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[1] The mechanics of slow slip events (SSE) in subduction zones remain unresolved. We
suggest that SSE nucleate in areas of unstable friction under drained conditions, but as
slip accelerates dilatancy reduces pore pressure p quenching instability. Competition
between dilatant strengthening and thermal pressurization may control whether slip is slow
or fast. We model SSE with 2‐D elasticity, rate‐state friction, and a dilatancy law where
porosity � evolves toward steady state �ss over distance dc and �ss = �0 + � ln(v/v0); v is
slip speed. We consider two diffusion models. Membrane diffusion (MD) is approximated
by −(p − p∞)/tf where p and p∞ are shear zone and remote pore pressure and tf is a
characteristic diffusion time. Homogeneous diffusion (HD) accurately models fault‐normal
flow with diffusivity chyd. For MD, linearized analysis defines a boundary E = 1 − a/b
between slow and fast slip, where E ≡ f0�/bb(s − p∞), f0, a, and b are friction parameters
and b is compressibility. When E < 1 − a/b slip accelerates to instability for sufficiently
large faults, whereas for E > 1 − a/b slip speeds remain quasi‐static. For HD, Ep ≡

�h/(b (s − p∞)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v1=chyddc
p

) defines dilatancy efficiency, where h is shear zone thickness
and v∞ is plate velocity. SSE are favored by large �h and low effective stress. The ratio Ep

to thermal pressurization efficiency scales with 1/(s − p∞), so high p∞ favors SSE, consistent
with seismic observations. For Ep ∼ 10−3 transient slip rates, repeat times, average slip,
and stress drops are comparable to field observations. Model updip propagation speeds are
comparable to those observed along‐strike. Many simulations exhibit slow phases driven
by steady downdip slip and faster phases that relax the accumulated stress. Model SSE
accommodate only a fraction of plate motion; the remaining deficit must be accommodated
during coseismic or postseismic slip.
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1. Introduction

[2] One of the most exciting discoveries in solid earth
geophysics in recent decades has been the recognition that
many subduction zones undergo transient slip events at depths
below the lockedmegathrust zone. These slip events,whichwere
first detected by GPS networks, have been found in Cascadia
[Dragert et al., 2001; Miller et al., 2002; Szeliga et al., 2008],
southwest Japan [e.g.,Hirose et al., 1999;Miyazaki et al., 2006],
Mexico [Kostoglodov et al., 2003; Larson et al., 2007], New
Zealand [Douglas et al., 2005; McCaffrey et al., 2008;
Delahaye et al., 2009], and Alaska [Ohta et al., 2006]. Slow
slip has also been found along the San Andreas Fault [Linde

et al., 1996; Murray and Segall, 2005], and on the decolle-
ment beneath Kilauea volcano [Cervelli et al., 2002; Segall
et al., 2006; Brooks et al., 2006; Montgomery‐Brown et al.,
2009]. In Cascadia slow slip events are periodic with intere-
vent times, varying with latitude, of from 11 to 18 months
[Brudzinski and Allen, 2007]. In southwest Japan, periods of
roughly 6 months, 1 year, and 6 years have been observed.
[3] Transient slip in subduction zones is often, but appar-

ently not always, accompanied by tectonic tremor [Obara,
2002; Rogers and Dragert, 2003; Obara et al., 2004]. The
periodic recurrence and accompanying seismic signature has
led to the designation Episodic Tremor and Slip (ETS).
Shelly et al. [2007] showed that tremor in southwest Japan
contains locatable events, termed low‐frequency earthquakes
(LFE), and that the tremor consists largely, and possibly
completely, of repeated excitation of LFE sources. The low‐
frequency events there locate on the subducting plate inter-
face [Shelly et al., 2006]. Ide et al. [2007] showed that the
LFEs have focal mechanisms consistent with slip on the plate
interface in the plate convergence direction. Together these
observations argue strongly that tremor, at least in the Nankai
region, is caused by slip on the plate interface.
[4] The mechanism of nonvolcanic tremor in Cascadia

has been more controversial, with early locations placing
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significant tremor well above the subducting plate interface
[Kao et al., 2005]. However, recent work has shown that
the Cascadia tremor contains discrete events located on the
megathrust [Brown et al., 2009]. In addition, S minus P times
within tremor directly beneath seismic arrays in Cascadia also
place the tremor source near the plate interface [La Rocca
et al., 2009]. The weight of evidence thus may be shifting
to the view that tremor in Cascadia is also caused by slip on
the plate interface. It should also be noted that tremor is
observed between the major ETS events, and tends to be
located somewhat deeper than the ETS tremor [Wech et al.,
2009].
[5] There are, however, cases where slow slip events have

been detected geodetically without observable tremor,
including New Zealand [Delahaye et al., 2009], and the Boso
Peninsula of Japan [Sagiya, 2004; Ozawa et al., 2003, 2007].
It thus appears that tremor is not necessary for slow slip to
occur. However, the clear spatial and temporal association of
these signals in Cascadia and Nankai demonstrate that they
are intimately linked in these regions. Nonvolcanic tremor
has not yet been found during slow slip beneath Kilauea
volcano; however these events are associated with swarms
of small, high‐frequency earthquakes [Segall et al., 2006;
Brooks et al., 2006; Montgomery‐Brown et al., 2009]. Micro-
seismicity has also been observed with slow slip events
beneath the Boso Peninsula [Sagiya, 2004;Ozawa et al., 2003,
2007], Imperial Valley [Lohman andMcGuire, 2007], and the
north island of New Zealand [Delahaye et al., 2009].
[6] Understanding the physics of slow slip events and

how they differ from normal, high‐frequency earthquakes is
one of the most pressing current challenges in seismology.
Critical observations that must be explained by any viable
model of slow slip include the following:
[7] 1. Minimum dimensions of slow slip zones are typi-

cally several tens of kilometers.
[8] 2. Maximum slip in a single event is typically small

(∼2 cm in Cascadia).
[9] 3. These observations imply low static stress drops. For

a width of 60 km, slip of 2 cm, and m/(1 − n) of 4 × 104 MPa
(m is the shear modulus and n Poisson’s ratio), the stress
drop is on the order of 0.01 MPa.
[10] 4. Average slip velocities are roughly 1–2 orders of

magnitude above the plate velocity (2 cm/10 days’ 10−8m/s
in Cascadia, versus 10 cm/2 days ’ 5 × 10−7 m/s beneath
Kilauea).
[11] 5. Slow slip event durations vary from roughly 2 days

at Kilauea [Cervelli et al., 2002; Montgomery‐Brown et al.,
2009] to on the order of 6 years for the Tokai slow slip
events in Japan [Miyazaki et al., 2006].
[12] 6. The repeat period between events is commonly

near 1 year, although both shorter and longer intervals are
observed.
[13] 7. Slow slip events in Cascadia propagate along strike

at rupture speeds of ∼10 km/d [e.g., Schwartz and Rokosky,
2007], while others such as the Tokai slow event slip for
several years in largely the same locality [Miyazaki et al.,
2006].
[14] 8. High ratios of compressional to shear wave velocity

imaged in tomographic and/or receiver function studies
[Kodaira et al., 2004; Shelly et al., 2006; Audet et al., 2009]
have been interpreted as indicative of high ambient pore
pressures in regions where slow slip events occur.

[15] Several classes of models to explain slow slip have
been explored. Some workers have posited a change in fric-
tional behavior from velocity weakening at low slip speeds to
velocity strengthening at higher rates [e.g., Shibazaki and Iio,
2003; Shibazaki and Shimamoto, 2007]. Such behavior has
been reported for simulated halite fault gouges [Shimamoto,
1986], and for chrysotile and lizardite serpentine at tem-
peratures below 200°C [Moore et al., 1997]. However, these
phases are not stable at temperatures above 250–300°C
[Moore et al., 1997]. Antigorite, the serpentine mineral stable
at from 200°C to 500–600°C, exhibits velocity strengthening
behavior over the range of temperatures and velocity steps
tested, as do the layer silicates brucite and talc [Moore and
Lockner, 2007]. Thus, the notably limited data available for
mafic rocks under appropriate pressure and temperature con-
ditions does not presently support this hypothesis, although
further laboratory testing is certainly warranted.
[16] Another class of model [Liu and Rice, 2005a, 2007]

exploits the fact that faults with rate and state friction exhibit
oscillatory behavior near neutral stability. This is illustrated
most simply by spring slider systems. Ruina [1983] showed
that such systems are linearly unstable with respect to per-
turbations from steady sliding if the spring stiffness is less
than a critical value, kcrit = (s − p∞)(b − a)/dc. Here (s − p∞)
is the effective normal stress, a and b are rate and state
constitutive parameters, defined in equation (2) below, and
dc is the characteristic slip distance for state evolution (see
equation (3)). For spring stiffness equal to kcrit small per-
turbations result in sustained oscillations, whereas for k >
kcrit (k < kcrit) perturbations from steady sliding decay (grow).
In an elastic continuum, the effective stiffness of a slip patch
decreases with the size of the patch. For plane strain defor-
mation the stiffness at the patch center is C[m/(1 − n)]/L,
where m is the shear modulus, n is Poisson’s ratio, L is the
patch length, and the coefficient C, of order unity, depends
upon the distribution of stress drop or slip. For a uniform
stress drop C = 1; for a periodic stress drop on an infinitely
long fault C = 2/p. Equating this stiffness to kcrit leads to a
critical dimension for nucleation given by

h* ¼ C
dc�=ð1� �Þ

ð�� p1Þðb� aÞ : ð1Þ

For C = 2/p this is consistent with h* defined by Rice [1993];
we use C = 1 when reporting normalized fault dimensions
later in this paper.
[17] Translating the critical stiffness concept into a nucle-

ation length for faults in elastic continua is nontrivial because
in general the fault stiffness varies in both space and time.
One manifestation of this is that, unlike spring slider systems
with k slightly below kcrit, faults modestly longer than h*
do not accelerate to instability. Instead, there is a range of
fault lengths larger than h* that exhibit stable, oscillatory
departures from steady sliding. One way of rationalizing this
is to note that for a fixed length fault with uniform stress drop,
the stiffness (stress drop per slip) is greater near the ends
than at the center. For a fault modestly longer than h* with
pinned ends this leads to a gradual shrinking of the accel-
erating region, a negative feedback that further increases
the stiffness and ultimately leads to decelerating slip. With
unpinned ends, however, the “aging” form of the state evo-
lution law (defined below), and laboratory values of a/b, the
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large stress concentrations at the margins of the slipping
zone cause the nucleation zone to expand such that it
asymptotically approaches a length larger than h* (with C = 1)
by a factor of (2/p)(1 − a/b)−1 [Rubin and Ampuero, 2005]
(note that this is twice the half‐length L∞ defined there).
[18] For the aging law form of state evolution, stable

oscillatory slip can thus occur over a range of fault lengths
from roughly h* to 2L∞. This range becomes quite large as
a/b approaches 1; that is, for faults that are near velocity‐
neutral. However, for the “slip” law form of state evolution
numerical simulations show that nucleation occurs as a single‐
sided slip pulse that reaches dynamic slip speeds at a length
that is several times smaller than 2L∞ [Ampuero and Rubin,
2008; Rubin and Ampuero, 2009]. Thus, the range of fault
lengths that exhibit stable oscillatory slip is significantly
smaller with the slip law than it is for the aging law.
[19] In short, for slow slip events to arise from rate‐state

friction effects near neutral stability with either evolution law
the dimension of the fault participating in the slow slip event
must be only modestly larger than the critical dimension for
nonsteady slip to nucleate. If the slip zone is smaller than
h*, slip is steady and no transients occur; if the slip zone is
too much larger than h*, slip becomes dynamically unstable.
For laboratory values of friction parameters and normal
stresses of order 100 MPa, h* is of the order of meters, far
too small to reconcile with the order 10 km minimum
dimension of slow slip events. Kuroki et al. [2004] find
models of transient slip with appropriate spatial dimensions
by choosing slip weakening distances, dc, 3–4 orders of
magnitude larger than observed in laboratory experiments.
[20] Alternatively, Liu and Rice [2007] suggest that low

effective normal stresses within slow slip zones (i.e., highly
elevated pore pressure p there, which they inferred from
petrologic constraints on seafloor dehydration and seismic
studies of compressional to shear speed ratios) cause h* to
be sufficiently large to explain geodetic observations. These
authors model simulated transient slip events that have

durations and interevent times comparable to what has been
observed in the Cascade subduction zone. Episodic slip
occurs in the transition between the locked megathrust zone
and the velocity strengthening fault at greater depth. Liu and
Rice [2009] extend this work, considering laboratory data
for gabbro that indicate a transition from velocity weakening
to velocity strengthening friction at a considerably higher
temperature than for granite, which was used in previous
studies.Mapping these data to depth using thermal models for
the Cascade subduction zone places the transient slip events
at a depth range more compatible with geodetic observations
than do the granite results. In these models, the width of the
transition zone, referred to as W, must be larger than h*, but
not so large that the slip becomes dynamically unstable. For
the aging law form of the state evolution equations employed
by Liu and Rice [2007] the ratio W/h* can be up to ∼7 for
spatially uniform a/b = 0.8 before the slip becomes dynami-
cally unstable (Figure 1). For the nonuniform distribution of
a/b adopted by Liu and Rice [2007] stable oscillatory slip
occurs for a reasonably broad range of fault widths, roughly
1.4 ≤ W/h* ≤ 10, suggesting that such behavior has a rea-
sonable chance of occurring in nature. This broad range
derives from the large increase in apparent fracture energy
with increasing slip speed implied by the aging law, an
increase that derives from an increase in the effective slip‐
weakening distance with increasing slip speed [Rubin and
Ampuero, 2005]. However, no laboratory data support this
behavior [Nakatani, 2001].
[21] Rather, laboratory experiments indicate that in

response to a step increase in sliding velocity the effective
slip‐weakening distance is independent of the magnitude of
the velocity increase, an observation consistent with the slip
law [Ruina, 1980; Bayart et al., 2006] (although the slip law
is less successful, compared to the aging law, in representing
restrengthening in nominally stationary contact [Beeler et al.,
1994; Marone, 1998]). Calculations similar to those of
Liu and Rice [2007] employing the slip law show that the

Figure 1. Ratio of maximum to minimum moment rate as a function of length of the velocity weakening
zoneW, normalized by drained critical nucleation dimension h*drain. These computations include a velocity
strengthening region (with a/b = 1.2) of length 4W between the velocity weakening zone and the fixed slip
rate boundary condition. Drained behavior with slip law (green), aging law (red), and slip law with mem-
brane diffusion (blue). Single dots show periodic behavior, while fat and thin lines show themiddle 50% and
80%, respectively, when the behavior is aperiodic. Vertical green and red lines show the onset of dynamic
instability for the slip and aging laws, respectively. dc = 40 mm, b = 0.01, and v∞ = 10−9m/s. For membrane
diffusion calculations E = 0.6 and v∞tf /dc = 1.
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maximum value of W/h* allowing stable slip is only 3 for
a/b = 0.8 (Figure 1) and 5 for a/b = 0.9 [Rubin, 2008].
Because the two evolution laws are asymptotically identical
near steady state, the minimum values of W/h* allowing
oscillatory slip (∼2 for the boundary conditions of Figure 1
and a/b = 0.8; ∼2.5 for a/b = 0.9) are the same for both
laws. Thus, the range of W/h* allowing oscillatory slip is
only 1.5 and 2 for the slip law and the aforementioned values
of a/b. For this reason it is difficult for models employing
rate and state friction alone to explain the observations,
especially with the best laboratory‐supported state evolution
law for describing response to abrupt increases in slip rate.
The dimensions of slow slip zones would have to be within
an extremely narrow range in order to generate a significant
transient without becoming dynamically unstable. It appears
that an additional strengthening mechanism is required to
explain the common occurrence of stable slow slip in nature.
Based on prior studies of dilatancy in slip stabilization [Segall
and Rice, 1995; Taylor, 1998, chapter 6; Taylor and Rice,
1998; Segall and Rubin, 2007], Liu and Rice [2007, 2009]
suggested that its consideration might expand the stable
range of W/h*, and hence the spatial extent W of their
predicted stable slip zone, in a manner as required to better
fit observations from Cascadia. However, they did not model
and quantify the dilatancy effect except for a preliminary
study [Liu and Rice, 2005b] showing that what we call the
“membrane diffusion model” here did reduce along‐strike
propagation speeds of episodic slip events in 3‐D subduction
simulations.
[22] An alternative model was offered by Perfettini and

