
DIKNN: An Itinerary-based KNN Query Processing Algorithm for Mobile

Sensor Networks

Shan-Hung Wu†‡♯ Kun-Ta Chuang† Chung-Min Chen‡ Ming-Syan Chen†

†
Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC

‡
Telcordia Applied Research Center, Taipei, Taiwan, ROC

♯
Industrial Technology Research Institute, Hsinchu,Taiwan, ROC

{brandonwu@arbor.ee.ntu.edu.tw, doug@arbor.ee.ntu.edu.tw, chungmin@research.telcordia.com, mschen@cc.ee.ntu.edu.tw}

Abstract

Current approaches to K Nearest Neighbor (KNN)

search in mobile sensor networks require certain kind of

indexing support. This index could be either a centralized

spatial index or an in-network data structure that is dis-

tributed over the sensor nodes. Creation and maintenance

of these index structures, to reflect the network dynamics

due to sensor node mobility, may result in long query re-

sponse time and low battery efficiency, thus limiting their

practical use. In this paper, we propose a maintenance-free,

itinerary-based approach called Density-aware Itinerary

KNN query processing (DIKNN). The DIKNN divides the

search area into multiple cone-shape areas centered at the

query point. It then performs a query dissemination and

response collection itinerary in each of the cone-shape ar-

eas in parallel. The design of the DIKNN scheme also

takes into account challenging issues such as the the dy-

namic adjustment of the search radius (in terms of number

of hops) according to spatial irregularity or mobility of sen-

sor nodes. The simulation results show that DIKNN yields

substantially better performance and scalability over previ-

ous work, both as k increases and as the sensor node mo-

bility increases. It outperforms the second runner with up

to 50% saving in energy consumption and up to 40% reduc-

tion in query response time, while rendering the same level

of query result accuracy.

1 Introduction

The problem of efficient K Nearest Neighbors (KNN)

search in a spatial or multi-dimensional database has been

a major research topic in the literature [11, 21, 22, 29, 30].

Traditional KNN query processing techniques assume lo-

cation data are available in a centralized database and fo-

cus on improving the index performance [10, 11, 12, 23].

In new applications where data sources are geographically

spreaded (e.g., sensor networks [3, 15], wireless ad-hoc net-

works [2], Intelligent Transportation Systems (ITS) [26],

and battlefield surveillance systems [25]), pulling data from

a large number of data sources (e.g., sensor nodes, lap-

tops or vehicles, etc.) is generally infeasible due to high

energy consumption, high communication cost, or long la-

tency [4, 31]. Recently, a number of studies have explored

"in-network" KNN query processing techniques for sen-

sor networks [7, 21, 22, 29, 30]. These techniques rely

on certain in-network infrastructure—index or data struc-

tures (e.g., clustered indices or spanning trees) distributed

among the sensor nodes—to select KNN candidates, prop-

agate queries, and aggregate the result.

Although these in-network approaches avoid the over-

head of periodical data gathering from a large number of

sources, still they are posed some drawbacks if to be de-

ployed in large-scale mobile sensor networks. First, the

distributed indexing structures may become too costly to

maintain when the number of nodes increases, due to the

communication overhead among the nodes. Second, cer-

tain techniques [7, 21] require some nodes to act as su-

pernodes, for example, as clusterheads or data aggregation

points. These supernodes may easily turn into a bottleneck

of the system. Furthermore, current in-network based KNN

techniques [7, 21, 22, 29, 30] have all assumed a fixed net-

work where sensor nodes are stationary and never fail. This

assumption makes them inept for a network environment

where sensor nodes are mobile and packet loss is the norm

rather than an exception [4, 14, 16], as the maintenance

overhead of the in-network indexing structure could be con-

siderable.

In this paper, we propose a Density-aware Itinerary KNN

query processing (DIKNN) for mobile sensor networks that

does not rely on any sort of in-network indexing structure.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 456

The key idea of DIKNN is to let sensor nodes collect partial

results and propagate the query along a well-devised, con-

ceptual itinerary structure. No physical maintenance of this

itinerary structure is required. The DIKNN divides (con-

ceptually) a circular search boundary centered at the query

point q into multiple cone-shape areas. It then performs

concurrent itinerary traversal, based on the itinerary struc-

ture, to the nodes in each of these areas. The traversal length

is adjusted dynamically according to the node distribution

information it collects as the traversal proceeds.

To the best of our knowledge, DIKNN is the first KNN

processing technique for mobile sensor networks that does

not rely on any in-network indexing structure support: no

constant maintenance or fixed data aggregation point is

needed. Because of this, DIKNN is able to avoid potential

bottleneck and survive rapid changes of network topology.

It also reduces query response time (or latency for short) by

combining data collection with query propagation in a well

devised itinerary.

Several challenging issues arise in the design of DIKNN,

such as estimate of search radius and design of efficient

itinerary. We investigate and present solutions to each of

these issues. The simulation results also show that DIKNN

yields substantially better performance scalability over pre-

vious work, both as k increases and as the sensor node mo-

bility increases. In particular, it outperforms the second run-

ner [29, 30] with up to 50% saving in energy consumption

and up to 40% reduction in query response time, while ren-

dering the same level of query result accuracy.

The rest of the paper is organized as follows. Section

2 reviews the previous studies on KNN query processing

and related work to DIKNN. Section 3 presents the design

of DIKNN. In Section 4, algorithms determining the KNN

boundary are introduced. We also discuss interactions be-

tween DIKNN and network environments. Section 5 re-

ports our performance evaluation based on simulation re-

sults. Section 6 concludes the paper.

