in which 

bcl-2 can suppress apoptosis and bax can promote apop-

tosis [38]. �is study observed a significant decrease in 

the expression of the anti-apoptotic protein bcl-2 and 

increase in caspase-3 and the pro-apoptotic protein bax 

after exposure to LPS. In contrast, DHM treatment sig-

nificantly inhibited LPS-induced apoptosis by upregu-

lating the expression of bcl-2 and reducing bax and 

caspase-3. Additionally, when challenged with certain 

pathogen-associated molecular patterns, NLRP3 inflam-

masome promotes the activation of caspase-1 which 

releases proinflammatory cytokines, such as IL-1β and 

IL-18, and pyroptosis [7]. �is study showed that DHM 

significantly inhibited the expression of caspase-1, down-

regulated the expression and contents of IL-1β and IL-18 

and seemed to reduce the activation of pyroptosis.

In addition, DHM intervention significantly inhibites 

the LPS-induced expression of proinflammatory media-

tors, such as IL-6, IL-8 and TNF-α. �is anti-inflamma-

tory effect of DHM is further supported by our findings 

that DHM attenuates LPS-induced TLR4 expression and 

NF-κB activation. In the present study, DHM alone treat-

ment significantly up-regulated the expression of IL-10, 

suggesting that the anti-inflammatory effect of DHM 

can be attributed to the promotion of anti-inflammatory 

cytokines production in the ileum. Moreover, no signifi-

cant changes in apoptosis and NLRP3 inflammasome 

related factors caused by DHM alone treatment indicated 

that DHM indirectly related to these factors. Studies 

have demonstrated that NF-κB participates in caspase3-

mediated apoptosis and regulates the expression of genes 

involved in anti-apoptosis, bcl-2, and pro-apoptosis, bax 

[39, 40]. At the same time, NF-κB can also transcribe and 

induce NLRP3 inflammasome resulting in the occur-

rence of cell death [41]. Based on the results of our study, 

DHM reduced the NLRP3 inflammasome related factors 

and inflammation by inhibiting TLR4/NF-κB signalling 

Figure 6 0.025%, 0.05% and 0.1% DHM inhibited in�ammasome formation and pyroptosis activation in LPS-induced ileum injury. 

Changes of NLRP3 (A), caspase-1 (B) IL-1β (C) and IL-18 (D) mRNA expression levels and IL-1β (E) and IL-18 (F) contents in ileum after 60 mg/kg LPS 

exposure for 12 h followed by 14 days of 0.025%, 0.05% and 0.1% DHM treatment. Values are expressed as the mean ± SD for each group (n = 5). 

*p < 0.05 and **p < 0.01 represented all groups compared with the control group. #p < 0.05 and ##p < 0.01 represented all groups compared with the 

LPS group.
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pathway and suppressed the apoptosis by up-regulating 

bcl-2 expression and down-regulating bax and caspase-3 

expression.

In conclusion, the present study demonstrated that 

E. coli LPS induced ileum mucosal damage, oxidative 

stress, barrier dysfunction, and the activation of NLRP3 

inflammasome and TLR4/NF-κB signalling pathway. In 

contrast, DHM attenuated ileum mucosal damage and 

oxidative stress, maintained the barrier function, and 

inhibited NLRP3 inflammasome and TLR4/NF-κB sig-

nalling pathway activation. Additionally, suppression of 

apoptosis and promotion of anti-inflammatory factors 

and tight junction proteins were involved in the protec-

tive effects of DHM in ileum injury induced by E. coli 

LPS.
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