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Abstract

Dilated cardiomyopathy (DCM) is an umbrella term entailing a wide variety of genetic and non-genetic etiologies, leading to 

left ventricular systolic dysfunction and dilatation, not explained by abnormal loading conditions or coronary artery disease. 

The clinical presentation can vary from asymptomatic to heart failure symptoms or sudden cardiac death (SCD) even in previ-

ously asymptomatic individuals. In the last 2 decades, there has been striking progress in the understanding of the complex 

genetic basis of DCM, with the discovery of additional genes and genotype–phenotype correlation studies. Rigorous clinical 

work-up of DCM patients, meticulous family screening, and the implementation of advanced imaging techniques pave the 

way for a more efficient and earlier diagnosis as well as more precise indications for implantable cardioverter defibrillator 

implantation and prevention of SCD. In the era of precision medicine, genotype-directed therapies have started to emerge. In 

this review, we focus on updates of the genetic background of DCM, characteristic phenotypes caused by recently described 

pathogenic variants, specific indications for prevention of SCD in those individuals and genotype-directed treatments under 

development. Finally, the latest developments in distinguishing athletic heart syndrome from subclinical DCM are described.
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Introduction

Dilated cardiomyopathy (DCM) is characterized by left ven-

tricular (LV) systolic dysfunction and LV enlargement, in 

the absence of abnormal loading conditions such as hyper-

tension, valvular disease, or coronary artery disease (CAD) 

that could explain the myocardial abnormality [1–3]. The 

presence of the disorder is defined by an LV end-diastolic 

diameter (LVEDD) greater than 2 standard deviations (SD) 

of the predicted values and LV fractional shortening < 25% 

or an LV ejection fraction (EF) < 45% [2]. Predicted val-

ues are calculated according to the formula of Henry, cor-

rected for age and body surface area, and are expressed as a 

percentage of the predicted diameter as follows: Predicted 

LVEDD = (45.3 × body surface  area0.3) − (0.03 × age) − 7.2 

[4]. A value of LVEDD > 112% (> 2SD) is a diagnostic cri-

terion for DCM while a value > 117% (2SD + 5%) increases 

specificity. Until recently, the management of DCM 

patients has involved traditional heart failure management 

approaches including drugs, devices, and heart transplanta-

tion when indicated. The prognosis of DCM patients has 

significantly improved over the last decades due to phar-

macological and non-pharmacological advances, earlier 

diagnosis due to familial screening, and pre-participation 

cardiac evaluation and individualized long-term follow-up. 

In the past few decades the prognosis of DCM has signifi-

cantly improved, and survival along with no need for heart 

transplantation has risen to > 80% at 8-year follow-up [5].

Classification of cardiomyopathies

Over the years there have been several attempts to classify 

cardiomyopathies. The American Heart Association (AHA) 

has adopted a different approach from the European Society 
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of Cardiology (ESC). The AHA firstly differentiates primary 

cardiomyopathies (i.e., those predominantly affecting the 

heart) which are further subdivided to genetic, acquired, 

or mixed according to their etiology  [6]. In 2007 the ESC 

proposed a classification of cardiomyopathies based on their 

phenotypic and morphological characteristics, further subdi-

viding them to familial and non-familial (secondary) forms 

[1]. However, due to overlapping phenotypic expression 

and variable penetrance, cardiomyopathies often cannot be 

clearly assigned to a specific category [1, 3, 6, 7].

Classification concepts of dilated 
cardiomyopathy

Over the past few decades, the etiology and natural history 

of DCM have been further elucidated [1, 8–11]. It has been 

demonstrated that various etiologies, causing LV dysfunc-

tion may manifest with the same clinical phenotype as DCM 

[12–14]. According to the ESC classification of cardiomy-

opathies, DCM can be further subdivided into two main 

groups, genetic or acquired. There are, however, several 

cases in which the phenotypic expression is strongly affected 

by the environmental stressors of the individual. The final 

phenotypic expression seems to be an amalgam of the geno-

type along with the environmental factors. In 2016. Pinto 

et al. published a position paper for a revised definition of 

DCM, introducing a new clinical phenotype and diagnostic 

criteria for relatives, allowing for better recognition of rela-

tives at risk, while simultaneously emphasizing that DCM 

may develop after gradual escalation through a continuous 

spectrum of milder clinical expressions [2].