2 Related Work

Previous work on KNN or window (range) query

processing in sensor networks can be generally classified

into two categories: the centralized and in-network ap-

proach, as shown in Figure 1. The centralized approach per-

forms the queries in a centralized database containing loca-

tions of all the sensor nodes [10, 11, 12, 23]. These location

data are usually maintained in an R-tree variant index mod-

ified to handle mobile objects. In contrast, the in-network

approach does not rely on a centralized index, instead, it

propagates the query directly among the sensor nodes in the

network and collects relevant data to form the final result

[5, 6, 7, 21, 22, 29, 30]. This approach is favored when

maintenance of a centralized index is expensive or may im-

Centralized In-network

Infrastructure-based
Infrastructure-free

(no existing solution)

KNN query

processing

Figure 1. Categorization of previous studies.

pose high energy consumption on the sensor nodes. And

it happens, for example, when the locations of the nodes

change frequently, or when there is no direct wireless link

between the nodes and the centralized index and thus sub-

stantial message routing/relay overhead among the nodes

will incur.

The in-network approach can be further divided into two

sub-categories: those relying on certain sort of in-network

infrastructure and those that are infrastructure free. The

term "infrastructure" refers to a data structure distributed

among the sensor nodes that is created, either once on-

the-fly or to be updated constantly, to support the query

processing. Works of [7, 21, 22, 29, 30] are representa-

tives of this kind targeting at KNN queries for fixed sen-

sor networks. Maintenance of the in-network data struc-

ture could become costly prohibitive, if not infeasible, when

the sensor nodes become mobile. To eliminate this prob-

lem, an infrastructure-free method was proposed in [31] but

it applies to window query only. Recently, a number of

works have addressed continuous query using in-network

techniques [5, 6, 11, 23]. These methods are good for con-

stant monitoring of queries of long-standing interest but do

not suit well for on-demand queries (one time only) that is

the focus of our work.

We will briefly describe the Peer-tree [7], DSI [21], and

KPT [29, 30] as they are most relevant to our work. They

will also be used in a competitive performance evaluation

with our proposed method. The Peer-tree [7] and DSI [21]

decentralize the index structures (e.g., R-tree [10]) to dis-

tributed environments. As shown in Figure 2(a), a network

is partitioned into a hierarchy of Minimum Bounding Rec-

tangles (MBRs). Each MBR covers a geographical region

including all sensor nodes located inside. An MBR in the

higher hierarchy (say, region A in Figure 2(a)) covers all the

regions of the sub-MBRs in the child hierarchy (regions B,

C, and D in Figure 2(a)). One specific node is designated as

a clusterhead (i.e., distributed index) in each MBR. A clus-

terhead knows locations and identities (IDs) of all the other

nodes within the MBR. It also knows locations and IDs of

its parent and child clusterheads. To handle an NN query,

the source node s routes the query message to its cluster-

head (node E in Figure 2(a)). Upon receiving the message,

1-4244-0803-2/07/$20.00 ©2007 IEEE. 457

A
B

C

D

E

F
H

G

s

q

A

B C D

E F G H

q

(a) (b)

Figure 2. Related work: the decentralized R-tree

approaches and KPT.

the clusterhead forwards it upward in the hierarchy until that

the query point q is covered by the MBR of a clusterhead (in

this case, node A in Figure 2(a)). The clusterhead then for-

ward the message downward in the hierarchy looking for

a child clusterhead (node G in Figure 2(a)) that contains q

with minimal MBR. After that, location of NN of q can be

determined and the NN is informed of the query message

by unicast. Supporting of KNN queries is more complicated

that needs multiple clusterheads to find and to propagate the

query message in different MBRs. Since every query mes-

sage goes through the clusterheads, the major problem of

these approaches is that index nodes become system bot-

tlenecks easily. Such approaches are vulnerable to index

failure. In addition, there are many unnecessary hops from

s to the KNN nodes because each query message is routed

along the hierarchy of clusterheads, as depicted by the ar-

rows in Figure 2(a). Such overhead becomes significant in

the large-scale sensor networks where the distance between

clusterheads is long.

To address such issues, the KPT [29, 30] is proposed to

handle the KNN query without fixed indexing. This work

assumes each sensor node is location-aware. After a query

is issued from s, it is routed to the sensor node, named home

node, closest to q. To avoid flooding the entire network, a

conservative boundary containing at least k candidates is

estimated by the home node. Multiple trees rooted at the

home node are then constructed to propagate queries and to

aggregate data, as shown in Figure 2(b). Upon aggregating

data at the home node, it determines correct KNNs (by sort-

ing locations) and transmits their query responses back to

the source s. KPT assumes an optimal network condition

where each node is stationary. It encounters two serious

drawbacks in presence of mobility. First, constructing or

maintaining the trees while sensor nodes are moving incur

considerable overhead. Partially collected data may be for-

warded again and again between new and old tree nodes.

Secondly, the conservative (large) boundary grows quadrat-

ically as k increases, which leads to high energy consump-

tion and long latency. Although such a boundary is expected

to cover at least k nodes in the worst case, sensor nodes

may either move in or move out the boundary during tree

construction and data aggregation. KPT returns poor query

result accuracy.

In light of the above problems, we propose DIKNN,

which to our best knowledge, is the first infrastructure-free

KNN search method for mobile sensor networks. Neverthe-

less, the concept of itinerary traversal is inspired by a num-

ber of research efforts in unicast routing [24], data fusion

[28], network surveillance [9], and window query process-

ing [31]. Our main contribution lies on the origination of

a sophisticated itinerary structure (taking into account the

important factors such as itinerary width, data collection

scheme, adaptive search boundary estimation, forwarding

heuristics, etc) that offers both high efficiency and high flex-

ibility in parallel query dissemination and processing.

