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Abstract In light of their easy processing, light weight and mechanical flexibility, ferroelectric 
molecular crystal with large spontaneous polarization (Ps) is highly desired for many advanced applications. Herein, we report the first theoretical study of two-dimensional 
(2D) ferroelectric molecular crystals via ab initio calculations. Specifically, we show that 
diisopropylammonium bromide (DIPAB) based 2D ferroelectric monolayer molecular 
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crystal with large in-plane Ps of ∼1.5 × 10−6 μC cm−1 can be achieved by slicing the bulk DIPAB along a specific plane while keeping the space group unchanged. The important roles of hydrogen bonds are also identified. Ab initio molecular dynamics simulations 
indicate that, with the support of a graphene substrate, the ferroelectric order of 2D 
DIPAB monolayer can be retained at room temperature. Lastly, we show that several 
other diisopropylammonium halide molecular crystals can also be used to achieve 2D 
all-organic ferroelectric monolayer singular molecular crystal with large in-plane Ps. 

Ferroelectricity, the spontaneous polarization (Ps) that can be reversed by external field, has been widely exploited in many applications, includ-ing nonvolatile memory devices, field-effect transistors and sensors.1 

Thus far, fabricated ferroelectric materials are predominately three-di-
mensional (3D). Recently, increasing efforts have been devoted to the de-
velopment of 2D ferroelectric materials, in light of their novel properties 
that may not be seen in the bulk counterparts.2 Achieving ferroelectricity 
will increase the variety of functional 2D materials, thereby substantially 
broadening their application scopes. Although such an effort in develop-
ing 2D ferroelectric materials can be traced back to about two decades 
ago,3 major advances have been achieved only recently4 due to the sup-
pressed Ps as well as greatly weakened domain stability by the markedly enhanced depolarization field in 2D ferroelectrics thin film.1a,3a,5 

Theoretical studies have claimed that monolayers of group-V ele-
ments (e.g., P, As, Sb, and Bi) or their binary compounds (e.g., SbN and 
BiP) or their group-IV monochalcogenide analogues can be ferroelec-
tric.6 Robust in-plane ferroelectricity has been experimentally confirmed 
in the atomically thin SnTe (an example of group-IV monochalcogen-
ides).7 Meanwhile, 2D ferroelectric CuInP2S6 with a Curie temperature 
(Tc) of ∼320 K has also been reported.8 Intrinsic room-temperature fer-
roelectricity has been theoretically predicated in 2D In2Se3 and other 
III2−VI3 van der Waals (vdW) monolayers.9 In particular, 2D ferroelectric 
In2Se3 was confirmed by experiment very recently.10 Direct observation of 
robust out-of-plane Ps in films of BiFeO3 with one-unit-cell thickness has 
been reported.11 Several theoretical studies even suggested existence of 
multiferroicity, i.e., the coexistence and coupling between ferroelectric-
ity and/or ferroelasticity/ferromagnetism, in 2D materials.6a,f,12 The organic Rochelle salt molecular crystal reported in 1921 is the first recognized ferroelectric material.13 Molecular ferroelectrics show 
some distinct advantages, compared to conventional inorganic ferroelec-
trics, including light weight, abundant chemical diversity, mechanical 
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flexibility and low cost. However, the predominant development in the field of ferroelectrics for nearly one century still centers on the inor-
ganic materials, such as BaTiO3 (BTO) and lead zirconate titanate (PZT).14 

This is due in part to the fact that most molecular ferroelectrics possess 
much smaller PS and lower Tc than their inorganic counterparts. Only 
until recently, breakthroughs in making molecular ferroelectric crystals 
with large Ps (up to 23 μC cm−2) and high Tc (>300 K) that are compara-
ble to those of BTO, have been made. Well-known examples include cro-
conic acid, supramolecular complexes, diisopropylammonium bromide 
(DIPAB), hybrid perovskites and organic perovskites.15 

One previously proposed strategy to make 2D molecular ferro-
electrics is to functionalize 2D inorganic backbone with polar organic 
group.16 However, to our knowledge, 2D all-organic ferroelectric molec-
ular crystal has not been reported in the literature. In this communica-
tion, we show ab initio computation evidence of a 2D DIPAB-based mo-
lecular monolayer with large in-plane Ps. The all-organic monolayer can be in principle achieved from slicing bulk DIPAB along a specific plane. 