Epidemiology

DCM is the commonest indication for heart transplantation 

and the third most common cause of heart failure [6]. The 

continuous reclassification and definition amendments of 

DCM throughout the past decades led to ambiguous data 

regarding its epidemiology [15]. In 2007, the ESC Working 

Group on Myocardial and Pericardial Diseases published a 

position statement that defined cardiomyopathies, segregated 

them into morphological groups and set diagnostic criteria 

for each group for both, the probands and their relatives [1]. 

The prevalence of DCM is estimated to be about 1:2500 in 

the general population, but this ratio may be an underesti-

mation [16, 17]. Familial DCM has been reported to have a 

prevalence of 30–50% of the total DCM cases, while a gene 

is identified in 20–40% of those [18–20]. The prevalence 

seems to be slightly higher in men, with a female to male 

ratio between 1:1.3 and 1:1.5 [21–23]. DCM has an annual 

incidence of sudden cardiac death (SCD) between 2 and 4% 

[24]. In a registry of survivors of aborted SCD, DCM was 

found to be the underlying etiology in 10–19% [25]. SCD 

may occasionally be the initial manifestation of DCM [24, 

26, 27] including victims with no abnormal autopsy find-

ings [27, 28].

Etiology

DCM entails a broad group of diseases, acquired or genetic, 

which result in a similar phenotype. The clinician should 

always exclude secondary causes before giving the diagno-

sis of “idiopathic DCM” since some causes may be revers-

ible [29]. The causes of DCM can be classified into genetic 

and acquired, though the two are not mutually exclusive. 

Sometimes a genetic predisposition along with the additional 

effect of environmental factors is what leads to the appear-

ance of the phenotype of the disorder [30, 31].

Acquired DCM

Drugs and toxins

Several drugs and toxins, the most common being excess 

ethanol consumption, cocaine, chloroquine, psychiatric 

drugs (clozapine, olanzapine), and antineoplastic drugs 

such as anthracyclines, may directly damage the myocar-

dium causing an acquired form of DCM. Some drugs or 

toxins can cause acute LV dysfunction, while exposure in 

toxins such as anthracyclines may lead to LV dysfunction 

several years after treatment (late-onset cardiotoxicity) [32]. 

Alcoholic cardiomyopathy accounts for up to 32% of cases 

of DCM [33]. Alcohol affects the heart in a dose-dependent 

manner, while abstinence has the potential for LV systolic 

dysfunction reversal. On the other hand, anthracycline treat-

ment has typically irreversible cardiotoxic effects [32].

Inflammatory dilated cardiomyopathy

Myocardial injury caused by infectious agents (viral or bac-

terial myocarditis), autoimmune disorders (i.e., sarcoidosis), 

toxic agents (i.e., cocaine), or other factors [34] may trig-

ger an inflammatory response starting with the activation 

of a proinflammatory cascade of cytokines, followed by an 

immune response and eventually leading to LV dysfunction 

and dilatation [35]. Myocarditis progresses to DCM in up to 

30% of cases [34]. Almost half of DMC cases show evidence 

of inflammation in the myocardium [36].

The entity of autoimmune myocardial inflammation has 

also been recognized. Patients presenting with infection-

negative myocarditis may progress to DCM [37]. These 

cases often occur with a familial inheritance pattern. 

Serum organ-specific anti-heart antibodies may be found 
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in symptom-free relatives of DCM patients and are asso-

ciated with mild LV dysfunction as well as potential pro-

gression to DCM [37–39].