Ampuero [2008], who explored the possibility that slow
slip events occur in regions of steady state velocity
strengthening friction (a > b), with transient slip induced by
external stress perturbations. They further suggest that pore
pressure transients due to so‐called “fault valve” behavior
could provide the requisite external forcing. In this model the
periodicity of slow slip is controlled by the period of the fault
valve phenomenon.
[23] Here we explore the possibility that dilatancy pro-

vides the additional stabilization required to expand the
permissible range for slow slip events to occur in velocity
weakening regions. The hypothesis is that frictional weak-
ening allows slip to nucleate under drained conditions, but
that as the slip rate increases the fault becomes increasingly
undrained. Depending on constitutive parameters and the
ambient effective normal stress, dilatancy can quench the
instability resulting in a slow slip event. Dilatant stabiliza-
tion is not a new concept, having been extensively studied in
the context of slip‐weakening friction by Rice [1975], Rice
and Simons [1976], and Rudnicki [1979], among others.
Dilatant stabilization has also been suggested as a mecha-
nism for stabilizing some landslides [Schulz et al., 2008].
Segall and Rice [1995] combined dilatancy and mechanical
compaction with rate‐state friction in single‐degree‐of‐
freedom spring slider systems. Taylor [1998, chapter 6]
extended this work to two‐dimensional continuum models
of subduction zones with an approximate diffusion model.
He showed that dilatancy can limit the updip extent of
dynamic ruptures such that they do not reach the trench, as
predicted in the absence of dilatancy. Hillers and Miller
[2006] extend this work to two dimensional faults, retaining
the simplified diffusion model. They find instabilities for

drained behavior, stable sliding for undrained behavior, and
transient aseismic slip for intermediate behavior. Segall and
Rubin [2007] showed that propagating slow slip events can
occur for appropriate parameter range with the approximate
diffusion model, while Segall et al. [2008] showed that such
behavior extends to the more accurate homogeneous diffu-
sion case, employing finite difference calculations. The latter
further suggest that whether slip is slow or fast depends on
whether or not dilatancy limits slip to speeds below those at
which thermal weakening effects dominate; Segall and Rice
[2006], Schmitt et al. [2007], and Schmitt and Segall [2008]
show that above a critical slip speed thermal pressurization
dominates rate‐state friction during earthquake nucleation.
Suzuki and Yamashita [2009] consider the same hypothesis
in the context of slip‐weakening friction and with a different
dilatancy formulation. They show slow ruptures occur when
the ambient effective normal stress is sufficiently low con-
sistent with results presented here; however, their computa-
tions are limited to integration times of order of seconds,
such that results are dependent on assumed initial conditions.

2. Governing Equations

[24] Laboratory experiments show that the frictional
resistance depends on the instantaneous slip speed v and the
past sliding history, which can be characterized by an internal
state variable �,

� ¼ ð�� pÞ f0 þ a ln
v

v0
þ b ln

�v0
dc

� �

ð2Þ

[Ruina, 1983; Kilgore et al., 1993]. Here a and b are material
constants, v0 is a normalizing constant, and f0 is the nominal
friction. The state is sometimes interpreted as the average
asperity contact lifetime, and evolves over a characteristic
displacement dc. The proper mathematical description of
state evolution has not been fully resolved (and may not be
fully described by any simple analytical representation),
although two forms in wide use are

d�

dt
¼ 1� �v

dc

d�

dt
¼ � �v

dc
ln

�v

dc

� �

: ð3Þ

The first exhibits healing in stationary contact and is thus
referred to as the “aging” law. In the second form state
evolves only with slip (d�/dt vanishes when v = 0), and is
thus referred to as the “slip law.” In both cases the steady
state value of � is dc/v. Laboratory studies inevitably indi-
cate strengthening with increased time of stationary contact
[Dieterich and Kilgore, 1994; Beeler et al., 1994], indi-
cating that the aging law is more consistent with data when �
is far below steady state as it must be between SSE episodes.
However, velocity stepping tests exhibit a symmetric stress
versus slip response to step increases and decreases in loading
velocity. In addition, the distance scale over which stress
decays to steady state following a step velocity increase,
when � is far above steady state, is nearly independent of the
magnitude of the velocity step. Both features are consistent
with the slip law but not the aging law [Ruina, 1983; Bayart
et al., 2006]. Because nucleation is most sensitive to fault
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behavior near to and well above steady state [Ampuero and
Rubin, 2008], the slip law appears to be the more relevant
one for nucleation, although it may bias the state at which
nucleation begins after a prior event.
[25] Following Segall and Rice [1995] we assume a

constitutive equation for the inelastic change in porosity d�,
including both dilatancy and compaction, motivated in part
by experiments of Marone et al. [1990]. In particular, we
associate dilatancy/compaction with changes in the average
lifetime of asperity contacts within the fault gouge, such that

	� ¼ �� ln
v0�

dc

� �

ð4Þ

d�

dt
¼ ��

d

dt
ln

v0�

dc

� �

¼ � �

�

d�

dt
; ð5Þ

where � is an empirically derived constant of order 10−4,
based on Marone et al.’s [1990] experiments. Above steady
state, that is for � > dc/v, � decreases (from (3)), and the
gouge dilates, while below steady state, � increases and the
gouge compacts (Figure 2). Sleep [1997] considered a mod-
ification of this constitutive law in which compaction satu-
rates when � is far below steady state.
[26] The fault is taken to lie in the plane y = 0. We employ

the radiation damping approximation of elastodynamics
[Rice, 1993] such that stress equilibrium on the fault becomes

�

2
ð1� �Þ

Z 1

�1

@	=@�

� � x
d� � f ðv; �Þð�� pÞ ¼ �

2vs
v ð6Þ

where the difference between the elastic stress and the fric-
tional resistance is balanced by the stress change associated
with plane shear waves (with velocity vs) radiating from the

Figure 2. Change in porosity and friction upon step changes in slip rate. Data from Marone et al. [1990]
at 150MPa confining stress. (a) Change in porosity after removing long‐duration slip‐dependent variations.
The slip speed first increases from 1 to 10 mm/s and then drops back to 1 mm/s. Fit to the porosity evolution
using a constitutive law of the form of equation (4) (dashed line), with � = 1.7 × 10−4 and dc = 20microns. An
alternate formulation is shown as the solid line. (b) Change in friction fit with the same value of dc and
a = 0.01 and b = 0.006. From Segall and Rice [1995].
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fault. The first term on left represents the elastic stress due to
gradients in slip d, while the second term is the frictional
resistance. Note that for antiplane geometry we simply
replace m/(1 − n) with m. Lapusta et al [2000] show that this
“quasi‐dynamic” formulation seems to lead to a reasonable
representation of dynamic slip, although maximum slip
speeds and propagation rates are underpredicted relative to
the full elastodynamic results.
[27] To investigate the role of dilatancy in slow slip events

we consider coupled friction, dilatancy and pore fluid flow.
Neglecting conduction parallel to the fault (the x direction)
and heat advection in the pore fluid phase [see Lachenbruch,
1980], and assuming spatially uniform thermal properties,
the temperature field follows

@T
@t

¼ cth
@2T
@y2

þ � _�

c
ð7Þ

[e.g., Rice, 2006]. Here, _� is the shear strain rate, c is specific
heat capacity and cth is thermal diffusivity. For a thermal

diffusivity of 10−6 m2/s, a thermal anomaly penetrates on the
order of a few meters in the 1 year cycle time for typical slow
slip events. Compared to the tens of kilometers characteristic
dimensions of the slow slip events, this indicates that gra-
dients in the along‐fault direction are likely to be extremely
small compared to the across‐fault direction. The actively
shearing zone, for which _� is nonzero, is assumed to have
uniform thickness h. For times greater than the characteristic
diffusion time across the layer (at most a few seconds) the
limit h→ 0 is sensible, in which case (7) reduces to [Rice,
2006],

@T
@t

¼ cth
@2T
@y2

;
@T
@y

�

�

�

�

y¼0�
¼ � � v

2ccth
: ð8Þ

[28] Neglecting pore fluid flow parallel to the fault, for the
same reason that heat flow in this direction is negligible,
changes in pore pressure in the rock surrounding the shear
zone is given by

@p

@t
¼ 1

��

@

@y
�
@p

@y

� �

þ L
@T
@t

y < �h; y > 0; ð9Þ

where h is pore fluid viscosity, b is compressibility of the
fluid and the pore space, and � is the permeability. L is
the thermal pressurization parameter, equal to the ratio of
thermal expansivity to compressibility [e.g., Segall and Rice,
2006, equation 19]. For spatially uniform permeability, the
transport term can be written in terms of the hydraulic dif-
fusivity chyd = �/hb. Within the shear zone, conservation of
fluid mass, Darcy’s law, and a constitutive equation for the
fault gouge [e.g., Segall and Rice, 2006, equation 21] (cor-
recting a sign error there) yield

@p

@t
þ

_�

�
� L

@T
@t

¼ 2chyd

h

@p

@y

�

�

�

�

y¼0þ
�h < y < 0; ð10Þ

where chyd is the hydraulic diffusivity of the rock adjacent to
the shearing zone, and p, T and _� on the left are averages
across that layer. (For times that are long compared to the
characteristic diffusion times across the layer, variations of

p and T with y within it are negligible.) Equation (10)
shows that, as expected, dilatancy acts as a fluid pressure
sink, whereas an increase in T acts as a pressure source.
Assuming, due to the constraint of the borderingmaterial, that
dilatancy (and compaction) act only normal to the plane of
the fault it can be shown that h _� = (1 − �) _h, where _h is the
change in thickness of the shearing layer. Indeed in many
experimental studies of fault gouge dilation it is _h that is
actually measured. Multiplying both sides of (10) by h, the

left hand side becomes h _p + (1 − �) _h/b − hL _T . We assume
dilatancy greatly dominates effects of p and T variation on
porosity change within the thin shearing layer, so that the _p

and L _T terms can be neglected compared to that with _h. It
is convenient to then formally take the limit h → 0, with
h _� remaining finite, so that the left‐hand side reduces to
(1 − �) _h/b. Thus, in this limit, and assuming uniform
hydraulic properties in y > 0, equations (9) and (10) reduce to

@p

@t
¼ chyd

@2p

@y2
þ L

@T
@t

;
@p

@y

�

�

�

�

y¼0þ
¼ ð1� �Þ _h

2�chyd
¼ h _�

2�chyd
: ð11Þ

2.1. Dimensional Analysis

[29] To clarify the role of thermal pressurization relative to
dilatant strengthening, we explore a nondimensionalization of
equations (8) and (11). Specifically, define nondimensional
variables, ~v = v/v∞, ~t = tv∞/dc, ~� = �v∞/dc, ~p = p/(s − p∞), ~� =
t/f0 (s − p∞), and ~T = LT /(s − p∞). The fault perpendicular
distance is normalized by the characteristic fluid diffusion
distance such that, ~y =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2v1=chyddc
p

. This leads to a heat
equation in which the thermal diffusivity is scaled by chyd,
with boundary condition

@ ~T
@~y

�

�

�

�

�

y¼0

¼ �ET ~�~v

ET ¼ f0L

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

chyddcv
1

c2th

s

: ð12Þ

The nondimensional pore pressure equation (11) now has
unit coefficients, with boundary condition

@~p

@~y

�

�

�

�

y¼0

¼ �Ep

_~�
~�

Ep ¼
�

2�ð�� p1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi

h2v1

chyddc

s

: ð13Þ

Dilatancy acts to decrease pore pressure thereby stabilizing
slip, while thermal pressurization increases pore pressure
and thus acts to destabilize slip. Of particular interest for
understanding the tendency for slow versus fast slip, is the
ratio of dilatancy to shear heating efficiency,

Ep

ET

¼ c

f0L�ð�� p1Þ
�h

dc

� �

cth

chyd

� �

: ð14Þ

Equation (14) shows that slow slip is favored by strong
dilatancy (large �h/dc), low compressibility, and low effec-
tive stress. The latter result is easily understood; high
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effective normal stress leads to high rates of heat production.
In contrast, the rate of pore pressure change due to dilatancy
is independent of effective normal stress, but scales inversely
with the compressibility, equation (10).

2.2. Thermal Weakening During Slow Slip

[30] Segall and Rice [2006], Schmitt et al. [2007], and
Schmitt and Segall [2008] examined the relative importance
of thermal pressurization and rate‐state friction during earth-
quake nucleation, ignoring dilatancy effects. These studies
demonstrate that for permeabilities associated with active
crustal faults thermal weakening dominates rate‐ and state‐
dependent weakening at slip speeds in excess of roughly
10−4 m/s, to 10−2 m/s, depending on material parameters,
particularly hydraulic diffusivity. These results suggest that
thermal pressurization is unlikely to be dominant during slow
slip events with characteristic slip rates of 10−7 m/s or less.
Thus, for simplicity we assume in the remainder of the dis-
cussion that the fault remains isothermal, an approximation
that will be violated if slip rates become too high. Work in
progress combines both dilatancy and thermal pressurization
effects [Segall and Bradley, 2009].

3. Isothermal Membrane Diffusion

[31] A significant simplification occurs when, as observed
in some fault zones, the rock adjacent to the shearing zone has
an extremely low permeability, whereas rocks farther away
are highly fractured and orders of magnitude more permeable
(see Rice [2006] for summary of field observations). We may
approximate this setting with a low‐permeability wall zone,
of thickness hw, bordering the fault surrounded by an external
reservoir that is sustained at constant pore pressure p∞. For
times that are long compared to the characteristic time for
diffusion through the border zone, the solution of the iso-
thermal form of (9) subject to the stated boundary conditions
yields ∂p/∂y∣y=0 = −(p − p∞)/hw. Applying this to the iso-
thermal form of (10) yields,

@p

@t
¼ 2chyd

hhw
ðp1 � pÞ � 1

�

@�

@t
¼ p1 � p

tf
� 1

�

@�

@t
ð15Þ

[Segall and Rice, 1995], which we refer to as isothermal
membrane diffusion. Here tf is a characteristic diffusion time,
and p is the pore pressure within the shearing zone. While
(15) is only valid for times that are long compared to the
diffusion time across the bordering low‐permeability zone, it
offers a significant simplification, over the isothermal forms
of (9) and (10), or (11).