3 Design of DIKNN

In this section, we first give a formal definition of our

problem. Then we describe the three execution phases in

DIKNN.. Design of node traversal itinerary/sub-itinerary

are detailed thereafter.

3.1 Definitions and Network Model

In this paper, we focus on snapshot queries, which expect

to obtain the query result only once during their lifetimes.

The KNN problem is defined as follows:

Definition 1 (k nearest neighbor problem) Given a set of

sensor nodes S, a geographical location q (i.e., query

point), and valid time T , find a subset S′ of S with k nodes

(i.e., S′ ⊆ S, |S′| = k) such that at time T , ∀n1 ∈ S′, n2 ∈
S − S′ : DIST (n1, q) ≤ DIST (n2, q), where DIST de-

notes the Euclidean distance function.

Ideally, we would like to obtain the exact result set S′ com-

prising the k nearest neighbors of g at the given time T .

However, due to node mobility and efficiency considera-

tions [4, 31], we may accept an approximate result set.

Query result accuracy is measured by the percentage ratio

the correct KNNs (at valid time T) are returned. Depend-

ing on different application needs, the valid time T can be

defined either as the time the query is issued (snapshot re-

sults are better) or the time the result set is received (newer

results are better). In our evaluation, measurements of ac-

curacy according to these two types of valid time are called

pre-accuracy and post-accuracy respectively.

We assume the network is under ad-hoc mode so that

multi-hops between nodes are required to relay messages.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 458

We assume that all sensor nodes can store data locally and

answer the queries individually. In addition, the moving

speed and directions of sensor nodes are arbitrary. Each

sensor node is aware of its geo-location. Beacons with

locations and identities (IDs) are periodically broadcasted.

Every sensor node also maintains a table enrolling IDs and

locations of neighbor nodes falling within its radio range,

r. Note this network scenario has been assumed in [31] and

complies with IEEE standard 802.15.4 [3], the Low Rate

Wireless Personal Area Network (LR-WPAN), to achieve

maximum compatibility.

3.2 Execution Phases

The execution of DIKNN consists of three phases:

1). Routing phase: A query message Q is geographically

routed from the sink node s to the nearest neighbor (i.e., the
home node np, where p denotes the number of hops along

the routing path) around the query point q. Information of

the sensor network is gathered along with the routing pro-

cedure without the aid of any infrastructure.

2). KNN boundary estimation phase: Upon receiving Q
and the collected information from the previous phase, the

home node estimates a searching boundary, named KNN

boundary, with radius R by using an efficient (specifically,

linear time) KNNB algorithm. The estimated boundary is

not fixed and will be dynamically adjusted (by the other

nodes) as long as additional information is available in the

next phase.

3). Query dissemination phase: The home node dissemi-

nates the query message to all sensor nodes inside the KNN

boundary. Dissemination follows parallel itinerary struc-

tures, and query responses are aggregated along with each

itinerary traversal. At the end of dissemination, the aggre-

gated query responses are directly routed back to the sink in

a bundle.

Next, we explore the main phase of DIKNN, the query

dissemination phase, by assuming that KNN boundary is

given. The routing and KNN boundary estimation phases

will be visited later.

3.3 Itinerary-Based Query Dissemination

Once the KNN boundary (and its radius R) is deter-

mined, the home node np enters the query dissemination

phase aiming to inform all the sensor nodes inside the

boundary of the query message Q, and to collect their re-

sponses. As the infrastructure-based technique leads to

considerable overhead in dynamic environments, we turn

to explore an infrastructure-free technique. One naive

infrastructure-free solution is to flood the query within the

boundary. Each node inside the boundary, upon receiv-

ing Q, routes its response back to s end-to-end and then

s

q

w

Itinerary

(a) (b)

D-node

Q-node
np

Figure 3. Itinerary-based query dissemination.

broadcasts Q again. This approach, however, is extremely

resource-consuming and has poor scalability because of the

excessive number of independent routing paths from sensor

nodes to s [31]. In addition, serious degree of collision and
hidden terminal problem may also occur during the wire-

less transmission. To address these issues, DIKNN adopts

an itinerary-based dissemination technique, which provides

robust and effective query processing under transient net-

work topologies.

The concept of itinerary query dissemination [24, 28, 9,

31] can be best understood by the illustration in Figure 3(a).

A set of Query nodes (Q-nodes) in the KNN boundary are

chosen for query dissemination. Upon receiving a query, a

Q-node broadcasts a probe message that includes informa-

tion about Q, R, and the itinerary (e.g., itinerary width and

the number of sectors, which will be discussed later). When

hearing the probe message, the neighbor nodes that are

qualified to reply the query, called Data nodes (D-nodes),

report their query response back to the Q-node. After ob-

taining the data from all D-nodes as well as the partial result

received from the previous Q-node, the current Q-node se-

lects the next Q-node based on the itinerary information,

and forwards this new partial query result to the selected

next Q-node. This procedure repeats until the query tra-

verses the entire KNN boundary along a pre-defined (say,

spiral) itinerary structure, as shown in Figure 3(b). Re-

sponses of all nodes held by the last Q-node are then re-

turned back to the sink node s in a single message.

Primitives of itinerary-based solution. Some useful

primitives have been proposed in [31] to ensure correct-

ness of itinerary execution. At first, the itinerary width

w, as shown in Figure 3(b), specifies how close between

segments of an itinerary. Obviously, a small w results in

denser itinerary traversal which ensures the KNN bound-

ary to be fully covered by the traversal. On the other hand,

the small w incurs unnecessary transmission and long la-

tency because of the increased itinerary length. It is shown

that letting w =
√
3r/2 yields full coverage with minimal

itinerary length, a good balance on query accuracy and en-

ergy efficiency. Secondly, data collection from multiple D-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 459

q

S1S2

S3 S4

w

init-

adj-

peri-

Si

(a) (b)

q

w

w

w/2

q'

Figure 4. Concurrent query dissemination.

nodes needs to be better scheduled to avoid collisions and

delays. The contention-based data collection scheme1 can

be utilized to prevent serious contention and to sustain net-

work dynamics. In this scheme, a reference line emanating

form the current Q-node is included in the probe message.