COVID‑19 and myocardial damage

Myocardial damage, as indicated by elevated cardiac tro-

ponin (cTn) levels and evidence of myocardial edema, 

and myocardial fibrosis in cardiac magnetic resonance 

(CMR), are well-recognized cardiac complications of the 

novel coronavirus, Sars-CoV-2. These abnormalities may 

occur independently of illness severity, time from the orig-

inal diagnosis, and preexisting conditions [40]. Elevated 

cTn is associated with adverse outcomes and may dictate 

decisions for hospitalization and further imaging tests in 

COVID-19 patients [41]. It is suggested that inflammation 

due to COVID-19 may increase the risk for the develop-

ment of heart failure with preserved LVEF or DCM. In a 

case series of 21 COVID-19 patients, 33% developed car-

diomyopathy [42]. Prospective evaluation of COVID-19 

patients is required to evaluate this hypothesis.

Peripartum cardiomyopathy

Peripartum cardiomyopathy (PPCM) is a rare and poten-

tially life-threatening entity in which heart failure develops 

during the last trimester of pregnancy or in the first few 

months after delivery [43]. It has been associated with 

older age, multiparity, presence of hypertension with or 

without pre-eclampsia, and Afro-Caribbean ethnicity 

[44]. The conversion of prolactin to an angiostatic factor 

mediated by oxidative stress is a critical step in the patho-

genesis of the disease [45]. Pathogenic variants in genes 

associated with typical DCM (TTN, MYBPC3) have been 

detected in cases of PPCM, reinforcing the notion that the 

combination of genetic predisposition and environmental 

stressors may decrease the threshold for the expression of 

the DCM phenotype [44–46].

Combined factors

All the abovementioned etiologies are not mutually exclu-

sive and may occur in combination [2]. For instance, 

patients who are carriers of pathogenic variants may also 

suffer episodes of myocarditis or report excessive etha-

nol intake, which may sequentially aggravate their overall 

clinical picture. It is thus required to recognize and remove 

any environmental risk factors that may worsen the pheno-

type of someone already at risk of the disease.

Genetic causes of DCM

Genetic background and inheritance patterns

Various patterns of inheritance have been recognized, 

including autosomal dominant, X-linked, autosomal reces-

sive and matrilinear transmission [1, 8, 9, 16, 47, 48]. The 

genetic yield of DCM is estimated to be about 20–37% [16, 

49, 50]. Until now, more than 50 DCM related genes have 

been reported [46, 51]. With the development and advances 

of sequencing technologies, the analysis and discovery of 

more genes involved in DCM has become feasible, decreas-

ing the frequency of “idiopathic DCM”. Studies using next-

generation sequencing have identified the presence of two or 

more variants in more than 38% of affected cases of DCM 

[52] suggesting a pattern of oligogenic rather than mono-

genic inheritance in some patients. Of note, there is a consid-

erable overlap of genes involved in the pathogenesis of DCM 

and other forms of cardiomyopathy, or channelopathies such 

as Brugada syndrome [2, 7]. The presence of more than one 

pathogenic or likely pathogenic variants in an individual, as 

well as variants that cause an overlapping cardiomyopathy 

phenotype, may explain the variable penetration and pheno-

typic expression, even within the same family.

Most common genes involved in DCM

A vast array of DCM causative variants have been described 

so far. These can be classified according to the functional 

disruption caused at the cellular level. Some of the most 

studied groups include:

• Sarcomeric DCM — deficit in force generation This 

group represents the most frequent genetic cause of DCM 

and consists of genes encoding sarcomeric proteins: titin, 

myosin, actin, troponin, and tropomyosin. Titin (TTN) is 

the largest sarcomeric protein within the myocardium. 

Truncating-TTN variants result in abnormally truncated 

proteins and are present in 25% of end-stage disease [30, 

53], 20–25% of familial cases of DCM and in 18% of 

sporadic cases, following an autosomal dominant inher-

itance pattern [53, 54]. Further research is required to 

establish whether all truncating TTN variants are patho-

genic.

• Nuclear envelope defects (laminopathies) Variants in 

the Lamin A/C gene (LMNA) are found in up to 6% of 

DCM cases [25, 55]. They are inherited in an autosomal 

dominant pattern and are characterized by an aggressive 

phenotype with conduction abnormalities and malignant 

ventricular arrhythmias (VAs). A high incidence of SCD 

often occurring before the development of significant 

LV dysfunction [56–58], with a mortality rate of 30% 
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at 12 years of follow-up has been reported [59]. The 

median age of onset is between 30 and 40 years while 

the penetrance is almost complete by the age of 70 [59]. 