3.1. Isothermal Membrane Diffusion:
Dimensional Analysis

[32] We write the equations for the membrane diffusion
approximation in nondimensional form as follows. Taking
the time derivative of (6) and making use of (2)

�

2
ð1� �Þ

Z 1

�1

@v=@�

� � x
d� � ð�� pÞ a

_v

v
þ b

_�

�

" #

þ f ð�; vÞ @p
@t

¼ �

2vs

@v

@t
: ð16Þ

The membrane diffusion approximation (15) is combined
with the dilatancy law (5), yielding

@p

@t
¼ p1 � p

tf
þ �

�

_�

�
: ð17Þ

Equations (16) and (17) combined with the state evolu-
tion law (3) define the system. We choose the same non-
dimensional time as in section 2.1, define ~v = v/v∞ and ~f =
f /f0, and normalize the along‐fault distance scale by h*dr,
where h*dr is the drained critical stiffness from equation (1)
with C = 1,

~x ¼ x

hdr*
¼ xð�� p1Þðb� aÞ

�ð1� �Þdc
: ð18Þ

Assuming the slip law form of the state evolution equations,
this leads to the following system of equations

b� a

b

� �

1

2


Z 1

�1

@~v=@~�
~� � ~x

d~� � ð�� pÞ
ð�� p1Þ

a

b

_~v

~v
þ

_~�
~�

" #

þ f0 ~f ð~�;~vÞ
bð�� p1Þ

@p

@~t

¼ �

2bð�� p1Þ
v1

vs

@~v

@~t
ð19Þ

f0

bð�� p1Þ
@p

@~t
¼ f0

b

ðp1 � pÞ
ð�� p1Þ

dc

v1tf

� �

þ f0�

�bð�� p1Þ
_~�
~�

ð20Þ

@ ~�

@~t
¼ �~�~v lnð~�~vÞ: ð21Þ

The appropriate scaling for both effective stress and pore
pressure is the nominal effective stress (s − p∞). Equation (20)
reveals two dimensionless parameters that are important for
understanding the effects of dilatancy on friction. From
equation (19) note that the importance of pore pressure
induced changes in strength relative to rate‐state friction
changes in strength is given by ( f0/b)∂~p/∂~t. The nondimen-
sional pore pressure change, ( f0/b)∂~p/∂~t, is given by (20),
which depends on two dimensionless parameters. The first,

E � f0�

�bð�� p1Þ ð22Þ

gives the importance of dilatancy relative to frictional
weakening. This scaling arises because dilatant strengthen-
ing scales with f0�/b, whereas frictional weakening scales
with b(s − p∞). Note importantly that dilatancy is relatively
stronger when the effective stress is low. In general, we
expect dilatancy to be significant relative to rate and state
friction if E ^ 1, assuming that fluid drainage is not so
fast that the fault zone pore pressure remains unchanged
(drained conditions). Assuming that b ∼ 10−2, f0 = 0.6, b is
in the range 5 to 10 × 10−11 1/Pa [Segall and Rice, 2006; Rice,
2006], and � is in the range of 10−5 to 10−4, then E = 1
occurs for effective normal stresses of from 4 to 100 MPa.
This suggests that, especially at low effective stresses, dilat-
ancy will be significant in controlling fault strength.
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[33] The fluid transport term in (20) (first term on right)
scales with

U � v1tf

dc
ð23Þ

the ratio of the characteristic fluid diffusion time to the
characteristic time for state evolution. In response to changes
in state near a slip speed of v∞, the system is effectively
undrained when U � 1 and drained when U � 1. In the
limit of drained behavior the system behaves as in the
absence of dilatancy. For U < 1 we expect the system to
transition to undrained behavior for slip speeds v/v∞ ^ U −1.
[34] The system is completely described by the following

dimensionless parameters: E, U, a/b, W/h*dr , f0 /b (which is

of order 30 based on laboratory data), and mv∞/2b(s − p∞)vs.
The last quantity scales the radiation damping term; because
v∞/vs � 1 this term is insignificant until the nondimensional
accelerations become of order 108.
[35] The system of equations (19), (20), and (21), are

solved assuming periodic boundary conditions in the along‐
fault, x direction. This allows the convolution term in (16)
associated with elastic stress interactions to be computed
in the Fourier domain. The width of the fault for which
friction and dilatancy are computed is W (Figure 3). Outside
this region constant slip rate equal to the plate velocity v∞ is
imposed on both edges (symmetric loading), or on one side
with the other side set to 10−3v∞ (asymmetric loading), to
roughly approximate a frictionally locked interface. To
properly resolve the propagating front of the slow slip zone
we require the spatial grid in the along‐fault direction to be
on the order of 1/20 of the length scale Ld ≡ (1 − a/b)h*dr.
Although in general this is too coarse for the slip law alone
[Ampuero and Rubin, 2008], dilatancy spreads out the front
to the extent that it is sufficient for our purposes. The gov-
erning equations (16), (17), and (21) are cast as a coupled
system of first‐order ordinary differential equations in dv/dt,
d�/dt, and dp/dt that are integrated using ODE solvers in
Matlab. Because state decreases with increasing slip speed,
we have found it to be useful to map the parameters v and �
to the variables ln(v/v0) and ln(v�/dc).

Figure 3. W is the width of the zone over which rate and
state friction and dilatancy are computed. At the right
boundary the slip rate is set to v∞ (“downdip”), whereas
the left boundary is set either to v∞ or for all results pre-
sented here to 10−3v∞ (“updip”).

Figure 4. A representative calculation with asymmetric loading. Each curve represents a snapshot, not
evenly spaced, in time. Slip event propagates from right to left. (top) Slip speed. (bottom) Shear stress and
pore pressure change, both normalized by nominal effective stress. Pore pressure curves are offset verti-
cally by the nominal friction; far from the rupture front p − p∞ = 0. Isothermal, membrane diffusion
approximation.
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3.2. Membrane Diffusion Results

[36] Figure 4 shows a sample calculation with E = 1,
U = 1, a/b = 0.833, W/h*dr = 8, and the slip law. Slip propa-
gates from the right to left driven by the increasing dis-
placement at the right boundary. The maximum slip rate
increases as the slip event expands, but remains less than an
order of magnitude above v∞. In these calculations v∞ is taken
to be 0.04 m/yr ’ 1.3 × 10−9 m/s. Figure 4 also shows a
significant stress concentration as well as pore pressure
reduction at the front of the propagating slip front. It is the
relative suction at the rupture front that stabilizes the slip
against dynamic instability. This can be seen by comparing
with Figure 1, which shows that with the slip law for a/b =
0.8 and no dilatancy, slip becomes dynamic for W/h*dr ∼ 3.
For a/b = 0.833 we expect that the transition to inertially
limited slip to occur at only a slightly larger value ofW/h*dr. In
contrast, with membrane diffusion dilatancy and E = 0.6,
U = 1, Figure 1 shows that slip is stable to at leastW/h*dr = 48.
These results demonstrate that dilatancy is capable of stabi-
lizing slip over a broad range of fault lengths.
[37] Figure 5 compares two solutions with slightly differ-

ent values of E. In both cases U = 0.1, W/h*dr = 8, and a/b =
0.7. In one E = 0.32, whereas in the other it is reduced
slightly to E = 0.25. For E = 0.32, a slip event propagates
from the right‐hand (constant slip rate) boundary with max-
imum slip rates on the order of the plate velocity. At some
point, before the rupture front reaches the “locked” boundary,
slip accelerates to order of 10−6 m/s, and begins to propagate
bilaterally (Figure 5a). The slip rate, however, is always well
within the quasi‐static regime. Reducing E only slightly to 0.25,
changes the behavior dramatically. The left‐propagating
front accelerates, spawning a fast rightward propagating
phase that dies out after encountering the fixed velocity
boundary (Figure 5b). The left‐propagating front continues
to accelerate, eventually spawning a second rightward prop-
agating phase. Ultimately, slip reaches order 0.1 m/s at which
point radiation damping effects are significant, and the

rupture is considered dynamic. In section 3.3 we show
that a linearized stability analysis can provide guidance in
explaining the difference in behavior for relatively small
changes in E.
3.3. Membrane Diffusion: Linearized Stability Analysis

[38] Segall and Rice [1995] conducted a linearized sta-
bility analysis for the membrane diffusion model with spring
slider elasticity. They find that, as in the drained case, a
critical spring stiffness kcrit exists such that small perturba-
tions from steady state are damped for stiffness greater than
kcrit, but grow without bound when the stiffness is less than
this critical value. The critical stiffness is given by

kcrit ¼ ð�� p1Þ ðb� aÞ
dc

� f0"

�dc
FðE;U; a=bÞ ð24Þ

where the function F(E, U, a/b) is

F ¼ 1þ �þ �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ �þ �Þ2
4

� �

s2

4

3

5 ð25Þ

� ¼ E�1 a

b

� 	 1

U þ U2
ð26Þ

� ¼ E�1 b� a

b

� � U
U þ 1

: ð27Þ

The limiting behavior for fast drainage is F(U → 0) = 0, so
that the drained stiffness is equivalent to that found by Ruina
[1983]. Normalizing the critical stiffness by the drained
critical stiffness, we have

~Kcrit ¼
kcritdc

ð�� p1Þðb� aÞ ¼ 1� E b

b� a

� �

FðE;U; a=bÞ: ð28Þ

Figure 5. Variation in behavior with changes in E: (a) E = 0.32 and (b) E = 0.25. All other parameters are
the same in both calculations, U = 0.1,W/h*dr = 8, and a/b = 0.7. Isothermal, membrane diffusion. Different
colors in Figure 5a indicate different (nonuniform) time intervals between snapshots. In Figure 5b the time
steps continue to decrease by factors of 10 (gaps in the snapshots) as the slip speed increases.
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In the undrained limit, U → ∞, l→ 0, and ~Kcrit exhibits two
limiting behaviors. For g > 1, limU→∞ F = 1 and

~K U¼1
crit ¼ 1� E b

b� a

� �

: ð29Þ

If, on the other hand, g ≤ 1 then, limU→∞ F = g. This implies
that in the undrained limit, with g ≤ 1, that ~Kcrit

U=∞ = 0. Since
the stiffness is nonnegative, the system is linearly stable in
the undrained limit for all stiffnesses if g ≤ 1. For U � 1
the condition that g ≤ 1 corresponds to

Ecrit � 1� a

b
: ð30Þ

This result was obtained earlier by Segall and Rice [1995,
equation (28)] in the context of a critical pore pressure above
which instabilities are suppressed. [Note that if we had
defined E by E = f0�/b (b − a)(s − p∞), then the condition
(30) would be Ecrit ≥ 1].
[39] Figure 6 illustrates the linearized stability boundary

for a/b = 0.9 as a function of U = v∞tf /dc and different
values of E. For a/b = 0.9, Ecrit = 0.1, from (30). For a fixed
value of E the critical stiffness decreases with increasing U,
as pore fluid flow is less and less able to compensate for
dilatancy. For E < Ecrit the undrained critical stiffness is
positive and for sufficiently low stiffness the system is lin-

early unstable. On the other hand, for E ≥ Ecrit the undrained
stiffness is zero and the system is stable for all stiffnesses.
[40] The predicted critical crack length is inversely pro-

portional to the critical stiffness. Thus, h*/h*dr is equal to the
inverse of the normalized critical stiffness, ~K. It can be
shown from (27) that for g � 1, the limiting behavior as

U → ∞ is ~Kcrit
U=∞ = 1/U, so that in this same limit

lim
U!1

h*

hdr*
¼ v1tf

dc
: ð31Þ

This behavior is shown in Figure 6 (bottom), where each
curve represents h*/h*dr for a different value of E. For E <
Ecrit, h*/h*dr asymptotes to a finite value in the undrained
limit. In this case a sufficiently long slipping zone will be
linearly unstable regardless of U. On the other hand, if E >
Ecrit, h*/h*dr increases linearly with U, such that in the limit
U → ∞ no slipping zone is long enough to be linearly
unstable. The limiting behavior given by equation (31),
shown as the dotted line in Figure 6, well approximates the
behavior for E � Ecrit and U � 1.

3.4. Application of Linear Stability Results

[41] The above result applies to small perturbations from
steady sliding at speed v∞; however, it may provide insight
more generally into the tendency for slip to accelerate in the
following sense. Consider slip at rate v that is nearly uniform
spatially. Local acceleration from this quasi‐uniform slip

Figure 6. Stability boundary for membrane diffusion model for a/b = 0.9. (top) Normalized critical
stiffness. System is linearly stable for stiffness less than the critical value (below the curve for given
value of E). (bottom) Normalized critical crack length h*/h*dr. System is stable for lengths less than the
critical length. Dotted line indicates asymptotic undrained limit given by equation (31). Dashed line
indicates hypothetical path.
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could be considered as a perturbation from the locally steady
sliding, in which case the previous results hold with v
replacing v∞. Dilatancy itself promotes more spatially uni-
form slip rate distributions than would be obtained under
drained conditions; any section of the fault that accelerates
above the background slip rate experiences less effective
drainage and therefore a greater strengthening effect. This is
illustrated in Figure 5, where the tendency for slip speed to
increase at the slip front is mitigated by dilatant strengthen-
ing, allowing the remainder of the slip zone to “catch up,”
leading to rather uniform slip rate profiles (at least on a log-
arithmic scale).
[42] As noted by Liu and Rubin [2010], further insight can

be gained by considering the slip to be fast enough that the
fault is completely undrained on the time scale of the slow
event. Assuming that the fault had previously been slipping
at steady state, and that well behind the propagating front of
the slow event the friction has reached its steady state value,
then the stress drop for a unit increase in ln v is given by
−dtss/d ln v at constant fluid mass. From Segall and Rice
[1995, equation (20)] in current notation, this is b(s − p∞)
(1 − a/b − E), so that the stress drop becomes negative in the
undrained limit when E > 1 − a/b.
[43] These considerations suggest that the linearized sta-

bility analysis may provide useful insights even far from
steady state conditions. As discussed above, the linearized
analysis implies that for E < Ecrit a sufficiently long slipping

zone can become dynamically unstable, whereas for E >
Ecrit, any slipping zone, no matter how long, will eventually
slip fast enough to become effectively undrained at which
point further acceleration is inhibited. This is illustrated in
Figure 6 for a hypothetical slipping zone with W/h*dr = 10,
shown by the dashed line. For E = 0.08 for example, this
zone is sufficiently long that it is predicted to remain in the
unstable regime as v increases. On the other hand, if E = 1
an accelerating slip zone intersects the stability boundary
near v∞tf /dc ∼ 10. The conclusion is that for nominally
unstable friction and E ≥ Ecrit, slip will ultimately be sta-
bilized by dilatancy regardless of the width of the slipping
zone, W/h*dr. Of course, for sufficiently large W/h*dr the slip
speed at which dilatancy is predicted to stabilize against
further acceleration may exceed inertial limits.
[44] Figure 7 illustrates simulations for a/b = 0.3, which

according to equation (30) is conditionally stable for E < 0.7.
For E = 0.5, and U = 1 the nondimensional critical length,
h*/h*dr is predicted to be ’1.5, whereas in the undrained
limit hun* /h*dr ’ 3.5. Indeed, for W/h*dr = 3 the system
responds with periodic noninertial slip events with maximum
slip speeds of order 10−7 m/s, whereas for W/h*dr = 4, maxi-
mum slip speeds reach the order of 1 m/s (Figure 7).
Increasing E to be greater than or equal to Ecrit, which for
this value of a/b is 0.7, however, leads to stable slip events
that do not reach inertial speeds. For example, Figure 8a
shows the case for E = Ecrit = 0.7 for W/h*dr = 12 and 15.