The probe message also contains a precedence list indicat-

ing the reply order of D-nodes. Upon receipt of the probe

message, each D-node sets a timer with timer = (α
2π)im,

where α is the angle formed by the specified reference line

and the line connecting the current Q-node and the current

D-node, i is the received precedence, and m is a time unit

for the Q-node waiting for each D-node to report its data.

A D-node does not respond to the Q-node until its timer

expires. Discussions on the other issues such as fault toler-

ance, and traveling in low-connectivity areas with itinerary

voids (i.e., situations when a Q-node cannot find the next

Q-node for query forwarding) can be found in [17, 31]. �

Clearly, the performance of dissemination solely de-

pends on the structure of an itinerary, along which Q is

propagated and responses are forwarded. Query latency

can be significantly improved by considering the parallel

dissemination. Nevertheless, concurrent dissemination may

increase the likelihood of channel contention and collision

at the data link and physical layers, causing degradation

of network throughput. Parallelization should be exercised

cautiously to avoid the overhead, and should satisfy the fol-

lowing criteria. First, the number of routing paths leading

back to the sink s, after dissemination, should be control-

lably small to prevent high energy consumption in large-

scale sensor networks. Second, as concurrent itinerary tra-

versals may incur channel interference in wireless transmis-

sion, the chance they meet should be as small as possible.

Unfortunately, the only study [31] that mentions paralleliza-

tion cannot scale well to high concurrency level due to its

assumption upon the query range and itinerary structure.

Concurrent itinerary structures. To fulfill the above

1As suggested by our simulation result, the data collection scheme in-

troduced in this paper combines both the token ring based and contention

based scheme to achieve higher performance. For detailed discussion on

these two schemes, please refer [31].

criteria, a KNN boundary is partitioned into multiple sec-

tors, as shown in Figure 4(a). In each sector, the query

is propagated along a sub-itinerary. The distance between

sub-itineraries in adjacent sectors is w to ensure full cover-

age of the KNN boundary when w ≤ √
3r/2. Each sub-

itinerary consists of three segments: the init-, adj- and peri-

segments, as illustrated in Figure 4(b). The init-segment

is a portion of sub-itinerary which has a distance less than

w/2 to either side of a sector’s border. This segment is

formed by a straight line to get rid of the interference as

soon as possible. Specifically, let S be the number of sec-

tors and linit be the length of the init-segment. Then we

have sin(θ/2) = sin(π/S) = (w/2)/linit, which gives

linit = min{w/(2 sin(π/S)), R}. Let q′ denote the end

of the init-segment. The peri-segments are portions of the

sub-itinerary which together form perimeters of concen-

tric circles centered at q′. Let lperi be the total length

of the peri-segments, then lperi =
∑⌊(R−linit)/w⌋

i=1
2π(iw)

S ,

where 2π(iw)/S denotes the perimeter length of the ith

concentric circle, and ⌊(R− linit)/w⌋ denotes the number

peri-segments. The adj-segments are portions of the sub-

itinerary that are parallel to either side of the sector’s bor-

der. It is clear that each adj-segment has the same length of

w. The total length of the adj-segments ladj therefore equals
ladj = ⌊(R− linit)/w⌋w.

Ideally, two sub-itineraries in adjacent sectors interfere

with each other only at their init-segments. An important

observation is that even if these two sub-itineraries are tra-

versed in different speeds, extra interference can only oc-

cur at adj-segments, which are relatively short as compared

to peri-segments. Such a cone-shape itinerary structure is

highly adaptive to various degrees of parallelism. At an

extreme, the shape of a sub-itinerary degenerates into a

straight line if S is large enough. This allows the best ef-

ficiency when no interference can ever occur in the sensor

network (e.g., when Contention Free Period (CFP) is exer-

cised in LR-WPAN).

4 KNN Boundary Estimation

To precisely estimate the KNN boundary without the aid

of supernodes containing long-term monitored (and cached)

information is a challenging issue because decision must be

made with very limited knowledge that can only be obtained

from query propagation. DIKNN adopts a simple, but effec-

tive, algorithm named KNNB tailored for sensor nodes with

limited ability.

4.1 Routing Phase

In the routing phase, a query Q is routed from sink node

s to the nearest neighbor np (i.e., the home node) around the

query point q, where p denotes the number of hops along

1-4244-0803-2/07/$20.00 ©2007 IEEE. 460

(a) (b)

Ai

Ai+1

ni

ni+1

np

q

Ap
Ap-1

Ai

ni ni+1

Figure 5. KNN boundary estimation.

the routing path. Any geographic face routing protocol [17,

19] is compatible with DIKNN. Ensuring correctness and

efficiency of these routing protocols in the sensor network

is an orthogonal issue to DIKNN, which is studied in the

literature [18, 20].

By utilizing the geographic face routing protocol, infor-

mation collection is performed between hops. An additional

list L is sent along with Q. On the ith (1 ≤ i < p)
hop to the destination, the corresponding node (i.e., the

sensor node triggering the ith hop) appends its own loca-

tion loci and the number of newly encountered neighbors

enci to L. To avoid duplicate information, enci can sim-

ply be counted by checking the number of neighbors hav-

ing a distance larger than r from the corresponding node of

the (i − 1)th hop. Note that in comparison with the pre-

vious studies [5, 7, 21, 6], such an information gathering

technique consumes very few extra recourses since merely

nodes around the route is involved.