The detection of a pathogenic LMNA variant lowers the 

threshold for an implantable cardioverter defibrillator 

(ICD) for primary prevention of SCD regardless of the 

LVEF [60].

• Force transmission deficit (cytoskeletal cardiomyopa-

thy) This group involves genes encoding proteins com-

prising the cytoskeleton like filamins, dystrophin, and 

desmin. Pathogenic variants in these genes can lead to 

muscular dystrophies that are very often associated with 

DCM. Desmin (DES) encodes a cytoskeletal protein, a 

muscle-specific intermediate filament, that helps inte-

grate the sarcolemma, parts of the nuclear membrane, 

and the Z-disk. Variants in DES may cause a wide pheno-

typic spectrum of different or overlapping cardiomyopa-

thies, skeletal myopathies, or mixed myopathies (skeletal 

and cardiac). Cardiac manifestations may be expressed in 

the form of restrictive cardiomyopathy, DCM, conduction 

system disorders, Vas, or SCD [61]. Dystrophin (DMD) 

is located in the X chromosome, showing an X-linked 

pattern of inheritance. It has an important role in the 

formation of a mechanical link between the intracellular 

cytoskeleton and the extracellular matrix. Heart involve-

ment is found in 90% and 70% of the cases of Duchenne’s 

and Becker’s muscular dystrophies respectively [62, 63]. 

Filamins are large proteins that are responsible for the 

stabilization of actin filaments and their linkage to the 

cell membrane. Filamin C truncation variants are asso-

ciated with a severe arrhythmogenic DCM phenotype, 

without the presence of overt skeletal muscle disorder 

[64].

• Deficits of intercellular adhesion (desmosomal car-

diomyopathies) Pathogenic variants in genes encoding 

desmosomes have been described in both arrhythmogenic 

right ventricular cardiomyopathy (ARVC) and DCM. Up 

to 13% of DCM cases have been associated with desmo-

somal mutations [65].

Other Variants in the RBM20 gene, involved in the regula-

tion of titin splicing, cause a DCM phenotype with frequent 

malignant VAs [7, 66]. BAG3, a gene encoding an antiapop-

totic protein has also been implicated in the development of 

LV dysfunction and DCM phenotype [7, 67].

Diagnosis

DCM patients often show intermediate phenotypes not ful-

filling the standard diagnostic criteria due to variable phe-

notypic expression and age-dependent penetrance [68, 69]. 

Advanced imaging techniques such as CMR are able to iden-

tify subtle or even extensive myocardial scar in patients with 

normal LV dimensions and function. Significant VAs and 

SCD may precede any evident structural or morphological 

changes. Pinto et al. attempted to overcome these limita-

tions, by proposing a revised definition for DCM in 2016 

and updating the diagnostic criteria for relatives of DCM 

patients. Three intermediate categories were proposed: iso-

lated ventricular dilation, arrhythmic cardiomyopathy, and 

hypokinetic non-dilated cardiomyopathy (HNDC) [2] which 

filled the gap between no phenotypic expression and fully 

expressed DCM. HNDC was defined as “left ventricular or 

biventricular global systolic dysfunction without dilatation 

(defined as LVEF < 45%), not explained by abnormal loading 

conditions or CAD.” Furthermore, the concepts of variable 

penetrance and gradual progression of the disease from the 

preclinical to the clinical phase were emphasized, as well as 

the need for reclassification of the relatives after each follow-

up. A preclinical phase with no or mild cardiac abnormalities 

such as the expression of anti-heart antibodies or mild LV 

dilatation was recognized in carriers of DCM-causing vari-

ants who were identified through family screening [37–39]. 

