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Abstract

We report a new measurement of dijet production by color-singlet ex-
change in pp collisions at /s = 1.8 TeV at the Fermilab Tevatron, and
present results on the dependence of the cross section on jet transverse
energy and pseudorapidity separation between the jets. In a sample of
events with two jets of transverse energy E%Et > 20 GeV, pseudorapidity
in the range 1.8 < |7’*| < 3.5, and g7, < 0, we find that a fraction
R =1.13+0.12(stat) + 0.11(syst)% have a pseudorapidity gap within |p| < 1
between the jets that can be attributed to color-singlet exchange. The frac-

tion R shows no significant dependence on E%Et or on the pseudorapidity

separation between the jets.

PACS number(s): 13.87.Fh, 12.38.Qk, 13.85.Hd
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In high energy hadron collisions jets are usually produced through the exchange of a
quark or gluon between partons of the interacting hadrons. Because of the net color flow
associated with such an exchange, particles are commonly produced in the rapidity [1]
region between the jets. However, jets may also be produced by a colorless exchange, such
as strongly interacting color-singlet or electroweak boson (v, W, Z°) exchange, resulting in
events with a “rapidity gap” between the jets, namely a region of rapidity devoid of particles.
In a simple model of a two-gluon color-singlet exchange, the ratio of two-jet (dijet) events
with a rapidity gap to all two-jet events produced in pp collisions at /s = 1.8 TeV was
estimated to be R ~ 1072 [2,3] independent of rapidity gap width or jet transverse energy
(E%Et); for electroweak exchange, R is expected to be ~ 10™* [3]. The production rate and
characteristics of dijet events with a rapidity gap between jets can be used to probe the
nature of the colorless exchange process.

The ratio R has been measured in pp collisions at /s = 1.8 TeV by the CDF [4] and
D@ [5] Collaborations at the Fermilab Tevatron, and in photoproduction at a center of
mass energy of ~ 150 GeV by the ZEUS Collaboration [6] at HERA. The reported values
are Ropp = [0.85+0.12(stat) 5 5(syst)]% for dijets with leading (highest Er) jet Er > 40
GeV and |Ag| > 1.5, Rpygy = [1.07 £ 0.10(stat)55(syst)] % for EX* > 30 GeV, |pi| > 2
and m7n; < 0, and Rypyyg ~ 7% for jets of Er > 6 GeV photoproduced at HERA. The
magnitude of the measured ratio suggests that the dijet system is produced through strongly
interacting color-singlet exchange. In all cases, the background rapidity gap fraction due
to normal color-octet exchange was estimated by using Monte Carlo simulations and/or
fits to the particle multiplicity distribution in the rapidity region between the jets. In this
letter, we present a new measurement of R at the Tevatron based on a more direct method
of background subtraction with different, and smaller, systematic uncertainties. We also
present a study of some characteristics of a sample of rapidity gap events, such as third-jet
activity and dependence of R on E'%Et and on the rapidity interval between the jets.

The CDF detector is described in detail elsewhere [7]. The detector components relevant

to this study are the Central Tracking Chamber (CTC), which detects charged particles,



and the calorimeters, which detect both charged and neutral particles. The CTC tracking
efficiency varies from ~ 60% for Py = 300 MeV to over 95% for Pr > 400 MeV within
In| < 1.2, falls monotonically beyond |5| = 1.2, and approaches zero at || ~ 1.8. The
calorimeters have projective tower geometry and cover the regions || < 1.1 (central), 1.1 <
In| < 2.4 (plug), and 2.2 < |p| < 4.2 (forward). The An x A¢ tower dimensions are 0.1 x 15°
for the central and 0.1 x 5° for the plug and forward calorimeters. For this analysis, a
“charged particle” is a reconstructed 3-dimensional track with Pr > 300 MeV. The “tower
multiplicity” is defined as the number of calorimeter towers with measured E; > 200 MeV,
which corresponds approximately to true £ > 300 MeV.

The data sample consists of events collected in a run of total integrated luminosity
2.2 pb™!, using a trigger requiring two high E7r jets at |p| > 1.4. Because of the high
instantaneous luminosity during data collection, a large fraction of the events had one or
more additional (“minimum bias”) events superimposed on the dijet event that caused the
trigger. Since an overlay of minimum bias events could obscure a rapidity gap, we selected
a sub-sample of events with no more than one primary reconstructed vertex (Nyeptex < 1)
within £60 cm of the nominal interaction point. About 16% of the events passed this
selection cut. After the jet Er, defined as the sum of the calorimeter E; within an 5 — ¢
cone of radius 0.7, was corrected for non-linearities in the calorimeter response and for energy
lost in uninstrumented regions, the two leading jets were required to have E'%Et > 20 GeV and
1.8 < |p| < 3.5. No requirement was imposed on additional jets in an event. The remaining
dijet sample consists of 10200 events with the leading jets on opposite 7-sides (m1m2 < 0),
and 30352 events with both leading jets on the same 7-side (7172 > 0). The same-side dijet
event sample was used for the measurement of the production rate of diffractive dijet events
presented in [8]. In this analysis, these events are used as a “control” sample in evaluating
the color-octet contibution to events with a rapidity gap between jets in the opposite-side
sample, as discussed below.