Figure 7. Maximum slip rate for E = 0.5, U = 1, and a/b = 0.3 for two different values of W/h*dr. For
W/h*dr = 3 there are periodic slow slip events, while for W/h*dr = 4 there are periodic dynamic slip
events.
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Figure 8. Slip speed as a function of along fault distance, for symmetric loading conditions. Each curve
marks a snapshot, not equally spaced, in time. Blue curves denote inward propagating slow phase,
whereas red curves mark outward propagating faster slip followed by deceleration. Note different velocity
scale in Figure 8b. (a) E = 0.7, U = 1, and a/b = 0.3 with (top) W/h*dr = 12 and (bottom) W/h*dr = 15.
(b) E = 0.675, U = 1, and a/b = 0.3 with (top) W/h*dr = 12 and (bottom) W/h*dr = 15.
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In both cases slip is stable, with repeated cycles of first a slow
inward propagating phase, shown in blue, followed by a
faster outward propagating phase, shown in red. Decreasing
E from 0.7 to 0.675, however, leads to the potential for
unstable slip, as shown in Figure 8b, for the two same values
of W/h*dr. For W/h*dr = 12 slip is stable and the behavior is
similar to that observed for E = 0.7 (Figure 8). However, for
W/h*dr = 15 the outward propagating phase accelerates to
radiation damping limits. This is consistent with the predic-
tion that E = Ecrit marks a qualitative boundary in behavior.
Note that for E = 0.675, the stability analysis predicts that
in the undrained limit hun* /h*dr ’ 28, roughly a factor of 2
greater than the length at the observed transition to unstable
slip. When the two inward propagating phases meet in the
center a localized region of fast slip initiates. This pre-
sumably allows the transition to dynamic slip to occur at
smaller W/h*dr than predicted by the linearized analysis.
[45] The above analysis was repeated for different values

of a/b and E, recording the maximum slip rates achieved in
each simulation. Maximum slip speeds were recorded many
cycles after the onset of the calculation to ensure that the
values are not strongly dependent on the initial conditions.
Results are shown in Figure 9. If the maximum slip speed
reaches dynamic values (taken to be 0.1 m/s) for a sufficiently
large steady state weakening zone W/h*dr (a wide range
around the predicted critical value is tested) the result is

indicated in red. If, however, the behavior is quasi‐static
regardless ofW/h*dr the result is indicated in black. Values of
W/h*dr up to twice the critical value for the largest unstable
value of E were examined; U is generally within an order
of magnitude of 1.0. The line E = 1 − a/b does a remarkably
good job of dividing the space into fast and slow slip
behavior. The numerically inferred boundary lies slightly
below the line E = 1 − a/b, at least for large a/b where the
friction alone is nearly velocity neutral. Note that the simu-
lations shown in Figure 5 are indicated by the two points
at a/b = 0.7; for E = 0.32 the maximum slip speed was
well below inertial limits, regardless of the length tested,
whereas the solution for E = 0.25 exhibited fast slip at
W/h*dr = 8.
[46] Another example is shown for asymmetric loading

and a/b = 0.7 in Figure 10. The conditions are similar to those
in Figure 5, except that U = 1, rather than 0.1. Figures 10a
and 10b are for E = 0.25, which is predicted to be condi-
tionally unstable. Indeed, for W/h*dr = 6 and W/h*dr = 8 the
maximum slip speed is well below radiation damping limits.
For W/h*dr = 6, the slow phase propagates across the
velocity weakening region before the faster phase begins.
For W/h*dr = 8 the fast phase begins before the slow phase
has propagated fully across the velocity weakening region.
For a slightly longer velocity weakening region, W/h*dr = 10,
the rupture reaches radiation damping limits (not shown).

Figure 9. Stability boundary between fast and slow slip. Each symbol may represent multiple runs with
varying W/h*dr. Red symbols indicate solutions that reach radiation damping velocities for a sufficiently
large W/h*dr. Black symbols represent solutions that never reach inertially limited slip speeds regardless of
W/h*dr. Square symbols are loaded from one side, and circles are loaded from both sides. Line E = 1 − a/b
is the linearized stability boundary between stable and unstable domains.
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For U = 0.1, and all other parameters equal, the transition
to unstable behavior occurs at W/h*dr = 8; see Figure 5.
(The linear stability analysis predicts that the undrained
critical width h*/h*dr ’ 6; apparently the fixed boundary
condition on the updip end allows the fault width to slightly
exceed this critical dimension.) In contrast, if E = 0.32,
slightly in excess of the critical value of 0.3, the maximum
slip speed for W/h*dr = 10 is less than 10−7 m/s, as shown in
Figure 10c.
[47] Indeed, if the length of the slipping zone is extended

by a factor of roughly 2, to W/h*dr = 18, with E maintained at
0.32, the slip remains quasi‐static. The behavior does, how-
ever, become significantly more complex. It does remain
quasiperiodic, with a period of roughly 0.4 years. Slip speeds
averaged over the full velocity weakening region only
slightly exceed 10−7 m/s (Figure 11a). In detail, however, as
shown in Figures 11b and 12, there are multiple pulses of
slip, all originating at the right‐hand (“downdip”) boundary.
The first phase propagates slowly updip initiating a fast
bilaterally propagating phase at about 1.7 years, that ulti-
mately stalls near x/h* = −10 (Figures 11b and 12 (top
left)). Meanwhile, a second pulse starts at the right‐hand
boundary and propagates updip (Figures 11b and 12 (top
right)). When this phase reaches roughly x/h* = −5, a third
phase initiates and propagates rapidly updip (Figure 12,
bottom left), eventually overtaking the previous slip rate
maxima (Figure 12, bottom right). When the slip rate maxima
collide, a much faster phase initiates, propagating bilaterally
but most rapidly in the downdip direction (Figures 12 (bottom
right) and 11). Ultimately, a similar, but not identical cycle
repeats in these simulations. These results emphasize that
while stable for E > 1 − a/b, large values of W/h*dr results
in complex behavior with multiple slip events propagating
away from the fixed velocity boundary in between periods
of high moment release.
[48] There may be cases where the system is nominally

unstable in the undrained limit; however, the requisite W/h*dr
is extremely large. Reference to Figure 6, however, suggests
that this set of conditions may be very small. For E = 0.08,
which is only 20% less than Ecrit, the undrained critical
nucleation dimension is only ∼5 times the drained value.
Thus, for h*un to significantly exceed h*dr, E would need to
be very nearly Ecrit, such that E = 1 − a/b remains the
effective stability boundary.
[49] With reference to Figure 6 one might speculate that

for E > Ecrit, the fault accelerates until it reaches the stability
boundary. In other words we might associate vmax with v∞ in
equation (31), such that

vmax

vss
¼ W

hdr*
U�1; ð32Þ

where vss is the steady state velocity. This predicts that the
maximum velocity increases linearly inW/h*dr , is independent

Figure 10. Slip rate as a function of along‐fault distance for
asymmetric loading, a/b = 0.7, and U = 1. with (a) E = 0.25
and W/h*dr = 6, (b) E = 0.25 and W/h*dr = 8, and (c) E = 0.32
and W/h*dr = 10. Each curve marks a snapshot in time, not
equally spaced in time. Blue curves denote the slower phase
that propagates away from the boundary fixed at v∞, whereas
red curves mark the bilaterally propagating faster phase.
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of E, and a/b, as long as E > 1 − a/b. Note that this would
be expected to hold only if the velocity distribution is
relatively uniform and the friction is near steady state. A
limited number of computations does suggest that vmax

increases linearly with W/h*dr, at least for some range of
parameters. Liu and Rubin [2010] estimate the maximum slip
speed by approximating the rupture front as a step change in
slip rate. Assuming that the interior of the slip zone is

Figure 11. (a) Average slip speed when a/b = 0.7, E = 0.32, U = 1, and W/h*dr = 18. (b) Space‐time plot
showing the evolution of log10(v), for the last cycle shown in Figure 11a. Colors indicate log10 of the slip
speed.
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essentially drained and that the effective fracture energy is
dominated by dilatancy (implying E ^ 1), an energy balance
argument leads to

vmax

vss
ln

vmax

vss

� �� ��1

/ W

hdr*

Ecrit

E U�1 ð33Þ

which is not dissimilar to (32), in that vmax grows only
slightly faster than linearly with W/h*drU−1. Whereas (32) is
independent of E, vmax in equation (33) scales with Ecrit/E.
On dimensional grounds we anticipate that for U � 1
dilatancy effects will no longer be significant, and that the
behavior will revert to drained rate and state friction. From
equation (32) we expect that for W/h*dr of order 10, that in
order for maximum slip speeds not to exceed 100 × v∞ that
U should not be less than 10−1. Similarly, for maximum
slip speeds not to exceed radiation damping limits we
expect that U should not be less than 10−7.
[50] Many numerical solutions exhibit periodic, or quasi-

periodic, behavior; for example, Figure 11 exhibits periods
near 0.3 years. The linearized stability analysis predicts the
period of oscillations at neutral stability as a function of the

nondimensional parameters E, U, and a/b. For E > 1 − a/b
the nondimensional period Tv∞/dc in the undrained limit is

Tv1

dc
¼ 2
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E � ð1� a=bÞ
ð1� a=bÞ

s

U � 1 and E > 1� a=b:

ð34Þ

Results for E ≤ 1 − a/b are given in Appendix A. For ref-

erence, the drained result is Tdrv
∞/dc = 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=ðb� aÞ
p

[Ruina, 1983]. For U � 1 the period can be considerably
longer than the drained period.
[51] Rubin [2008] found, excluding dilatancy, that for a

variety of loading conditions the period normalized by the
drained value at neutral stability Tdr increased systematically
with W/h*. Figure 13 shows that the membrane diffusion
results, when normalized by h* and T rather than by h*dr
and Tdr, follow the same trend. Figures 13a and 13b show
(as dots) the sampled values of E and U with a/b = 0.8 and
W/h*dr = 3, 6, 12, and (in one case) 24. Superimposed on
these are contours showing the values of T and h* accounting
for dilatancy (to estimate T for a continuum fault, rather
than a spring slider, we must modify equation (A2) in

Figure 12. Snapshots of slip speed as a function of along strike distance, x/h*dr at different times, not
equally spaced, through a slow slip cycle. In each plot the snapshots grade in color from blue toward red
with increasing time. Time goes in the order of top left, top right, bottom left, and bottom right. a/b =
0.7, E = 0.32, U = 1, and W/h*dr = 18.
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Figure 13. (a and b) Contours of ln(T/Tdr − 1) (from equation (A2)) and ln(h*/h*dr − 1) (from the
reciprocal of equation (28)) as functions of E and U, for membrane diffusion simulations with a/b = 0.8,
where T is the period at neutral stability and the subscript “dr” refers to the drained value. Horizontal
dashed line indicates the value of E = 1 − a/b ≡ Ecrit separating potentially unstable behavior below from
stable behavior above. Dots indicate the values of E and U used in numerical simulations with a/b = 0.8.
Numbers (3, 6, 12, or 24) indicate values of W/h*dr for which the simulations resulted in periodic or nearly
periodic slow slip; results of these are shown in Figures 13c and 13d. Letters in those same locations
signify the following: S, stable sliding; C, chaotic velocity excursions; U, unstable slip (speeds limited by
radiation damping). Letters in parentheses are inferred from the expectation that more stable sliding is
promoted by increasing E, increasing U, and decreasing W. (c) Normalized period from periodic or
quasiperiodic numerical simulations, as a function of W/h*dr. Values of three points that plot off the top of
Figure 13c are indicated in parentheses. Solid symbols are for a/b = 0.8, open symbols are for a/b = 9, and
different colors and symbols (stars or circles) are for different values of E. Red crosses are for models
where a/b increases linearly from 0.8 at the nearly locked end to 1.2 at the forced (downdip) end. Open
triangles are for half‐space diffusion with Ep = 10−3 (blue) and 3 × 10−3 (red). (d) The same data as in
Figure 13c but with W now normalized by h* and the period by T.
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Appendix A by substituting for v∞ the average slip speed at
a representative point within the velocity‐weakening region;
we take this to be its center, where this slip speed is simply
v∞/2). Figure 13c shows the normalized period for all of
these simulations that were either strictly periodic or quasi-
periodic. Also included are results from a smaller number of
simulations with: a/b = 0.9 (open circles and stars); (2) a
linear gradient in a/b from 0.8 to 1.2, so that only half the
frictional domain was velocity‐weakening (red crosses); and
(3) homogeneous half‐space diffusion (see section 4) with a
uniform a/b = 0.9 (open triangles). For the linear gradient in
a/b, W is defined as the length of the velocity‐weakening
region, h* and T are defined using the average value of a/b
within that region (0.9), and the average slip speed at its
midpoint is v∞/3 (from equation (35) below).
[52] The range of normalized periods in Figure 13c exceeds

a factor of 10 at W/h*dr = 6 and a factor of 40 at W/h*dr = 12.
However, after normalizing W by h* and the period by T,
this range is reduced to a factor of 2 or less (Figure 13d),
and furthermore coincides with (but extends to much larger
W/h*) the no‐dilatancy trend of Rubin [2008]. While the
increase in normalized period withW/h* in Figure 13d is not
fully understood, it appears to be related to the time it takes
the slow event to traverse the (velocity weakening) fault.
[53] To summarize the membrane diffusion results, we note

that in numerical simulations the simple result given by
equation (30) does a remarkably good job of predicting the
conditions of slow versus fast slip. Slow slip is favored by
nearly velocity neutral friction parameters (a/b close to 1), by
strong dilatancy (large "), and by low effective normal stress.
While these qualitative results are expected to apply more
generally, the stability boundary Ecrit = 1 − a

b
holds only for

the model membrane diffusion system.We thus turn attention
next to the presumably more representative system with full
diffusion of pore fluid from the surroundings into the fault
zone.

4. Homogeneous Diffusion Calculations

[54] In this section we extend the isothermal membrane
diffusion results to consider homogeneous pore pressure
diffusion into the rock adjacent to the shear zone. For the
same reasons discussed in section 2.2 we neglect thermal
pressurization, which is unlikely to be significant at the
average slip speeds active in slow slip events. Furthermore,
for simplicity we consider the limit of a vanishingly thin
shear layer, h → 0. The governing equations are thus: the
stress equilibrium equations on the fault (16), constitutive
equations for dilatancy (5), the slip law form of the state
evolution (3), and the isothermal form of the diffusion
equations for the infinitesimal fault zone; that is equation (11)
with L = 0. The fluid flux (Neumann) boundary condition is
driven by dilatancy on the fault, as in equation (11). The pore
pressure on the fault p(y = 0, t) drives changes in effective
normal stress and hence shear strength, and thus couples to
the friction and elasticity equations (16). Ignoring radiation
damping effects, the solutions with spatially uniform prop-
erties are dependent on the nondimensional parameters: a/b,
W/h*dr , f0/b, and Ep (given by equation (13)). In all calcula-
tions here we take f0 = 0.6, and b = 0.0167, such that f0/b =
36, and focus on how the predicted behavior varies with a/b,
W/h*dr, and Ep.