The spectrum of DCM was therefore segregated into different 

stages, some belonging in the preclinical, early phase with no 

clear phenotypic expression and others belonging to the clini-

cal phase, as shown in Fig. 1. In 2019, Towbin et al. intro-

duced the term “arrhythmogenic cardiomyopathy” via the 

HRS expert consensus statement on evaluation, risk stratifi-

cation, and management of arrhythmogenic cardiomyopathy 

(ACM). ACM was described as a primary arrhythmogenic 

disorder of the myocardium incorporating genetic, systemic, 

infectious, and inflammatory disorders [70]. There is a sig-

nificant overlap of the ACM phenotype with other cardiomy-

opathies, particularly DCM and should not be confused with 

the arrhythmic cardiomyopathy described as the preclinical 

phase of DCM by Pinto et al.

Diagnostic criteria of DCM in relatives

Family screening is essential in relatives of patients with 

DCM or HNDC, as it allows early detection of the disease 

and early treatment that may help improve prognosis and 

delay progression [34, 68]. Pinto et al. described diagnos-

tic criteria in DCM relatives and defined what is considered 

familial DCM. Major and minor diagnostic criteria were 

proposed in DCM relatives (see Table 1). According to the 

findings, relatives are placed into the following 3 categories: 

definite disease, probable disease, or possible disease. This 

helps overcome the limitation of having several non-diagnos-

tic abnormalities overlapping with normal phenotypes or may 

be seen in very common diseases such as hypertension. As 

the clinical picture is often dynamic, relatives should be re-

categorized if more criteria are met after each follow-up visit.
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In the absence of a definite pathogenic variant in a family, 

familial disease is defined as the presence of: (i) 2 or more 

individuals (first- or second-degree relatives) with definite 

DCM or HNDC or (ii) 1 patient fulfilling the diagnostic cri-

teria for DCM or HNDC and a first-degree relative who suf-

fered SCD < 50 years of age and autopsy-proven DCM [2].

Fig. 1  Clinical spectrum of 

dilated cardiomyopathy. DCM, 

dilated cardiomyopathy; HNDC, 

hypokinetic non-dilated cardio-

myopathy; CM, cardiomyopa-

thy; AHA, anti-heart antibodies

DCM

(LV dila�on +
hypokinesia)

HNDC

Arrhythmic CM -
arrhythmias or

conduc�on defect

Isolated ventricular
dila�on - no hypokinesia

No cardiac expression -
muta�on carrier and/or AHA

posi�ve

Progressive phenotypic

expression

Preclinical phase

Clinical phase

Table 1  Diagnostic criteria for 

DCM relatives

CMR cardiac magnetic resonance, EMB endomyocardial biopsy, LGE late-gadolinium enhancement, LVED 

left ventricular end-diastolic, LVEF left ventricular ejection fraction, NSVT non-sustained ventricular tach-

ycardia, RWMA regional wall motion abnormalities, VPB ventricular premature beats

Major criteria

1. LVEF > 45% and ≤ 50%, unexplained by other causes

OR

2. Unexplained LVED dilatation according to normograms (> 2SD + 5%)

Minor criteria

1. Complete LBBB, or AV block (1st degree or higher)

2. Unexplained ventricular arrhythmia (> 100 VPBs/24 h or NSVT at ≥ 120 bpm

3. RWMA in the LV without an intraventricular conduction defect

4. Late gadolinium enhancement of non-ischemic origin in CMR

5. Non-ischemic myocardial abnormalities (inflammation, necrosis ± fibrosis) on EMB

6. Serum organ-specific and disease-specific anti-heart antibody by ≥ 1 autoantibody tests

Disease probability

Definite disease:

Criteria for DCM or HNDC are met

Probable disease:

1 major + ≥ 1 minor criterion

OR

1 major + causative mutation identified in the proband

Possible disease:

2 minor criteria

OR

1 minor + causative mutation identified in the proband

OR

1 major (no major or genetic data in family)

1177Heart Failure Reviews (2022) 27:1173–1191



1 3

Diagnostic workup in patients and relatives

The broad spectrum of disorders leading to DCM mandates a 

systematic approach to facilitate the identification and man-

agement of rarer but specific forms of DCM. It should be 

emphasized that the diagnostic workup, management, and fol-

low-up of DCM patients are a multifactorial process. Figure 2 

depicts a management algorithm including the indications for 

ICD implantation according to the genetic substrate of DCM.