4.2 Linear KNNB Algorithm

Upon receipt of the query message and the list L from

the previous phase, nq starts estimating the KNN boundary

by determining its radius lengthR. As described previously,
too large a boundary (as the one given by KPT [29]) incurs

great energy consumption and long latency. In contrast, a

small boundary loses the query accuracy. Determination of

R must balance two conflicting factors: (1) increasing R to

enclose correct KNN points as many as possible; (2) de-

creasing R to reduce the energy consumption.

In most of the previous work, sensor nodes are thought to

be uniformly distributed in the network and sometimes even

to form a grid. However, the recent investigation [8] argues

that spatial irregularity happens in majority of the cases. Re-

garding to the scarce resource that prohibits complex analy-

sis of the sensor distribution, for now we content ourselves

that KNNB adopts a weaker assumption: sensor nodes are

uniformly distributed only within the optimal KNN bound-

ary (i.e., the boundary containing exactly k nearest neigh-

bors). A novel and cost-efficient solution will be discussed

later to remit the bias of estimation.

Let R̃ be the radius of the optimal KNN boundary and

ni be the corresponding node of the ith hop in the routing

path which locates inside the optimal KNN boundary. We

have lociq ≤ R̃. Consider a circle centered at q with radius
lociq. From assumption of uniform distribution, we can es-

timate the number of nodes est_k locating inside the circle

by using the equation:

D ≈ est_k

π
(
lociq

)2 ≈
∑p

j=i L.encj

Area covered from ni to np

, (1)

where D denotes density of nodes (nodes/m2) within the

optimal KNN boundary. Thus we have

est_k ≈
π(lociq)

2
∑p

j=i L.encj

Area covered from ni to np

,

while leaving the coverage area (the long-dotted line shown

in Figure 5(b)) along the routing path from ni to np unde-

termined. Since correct evaluation of this area is too com-

plicated to be executed on a sensor node given its limited

computing power, we need an easy approximation. Observ-

ing that a sensor node will always find the next hop within

its radio coverage, thus advance of a single hop must be less

than r. As depicted in Figure 5(a), the coverage area be-

tween two sensor nodes of successive hops is large enough

to be approximated by using a rectangle Ai. Putting rectan-

gles Ai, Ai+1, ..., Ap−1 from ni to np−1 together, the sym-

metric property shown by the arrows in Figure 5(b) helps

the doubly-counted regions (heavily-shaded in Figure 5(b))

to complement the opposite areas against the routing path.

Thus summing these rectangles with an additional semicir-

cular regionAp yields an easily calculated but close approx-

imation to the coverage area from ni to np.

From the above, we now have est_k. Back to our prob-

lem of estimating the KNN boundary, applying Eq. (1) we

have

D =
k

πR̃2
≈ est_k

π
(
lociq

)2 .

While R̃ is unknown, approaching est_k to k yields R =
lociq ≈ R̃. Algorithm 1 below shows the detail steps of

KNNB.

The list L is indexed from one. In lines 4-13, KNNB

iteratively approaches est_k to k by examining L from the

tail. The function DIST (a, b) at line 5 simply returns the

distance between the given two positions a and b, and the

function APPROX(a, b) at line 11 gives the approxima-

tive rectangle by returning r ·DIST (a, b). The complexity

of KNNB is O(n), where n is the number of hops in the

routing path.

Note the experimental results reveal that radius lengths

returned by KNNB are generally 1/
√
kπ of the previous

1-4244-0803-2/07/$20.00 ©2007 IEEE. 461

Algorithm 1 The KNNB algorithm: KNNB(L, q, r, k)

Require: information list L gathered from the first phase

of DIKNN, the query point q, radius r of a sensor node,
and number k of nearest neighbors to be found.

Ensure: returning radius length R of the KNN boundary.

1: i = L.length− 1;
2: neighbors = L.enci;
3: approx_area = πr2/2;
4: while i ≥ 0 do
5: d =DIST(L.loci, q);
6: est_k = πd2(neighbors/approx_area);
7: if est_k ≥ k then

8: return d;
9: end if

10: neighbors += L.enci−1;
11: approx_area += APPROX(L.loci, L.loci−1);
12: i = i− 1;
13: end while

(a) (b)

?

S1S2

S3 S4

S1S2

S3

S4

S6

S7

S8

S5

j
j-1

j-2

Figure 6. Dynamic searchboundary adjustment ac-

cording to the spatial irregularity.

work KPT [29, 30] under the same level of accuracy. An ex-

ample finding for five nearest neighbors (k = 5) is depicted
in Figure 2(b). The shaded KNN boundary determined by

KNNB is much smaller than the long-dotted one estimated

by KPT.

4.3 Interaction with Environments

Next, we discuss some mechanisms adopted by DIKNN

to face spatial irregularity and mobility in real-world sensor

environments.

Spatial Irregularity. The KNNB algorithm estimates

the KNN boundary by assuming that sensor nodes are uni-

formly distributed around the query point q. This assump-

tion is valid for a small region due to the spatial locality;

however, when k is large, the sensor nodes tend to irregu-

larly spread and their spatial density becomes unpredictable

[8]. This effect, called spatial irregularity, may degrade the

query accuracy. To handle this problem, we let the Q-nodes

in different sectors adjust its own R during dissemination.

Specifically, we inverse the direction of peri-segments in

every interseptal sector. In such a configuration, the face-to-

face adj-segments of different sub-itineraries together form

rendezvous (as shown by the shaded area in Figure 6(a)), in

which two Q-nodes from adjacent sub-itineraries can, with

little cost of latency, meet with each other and exchange the

latest statistics (e.g., total number of nodes explored so far).