The distributions of the leading jet E7 and 7, E'gpl) and 7, and of the differences AE; =

E'gpl) — E%Z) and A¢ = ¢ — ¢, for the two leading jets are shown in Fig. 1. The structure at



|n| ~ 2.2 —2.4is caused by the lower calorimetric response at the interface between different
detector components. The two jets tend to be balanced both in E7 and ¢. About 85% of
the events contain a third jet of E(T?’) > 5 GeV. The E'gpg) and 73 distributions of the third
jet are also shown in Fig. 1. The corresponding distributions of the same-side dijet sample
are very similar [8].

Rapidity gaps between jets can occur naturally in color-octet exchange dijet events by
fluctuations of the underlying soft particle multiplicity. We first search for rapidity gaps
due to color-singlet exchange by analyzing the event track multiplicity, Ni;ack, in the region
In| < 1.0. Figure 2(a) shows the multiplicity of tracks with Pr > 300 MeV within || < 1.0
for opposite-side (solid) and within || < 1.2 for same-side (dashed) dijet events. The 7-
range of the same-side distribution was chosen to yield the same mean multiplicity as the
opposite-side distribution, and the normalization was scaled down by a factor C = 0.34,
which is the ratio of opposite-side to same-side events with Ny, > 0. Figure 2(c) shows
the bin-by-bin asymmetry (difference over sum) of the two distributions shown in Fig. 2(a).
The asymmetry is consistent with zero in all bins except in the zero-multiplicity bin. From
a detailed analysis of the same-side data sample [8], we estimate that the contribution from
single diffractive events in the Ny, = 0 bin of the same-side sample is negligibly small.
Thus, we use the number of events in the Ny, = 0 bin of the same-side distribution
as the expectation for opposite-side events due to color-octet exchange and attribute the
excess above this number to color-singlet exchange. The fractional excess over all events is
R, = [2.06 £ 0.22(stat) £+ 0.09(syst)]%, where the systematic error reflects the uncertainty
due to background subtraction and the subscript “1” refers to the Nyerex < 1 requirement.

A similar analysis was performed using the multiplicity of calorimeter towers with mea-
sured Ey > 200 MeV within || < 1.0 for opposite-side and || < 1.25 for same-side
events. In Figs. 2(b,d), a clear excess is seen in opposite-side over same-side events in
the bins Nyower=0, 1 and 2. The combined excess in these three bins yields a fraction of
[1.92 4+ 0.20( stat)]|%; incorporating the fourth bin yields [2.21 + 0.25(stat)|%. These values

are consistent with the result obtained from the track multiplicity analysis. The spilling of



the rapidity gap signal into non-zero tower-multiplicity bins is mainly due to calorimeter
noise, with some additional spreading resulting presumably from 7’s entering the gap region
from the decay of parent neutral mesons produced within the jet regions. Because of the
larger systematic uncertainties involved in the tower multiplicity analysis, we use the track-
ing result, Ry, and correct it for the Nycex < 1 efficiency, as discussed below, to obtain the
fraction, R, for the total opposite-side event sample.

The Nyeriex < 1 selection cut, which is used to reject events due to multiple interac-
tions, also rejects single interaction dijet events with more than one reconstructed vertex.
Extra vertices in a dijet event are due to confusion in reconstruction caused by the high
particle multiplicity. The ratio R; must therefore be corrected for the efficiency (fraction
of events retained) of this cut, which affects primarily the “non-gap” events, which have
higher multiplicity in the central region. The efliciency for non-gap events was measured
to be 0.55 + 0.05(syst) by comparing the fraction of single vertex dijet events to all dijet
events in a given run with the fraction expected from the instantaneous luminosity in the
same time period. The assigned uncertainty is due to the variations found as a function of

instantaneous luminosity. For “gap” events, the vertex selection efficiency was found to be

1.0079-03. Correcting R; for the vertex selection efficiency we obtain
R =[1.13 £ 0.12(stat) + 0.11(syst)|%

This value is in good agreement with the published values of CDF [4] and D@ [5] and, as
stated previously, its magnitude indicates that the dijet system is produced by strongly-
interacting color-singlet exchange.