[55] A plausible range for Ep is obtained by considering,
from lab measurements � in the range of 10−5 to 10−4, dc in the
range 10−5 to 10−4 m, b in the range 5 to 10 × 10−11 1/Pa,
and v∞ ∼ 10−9 m/s. The thickness of the actively shearing
layer at depth in subduction zones is, of course, unknown.
Based on mature crustal faults we take h to be in the range
of 10−4 to 10−3 m, such that the ratio h/dc is of order 10.
This gives �h in the range of 10−9 to 10−7 m. Hydraulic
diffusivities adjacent to the plate interface are similarly
poorly constrained. Measurements from strike‐slip fault zones
at effective stresses appropriate for the depth of shallow
crustal earthquakes are within an order of magnitude of
10−6 m2/s [Lockner et al., 2000; Wibberly and Shimamoto,
2003]. Inferences of high fluid pressure in regions where
slow slip occurs similarly imply low pore fluid transmi-
sivities [e.g., Audet et al., 2009]. For the sake of discussion
we take a range of 10−7 to 10−5 m2/s. This yields a range
of Ep from 10−5/� (MPa) to 10−2/� (MPa), where � is the
effective normal stress. For effective normal stresses of order
500 MPa, corresponding to depths near 30 km and hydro-
static pore pressure, Ep is in the range 10−8 to 10−5. How-
ever, for low effective stresses, as inferred for some slow
slip areas, Ep could be considerably larger; 10−6 to 10−3

for � of 10 MPa, and as much as 10−2 for � of 1 MPa.
[56] The pore pressure diffusion equation is computed with

a finite difference scheme, which is coupled to the friction
elasticity equations through the pore pressure (and its time
derivative) on the fault. There are a number of challenges in
the finite difference computation of the pore pressure. First,
we require a sufficiently fine grid near the fault to resolve
steep gradients in p induced by dilatancy as the rupture tip
passes. At the same time, we require the pore pressure to
remain unchanged at p∞ some significant distance from the
fault. This problem is rectified by choosing a logarithmic
finite difference grid, such that the grid spacing is small near
the fault, where gradients may be steep, but becomes more
widely spaced far from the fault. Details are given in
Appendix B.
[57] Figure 14 shows the normalized pore pressure as a

function of fault perpendicular distance at different snap-
shots in time for a representative calculation. The plot is
zoomed in near the fault to show the changes in this region.
The pore pressure decreases as the slip front passes, and
then slowly recovers as fluid flows in from the surrounding
rock. Note that the logarithmic spacing in the finite differ-
ence mesh points guarantees that the steep gradients near the
fault are accurately represented while at the same time the
mesh extends sufficiently far from the fault (not shown) to
properly represent the remote boundary condition.
[58] In order for the results to be insensitive to arbitrary

initial conditions it is necessary to run simulations over many
slow slip cycles. This requires the numerical procedure to be
quite efficient. To accurately resolve the slip front requires
the along‐fault grid spacing of the order of Ld/20; for large
values of W/h*dr this can require thousands of points in the
along‐fault dimension. With the logarithmic finite differ-
ence grid we have found acceptable results with of the order
of 40 points in the fault‐normal dimension. Systems of this
size require efficient time stepping algorithms. In an explicit
finite difference scheme the time steps must be less than the
Courant‐Friedrichs‐Lewy (CFL) condition (for the diffusion
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equation Dt < (Dy)2/2chyd, where Dy is the finite difference
spacing). With a very fine grid near the fault the time steps
in an explicit scheme become unacceptably small. A fully
implicit scheme can take far bigger time steps, but requires
the solution of a very large system of equations at every
time step. Consequently, we developed a semi‐implicit
scheme that employs an explicit scheme for the friction‐
elasticity equations (which are not subject to the stringent
stability constraints), but implicit time stepping for each
one‐dimensional diffusion profile normal to the fault. This
involves the solution of (many) small linear systems of
equations, and is consequently very efficient. This scheme
permits integration of the equations over numerous slow slip
cycles. Details are given in Appendix B.
[59] A sample simulation is shown for Ep = 1.0 × 10−3,

a/b = 0.9, and W/h*dr = 16 in Figure 15. Loading is constant
slip rate at v∞ on the right‐hand boundary (“downdip”) and
10−3v∞ on the left‐hand (“updip”) boundary. For these para-
meters, slip occurs in two phases; the slow phase involves
propagation away from the downdip boundary with maxi-
mum slip rates less than an order of magnitude above the
plate velocity (Figure 15, blue curves). Following the end of
the slow phase, a faster slip phase initiates near the middle
of the velocity‐weakening region, propagating first updip
and subsequently bilaterally (Figure 15, red curves). Maxi-
mum slip rates during the rapid phase are less than 10−6 m/s,
and are thus well within the quasi‐static regime. A sharp

decrease in fault zone pore pressure propagates with the
rupture tip, and is more pronounced during the fast phase. In
many respects the behavior is similar to membrane diffusion
(compare to Figure 4); the main difference being that the
pore pressure recovers more slowly, such that p(y = 0) is
significantly less than the ambient pore pressure over a much
longer portion of the fault than with membrane diffusion.
[60] Slip speed as a function of space and time is shown in

Figure 16. Figure 16 (left) shows the slow phase propagating
updip over ∼0.75 years, followed by the onset of the faster
transient. Figure 16 (right) zooms in on the faster phase,
where slip speeds locally exceed 10−8m/s. The upward phase
propagates at something close to 2 km/d for several days,
while the downward phase initially lacks a clear front, but
ultimately propagates at close to 9 km/d.
[61] Figure 17 illustrates slip during a single slow slip

cycle. The slow phase occurs with slip migrating updip for
roughly 1 year. During this time more than 3 cm of slip
accumulates at the downdip end of the velocity weakening
region, suggesting that the propagation is driven by the plate
motion rather than by relaxing stored strain energy. This is
confirmed by examination of the stress acting on the fault,
as discussed below. The faster phase is seen to nucleate near
the center of the velocity‐weakening region (x ∼ 0) and
propagate bilaterally, as seen in Figure 16.
[62] Stress accumulates during the slow phase; that is, it

occurs with negative stress drop. Slip is driven by steadily

Figure 14. Numerical results illustrating pore pressure as a function of distance perpendicular to the fault
at different snapshots in time. Pore pressure is normalized by the remote pore pressure, p( y = 0)/p∞. Circles
denote the finite difference grid points, more closely spaced near the fault. The finite difference grid extends
to a distance of 15.8 m from the fault; only the first 0.3 m are shown here. The particular simulation is shown
for Ep = 1.0 × 10−3, a/b = 0.9, and W/h*dr = 16.
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accumulating displacement at the fixed velocity boundary,
rather than by relaxation of stored elastic strain. This can be
seen in Figure 18. The dashed curve labeled 1 shows the
stress prior to the onset of the slower phase, while curves 2
and 3 are during this phase. Notice that the stress well
behind the propagating tip (the strong stress concentration)
is higher at the end of the slow phase than it was prior to its
onset. At the end of the slow phase the stress is uniformly
high (curve 4 in Figure 18). The slow phase does, however,
set the stage for the fast (but quasi‐static) phase which drops
the accumulated stress. At the start of the slow phase most
of the fault is well below steady state (v�/dc < 1); however,
by the end of the slow phase much of the fault is at or near
steady state (Figure 18b, curve 4). Following the cessation
of fast slip (curve 5), the stress has dropped over the entire
fault and the friction is well below steady state.
[63] One of the striking results of these simulations, which

seems to apply for at least a modestly broad range of
parameter space, is that the fault is never “locked,” or
slipping at many orders of magnitude below the plate
velocity. Rather, there is generally some form of propagating
slip, although often at rates much lower than geodetically
observable slow slip events. If we associate the fast quasi‐
static phase with a geodetically observable transient, it is
tempting to speculate that the slower phases are associated
with the occurrence of nonvolcanic tremor which has been
observed between major ETS events [e.g.,Wech et al., 2009].
This assumes that tremor is associated with locally acceler-

ated slip, which may or may not be detected geodetically. At
present there is no accepted physical model for tremor itself.
[64] It is also worth noting for this particular simulation

that at the midpoint of the velocity weakening region
(x/h* = 0), roughly half of the slip (∼1 cm) accumulates
during the fast phase, whereas the other half accumulates in
between fast events, during the slow phase (Figure 17). All
together the accumulated slip (during both phases of this
slow slip cycle) amount to only 2/3 of the relative plate
motion (v∞) during this time interval. That is, only roughly
1/3 of the plate motion is accommodated by the fast slip
phase (at the midpoint of the slipping region). Any model in
which slow slip cycles beneath a locked zone are driven by
stress accumulating due to deeper plate motion must accu-
mulate a slip deficit relative to the plate velocity, as illus-
trated for example in Figure 17.
[65] Slip as a function of time is illustrated in Figure 19,

averaged over either the full velocity weakening region, or
only the updip half of the velocity weakening region.
Figure 19 emphasizes that only a fraction of the total moment
that accumulates during amodel slow slip cycle occurs during
the rapid phase that is most clearly associated with a slow
slip event. For this simulation there are four events in 4 years,
for a recurrence interval of roughly 1 year. The average slip
accumulated during the 4 year interval (∼8 cm) is roughly
half of the net plate motion during this period (4 cm/yr ×
4 years = 16 cm). If one considers only the updip half of
the velocity weakening region, where the slip events appear

Figure 15. (a) Slip rate and (b) normalized pore pressure, p(y = 0, t)/p∞, as a function of along‐strike
distance for Ep = 1.0 × 10−3, a/b = 0.9, and W/h*dr = 16. Each curve represents a different snapshot in
time, not regularly spaced. Blue curves represent slower phase, while red curves represent faster phase.
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more impulsive, then the accumulated slip is only roughly
one third of the net relative plate motion.
[66] In order to determine how observable quantities vary

as a function of the governing nondimensional parameters,
we examined how the normalized moment rate and the period
of the moment oscillations vary as a function of W/h*dr for
fixed a/b = 0.9 and Ep = 1 × 10−3. We define a normalized
moment rate as the moment rate over the full velocity
weakening region, divided by the moment rate corre-
sponding to slip at constant shear stress over that region.
For constant shear stress acting on a two‐dimensional fault
of width W in a full space, subject to boundary conditions
v(x = W/2) = v∞ and v(x = −W/2) = 0, the slip rate distri-
bution, is

vðxÞ ¼ ðv1=
Þ sin�1 2x=Wð Þ þ 
=2

 �

ð35Þ

[e.g., Segall, 2010, equation 12.3]. The steady state moment
rate is thus _M ss = v∞W/2. The normalized moment rate for
a/b = 0.9 and Ep = 1 × 10−3 is shown in Figure 20a. For W/
h*dr = 6 the behavior is purely periodic with a period of
∼0.25 years. For W/h*dr = 4 the period is the same; however,
the oscillations slowly decay. For larger W/h*dr the 20%
to 80% range of _Mmax/ _M ss is shown with vertical bars. There
is considerable subjectivity in plotting these data. We first
eliminate early cycles to reduce dependence on initial con-

ditions. In some cases it is clear when a stable limit cycle is
reached, in others it is not at all clear. Secondly, we eliminate
subsidiary moment rate peaks that are very close in time to
neighboring larger peaks. Finally, we threshold such that
normalized moment rate excursions below some cutoff are
not recorded, as these are unlikely to be observed geodeti-
cally. The effect of thresholding can be to introduce a period
doubling with increasing W/h*dr. This is well illustrated, for
example, at W/h*dr = 10 in Figure 20b. With a threshold of
2 _M ss, the smaller excursions are excluded, and the cycles are
extremely periodic with T = 0.72 years. The moment rate
shows little variability with _Mmax/ _M ss ≊ 4.3. However, with
a threshold of _M ss the smaller moment rate excursions are
included and the period drops to T = 0.32 to 0.4 years, and
the moment rate spans the indicated range. With increasing
W/h*dr ∼≳ 15 the longer‐period oscillations dominate the moment
rate function.
[67] For comparison Rubin [2008, Figure 9] finds that

without dilatancy, and a/b = 0.9, _Mmax/ _M ss is roughly 6 for
W/h*dr = 4, but that the simulations become inertially limited
at W/h*dr of slightly less than 5. (These calculations include a
transitional region of velocity strengthening friction between
the velocity‐weakening region and the imposed constant
velocity boundary condition. However, Rubin [2008] shows
that the presence of the velocity strengthening region does
not qualitatively alter the behavior.) In contrast, with dilat-
ancy, and Ep = 1 × 10−3, the behavior remains stable at least

Figure 17. Slip as a function of along‐strike distance for Ep = 1.0 × 10−3, a/b = 0.9, and W/h*dr = 16.
Curves are not at regularly spaced time intervals; however, the black curves are separated by roughly
0.1 years. The red dashed curves correspond to times when the average slip speed exceeds 10−9 m/s,
roughly the plate velocity, and are mostly at intervals of roughly 2 days, although in some cases they
are as short as 2 h apart.
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Figure 18. (a) Stress as a function of along fault position for the simulation illustrated in Figure 15.
Curve 1 (dashed red) is before the start of the “slow phase.” Curves 2 and 3 (solid blue) are during the
slow phase; the strong stress concentration marks the tip of the slipping zone. Curves 4 (cyan) and 5 (solid
red) are at the ends of the slow and fast phases, respectively. (b) Plot of ln(v�/dc) as a function of along
fault position. Colors correspond to Figure 18a.

Figure 19. Average slip as a function of time for slow slip simulation with Ep = 1.0 × 10−3, a/b = 0.9,
and W/h*dr = 16. Blue curve illustrates the slip averaged over the full velocity weakening region. Red
curve illustrates the slip averaged over the “updip” half of the velocity weakening region.
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for W/h*dr less than 20 (Figure 20a). Indeed, a simulation
with a/b = 0.9, Ep = 3.16 × 10−3, and W/h*dr = 50 exhibited
stable slip, with maximum slip speed on the order of 2.3 ×
10−7 m/s, thus demonstrating that very long slip zones can
be stabilized by dilatancy. For a/b = 0.9, and Ep = 3 × 10−3,
_Mmax/ _M ss falls within the geodetically observed range of
10 to 100 for W/h*dr in the range of 10 to at least 20. We
expect that for fixed Ep, and W/h*dr, the normalized moment
rate will increase (decrease) for lower (higher) ratios of
a/b, as shown in Rubin [2008] neglecting dilatancy.
[68] The dependence of the normalized moment rate and

the period between slow slip events is shown as a function
of Ep in Figure 21 for fixed a/b = 0.9 and W/h*dr = 12. Note
that without dilatancy this is roughly twice the maximum
stable fault width according to Rubin [2008, Figure 9].
Relative to the result for Ep = 10−3, decreasing Ep increases
the normalized moment rate and the period. The latter arises
due to the larger stress drops that occur during the “fast”

phase when Ep is small. For Ep = 10−4, _Mmax/ _M ss ∼ 0.3 to
1.0 × 104; that is, average slip rates are a factor of 104 above
the plate velocity, and the period increases to roughly
1.4 years. Increasing Ep decreases the normalized moment
rate, such that for Ep = 6 × 10−4, the moment rate is a factor
of 100 over the steady state rate, and the period is slightly
less than 1 year. Increasing Ep to 10−3 drops the normalized
moment rate close to unity and decreases the period by
roughly a factor of 2, reflecting the period doubling phe-

nomenon discussed above. Note that decreasing Ep could
result from either decreasing �h, increasing the effective
normal stress, compressibility, hydraulic diffusivity, or dc.
[69] These results demonstrate that, as expected, inclusion

of a more accurate diffusion model does not fundamentally
change our conclusion that modest dilatancy can stabilize
slip against inertial instability.