By repeating this procedure, the jth rendezvous in a sub-

itinerary can obtain information from 2, 4, ..., min{2j, S}
nearby sectors at the jth, (j − 1)th, ..., 1st level of the peri-
segments respectively (as depicted by the shaded area in

Figure 6(b)). Each sector, say S1 in Figure 6(b), can then

infer how many nodes around q are explored so far (totally)
and dynamically adjust R to stop or to continue the dis-

semination. With rendezvous, itinerary traversals can stop

immediately if k nearest neighbors are discovered before

reaching the perimeter of the KNN boundary, or continue if

fewer nodes are found. Note a simple bilinear interpolation

can be used to complement the not-yet-exchanged informa-

tion from the other sectors (as shown by the small arrows in

Figure 6(b)) when S1 is doing the inference.
Mobility Concern. Mobility of sensor nodes degrades

query accuracy because nodes may move in or move out

the KNN boundary during dissemination. For applications

to which discovering correct KNNs are the most important

concern, support of flexible expansion of R to include more

candidates is critical. One naive approach is to modify the

KNNB algorithm so that R′ = c · R is returned, where R′

denotes the adjusted radius of the KNN boundary and c,
c > 1, denotes a constant. Obviously, the larger c, the more

correct KNNs to be guaranteed by R′; however, more en-

ergy is consumed as well. This makes it very difficult for an

application to determine a good value of c feeding its own

need. In DIKNN, we address this issue in the query dis-

semination phase, where the last Q-node is obligated to de-

termine how much farther a sub-itinerary should continue.

Specifically, each application is allowed to specify an at-

tribute, named assurance gain g, 0 ≤ g ≤ 1, at the time

when a KNN query is issued. By acquiring the moving

speed of each sensor node along with data collection, each

sub-itinerary can maintain a record µ specifying the fastest

moving speed traced so far. Upon receiving this record, the

last Q-node is able to measure the maximum shift of sensor

nodes by (ts − te)µ, where ts and te denote timestamps for

the start and end of the query dissemination respectively.

Thus, an appropriate expansion of R can be obtained by

R′ = R+ g(te − ts)µ.

5 Performance Evaluation

In this section, we explore performance of DIKNN in

terms of query accuracy, query latency, and energy effi-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 462

ciency. The simulation environment is developed based on

ns-2 [1]. We study the impact of varying application speci-

fications and network conditions, such as k, the query load,
the mobility of sensor nodes, and the packet loss rate.

5.1 Settings and Performance Metrics

We simulate the LR-WPAN environment at 2.4GHz by
disabling the RTS/CTS mechanism and setting the channel

rate 250 kbps. The geo-routing protocol GPSR [17] and

DIKNN are implemented above the ns-2 802.11MAC layer.

Mechanisms (i.e., rendezvous and mobility assurance) cop-

ing with network dynamics are enabled. Initially, the sensor

nodes are randomly distributed in the simulated field. The

mobility of sensor nodes is modeled by the random way-

point (RWP) model, in which each sensor node selects an

arbitrary destination and moves to the destination at a ran-

dom speed ranging from 0 to µmax. Upon arrival, the node
selects a new destination and walks again. In our configu-

ration, the mobility of sensor nodes is controlled by varying

the maximum moving speed µmax. By default, µmax = 10

m/s. There are 200 sensor nodes in the simulation field,

and each with radio range 20m [3, 13]. By fixing the num-

ber of sensor nodes and varying the simulated field from

200× 200 to 115× 115m2, the node degree (i.e., neighbor

count of each sensor node) ranges from 5 to 20. The time

unit for data collection is 0.018 s, and the query response

size of each sensor node is 10 bytes. Every simulation run

lasts for 100 seconds of simulated time. The performances

are obtained by averaging the result over 20 simulation runs.

The following summarizes the default parameters.

Parameters Value Parameters Value

Node number 200 r 20 m

Network size 115×115 m2 Sector number 8

Node degree 20 µmax 10 m/s

Response size 10 bytes Beacon interval 0.5 s

Channel rate 250 kbps RTS/CTS off

m 0.018 s Query interval 4 s

Rendezvous enabled Assurance gain 0.1

To evaluate the simulation result, three performance met-

rics are employed:

Query Latency: The elapsed time (in second) between the

time a query is issued by the sink and the time the query

responses are returned.

Energy Consumption: Amount of energy (in Joule) con-
sumed in a simulation run.

Query Accuracy: As discussed in Section 3.1, the pre-

accuracy and post-accuracy are measured separately in our

experiments.

We focus on comparison between DIKNN and the in-

network executions: the naive approaches (KPT) [29, 30]

(a) (b)

Figure 7. Visualization of DIKNNexecution over the

real-world sensor distributions [27].

and the Peer-tree approach [7]. Note the KNN boundary es-

timation techniques proposed in [29, 30] lead to quadratic

growth of the boundary area as k increases. The query ex-

ecution can easily flood the entire network. For example,

when k = 20 and MHD = 15, the returned radius length

R = 20 · 15 = 300 exceeds twice the field edge, resulting

that the boundary area is six times larger than the network

size. For fair comparisons, we simulate KPT in which the

KNNB algorithm is adopted for boundary estimation and

a spanning tree is constructed for data collection after the

boundary is determined. In Peer-tree, a global index struc-

ture, R-tree [10], is built to preserve the Minimum Bound-

ing Rectangle (MBR) hierarchy as described in Section 2.