Figure 3 shows the correlation of towers versus tracks for opposite-side dijet events with
Nirack < 5 and Nyower < 21 within |p| < 1.0. The bins with Nyaek = 0 and Nyower = 0,1 or
2, in which the color-singlet exchange signal is expected to be concentrated, contain a total
of 221 “gap” events. From an analysis based on a two-dimensional extrapolation from the
nearby bins, we estimate that these 221 events contain 25% color-octet exchange background.

For this reason, and as a check for possible detector biases, we present distributions of



kinematical variables of the gap events along with corresponding distributions of a “control”
sample consisting of events with 1, 2 or 3 tracks and up to 6 towers. Figure 4 shows
normalized ratios of gap and control sample events to all events as a function of the average
E7 of the two leading jets, the E7 of the third jet, and the 5-separation of the two leading jets.
In each case, the total number of gap or control sample events is normalized to the number of
“all events”. The gap and control samples behave similarly. The colorless exchange fraction
is fairly independent of jet E7 and A7, decreasing somewhat at large Ag.

In the two-gluon model of Ref. [2], the gap to non-gap ratio is predicted to be independent
of jet Er and An. Calculations [9] using a model [10] based on the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) [11] resummation of a color-singlet gluon ladder exchange also predict a
“basically flat” [12] distribution of R versus An. Our results are in general agreement with
these predictions, but further investigations with higher statistics are needed before firm
conclusions can be drawn about the nature of the color-singlet exchange process.

In conclusion, we report a new measurement of the fraction of dijet events with a rapidity
gap between jets in pp collisions at /s = 1.8 TeV and present the results of a study of
rapidity-gap event characteristics. We find that for jets of E'%Et > 20 GeV, pseudorapidity
1.8 < |p| < 3.5 and 7172 < 0, the fraction of events that can be attributed to color-singlet
exchange is 1.13 + 0.12(stat) +0.11(syst)%, in good agreement with previous measurements
[4,5]. The rapidity-gap fraction is fairly independent of jet E; within 25 < Ep < 55 GeV
and of the rapidity interval between the jets within 4 < An < 6, decreasing somewhat at
the largest values of Ag.
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FIGURES

FIG. 1. (top) Leading jet transverse energy and pseudorapidity (the structure at || ~ 2.2 —2.4
is instrumental); (middle) difference between the transverse energies and azimuthal angles of the

two leading jets; (bottom) third jet (E(Tg) > 5 GeV) transverse energy and pseudorapidity.

FIG. 2. Multiplicity distributions (a) for tracks with Py > 300 MeV and (b) for calorimeter
towers with measured Er > 200 MeV in the regions |n| < 1.0 for opposite-side (1772 < 0) dijet
events (solid lines), and |p| < 1.2 (|n| < 1.25) for tracks (towers) of same-side (7172 > 0) dijet
events (dashed lines); (c,d) The bin-by-bin asymmetry, defined as the ratio of the difference over

the sum of the opposite-side and same-side multiplicity distributions of (a) and (b).

FIG. 3. Track versus tower multiplicity distribution for events in the Nycex < 1 opposite-side
dijet sample with Niae < 5 and Nyower < 21 within |g| < 1.0. The bins with zero tracks and 0, 1

or 2 towers contain an excess of events above the expectation from an extrapolation from the bins

with Nipac > 1. This excess is attributed to events from color-singlet exchange.

FIG. 4. Normalized (to be unity on average) ratios of gap (solid points) and control sample
events (open circles) over all events versus: (a) the average E7 of the two leading jets, (b) the Er

of the third jet, and (c) half the 5 separation between the two leading jets.
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FIG. 1. (top) Leading jet transverse energy and pseudorapidity (the structure at || ~ 2.2 —2.4

is instrumental); (middle) difference between the transverse energies and azimuthal angles of the

two leading jets; (bottom) third jet (E(T?’) > 5 GeV) transverse energy and pseudorapidity.
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FIG. 2. Multiplicity distributions (a) for tracks with Py > 300 MeV and (b) for calorimeter
towers with measured Er > 200 MeV in the regions |n| < 1.0 for opposite-side (1772 < 0) dijet
events (solid lines), and |p| < 1.2 (|n| < 1.25) for tracks (towers) of same-side (7172 > 0) dijet

events (dashed lines); (c,d) The bin-by-bin asymmetry, defined as the ratio of the difference over
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FIG. 3. Track versus tower multiplicity distribution for events in the Nycex < 1 opposite-side
dijet sample with Niae < 5 and Nyower < 20 within |g| < 1.0. The bins with zero tracks and 0, 1

or 2 towers contain an excess of events above the expectation from an extrapolation from the bins

with Nipac > 1. This excess is attributed to events from color-singlet exchange.
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FIG. 4. Normalized (to be unity on average) ratios of gap (solid points) and control sample
events (open circles) over all events versus: (a) the average E7 of the two leading jets, (b) the Er

of the third jet, and (c) half the 5 separation between the two leading jets.
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