The ab initio computations were performed using the density func-
tional theory (DFT) methods, implemented in the Vienna Ab initio Sim-ulation Package (VASP 5.4).17 The general gradient approximation (GGA) 
type Perdew, Burke, and Ernzerhof (PBE) functional was employed.18 The electron−ion interaction was described by the projected augmented 
wave (PAW) method.19 The dispersion interaction was accounted for by 
using the Grimme’s DFT-D3 method.20 The ferroelectric polarization was 
evaluated by using the Berry phase scheme.21 More computational de-
tails are given in the Supporting Information (SI). 

The optimized structure of the ferroelectric phase of bulk DIPAB crys-
tal is shown in Figure 1. The symmetry analysis indicates that the space 
group of the ferroelectric phase of bulk DIPAB is the polar P21, consis-
tent with the experimental measurement.15d The computed Ps of DIPAB 
is 22.1 μC cm−2, in good agreement with the experimental value of 23 
μC cm−2, which strongly validates our computation scheme.15h The ferro-electric-paraelectric transition mechanism is experimentally identified to be the order−disorder type. Upon elevating the temperature above 
Tc (∼426 K), the −NH2− groups and adjacent atoms in DIPAB molecules randomly occupy two possible mirror positions with 50% to 50% prob-ability (Figure S1). This order−disorder transition turns the DIPAB mo-
lecular crystal into a centrosymmetric structure with the space group of 
P21/m, which cancels the Ps and yields the paraelectric phase. 
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By closely inspecting the structure of the ferroelectric DIPAB crys-
tal, we note that strong hydrogen-bonds are formed between Br and H atoms and are aligned in an armchair chain of −[NH]−H···Br···H−[NH]− along the b axis (see Figure 1d). This is due to that each −[NH2]+ group can provide two equivalent H atoms with H−N−H bond angle of ∼107° and each Br atom can be shared by the −[NH2]+ groups of two adjacent 
DIPAB molecules. Such hydrogen-bonded chains can align the DIPAB 
molecules to pack in an ordered manner, thereby giving rise to the Ps 

by aligning the intrinsic dipole moment of DIPAB molecules along the 
b axis. The polarization can be reversed/switched by transforming the 
armchair chain of hydrogen bonds into a mirror shape. 

Figure 1. (a) Optimized crystal structure of ferroelectric phase of bulk DIPAB. The 
bold arrow denotes the Ps. Panels b, c and d show the atomic views of ferroelectric 
phase of DIPAB along a, b and c axis, respectively. The white, gray, blue and orange balls 
represent the H, C, N and Br atoms, respectively. The red dashed lines in panel d de-
note the hydrogen bonds between H and Br atoms. Figure 2. An illustration of slicing 
the bulk DIPAB crystal into monolayers along the (a) (001), (b) (100) and (c) (010) 
planes, respectively.   
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One possible way to achieve 2D DIPAB ferroelectric monolayer is to slice the bulk DIPAB molecular crystal along specific plane while keep 
the hydrogen-bonded chains intact. As seen from Figure 2, slicing the 
bulk DIPAB molecular crystal into 2D monolayers along the (001) and 
(100) planes can well retain the hydrogen-bonded chains. While, slicing 
the bulk DIPAB along the (010) plane will break the hydrogen-bonded 
chains in the vertical direction, which is energetically more challeng-
ing. Moreover, symmetry analysis indicates that the 2D (001) and (100) 
DIPAB monolayers belong to the same polar P21 space group as their 3D 
ferroelectric matrix. Thus, large switchable in-plane Ps is also expected 
in both slicing cases. On the other hand, the symmetry of the 2D (010) 
monolayer turns into a trivial P1 space group. Although the polariza-
tion along the out-of-plane direction is still expected due to the intrinsic 

Figure 2. An illustration of slicing the bulk DIPAB crystal into monolayers along the 
(a) (001), (b) (100) and (c) (010) planes, respectively.
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dipole moment of DIPAB molecules, such a polarization can be greatly lowered because of the vertical depolarization field caused by the an-
ion-rich side and the opposite cation-rich side. 

It is shown that both 2D DIPAB (001) and (100) monolayers exhibit 
large Ps around ∼1.5 × 10−6 μC cm−1, respectively (Table 1), which are 
comparable to that of a previously predicated 2D inorganic ferroelectric 
monolayer of SnSe6a,e or −CH2F polar group functionalized germanene.16d 
In contrast, the Ps of 2D DIPAB (010) monolayer is much less than those 
of 2D (001) and (100) monolayers, consistent with our discussion above.   