To avoid a skew indexing, we partition the network into a

5×5 grid. Every cell represents anMBRwithin which a sta-

tionary clusterhead is pre-located and its address is known

by every sensor node. Each sensor node periodically sends a

notification of existence to its closest clusterhead. If a clus-

terhead does not hear from a child after a period of time, it

deletes the node and updates the MBR record.

5.2 Observations

Before studying the DIKNN performance, we discuss

some observations from our simulation result that are wor-

thy to be mentioned. We apply DIKNN to some large-scale

sensor distributions obtained from [27]. The trace format of

ns-2 is modified so that the query execution can be visual-

ized. Figure 7 demonstrates a scenario for finding k = 500

caribous around an arbitrary query point. The concurrent

itinerary traversals are illustrated in Figure 7(a), where suc-

cessive hops between Q-nodes are connected with lines. As

pointed out by the arrows, we can see that the itinerary

void appears occasionally. When a void is encountered,

the itinerary traversal switches to the perimeter forward-

ing mode, which bypasses the vacancy by walking into the

nearby segments or sectors. During the perimeter forward-

ing, some sensor nodes, as surrounded by the rectangle in

Figure 7(b), may not be informed of the query message be-

1-4244-0803-2/07/$20.00 ©2007 IEEE. 463

20 40 60 80 100
0

1

2

3

4

5

K

Q
u
e
ry
 L
a
te
n
c
y
 (
s
)

20 40 60 80 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

K

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
J
)

20 40 60 80 100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

K

P
o
s
t-
a
c
c
u
ra
c
y

20 40 60 80 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K

P
re
-a
c
c
u
ra
c
y

DIKNN

KPT+KNNB

PeerTree

DIKNN

KPT+KNNB

PeerTree

DIKNN

KPT+KNNB

PeerTree

DIKNN

KPT+KNNB

PeerTree

(a) (b)

(c) (d)

Figure 8. Scalability of DIKNN.

cause they are isolated within a sector. Such a phenomenon

can, empirically, cause 0.2% to 1% degradation of both the

post- and pre-query accuracy. Fortunately, from mobility of

sensor nodes, this effect can be alleviated by issuing a se-

rious of queries within a time interval. Our demonstration

verifies the applicability of DIKNN to real deployments.

5.3 Scalability

The application specified k directly affects the number

of nodes involved with the query. In this section, we inves-

tigate the impact of k by varying k from 20 to 100. The

parameter µmax is set to 10 m/s, and the query interval is

exponentially distributed with mean 4 s. Figure 8(a) shows
that both Peer-tree and KPT grow faster than DIKNN as k
increases. This is due to the overhead of Peer-tree to route

query messages between different levels of the R-tree hi-

erarchy that incurs many unnecessary node visits, and the

overhead of KPT to construct and maintain the spanning

tree during data collection. Such overhead also leads to the

higher energy consumption, as shown in Figure 8(b). KPT

consumes more energy than the others when k = 100 due

to a serious degree of collision and large retransmissions

of data in the tree. Figure 8(c) shows that Peer-tree has the

post-accuracy below average since the clusterheads may not

obtain the most current position of each sensor node. The

post-accuracy of KPT also degrades when k is large because
of the long latency in data collection. The pre-accuracy of

DIKNN and KPT, as depicted in Figure 8(d), varies when

k ≤ 60. This can be resulted from the error of KNN bound-

ary estimation, since when k (correspondingly, R) is small,

the error rate is relatively large. However, when k > 60,

boundary error shrinks and DIKNN becomes precise; while

the others continuously degrade due to their long latency.

5 10 15 20 25 30
0.5

1

1.5

2

2.5

3

3.5

Mobility (m/s)

Q
u
e
ry
 L
a
te
n
c
y
 (
s
)

5 10 15 20 25 30
0

0.5

1

1.5

2

Mobility (m/s)

E
n
e
rg
y
 C
o
n
s
u
m
p
ti
o
n
 (
J
)

5 10 15 20 25 30

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Mobility (m/s)

P
o
s
t-
a
c
c
u
ra
c
y

5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mobility (m/s)

P
re
-a
c
c
u
ra
c
y

DIKNN

KPT+KNNB

PeerTree

DIKNN

KPT+KNNB

PeerTree

DIKNN

KPT+KNNB

PeerTree

DIKNN

KPT+KNNB

PeerTree

(a) (b)

(c) (d)

Figure 9. Impact of mobility.

Among these results, DIKNN exhibits superior improve-

ments in query latency and energy efficiency while preserv-

ing a high level of accuracy.

5.4 Impact of Network Dynamics

In this section, we study the impact of sensor movements

by varying µmax from 5 to 30 m/s. We set k = 40 and

the query interval is exponentially distributed with mean

4 s. Figure 9(a) shows that Peer-tree has high latency in

all moving speeds because of the routes in hierarchy, as

stated in the previous section. The latency of KPT grows

because of tree maintenance overhead. Data at child levels

of the tree will have to wait to be relayed to the root un-

til the structures of the parent layers are settled. In Figure

9(b), we can see that the energy consumption of Peer-tree

increases rapidly, because that there are more sensor nodes

move across MBRs, which results in excessive information

updates. The post- and pre-accuracy of Peer-tree shown in

Figure 9(c)(d) degrade dramatically because the latest posi-

tion of each sensor node can hardly be traced by the clus-

terheads under high mobility. A clusterhead simply drops

packets (i.e., the queries) if they can not be routed to the

destinations in the MBR record. The pre-accuracy of KPT

also degrades due to its latency. Benefiting from the novel

itinerary traversals that maintain no infrastructure, DIKNN

has stable performance under various mobility conditions.