5. Relationship Between Membrane
and Homogeneous Diffusion

[70] We have analyzed two models for the effects of
dilatancy on fault stability that differ solely in the manner in
which pore fluid transport is approximated. The behavior is
qualitatively similar, but different in detail as membrane
diffusion depends on the two dimensionless parameters E
and U, while homogeneous diffusion depends on Ep. It is
desirable to understand more quantitatively how these models
relate to one another. We first explore this issue by consid-
ering behavior in both models near neutral stability. Next we
contrast the pore pressure response to abrupt changes in slip
speed in these two models.
[71] From the definitions of Ep and E

Ep ¼
b
ffiffiffi

2
p

f0
E

ffiffiffiffiffiffiffiffiffiffiffiffi

h2v1

chyddc

s

: ð36Þ

Figure 20. Normalized (a) moment rate _Mmax/ _M ss and (b) period as a function of normalized fault width
W/h*dr for fixed values of a/b = 0.9 and Ep = 1 × 10−3. For periodic solutions the data are shown with circles.
For quasiperiodic behavior the 20% to 80% range is shown. The solution at W/h*dr = 4 exhibits decaying
oscillations. Two solutions are shown forW/h*dr = 10, to illustrate period doubling; the very periodic result
corresponds to a higher moment rate threshold.
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Noting that tf = hhw/2chyd, from (15) we write

Ep ¼
b
ffiffiffi

2
p

f0
EU1=2 h

hw

� �1=2

: ð37Þ

In the membrane diffusion model the diffusion distance is
always the wall thickness hw. In the homogeneous diffusion
model at neutral stability, it is the characteristic diffusion
distance during a half‐period of oscillation. Comparing the
two models at neutral stability suggests equating these two
distances, that is

hw ¼ $
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

chydThdðEpÞ
q

ð38Þ

where the period at neutral stability Thd is a function of Ep,
and $ is a constant of order unity that accounts for the
scaling in the characteristic diffusion length and the fact that
fluid flow is unidirectional during a half, rather than full,
cycle. Rearranging (36) for h in terms of Ep and E, and
substituting this result, along with (38), into (37) yields

Ep ¼
b

f0$
EU½~ThdðEpÞ	�1=2 ð39Þ

where ~T is the nondimensional period Tv∞/dc. Equation (39)
provides the first relationship between Ep and the membrane
diffusion parameters E and U.

5.1. Large Ep Limit

[72] In the limit E > Ecrit and U � 1 equation (31) gives
h*md/h*dr ≈ U, where h*md is the critical nucleation dimension
for membrane diffusion. Comparing to the large Ep limit
for homogeneous diffusion, equation (C25) in Appendix C,
leads to

U 
 1� a

b

� 	�2 f0Ep
ffiffiffi

2
p

b

� �2

¼
~Thd

2

; ð40Þ

where the latter relation makes use of equation (C21). This
shows that in dimensional terms tf ∼ Thd/2p; the charac-
teristic diffusion time in the membrane diffusion model
should be chosen equal to the (circular) period at neutral
stability in the homogeneous diffusion model.
[73] The nondimensional period at neutral stability for

homogeneous diffusion is given by equation (C21) and for
membrane diffusion by (34). Equating these and making use
of (40) leads to

E ¼ 2 1� a

b

� 	

¼ 2Ecrit : ð41Þ

Thus, in order to approximate homogeneous diffusion
behavior near neutral stability for large Epwith the membrane
diffusion model, one chooses U from equation (40), and sets
E = 2(1 − a/b). The former specifies that the characteristic
diffusion time across the wall zone is proportional to the
period at neutral stability in the homogeneous diffusion
model, while the latter that E exceeds Ecrit so that the critical

Figure 21. Normalized moment rate _Mmax/ _M ss and period between slow events, as a function of Ep, for
fixed W/h*dr = 12, and a/b = 0.9.
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nucleation length h*md becomes unbounded in the undrained
limit, as it does in the homogeneous diffusion case (Figure 22
and equation (C25)).
[74] We also check consistency with equation (38), which

states that the appropriate wall thickness, hw, is related to the
period of neutral stability in the homogeneous diffusion
case, consistent with the result in equation (40). Making use
of (40), equation (39) reduces to

Ep ¼
b

f0$

E
2


½~TðEpÞ	1=2: ð42Þ

From the result for ~Thd in equation (C21), we find that

E ¼ 2$
ffiffiffi



p

1� a

b

� 	

; ð43Þ

which agrees with (41) for $ = 1/
ffiffiffi



p

.

5.2. Low Ep Limit

[75] Note that model slow slip behavior reminiscent of
natural events occurs in the low‐Ep limit (see Appendix C).
For example, Ep ≤ 10−3 implies Ep f0/b ] 3 × 10−2

(Appendix C and Figure 22). Because Ep is defined at a
slip speed of v∞, the fault can be essentially drained as a
slow slip event nucleates, but moderately undrained for
speeds 1–2 orders of magnitude larger, as discussed further
in section 5.3. Equating the drained asymptotic results for
h* in the membrane (A5) and homogeneous diffusion
models (C18), as well as the periods at neutral stability,
equations (A6) and (C16), yields two equations in the

unknowns E and U. These can be written compactly letting
w ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b=a� 1
p

, the nondimensional drained frequency at
neutral stability, and E′p ≡ f0Ep/

ffiffiffi

2
p

b, as

!2EU ¼ Ep
0ð!3=2 þ !1=2Þ

!2EU2 ¼ Ep
0!1=2: ð44Þ

Solving for U leads to

U ¼ ð!þ 1Þ�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi

b

a
� 1

r

þ 1

" #�1

: ð45Þ

Thus, in the drained limit the appropriate choice of the
nondimensional characteristic diffusion time in the mem-
brane diffusion model ~tf is related to the nondimensional
drained period at neutral stability, ~Tdr

~tf ¼
2

~Tdr

þ 1

� ��1

: ð46Þ

Substituting (45) into (44) yields the estimate of E in the
drained limit.

E ¼ f0Ep
ffiffiffi

2
p

b

ffiffiffiffiffiffiffiffiffiffiffi

b

a
� 1

r

þ 1

 !2

b

a
� 1

� �3=4
: ð47Þ

Figure 22. Plots of (a) ln(h*/h*dr − 1), (b) kcrit/kcrit_dr, (c) ln(T/Tdr − 1), and (d) w/wdr, as functions of
ln(Epf0/b), from equations (C10) and (C12), for a/b = 0.8 (black lines) and a/b = 0.9 (red). Dotted lines
in Figures 22a and 22c show asymptotic limits for small Ep (equations (C16) and (C18)) and large Ep

(equation (C21), after normalization by the drained value and equation (C25)).

SEGALL ET AL.: DILATANT SLOW SLIP B12305B12305

26 of 37



Returning to equation (39), making use of (45), and taking
the drained limit ~Tdr for ~Thd (Ep) leads to

E ¼
ffiffiffiffiffiffi

2

p

f0$Ep

b

ffiffiffiffiffiffiffiffiffiffiffi

b

a
� 1

r

þ 1

 !

b

a
� 1

� �1=2
: ð48Þ

For both equations (47) and (48), E is proportional to
Ep, although the constants are somewhat different. In
equation (47), bE/f0Ep ranges from 4.5 to 6.6 for a/b between
0.8 and 0.9; while in equation (48), bE/f0Ep ranges from 4.2
to 5.6 for the same range in a/b and $ = p−1/2. In summary,
for the low Ep case, the appropriate characteristic diffusion
time in the membrane model depends on the drained period
at neutral stability, as in equation (46), while the appropriate
choice of E is given by (47).

5.3. Pore Pressure Change Following Velocity Steps

[76] The previous analysis describes the relationship
between the membrane diffusion and homogeneous diffusion
models near neutral stability. Also of interest is the behavior
far from neutral stability where propagating slip events are
observed in both models. In many of the simulations these
events appear as nearly step changes in slip speed (at least
on a log scale). This is observed in Figures 5, 10, and 12 for
membrane diffusion, and in Figure 15 for the homogeneous
diffusion case, although for the latter the slip speed decays
more substantially behind the slip front.
[77] In order to elucidate the difference in behavior between

the two diffusion models we examine the pore pressure
response to a step change in slip speed, v(t) = vH(t) for both
models. The derivations are given in Appendix D. For
membrane diffusion we find (Appendix D, equation (D5))
that the fault zone pore pressure following the velocity step is
given by

pmdðtÞ ¼ � �

�
ln

v�i
dc

� �

vtf

dc � vtf
e�	=dc � e�t=tf
� 	

;
vtf

dc
6¼ 1

¼ � �

�
ln

v�i
dc

� �

	

dc
e�vt=dc ;

vtf

dc
¼ 1 ð49Þ

where �i is the state variable prior to the velocity step, and
slip is d = vt. The pore pressure drop accumulates expo-
nentially with d/dc and then decays, as pore fluid flows into
the fault zone, with increasing slip as d/vtf. The maximum
pore pressure change is

pmdmax ¼ � �

�
ln

v�i
dc

� �

vtf

dc

� �� dc
vtf �dc

;
vtf

dc
6¼ 1

¼ � �

�
ln

v�i
dc

� �

e�1;
vtf

dc
¼ 1 ð50Þ

Define ϒ ≡ vtf /dc = (v/v∞)U, and the function G(ϒ) by

G(ϒ ≠ 1) ≡ ϒ1/(1−ϒ); G(ϒ = 1) ≡ 1/e. Note that in the limit
that ϒ � 1, G(ϒ) → ϒ; as ϒ tends to zero, pore pressure
dissipates faster than it accumulates. On the other hand, for

ϒ� 1, G(ϒ)→ 1. Thus, the limiting forms of (50), written
in terms of E are:

lim
vtf =dc�1

pmdmax ¼ � b�

f0
E vtf

dc

� �

ln
v�i
dc

� �

lim
vtf =dc�1

pmdmax ¼ � b�

f0
E ln v�i

dc

� �

ð51Þ

where, � ≡ (s − p∞). For homogeneous diffusion, on the
other hand, the pore pressure on the fault is (Appendix D,
equation (D14))

phdðy ¼ 0; 	Þ ¼ � 2�Ep
ffiffiffi



p

ffiffiffiffiffiffi

v

v1

r

ln
v�i
dc

� �

D

ffiffiffiffiffi

	

dc

s

 !

ð52Þ

where D(z) is known as Dawson’s Integral

DðzÞ ¼ e�z2
Z z

0

et
2

dt: ð53Þ

D(z) exhibits a maximum of ∼0.541 at z ’ 0.924 and then
decays slowly as pore pressure recovers (Figure 23). For large
argument Dawson’s Integral behaves as D(z� 1) ∼ 1/2z. The
maximum pore pressure excursion in the homogeneous dif-
fusion case is thus

phdmax 
 � Ep
ffiffiffi



p �

ffiffiffiffiffiffi

v

v1

r

ln
v�i
dc

� �

ð54Þ

Comparing to (50) the maximum pore pressure excursions in
the two models are equal when

Ep 

ffiffiffi



p

b

f0
E v

v1

� 	�1=2
G U v

v1

� 	

; ð55Þ

where the function G is defined following equation (50). From
a fracture mechanics perspective [e.g., Rubin and Ampuero,
2005] it is likely the integral of the induced pore pressure
change with slip has a more significant effect on the propa-
gation behavior than does pmax. The effective fracture energy
Gc is defined as the integral of the shear strength as a function
of displacement

Gc �
Z 	*

0

½�ð	Þ � �ð	*Þ	 d	 ð56Þ

[e.g., Rice, 2006], where d* is the slip at which the strength
degrades to roughly constant level. The contribution to the
fracture energy from dilatancy (that is excluding the contri-
bution from changes in friction) is computed by inserting
−f0Dp for t in (56). For membrane diffusion employing
equation (49), this results in

Gmd
c ¼ f0�

�
ln

v�i
dc

� �

vtf ; ð57Þ
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which is valid for all vtf /dc. For the homogeneous diffusion
case:

Ghd
c ¼ 2f0�Ep

ffiffiffi



p dc

ffiffiffiffiffiffi

v

v1

r

ln
v�i
dc

� �

Ið	*=dcÞ; ð58Þ

where

Ið	*=dcÞ �
Z 	*=dc

0

D
ffiffi

z
p� 

dz � 	*

dc
D

ffiffiffiffiffi

	*

dc

s

 !

: ð59Þ

For sufficiently large argument (roughly d*/dc > 5), the definite

integral in (59) increases as
ffiffiffiffiffiffiffiffiffiffiffiffi

	*=dc
p

. Given the asymptotic

behavior of D(z), I(d*/dc) scales roughly as (1/2)
ffiffiffiffiffiffiffiffiffiffiffiffi

	*=dc
p

. For
d*/dc in the range of 10 to 30, I(d*/dc) ranges between 1.6 and
2.7. In what follows we take d*/dc = 20, such that I(d*/dc) =
2.2. We note that I(d*/dc) is formally unbounded with
increasing d*; however, there is no paradox with regard to the
numerical simulations because the slip velocity decreases
substantially behind the rupture tip (Figure 15) such that the
effective fracture energy is finite.
[78] We have seen in simulations (Figure 18) that prior to

the faster slip phases, the slow phase brings the fault close to
steady state friction at nearly the driving velocity. Thus, it is
reasonable in these cases to take �i ≈ dc/v

∞. Making this
assumption and normalizing the fracture energy by � dc we
have, for membrane diffusion

Gmd
c

�dc
¼ bEU v

v1

� 	

ln
v

v1

� 	

: ð60Þ

The corresponding result for homogeneous diffusion is

Ghd
c

�dc
¼ 2f0Ep

ffiffiffi



p Ið	*=dcÞ

ffiffiffiffiffiffi

v

v1

r

ln
v

v1

� 	

: ð61Þ

In the membrane diffusion case the fracture energy due to
dilatancy increases with the magnitude of the velocity jump
as v ln(v), the ln(v) arising from the magnitude of the pore
pressure change, the v arising from the characteristic slip
weakening scale (vtf), whereas in the homogeneous case the
fracture energy scales with

ffiffiffi

v
p

ln(v). This illustrates a fun-
damental limitation of the membrane diffusion model: the
pore pressure recovery time tf is independent of the mag-
nitude of the velocity step, whereas in homogeneous dif-
fusion the effective recovery time scales with dc/v, and is
thus shorter for larger velocity steps. This leads to fracture
energies in the membrane diffusion approximation that
increase with v faster than for homogeneous diffusion by a
factor of

ffiffiffi

v
p

.
[79] A complete fracture analysis, which is beyond our

present scope, would include the balance between the fracture
energy and the energy release rate. For drained rate‐state
friction behavior Rubin and Ampuero [2005] showed that
for sufficiently large v, the energy release rate scales with
L[ln(v)]2, where L is the length of the active slip zone, while
Gc scales with [ln(v)]2 for the aging law, but only with ln(v)
for the slip law. Thus, for the aging law only, Gc balances
the energy release rate for L less than a critical length, L∞.
If the interior of the crack drains to the background pore
pressure, the Rubin‐Ampuero estimate of G approximately
holds. In this event there is no limiting slip zone length if
Gc increases with v faster than [ln(v)]2, which we note is

Figure 23. Comparison between pore pressure changes induced on a step increase in slip speed v for
membrane diffusion and homogeneous diffusion; see equations (49) and (52). In this example Ep = 10−3,
E = 0.1, U = 1, and the velocity jump is a factor of 10 over the plate velocity. Also, b = 0.015 and f0 = 0.6.
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true for both membrane and homogeneous diffusion. In
detail, the slow pore pressure recovery in the homogeneous
diffusion case decreases the stress drop well behind the
rupture tip, thus decreasing G and further stabilizing the
rupture relative to the membrane diffusion case which is
relatively drained in this region.
[80] Equating the apparent fracture energy in the mem-

brane and homogeneous diffusion models leads to

Ep ¼
ffiffiffi



p

b

2f0Ið	*=dcÞ

� �

EU v

v1

� 	1=2
; ð62Þ

which can be compared with equation (55). Matching both
the fracture energy and the maximum pore pressure excursion
requires ϒ = 2I(d*/dc)G(ϒ). Since G(ϒ) ≤ ϒ, such solutions
exist only for 2I(d*/dc) > 1. For example with, I(d*/dc) ∼ 2.2,
matching the fracture energy and peak suction occur for
ϒ ∼ 2, which implies v/v∞ ∼ U−1. While there is a rather
narrow range of parameters that match both the fracture
energy and peak suction, there appears to be a broader range
for which they are approximately equivalent, although we
have not explored this in detail.
[81] The constant term in brackets in (62) is of the order of

10−2. From this we suggest a range of Ep that yields slip
rates roughly an order of magnitude greater than the plate
velocity. For example, choosing E ∼ 1 − a/b ∼ 0.1, and U on
the order of 1, leads to Ep of roughly 2 × 10−3, which we
have already seen provides interesting behavior in the sense
of producing slow slip events that are roughly an order of
magnitude above plate velocity, for an appropriate range of
W/h*dr. Note that Ep of order 10

−3 is in the small Ep limit, for
which the critical nucleation dimension and period at neutral
stability are not that different from drained values. This is
consistent with the idea that for geophysically relevant
parameters dilatancy is not significant during transient slip
nucleation, but becomes dominant as the slip speed increases.
[82] We conducted a limited number of tests to investigate

whether (62) provides guidance for relating the maximum
slip speeds in the two diffusion models. In the first example
Ep = 3 × 10−3, a/b = 0.9, and W/h*dr = 16; for this simulation
log10(vmax) = −6.3. For these parameters equation (62)
predicts equivalent behavior for EU ≈ 0.06. A membrane
diffusion simulation with E = 0.2 and U = 0.3 yielded
log10(vmax) = −6.45. On the other hand, for E = 2 and U =
0.03 we found log10(vmax) = −7.4. For a second comparison
we took Ep = 3 × 10−4, a/b = 0.9 and W/h*dr = 12,
which yielded log10(vmax) = −4.0. Equation (62) suggests
equivalent slip speeds for E = 0.2, and U ≈ 0.005. A mem-
brane diffusion simulation with these parameters yielded
log10(vmax) = −4.4. In summary, these comparisons are
somewhat encouraging and indicate that a more compre-
hensive fracture mechanics based analysis could lead to an
improved analytical understanding of the simulated slow
slip events.