Because the 2D DIPAB monolayer may be potentially obtained by slic-ing the bulk DIPAB along specific plane, we estimate the cleavage energy of 2D DIPAB monolayer to confirm feasibility of getting a monolayer 
DIPAB via either exfoliation or mechanical peeling. The cleavage energy (ΔE) of a 2D DIPAB monolayer along a specific plane can be calculated based on the equation of ΔE = (Elayer-d − Ebulk)/2S, where the Elayer-d is the 
energy of DIPAB monolayer separated with a distance d from neighbor-
ing monolayers, and Ebulk is the energy of bulk DIPAB (d = 0 Å), the 2S 
is the surface area of the two fractured sections from both sides of the 
DIPAB monolayer. 

As shown in Figure 3, the cleavage energy required to slice the DIPAB 
along (010) plane is the largest one (0.17 J m−2) due to the break of hy-drogen-bonded chains. The cleavage energy is ∼0.08 and ∼0.10 J m−2 for 
slicing DIPAB along (001) and (100) plane, respectively. The (001) case 
is slightly advantage compared to the (100) case. This can be under-
stood that bulk DIPAB along (001) plane has a smaller gap between ad-
jacent layers, giving rise to a clear section (Figure 1a). While a small part 
of molecules across the (100) section in a staggered way (Figure 1d), 
which slightly enhances the vdW interaction between molecules. Note 
that cleavage energy of slicing bulk DIPAB into 2D monolayers is only about 1/4 to 1/5 of that of slicing graphite into graphene (∼0.36 J m−2).22  

Table 1. Calculated Lattice Parameters and Ps of 2D DIPAB (001), (100) and (010) 
Monolayers, Respectively 

Monolayer  (001)  (100)  (010) 

a (Å)  7.45  7.54  7.51 
b (Å)  7.70  .37  7.34 
γ (deg)  90.00  90.00  115.97 
Ps (10−6 μC cm−1)  1.53  1.54  0.20  
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This indicates that slicing the bulk DIPAB into 2D monolayers along spe-cific plane is highly feasible. Because of the lowest cleavage energy re-
quired, the 2D DIPAB (001) monolayer is expected to be the most easily 
cleaved, under the well-controlled experimental conditions. 

Note that a chemically inert substrate or an interface, such as gra-
phene or hexagonal boron nitride, is often used to support or stabilize 
monolayer molecular crystals,23 as well as 2D inorganic ferroelectric ma-
terials.7 Here, we also consider this possibility. To this end, we performed 
an ab initio molecular dynamics (AIMD) simulation in the constant tem-perature (300 K) and pressure (0 GPa) (NPT) ensemble to examine ther-
mal stability of 2D DIPAB (001) and (100) monolayer molecular crys-
tals supported on a graphene substrate (see part II of SI for details). As 
shown in Figure 4, the orderly packed molecular crystal structure of 2D DIPAB (001) monolayer is maintained after 5 ps AIMD simulation 
(time step: 1 fs), suggesting thermal stability of graphene-supported a 
2D DIPAB (001) monolayer at room temperature. Similar stability be-
havior is seen for the 2D DIPAB (100) monolayer (Figure S2). 

Figure 3. Cleavage energy estimation regarding the slicing of DIPAB along (001), (100) 
and (010) plane, respectively, by increasing the interlayer distances refer to the bulk 
DIPAB (0 Å). Figure 4. (a) Top and (b) side views of snapshot of the 2D DIPAB (001) monolayer supported on a graphene sheet, after 5 ps of AIMD simulation in the NPT 
ensemble. Note that the substrate in panel a is removed for clarity.    
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Lastly, we also consider two other crystalline systems of DIPAC and 
DIPAI, by replacing the Br− ion with either Cl− or I− ion. As the ion radius 
follows the order of Cl− < Br− < I−, the DIPAC exhibits a smaller lattice con-
stant while DIPAI exhibits a larger lattice constant than that of DIPAB 
(see Table S1, Figures S3 and S4). The calculated Ps values are 23.3 and 20.9 μC cm−2, respectively, for the bulk DIPAC and DIPAI.15h The cleavage energies for DIPAC or DIPAI along specific planes show the same order as DIPAB, i.e., (001) < (100) < (010) (Figures S5 and S6). The cleavage energies required to break the (010) hydrogen-bonded chains are 0.18 
and 0.14 J m−2 for the DIPAC and DIPAI, respectively. Notably, the (010) 
cleavage energy follows the order of DIPAC > DIPAB > DIPAI. This trend 
seems correlated with the strength order of hydrogen bond between 
H atom and halogen atom, or the electronegativity order of Cl > Br > I. 
The calculated Ps of 2D (001) and (100) monolayers of DIPAC and DIPAI are 1.61, 1.54, 1.47 and 1.61 × 10−6 μC cm−1 (Table S2), respectively, very 
close to those of the 2D DIPAB (001) and (100) monolayer. 