Again, DIKNN offers prominent advantages over energy ef-

ficiency and query latency in mobile sensor networks while

rendering a high level of accuracy.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 464

6 Conclusion

In this paper, we proposed a cost effective solution,

DIKNN, for handling the KNN queries in mobile sen-

sor networks. DIKNN integrates query propagation with

data collection along a well-designed itinerary traversal,

which requires no infrastructures and is able to sustain rapid

change of the network topology. A simple and effective

KNNB algorithm has been proposed to estimate the KNN

boundary under the trade-off between query accuracy and

energy efficiency. Dynamic adjustment of the KNN bound-

ary has also been addressed to cope with spatial irregularity

and mobility of sensor nodes. From extensive simulation

results, DIKNN exhibits a superior performance in terms

of energy efficiency, query latency, and accuracy in various

network conditions.

7 Acknowledgements

We are grateful to ProfessorWang-Chien Lee for his sug-

gestions, and Yingqi Xu for discussions over the ns-2 simu-

lation.

References

[1] The network simulator. http://www.isi.edu/nsnam/ns.
[2] I. S. 802.11-1997. IEEE Standard for Wireless LANMedium

Access Control (MAC) and Physical Layer (PHY) Specifica-

tions, 1997.
[3] I. S. 802.15.4-2003. Wireless Medium Access Control

(MAC) and Physical Layer (PHY) Specifications for Low

Rate Wireless Personal Area Networks, 2003.
[4] M. Bawa, A. Gionis, H.G.-Molina, and R. Motwani. The

price of validity in dynamic networks. In Proc. of SIGMOD,

2004.
[5] R. Cheng, B. Kao, S. Prabhakar, A. Kwan, and Y. Tu. Adap-

tive stream filters for entity-based queries with non-value

tolerance. In Proc. of VLDB, 2005.
[6] H. Cho and C. Chung. An efficient and scalable approach to

cnn queries in a road network. In Proc. of VLDB, 2005.
[7] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial

queries in sensor networks. In Proc. of ICP2PC, 2003.
[8] D. Ganesan, S. Ratnasamy, H. Wang, and D. Estrin. Coping

with irregular spatio-temporal sampling in sensor networks.

ACM SIGCOMM Computer Communication Review, 34(1),

2004.
[9] C. Gui and P. Mohapatra. Virtual patrol: A new power con-

servation design for surveillance using sensor networks. In

Proc. of IPSN, 2005.
[10] A. Guttman. R-trees: A dynamic index structure for spatial

searching. In Proc. of SIGMOD, 1984.
[11] A. A. H.D. Chon, D. Agrawal. Range and knn query

processing for moving objects in grid model. Mobile Net-

works and Applications, 8(4), 2003.
[12] G. Hjaltason and H. Samet. Distance browsing in spatial

databases. ACM TODS, 24(2), 1999.

[13] I. Howitt and J. Gutierrez. Ieee 802.15.4 low rate - wireless

personal area network coexistence issues. Wireless Commu-

nications and Networking, 3(16-20), 2003.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed

diffusion: A scalable and robust communication paradigm

for sensor networks. In Proc. of MOBICOM, 2000.

[15] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and

D. Rubenstein. Energy-efficient computing for wildlife

tracking: Design tradeoffs and early experiences with ze-

branet. In Proc. of ASPLOS-X, 2002.

[16] J. Kahn, R. Katz, and K. Pister. Next century challenges:

Mobile networking for smart dust. In Proc. of MOBICOM,

1999.

[17] B. Karp and H. Kung. Gpsr: Greedy perimeter stateless

routing for wireless networks. In Proc. of MOBICOM, 2000.

[18] Y. Kim, R. Govindan, B. Karp, and S. Shenker. On the pit-

falls of geographic face routing. In Proc. of DIALM, 2005.

[19] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger. Geo-

metric ad-hoc routing: Of theory and practice. In Proc. of

PODC, 2003.

[20] F. Kuhn, R. Wattenhofer, and A. Zollinger. Worst-case opti-

mal and average-case efficient geometric ad-hoc routing. In

Proc. of MobiHoc, 2003.

[21] W. Lee and B. Zheng. Dsi: A fully distributed spatial index

for location-based wireless broadcast services. In Proc. of

ICDCS, 2005.

[22] B. Liu, W. Lee, and D. Lee. Distributed caching of multi-

dimensional data in mobile environments. In Proc. of MDM,

2005.

[23] M. Mokbel, X. Xiong, and W. Aref. Sina: Scalable incre-

mental processing of continuous queries in spatio-temporal

databases. In Proc. of SIGMOD, 2004.

[24] D. Niculescu and B. Nath. Trajectory based forwarding and

its applications. In Proc. of MOBICOM, 2003.

[25] F. of American Scientists. Remote battlefield sensor system

(rembass). http://www.fas.org, 2000.

[26] U. D. of Transportation. Intelligent transportation system

joint program office home. http://www.its.dot.gov, 2006.

[27] G. M. N. Park. Map: Caribou population distribution in gros

morne national park greater ecosystem. http://www.pc.gc.ca,

2003.

[28] S. Patil, S. Das, and A. Nasipuri. Serial data fusion using

space-filling curves in wireless sensor networks. In Proc. of

SECON, 2004.

[29] J. Winter andW. Lee. Kpt: A dynamic knn query processing

algorithm for location-aware sensor networks. In Proc. of

DMSN, 2004.

[30] J. Winter, Y. Xu, and W. Lee. Energy efficient processing

of k nearest neighbor queries in location-aware sensor net-

works. In Proc. of MobiQuitous, 2005.

[31] Y. Xu, W. Lee, J. Xu, and G. Mitchell. Processing window

queries in wireless sensor networks. In Proc. of ICDE, 2006.

1-4244-0803-2/07/$20.00 ©2007 IEEE. 465