6. Discussion

6.1. Comparison to Observations

[83] Because this study did not consider depth‐dependent
material properties and stresses, including a transition to

steady state velocity strengthening friction with depth, it is
premature to associate particular parameters with field
observations. Nevertheless, it is encouraging that there are
parameters consistent with laboratory data that yield geo-
physically interesting behavior. Consider the observations
detailed in the introduction. We have seen that simulations
with a/b = 0.9, 10−3.2 ≤ Ep ≤ 10−3, and 12 ≤ W/h*dr ≤ 20,
yield moment rates _Mmax/ _M ss of 10 to 100 and repeat
periods of roughly 1 year. For these simulations the length
of the slow slip zones are between 30 and 50 km, roughly
consistent with downdip dimensions in subduction zones.
Note that for � of the order of 1 MPa and dc of order 10 to
100 microns, h*dr is on the order of 0.4 to 4 km. With
dilatancy, W/h*dr can be of the order 20 to 50 if not more.
Low background effective stresses and dilatancy thus
permit slow slip over appropriate spatial scales.
[84] For the parameters listed above the maximum slip in

the simulations is on the order of 0.01 m and stress drops are
on the order of 0.01 MPa, both consistent with geodetic
observations. Along‐strike propagation speeds of ∼10 km/d
have been observed geodetically. For the parameters stated
above we observe updip propagation speeds of ∼2 to
∼9 km/d and downdip speeds of ∼9 to ∼15 km/d, similar to
observations. However, comparison of along‐strike propa-
gation speeds with updip two‐dimensional model speeds
should be viewed with caution. Once slip has extended the
full updip width and begins propagating along strike, the
minimum rupture zone dimension is fixed and the extending
slip zone becomes highly elongate. This will decrease the
energy release rate relative to a two‐dimensional model,
with consequent effects on the propagation speed. This may
in fact help explain why slow slip does not accelerate as it
propagates along strike. Details await fully three‐dimensional
calculations.
[85] In summary, while it is somewhat premature to iden-

tify particular parameter ranges with observations, it does
appear that plausible material parameters, combined with
very low background effective stresses can yield observed
downdip slip zone dimensions, average slip amplitude, stress
drop, average slip speeds, and recurrence times. Model
propagation velocities in the dip direction are in the same
range as observed along‐strike; however, a full comparison
awaits either observational determination of the updip
velocity of slow slip events and three‐dimensional model
calculations.

6.2. Summary of Evidence for High Pore Pressures

[86] Observational evidence for high fluid pressures
include high vp /vs ratios inferred from tomographic [e.g.,
Kodaira et al., 2004; Shelly et al., 2006] and receiver
function [Audet et al., 2009] studies. Audet et al. [2009] find
that the subducted Juan de Fuca crust in the area where slow
slip events are inferred to take place has Poisson’s ratios in
excess of 0.4. This has been interpreted as indicating near
lithostatic pore pressures, although the lack of appropriate
laboratory data make it difficult to quantify this precisely.
High fluid pressures are widely believed to result from
dehydration reactions as the subducted slab passes through
the stability field of a number of hydrous phases stable at
low pressure and temperature conditions [e.g., Peacock
et al., 2002; Liu and Rice, 2007]. If the overlying rocks
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have sufficiently low permeability, the source of fluid pro-
vided by dehydration reactions presumably maintains high
ambient pore pressures. The low stress drops associated with
slow slip events are also consistent with, but may not demand,
low effective normal stresses.
[87] Modeling studies provide two additional arguments

suggesting high ambient pore pressures. The first is that the
critical nucleation dimension h* is inversely proportional to
effective stress. Low effective stresses increase h* and thus
help to rationalize the large dimensions of the stable slipping
zones. Furthermore, we have shown that the efficacy of
dilatant strengthening relative to frictional weakening, as
measured by E and Ep in the membrane and homogeneous
models, respectively, increases with decreasing effective
stress. Finally, we have shown that importance of dilatant
strengthening relative to thermal pressurization weakening
also scales inversely with effective normal stress. Thus,
dilatancy is more likely to stabilize slip in areas with high
ambient pore pressures and low effective normal stress.

6.3. Consistency With Small Earthquakes

[88] It is worthwhile considering whether or not the
occurrence of very small earthquakes, at shallow depth, and
thus modest normal stress, are in any way inconsistent with
our inference that slow slip is favored by low effective
stress. For example, consider small events at roughly 2 km
depth near Parkfield, CA on the San Andreas fault. Stress
measurements in the SAFOD pilot hole adjacent to the fault
at 2 km depth show relatively high maximum compressive
stress ∼120 MPa at high angle 70° to the fault [Hickman and
Zoback, 2004], and hydrostatic pore pressures. From this we
compute an effective normal stress of order 80 MPa.
Assuming a = 0.015, a/b = 0.8, dc = 50 mm, and m = 104MPa,
h*dr from equation (1) is of the order of 1.3 m. According
to (30) for fast slip to occur the membrane diffusion
model, E must be less than 0.2, and thus f0�/bb < 17 MPa.
Taking f0 = 0.6 and b ∼ 8 × 10−11 1/Pa, this requires � < 4 ×
10−5. The actual bound on � is greater than this, because this
analysis ignores thermal weakening. If the slip speeds get
sufficiently high, thermal weakening may promote dynamic
instability with parameters for which the isothermal analysis
predicts that the undrained behavior is stable.
[89] For homogeneous diffusion we note from Figure 21

that for Ep < 10−4 the max average slip speeds are more
than 4 orders of magnitude over the plate speed, at which
point we suggest that thermal weakening effects dominate
fault strength [Schmitt et al., 2007; Scmitt and Segall, 2008].
Using the same parameters, including � = 80 MPa, and
assuming chyd ∼ 10−6 m2/s and v∞ ∼ 10−9 m/s, we find Ep <
10−4 requires �h < 10−6 m. This easily encompasses range of
10−9 to 10−7 m estimated previously. Note also from
equation (C18) that for Ep < 10−4 dilatancy increases h* by
only about 1%, so that the predictions are consistent with
very small earthquake nucleation zones.
[90] Our inference is that effective stress is substantially

lower in slow slip regions. We infer from Figure 21 that for
Ep ≥ 10−3 the behavior is stable for a wide range of W/h*dr.
This would be consistent with decreasing the effective
normal stress by a factor of 10 to order 8 MPa. In conclusion
there is no inconsistency between nucleating very small
earthquakes at 2 km depth on the San Andreas fault and for

dilatancy to stabilize slow slip events at much greater depth
in subduction zones if the effective stress there is of the
order of a few megapascals.

7. Summary

[91] 1.With steady state velocity weakening friction (a < b)
on sufficiently long slip zones (relative to h*), frictional
weakening allows localized slip to nucleate. However, as
slip accelerates it eventually becomes undrained and at this
point dilatancy may act to suppress dynamic slip.
[92] 2. In the membrane diffusion approximation, when E

exceeds Ecrit ≡ 1 − a/b a linearized stability analysis predicts
that the critical nucleation length becomes infinite in the
undrained limit. For E > Ecrit numerical simulations show
that slip remains quasi‐static over a very broad range of fault
dimensions. In contrast, if E < Ecrit slip reaches radiation
damping limits when the rupture dimension exceeds a critical
value that is close to the predicted h* for membrane diffusion.
[93] 3. We have developed efficient numerical methods

for coupling rate‐state friction and dilatancy with elasticity
and diffusion of pore fluid normal to the fault. This permits
simulation of multiple episodic slow slip events, enabling
conclusions to be drawn from simulations that minimize the
dependence on arbitrary initial conditions.
[94] 4. We have developed equations for translating

quantitatively between the membrane diffusion parameters E
and U and the single isothermal homogeneous diffusion
parameter Ep, both at neutral stability and (more approxi-
mately) at the fronts of propagating slow slip events. The
membrane diffusion calculations are computationally more
efficient, but because the equivalences near and far from
steady state are not identical, a single set of membrane
diffusion parameters seems unlikely to capture all aspects of
themore time consuming homogeneous diffusion calculations.
[95] 5. For pore fluid diffusion into surroundings with

homogeneous permeability, the ratio of dilatant strength-
ening to thermal weakening scales with �h/dc, rc/L, and
1/f0b (s − p∞), where h is the shear zone thickness, and
L is the ratio of thermal expansivity to compressibility. High
pore pressure thus mitigates against frictional and thermal
weakening and favors slow slip, consistent with seismic
observations of anomalous vp/vs. Whether slip is ultimately
slow or fast may depend on whether dilatancy prevents slip
speeds from reaching rates at which thermal pressurization
dominates.
[96] 6. In isothermal calculations with a/b = 0.9 and

10−3.2 ≤ Ep ≤ 10−3, for 12 ≤ W/h*dr ≤ 20, and perhaps
longer, average transient slip rates are on the order of 10 to
100 times plate velocity, and repeat times are on the order
of 1 year, comparable to that observed in Cascadia. For
these parameters maximum slip is ∼0.01 m and stress drops
are ∼0.01 MPa, both consistent with geodetic observations.
Model propagation speeds in the dip direction are in the same
range as observed along‐strike. It is possible that similar
behavior can be obtained for a somewhat broader range of
parameters, but we have not explored this fully.
[97] 7. For a broad range of parameters simulations exhibit

slow phases driven by the downdip, constant velocity
boundary condition, and faster (but quasi‐static) phases that
relax the accumulated stress. The faster phases are assumed
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to model geodetically observable slow slip events, while the
slow phases may help to explain tremor observed between
strong ETS events.
[98] 8. Slow slip accommodates only a fraction of the net

relative plate motion, implying that the remaining deficit is
made up during coseismic or rapid postseismic slip.

Appendix A: Frequency of Oscillations at Neutral
Stability for Membrane Diffusion

[99] From Segall and Rice [1995, equation (A5)] we
deduce that the frequency of oscillations at neutral stability
for the isothermal membrane diffusion model is given by

! ¼ v1

dc
U�1

ffiffiffiffiffiffiffiffiffiffiffiffi

F

1� F

r

; ðA1Þ

where F = F(E, U, a/b) is given by (27). The period of
oscillation, T, normalized by dc/v

∞ is thus

Tv1

dc
¼ 	ns

dc
¼ 2
U

ffiffiffiffiffiffiffiffiffiffiffiffi

1� F

F

r

: ðA2Þ

Here, dns = Tv∞ is the slip per period at neutral stability. In
the drained limit U → 0, F tends to [(b − a)/b]U2, such that

for drained deformation dns/dc = 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=ðb� aÞ
p

[Ruina,
1983].
[100] In order to determine the asymptotic behavior in the

undrained limit, take Taylor series expansions for l and g
(from equation (27)) in the limit 1/U → 0. There are three
cases of interest, corresponding to E > 1 − a/b, E = 1 − a/b,
and E < 1 − a/b. The results are

Tv1

dc
¼ 2
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E � ð1� a=bÞ
ð1� a=bÞ

s

E > 1� a

b

¼ 2

ffiffiffi

2
p U1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a=b

1� a=b
þ 1

s

þ 1

v

u

u

t E ¼ 1� a

b

¼ 2


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=b

1� a=b� E

s

E < 1� a

b
: ðA3Þ

Notice that for E > Ecrit that the period increases linearly

with U, whereas for E = Ecrit, the period increases with
ffiffiffiffi

U
p

,
and for E less than critical the period asymptotes to a con-
stant value, independent of U.
[101] In the drained limit U → 0, g → 0 and we find that

kmd 
 1� EU2

UE þ a

b


 1� EU2 b

a
; ðA4Þ

the latter accurate if EU � a/b. This leads to a critical
nucleation dimension

hmd*

hdr*
� 1 
 EU2 b

a
: ðA5Þ

Similarly the dimensionless period in the drained limit is

Tmd

Tdr



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b

a
EU

r

Tmd

Tdr
� 1 
 1

2

b

a
EU: ðA6Þ

Appendix B: Finite Difference Procedure

[102] The system of equations to be solved for the homo-
geneous diffusion problem are (16), (3), and (11).

_vðx; tÞ ¼ f ðvðx; tÞ; �ðx; tÞ; _�ðx; tÞ; pðx; 0; tÞ; _pðx; 0; tÞÞ
on y ¼ 0 ðB1Þ

_�ðx; tÞ ¼ hðvðx; tÞ; �ðx; tÞÞ on y ¼ 0 ðB2Þ

_pðx; y; tÞ ¼ chyd pðx; y; tÞyy on y > 0 ðB3Þ

where pyy indicates the second spatial derivative of p. The
boundary conditions on pore pressure are

pðx; 0; tÞy ¼ gð�ðx; tÞ; _�ðx; tÞÞ on y ¼ 0 ðB4Þ

lim
y!1

pðx; y; tÞ ¼ p1: ðB5Þ

In this work we differentiate the momentum balance on the
fault (B1), so the problem is cast as a system of differential
equations. Integrating over long periods of time inevitably
lead to numerical error such that the original momentum
balance (6) will no longer be satisfied. However, for the si-
mulations reported here, the differential equation formulation
is sufficiently accurate.
[103] The first two equations are not involved in the finite

difference calculation, therefore for notational simplicity we
write � and v together as a single variable u = [v, �, _�], such
that (B1) and (B4) become:

_uðx; tÞ ¼ f ðuðx; tÞ; pðx; 0; tÞ; _pðx; 0; tÞÞ on y ¼ 0 ðB6Þ

pðx; 0; tÞy ¼ gðuðx; tÞÞ on y ¼ 0 ðB7Þ

B1. Discretization in the y Direction

[104] We make the domain [0, y∞] sufficiently large that
p(y∞) ≈ p∞. Thus, we approximate (B5) by p(x, y∞, t) = p∞.
Near the fault it is important that the discretization be
sufficiently fine to capture the steep gradient in p. To
achieve this we make the following change of coordinate
between y and z:

zðyÞ ¼ lnðcþ yÞ or; equivalently; yðzÞ ¼ �cþ e z:

This change of coordinate has the effect of making the mesh
dense near y = 0 and sparse near y = y∞. We have found
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that c = 10−2 yields good results. Following the change of
coordinate, the system of equations is

_u ¼ f ðu; p; _pÞ on y ¼ 0 ðB8Þ

_p ¼ chyd e�z e�zpzð Þz on y > 0 ðB9Þ

e�zpz ¼ gðuÞ on y ¼ 0 ðB10Þ

p ¼ p1 on y ¼ y1: ðB11Þ

We discretize the PDE (B9) and boundary conditions (B10)
and (B11) in space, letting d = Dz/2:

_pk ¼ chyde
�zk � �e�ðzk�	Þðpk � pk�1Þ þ e�ðzkþ	Þðpkþ1 � pkÞ

Dz2

� �

ðB12Þ

e�z0
p1 � p�1

2Dz
¼ g and pK ¼ p1 ðB13Þ

for k = 0, 1,…, K. The discretization (B12) is a second‐order‐
accurate conservative discretization of the gradient of the
flux function e−zpz in (B9). The discretization of the Neumann
boundary condition (B13) is a second‐order‐accurate
approximation centered around k = 0. Note that the ghost
variable p−1 is eliminated when (B13) is introduced into (B12).