Basic evaluation should include personal and family his-

tory, physical examination, electrocardiogram (ECG), car-

diac imaging and lab testing. The identification of disease-

specific diagnostic clues (red flags) is critical and should 

guide further diagnostic workup [68]. This may include 

Fig. 2  A clinical management algorithm for DCM. CMR, cardiac 

magnetic resonance; CRT, cardiac resynchronization therapy; DCM, 

dilated cardiomyopathy; EPS, electrophysiological study; hs-Tn, high-

sensitivity troponin; ICD, implanted cardioverted defibrillator; LGE, 

late gadolinium enhancement; LVEF, left ventricular ejection fraction; 

NSVT, non-sustained ventricular tachycardia; SCD, sudden cardiac 

death. * A diagnosis of myocarditis or peripartum cardiomyopathy 

does not exclude the possibility of familial disease. # Genetic testing 

should be considered in all cases of DCM, including sporadic cases. An 

implanted cardioverted defibrillator may be still considered for patients 

not fulfilling established criteria of high risk of extensive myocardial 

fibrosis, ventricular arrhythmogenicity, elevated biomarkers
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CMR, endomyocardial biopsy (EMB), and genetic testing. 

If myocarditis is clinically suspected, EMB for detecting 

infectious agents via histology, immunohistology, and poly-

merase chain reaction is recommended [2]. When storage or 

metabolic diseases are suspected and cannot be confirmed 

otherwise, EMB may also be considered. Secondary eti-

ologies leading to DCM, especially CAD should always be 

excluded. Exclusion of CAD in patients older than 35 years 

of age or younger patients with family history of early CAD 

or with significant CAD risk factors is recommended [2].

Laboratory testing should include hemoglobin and 

complete blood cell count, liver and kidney function tests, 

thyroid-stimulating hormone, serum iron, ferritin, calcium, 

phosphate, natriuretic peptides, Troponin, anti-heart anti-

bodies, and urine analysis for detection of proteinuria [68]. 

Further testing may be required according to the yield of 

first-line testing if suspicion of a specific etiology arises.

Dysfunctional hearts are often metabolically deranged. 

However, the extent to which this might be detectable before 

the appearance of DCM phenotype is currently unknown. 

Different biomarkers may be released according to the patho-

physiological process, such as strain, myocyte injury, and 

oxidative stress. The most commonly used biomarkers for 

heart failure patients are natriuretic peptides, brain natriu-

retic peptide (BNP) and NT-proBNP that are released during 

myocardial stretching. Galectin-3 (Gal-3) is an inflammatory 

component involved in the pathogenetic mechanisms of myo-

cardial fibrosis and has been described as a prognostic marker 

since the presence of myocardial fibrosis poses a worse prog-

nosis in DCM. The higher the Gal-3 levels the more intense 

the myocardial fibrosis and LV remodeling [71–73]. Interleu-

kin-33/ST2, belonging to the family of Interleukin-1 (IL-1), 

is another biomarker reflecting inflammation and myocardial 

fibrosis [74] that may be used for risk stratification and prog-

nosis in DCM. As a biomarker, it is considered superior to 

others such as BNP, troponins, and Gal-3 because it is not 

affected by age, sex, renal function, heart failure history, and 

body mass index (BMI) [75]. Other more common biomark-

ers or conditions reflecting a worse prognosis are increased 

troponins, anemia, and renal failure.

Electrocardiogram (ECG) abnormalities are reported in 

up to 80% of patients with DCM [76–78]. A distinct ECG 

phenotype seems to be related to specific genetic or acquired 

forms of DCM. Sinus node disease, AV conduction defects, 

and marked bradycardia are common in LMNA and SCN5A 

variants. Conduction abnormalities are characteristic of 

DMD and DES. Low voltage on the ECG, especially in 

the limb leads, are characteristic of FLNC, PLN, and DSP 

and may precede any echocardiographic changes. T wave 

inversion is found in FLNC and DSP. VAs are frequently 

observed before overt LV dysfunction in LMNA, FLNC, 

DES, DSP, and SCN5A carriers. The combination of conduc-

tion abnormalities and complex VAs is highly suggestive of 

an LMNA variant. A “posterolateral infarction” pattern with 

pathologic Q waves (pseudonecrosis) in the inferior and lat-

eral leads should raise suspicion of muscular dystrophy [79].