In conclusion, we show ab initio computation evidence of DIPAB 
based 2D ferroelectric molecular crystal that can be achieved by slicing the bulk DIPAB along specific plane. The 2D DIPAB ferroelectric mono-
layer can entail high in-plane Ps of ∼1.5 × 10−6 μC cm−1, comparable to 
that of 2D inorganic ferroelectrics materials previously reported. The es-timated low cleave energy of 2D DIPAB monolayers along specific plane 
suggest the feasibility of slicing bulk DIPAB into 2D monolayer. Ab initio 

Figure 4. (a) Top and (b) side views of snapshot of the 2D DIPAB (001) monolayer sup-ported on a graphene sheet, after 5 ps of AIMD simulation in the NPT ensemble. Note 
that the substrate in panel a is removed for clarity.
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molecular dynamics simulations suggest the room-temperature ther-
mal stability of ferroelectric order of graphene-supported 2D DIPAB 
monolayer. Other diisopropylammonium halide molecular crystals also 
show similar physical features. We hope the predicted novel properties 
of monolayer DIPAB can motivate future experimental efforts in the syn-
thesis of 2D all-organic ferroelectric molecular crystals.   

◘  ◘  ◘  ◘

Supporting Information — Computational details (PDF) — follows the References.       
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I. Computational Details 

Density functional theory (DFT) computations were performed by employing the projected 

augmented wave (PAW) potentials1 and the exchange-correlation functional based on the Perdew-

Burke-Ernzerhof (PBE)2 functional within the generalized gradient approximation (GGA), all 

implemented in the Vienna ab initio simulation package (VASP 5.4).3 The periodic replica of 2D 

DIPAB monolayer molecular crystal along z direction were separated by a vacuum space of > 15 

Å to avoid potential artificial interaction among periodic images. For the optimization of lattice 

and atomic position, a 6 × 6 × 1 and 6 × 6 × 6 Monkhorst-Pack k-point meshes were used for the 

Brillouin zone integration sampling of 2D monolayer and for the 3D bulk of 

diisopropylammonium bromide (DIPAB), diisopropylammonium chloride (DIPAC) and 

diisopropylammonium iodide (DIPAI) molecular crystals, respectively. A denser 9 × 9 × 1 and 9 

× 9 × 9  meshes were used for the calculation of electronic polarization of 2D and 3D systems, 

respectively.4 The initial structures of DIPAB and DIPAC were taken from the experimental 

reports.5 All structures were relaxed until the residual force component acting on each atom was 

less than 0.01 eV/Å. The convergence criteria for electronic relaxation was 10−5 eV. The energy 

cutoff for the plane-wave basis sets was set to be 400 eV. After careful comparison, we found that 

the optimized lattice parameters of bulk DIPAB crystal by using the PBE + vdW-D3 scheme6  are 

comparable to or even better than those by using the meta-GGA type SCAN functional7 + rVV108 

vdW density functional scheme,9 as the results are in good agreement (≤ 3%) with the experimental 

results (Table S1). Due to much more computationally expensive SCAN + rVV10 method, here, 

only the PBE+D3 scheme was adopted for all computations. 

It is known that the Berry-phase method can introduce the polarization indetermination quantum 

(PIQ) through multi-modulo of neR/V due to the periodic boundary condition– where e is the 

electron charge, R is a translation vector of the real-space lattice, V is the unit-cell volume and n 

is an integer. To obtain well-defined polarization, the PIQ (the n) has to be determined. In the 

present work, we determine the PIQ in the Berry-phase calculation of DIPAB molecular crystal 

by simply applying a point charge model for such an ionic system to roughly estimate the 

polarization. We carefully choose the unit cell of bulk DIPAB crystal so that the dipole moments 

will not be broken up by the cell boundaries (based on the experimental structure5a). The negative 

charge centers are assumed at the Br– ions while the positive charge centers are assumed at the 
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geometric center of two H atoms of the –[NH2]+ groups. We can estimate the polarization by using 

the equation of P = Σ q*r, where q is the charge (e for the –[NH2]+ group and –e for the Br– ion) 

and r is the position vector of each charge center. The point charge model gives us an estimated 

polarization Ps of 20.77 µC cm–2 for the bulk DIPAB molecular crystal. This benchmark test value 

can help to determine the PIQ number n in the Berry-phase calculation. The Berry-phase method 

finally gives a value of Ps of 22.1 µC cm–2, which is in good agreement with the experimental 

value of 23 µC cm–2.5a It is worth noting that the point charge model can give a reasonable 

estimation of Ps for the DIPAB molecular crystal. The difference in the computed Ps between point 

charge model and the Berry phase method can be attributed to the over-localized point charge 

model and neglected electron density distribution. Such a point charge model is also used to 

determine the PIQ number n in 2D monolayer DIPAB molecular crystal. 