B2. Implicit‐Explicit Time Stepping

[105] We next consider the method for time stepping the
system of equations. Let pkm

n be the value of p at the kth
point in the y direction and the mth point in the x direction,
at the nth time step. For simplicity, we illustrate the
approach with the first‐order in time Euler’s method; how-
ever, the actual code uses higher‐order time stepping for the
nondiffusion variables. Also for simplicity in presentation
we illustrate the time stepping procedure for the spatially
uniform, rather than log discretization. Equations (B7),
(B6), and (B3) are discretized in time as:

unþ1
m � unm
Dt

¼ f unm; p
n
0m;

pn0m � pn�1
0m

Dt

� �

pnþ1
km � pnkm

Dt
¼ chyd

pnþ1
ðk�1Þm � 2pnþ1

km þ pnþ1
ðkþ1Þm

Dy2

 !

pnþ1
1m � pnþ1

ð�1Þm
2Dy

¼ gðunþ1
m Þ and pnþ1

Km ¼ p1:

where m = 1,…, M and k = 1,…, K. Note that the first
equation for um is explicit, whereas the equations for p are
implicit in that pore pressure at time step n + 1 depends on

pn+1, and um
n +1. An important feature is that for each position

along the fault (indexed by m), the pore pressure along the
fault normal profile depends only on the quantities at index m.
Thus, the pore pressures on the fault are only coupled through
the friction/elasticity equations (first set of equations above).
Thus, the finite difference computations in y decouple, such
thatM small systems of equations (withK elements) are solved
at each time step, rather than one very large system of equa-

tions. This is vastly more efficient that solving the full implicit
equations.
[106] Our code integrates in time using the explicit Runge‐

Kutta (2,3) scheme implemented in Matlab’s ode23.

Appendix C: Linearized Stability Analysis
for Homogeneous Diffusion

[107] Our approach follows Segall and Rice [1995] with
homogeneous diffusion replacing membrane diffusion.
Adopting the normalization in section 2.1, the linearized
equations perturbed around steady state [Segall and Rice,
1995, equations (23a)–(23e)] become

a

b
D _~v ¼ �D

_~� þ f0D _~p

b
� ~k 1� a

b

� 	

D~v ðC1Þ

D
_~� ¼ �D~��D~v ðC2Þ

D
_~� ¼ D ~� þ �D~v: ðC3Þ

In the following we drop the tildes with the understanding
that all variables are dimensionless, unless otherwise speci-
fied. The normalized diffusion equation is given by (13).
Linearizing � around steady state, � = �ss +D� = 1 +D�, the
boundary condition in (13) becomes

@p

@y

�

�

�

�

y¼0

¼ �EpD
_�: ðC4Þ

We seek solutions to the linearized equations of the form
D� = Qest, Dv = Ve st, D� = Fe st. For solutions of this
form (C4) becomes

@p

@y

�

�

�

�

y¼0

¼ �EpsQe st: ðC5Þ

The solution to the diffusion equation with boundary
condition (C5) and the constraint that p = p∞ at y = ∞ is

p ¼ Eps
1=2

Qe ste�
ffiffi

s
p

y þ p1: ðC6Þ

The rate of pore pressure change on the fault is thus

_pjy¼0 ¼ Eps
3=2

Qe st: ðC7Þ

Thus, the appropriate linearized form of D _p in (C1) is
given by (C7). Combining with (C1)–(C3) and D� = Qe st,
Dv = Ve st leads to the following equation for s

a

b
s2 þ f0Ep

b
s3=2 þ ðk � 1Þ 1� a

b

� 	

s þ k 1� a

b

� 	

¼ 0: ðC8Þ

Whether slip is stable or not depends on the real part of s.
We first establish that in the limit k → ∞, < [s] < 0. Note
that if s is of order k, then in the limit s = −k(b/a − 1),
whereas if s is of order unity, then in the limit s = −1.
Thus, for a sufficiently stiff system, k → ∞, small per-
turbations decay. Also note that for nonzero k there is no
solution at s = 0. We thus assume that as k decreases the
first root to cross to the positive real half plane does so at
s = iw, implying purely harmonic oscillations at k = kcrit.
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Substituting s = iw into (C8) and separating real and
imaginary parts leads to

kcrit ¼
a!2

ðb� aÞ þ
f0Ep
ffiffiffi

2
p

ðb� aÞ
!3=2 ðC9Þ

kcrit ¼ 1� f0Ep
ffiffiffi

2
p

ðb� aÞ
!1=2: ðC10Þ

In the drained limit, Ep = 0, equation (C10) becomes kcrit = 1,
whereas (C9) leads to w = (b/a − 1)1/2, recovering the fully
drained limit. Equating (C9) and (C10),

a

b
!2 þ f0Ep

ffiffiffi

2
p

b
!1=2ð!þ 1Þ � 1� a

b

� 	

¼ 0 ðC11Þ

a quartic equation for w1/2. Rearranging,

f0Ep
ffiffiffi

2
p

b
¼ 1� ða=bÞð1þ !2Þ

!1=2ð!þ 1Þ : ðC12Þ

For a specified a/b and w one can compute the corresponding
value of f0Ep/b. This and the assumed w can be combined
with (C10) to give the departure of kcrit from its drained
value. The variation in kcrit and w as a function of f0Ep/b is
given in Figure 22.

C1. Limiting Behavior for Small Ep

[108] We can obtain useful asymptotic results in the limits
of small and large Ep. For small Ep, write

!1=2 ¼ b

a
� 1

� �1=4

þD; ðC13Þ

where D represents the deviation from the drained, Ep = 0,
result. Substituting this into (C11) and retaining only the
lowest‐order terms in D and Ep leads to

D 
 � f0Ep
ffiffiffi

2
p

b

ðb=a� 1Þ1=2 þ 1

4ða=bÞðb=a� 1Þ1=2
; ðC14Þ

!

!dr


 1� f0Ep

2
ffiffiffi

2
p

b

b

a
� 1

� �3=4

þ b

a
� 1

� �1=4

1� a

b

; ðC15Þ

where we have made use of wdr = (b/a − 1)1/2. The period of
oscillations at neutral stability is inversely proportional to
the frequency, T/Tdr = (w/wdr)

−1

T

Tdr
� 1 
 f0Ep

2
ffiffiffi

2
p

b

b

a
� 1

� �3=4

þ b

a
� 1

� �1=4

1� a

b

� 	 : ðC16Þ

Substituting (C13) and (C14) into (C10) and neglecting the
EpD term,

kcrit

kcrit dr


 1� f0Ep
ffiffiffi

2
p

b

b

a
� 1

� �1=4

1� a

b

� 	 : ðC17Þ

The critical nucleation dimension is inversely proportional
to the critical stiffness, such that

h*

hdr*
� 1 
 f0Ep

ffiffiffi

2
p

b

b

a
� 1

� �1=4

1� a

b

� 	 : ðC18Þ

The limiting behavior for small Ep, (C16) and (C18), are
compared to the complete results in Figure 22.

C2. Limiting Behavior for Large Ep

[109] In the limit that Ep → ∞ we find by inspection
of (C11) that w tends to zero and

f0Ep
ffiffiffi

2
p

b
!1=2 ! 1� a

b
; ðC19Þ

! 
 1� a

b

� 	2 f0Ep
ffiffiffi

2
p

b

� ��2

: ðC20Þ

[110] The reciprocal of (C20) leads to the large Ep period
at neutral stability

T 
 2
 1� a

b

� 	�2 f0Ep
ffiffiffi

2
p

b

� �2

: ðC21Þ

Substituting (C19) into (C10) shows only that kcrit → 0 as
Ep → ∞. To proceed further we write

!1=2 ¼ 1� a

b

� 	 f0Ep
ffiffiffi

2
p

b

� ��1

þD; ðC22Þ

where D now represents the deviation from the limiting
behavior in (C19). Substituting (C22) into (C11) and retain-
ing only the lowest‐order terms in D and 1/Ep leads to

D 
 � 1� a

b

� 	3 f0Ep
ffiffiffi

2
p

b

� ��3

: ðC23Þ

Substituting (C22) and (C23) into (C10), we obtain

kcrit

kcrit dr


 1� a

b

� 	2 f0Ep
ffiffiffi

2
p

b

� ��2

ðC24Þ

such that

h*

hdr*

 1� a

b

� 	�2 f0Ep
ffiffiffi

2
p

b

� �2

: ðC25Þ

The limiting behavior for high Ep, (C21) and (C25), are
compared to the complete results in Figure 22.

Appendix D: Analytical Solutions for Pore
Pressure Change

[111] We consider here analytical results for the pore
pressure response to a step change in slip speed for both the
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membrane diffusion and homogeneous diffusion models.
For a step change in slip speed v(t) = vH(t), the slip law (3)
can be integrated exactly to yield

� ¼ �f
�i
�f

� �expð�	=dcÞ
ðD1Þ

where d = vt is the accumulated slip, and �i and �f = dc/v are
the initial and final states, respectively. Thus,

ln
v�

dc

� �

¼ ln
v�i
dc

� �

e�	=dc ðD2Þ

Also, for the slip law

_�

�
¼ � v

dc
ln

v�

dc

� �

: ðD3Þ

D1. Membrane Diffusion

[112] Combining the membrane diffusion equation (15)
with the constitutive law for dilatancy (5) and the slip law
(3b) yields

dDp

dt
þDp

tf
¼ �

�

_�

�
ðD4Þ

where Dp is the difference in pore pressure relative to the
far‐field value. The differential equation (D4) is solved for a
step in slip speed is at time t = 0, by use of an integrating
factor exp(t/tf), which yields

DpðtÞ ¼ � �

�
ln

v�i
dc

� �

vtf

dc � vtf
e�vt=dc � e�t=tf
� 	

;
vtf

dc
6¼ 1

¼ � �

�
ln

v�i
dc

� �

vt

dc
e�vt=dc ;

vtf

dc
¼ 1: ðD5Þ

D2. Homogeneous Diffusion

[113] For this imposed slip history, the isothermal diffu-
sion equation (11) can be solved exactly. The governing
equation is

@p

@t
� chyd

@2p

@y2
¼ 0; ðD6Þ

with boundary conditions

@p

@y

�

�

�

�

y¼0

¼ h _�

2�chyd
¼ �h

2�chyd

_�

�
: ðD7Þ

The initial conditions are that the pore pressure is every-
where zero. We seek a solution for a step change in v at t = 0
with associated change in �. Combining equations (D7),
(D3), and the result (D2) for a step change in slip speed,
yields the modified boundary condition

@p

@y

�

�

�

�

y¼0

¼ �h

2�chyd

v

dc

� �

ln
v�i
dc

� �

e�vt=dc : ðD8Þ

Take the Laplace transform of the differential equation (D6)
and boundary condition (D8), which yields

p̂� chyd

s

d2p̂

dy2
¼ 0;

@p̂

@y

�

�

�

�

y¼0

¼ YðvÞ
sþ v=dc

ðD9Þ

where s is the transform variable,^ indicates a transformed
variable, and

YðvÞ ¼ �h

2�chyd

v

dc

� �

ln
v�i
dc

� �

: ðD10Þ

The solutions to the differential equation (D9) are

p̂ ¼ Ae�
ffiffiffiffiffiffiffiffiffi

s=chyd
p

y: ðD11Þ

We retain only the decaying solution. The constant A =
p̂(0, s) gives the pore pressure on the fault. From the
boundary condition in (D9)

p̂ðy ¼ 0; sÞ ¼ A ¼ �YðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

chyd=s
p

sþ v=dc
: ðD12Þ

Note that the inverse transform of 1/
ffiffi

s
p

is 1/
ffiffiffiffiffi


t
p

, while
the inverse transform of 1/(s + v/dc) is exp(−vt/dc). Thus,
from the convolution theorem we have

pðy ¼ 0; tÞ ¼ �YðvÞ
ffiffiffiffiffiffiffiffi

chyd




r

Z t0

0

1
ffiffiffi

t0
p e�

v
dc
ðt�t0Þdt0: ðD13Þ

A change of variables z2 = vt ′/dc leads to

pðy ¼ 0; tÞ ¼ �2YðvÞ
ffiffiffiffiffiffiffiffiffiffiffiffi

chyddc


v

r

D

ffiffiffiffiffi

	

dc

s

 !

� 2Ep
ffiffiffi



p ð�� p1Þ

ffiffiffiffiffiffi

v

v1

r

ln
v�i
dc

� �

D

ffiffiffiffiffi

	

dc

s

 !

; ðD14Þ

where D(z) is known as Dawson’s Integral, see equation (53).

Notation

a, b Rate‐state friction coefficients.
c Specific heat capacity.

cth Thermal diffusivity.
chyd Hydraulic diffusivity.
dc Critical slip weakening distance.
E Nondimensional dilatancy, membrane diff.

equation (22).
Ecrit Critical E, equation (30).
Ep Nondimensional dilatancy efficiency, equation (13).
ET Nondimensional shear‐heating efficiency,

equation (12).
f Coefficient of friction, f0 nominal value.

Gc Fracture energy.
h Thickness of shear zone.
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hw Thickness of wall zone.
h* Critical nucleation dimension.
h*dr Drained critical nucleation dimension, equation (1).
kcrit Critical spring stiffness.
~Kcrit Nondimensional critical spring stiffness.

p Pore pressure.
p∞ Remote pore pressure.
t Time.
tf Characteristic time for fluid diffusion.
T Temperature.
T Period of oscillations at neutral stability.

Thd Period at neutral stability, homogeneous diffusion.
U Nondimensional drainage time, membrane

diff. equation (23).
v Fault slip speed.

vss Steady state slip speed.
v∞ Rate of plate motion.
vs Shear wave velocity.
W Width of velocity weakening fault in x direction.
x Fault parallel distance.
y Fault perpendicular distance.
b Compressibility, fluid plus pore.
d Fault slip.

d* Effective slip weakening distance.
" Dilatancy parameter.
g Shear strain.
� Permeability.
L Thermal pressurization factor.
� Porosity.
m Shear modulus.
n Poisson’s ratio.
h Pore fluid viscosity.
r Rock mass density.
s Fault normal stress.
� Effective normal stress.
t Shear stress.
� Friction state variable.
�i State variable prior to velocity step.
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