Specific ECG characteristics have been recognized as 

prognosticators in DCM. A meta-analysis suggested the 

potential use of QRS fragmentation and T wave alternans 

as prognostic markers for VAs [24]. Atrial fibrillation (AF) 

has been associated with a worse outcome and need for 

heart transplantation in DCM [80]. Left bundle branch block 

(LBBB), present in about a third of patients with DCM, may 

precede the development of structural changes in the heart 

and may serve as a poor prognostic indicator [81].

Current criteria for the diagnostic workup of DCM rela-

tives include LBBB, AV block (PR > 200 ms or higher 

degree AV block), or unexplained VAs (> 100 ventricular 

premature beats in 24 h or NSVT at a rate of > 120 bpm 

[2]. In athletes, LBBB, QRS duration > 140 ms, frequent 

or complex ventricular arrhythmias, T wave inversion, 

and pathological Q waves are considered pathological and 

should prompt further investigation [82, 83].

Echocardiography

Echocardiography is vital in the diagnosis, follow-up, and 

family screening of DCM. LVEF is a vital parameter and an 

independent predictor of outcome, since low LVEF values 

and NYHA functional classes III–IV at baseline have been 

associated with a higher incidence of death or heart trans-

plantation, in both adults and children [84]. LV dilatation 

has been described as a predictor of early VAs [29, 85]. 

Diffuse LV hypokinesia is usually seen but regional wall 

motion abnormalities may also be present. It is important 

to distinguish these from wall motion abnormalities due to 

CAD, especially if the abnormalities correspond to the ana-

tomic perfusion of a coronary artery. Usually, LV eccentric 

hypertrophy is present in DCM, along with LV diastolic dys-

function. A restrictive LV filling pattern is independently 

associated with a poor outcome and heart transplantation 

[86]. Functional mitral regurgitation, if present, is inde-

pendently associated with poor prognosis [87]. One of the 

strongest prognostic indicators in DCM is left ventricular 

reverse remodeling (LVRR), defined as an LVEF increase 

of > 10% or an LVEF > 50% and a decrease in indexed 

LVEDD of > 10% or indexed LVEDD of > 33 mm/m2 at 24 

months [88]. Right ventricular dilatation and dysfunction 

have prognostic significance and are correlated with a worse 

functional status and advanced LV failure [89].

Newer echocardiographic techniques, including assess-

ment of myocardial strain and speckle-tracking deforma-

tion analysis have been used to detect early phase DCM 

in relatives with normal LVEF [90]. Global-longitudinal 

strain is currently being used as a predictor of mortality in 
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symptomatic DCM patients but also seems promising in 

identifying early ventricular dysfunction in asymptomatic 

variant carriers [90, 91].

Cardiac magnetic resonance

CMR is very helpful in assessing ventricular size and func-

tion along with tissue characterization, especially through 

the detection of fibrosis via late-gadolinium enhancement 

(LGE) [34].

In patients with desmoplakin disease who have a normal 

ECG and VAs of LV origin, the only abnormality detected 

has been LGE in LV [92]. Sepehrkhouv et al. demonstrated a 

distinct LGE pattern in patients with pathogenic PLN R14del 

variants in relation to the pattern seen in other hereditary car-

diomyopathies [93]. Both of the aforementioned cardiomyo-

pathies demonstrated fibrosis in the posterolateral wall of the 

LV, while PLN R14del also showed significantly more fibrosis 

in the free wall of the LV than the desmosomal variants.