 

Table S1.Calculated lattice parameters of bulk DIPAB, DIPAC and DIPAI crystals, 
based on the PBE + D3 and SCAN + rVV10 schemes, and the corresponding 
experimental (Exp.) values. 
 

 

 

  

Lattice  a (Å) b (Å) c (Å) α (º) β (º) γ (º) 

DIPAB 

PBE+D3 7.55 7.79 7.62 90.00 116.54 90.00 

SCAN+rVV10 7.49 7.75 7.56 90.00 116.65 90.00 

Exp.7 7.766 8.034 7.836 90.000 116.346 90.000 

DIPAC 

PBE+D3 7.31 7.62 7.50 90.00 115.34 90.00 

Exp.8 7.674 7.945 7.766 90.000 114.950 90.000 

DIPAI 

PBE+D3 7.74 7.93 7.78 90.000 117.13 90.00 
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II. Details for Ab Initio Molecular Dynamics Simulations. 

Ab initio molecular dynamics (AIMD) simulations of 2D DIPAB monolayer molecular crystal 

were performed in the constant temperature (300 K) and pressure (0 GPa) (NPT) ensemble with 

the GGA-PBE functional and the D3 dispersion correction scheme, as implemented in the VASP 

5.4. Both the atomic and lattice degrees of freedom were allowed to relax in the AIMD simulations, 

in which the Langevin thermostat10 and the Parrinello-Rahman dynamics11 were adopted. A 3 × 3 

supercell (432 atoms) of 2D DIPAB (001) or (100) monolayer was placed on a 5√3 × 9 rectangle 

graphene substrate (180 atoms) to ensure the lattice mismatch less than 5%. The graphene substrate 

was fixed in our AIMD simulation. To achieve the thermal equilibrium, a 5 ps AIMD simulation 

with time step of 1fs was performed for each system.  
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Figure S1. (a) Optimized structure of paraelectric bulk DIPAB crystal. The purple plane denotes 
the mirror plane of the paraelectric phase with space group P21/m. (b), (c) and (d) show the atomic 
views of paraelectric phase of DIPAB along a, b and c axis, respectively. The white, grey, blue 
and orange balls represent the H, C, N and Br atoms, respectively. 
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Figure S2. (a) Top and (b) side views of snapshots of the 2D DIPAB (100) monolayer after 5 ps 
of AIMD simulation (time step: 1 fs) in the NPT ensemble, where the temperature is controlled at 
300 K and pressure is controlled at 0 GPa. Note that the substrate in top view is removed for clarity. 
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Figure S3. (a) Optimized structure of ferroelectric bulk DIPAC crystal. (b), (c) and (d) show the 
atomic views of ferroelectric phase of DIPAC along a, b and c axis, respectively. The white, grey, 
blue and green balls represent the H, C, N and Cl atoms, respectively. 
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Figure S4. (a) Optimized structure of ferroelectric bulk DIPAI crystal. (b), (c) and (d) show the 
atomic views of the ferroelectric phase of DIPAI along a, b and c axis, respectively. The white, 
grey, blue and purple balls represent the H, C, N and I atoms, respectively. 
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Figure S5. Cleavage energy estimation on the mechanical peeling of DIPAC along the (001), (100) 
and (010) planes, respectively, versus the interlayer distance. The reference starting point (0 Å) 
corresponds to the perfect ferroelectric bulk DIPAC crystal. 
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Figure S6. Cleavage energy estimation on the mechanical peeling of DIPAI along the (001), (100) 
and (010) plane, respectively, by increasing the interlayer distances. The reference starting point 
(0 Å) corresponds to the perfect ferroelectric bulk DIPAI crystal. 
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Table S2. Calculated lattice parameters and spontaneous polarization 
(Ps) of 2D DIPAC (001) and (100) monolayers, respectively. 

Å Å γ º µC cm–1
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Figure S7. Computed electronic structure of 3D bulk DIPAB molecular crystal. The Fermi level 
is set to be zero (red dash line). 
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Figure S8. Computed electronic structure of 2D (001) monolayer DIPAB molecular crystal. The 
Fermi level is set to be zero (red dash line). 
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