Exercise stress imaging

Exercise stress imaging has shown some promising results as 

a potential tool in the diagnosis and prognosis of DCM. The 

distinction between individuals with DCM and otherwise 

healthy, athletic individuals is frequently challenging since 

the two may share an overlapping phenotype due to cardiac 

remodeling. Millar et al. indicated that an LVEF increase 

of > 11% during exercise echocardiography, may distinguish 

athlete’s heart from early DCM [94]. Another study showed 

the utility of exercise stress CMR in distinguishing asympto-

matic patients with suspected DCM from healthy individuals 

with exercise-induced cardiac remodeling. Patients who had 

genotype-positive and phenotype-positive DCM had a peak 

exercise cardiac index below the 35th percentile specific for 

their age and sex in contrast to healthy individuals [95]. The 

availability of tools that enable clinicians in distinguishing 

athlete’s heart from DCM is vital for the prevention of SCD 

since athletes with a clinical diagnosis of DCM should be 

excluded from most competitive sports [96].

Familial screening

Familial evaluation is critical in the diagnostic workup of 

patients with DCM as it allows the identification of relatives 

with clinical or subclinical DCM in familial cases and pro-

vides critical information regarding the phenotypic expres-

sion of the condition [26]. Thus, families with an aggressive 

arrhythmic profile, high ventricular arrhythmia burden, or 

extensive myocardial fibrosis may be identified. Impor-

tantly, a negative family history of DCM does not exclude 

familial disease, since systematic clinical screening may 

reveal asymptomatic or subclinical DCM cases [97].

All first-degree relatives should be screened with ECG 

and echocardiogram. Ambulatory Holter monitoring should 

be considered if there is evidence of an arrhythmic familial 

phenotype or symptoms suggestive of arrhythmia. Family 

screening should begin in childhood and repeated annually 

through adolescence and every 2–3 years in adulthood if no 

abnormalities are detected.

Genetic testing

According to the latest HRS expert consensus statement 

on arrhythmogenic cardiomyopathy, genetic testing should 

be performed in all individuals with a clinical diagnosis of 

cardiomyopathy or in decedents who were diagnosed with 

cardiomyopathy at necropsy [70]. The initially selected gene 

panel and subsequent interpretation should both be based 

on the phenotype of the patient. Cascade genetic screening 

and genetic counseling should be offered to first degree rela-

tives if a pathogenic or likely pathogenic variant has been 

detected in the family [2].

Practice until today suggested that genotype and phe-

notype negative family members were assured that they 

carry no risk for developing DCM, and their follow-up was 

ceased. However, non-monogenic DCM cases have been 

described [98], and numerous variants that may potentially 

affect the phenotypic expression are still classified as vari-

ants of unknown significance [99, 100]. At the same time, 

environmental factors play a vital role in the expression of 

DCM. It is therefore plausible to say that genotype-negative 

relatives have a lower risk of developing DCM rather than no 

risk at all. Continuous surveillance but at more sparse inter-

vals, possibly excluding genes with high penetrance such as 

LMNA, is an alternative strategy for these individuals.

Risk stratification

For years, risk stratification of DCM patients was based on 

the degree of LV dysfunction and the presence of symptoms. 

In symptomatic patients with LVEF < 35% and a predicted 

survival of more than 1 year, ICD implantation for primary 

prevention of SCD is indicated [60, 70, 101]. However, 

a considerable fraction of patients who experience SCD 

have an LVEF > 35% [102, 103]. An increasing amount of 

research supports the utilization of late gadolinium enhance-

ment (LGE) in the risk stratification of DCM patients. LGE 

is an effective predictor of mortality, hospitalization, and 

SCD [104, 105]. The presence, extent, and patterns of LGE 

may also provide predictive data for malignant VAs or LV 

reverse remodeling [71, 105, 106]. In a meta-analysis by di 
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Marco et al., no significant correlation was found between 

LVEF (above or below 35%) and malignant VAs [105]. 

Instead, there was a significant correlation between VAs and 

the presence and extent of LGE. The correlation between 

LGE and VAs was maximal in studies that included only 

patients with primary prevention ICDs.

Due to systematic familial and preparticipation sports 

screening, DCM patients are commonly detected at an ear-

lier and asymptomatic stage. The risk of heart failure-related 

events in these patients is low while the risk of life-threatening  

VAs and SCD may be high. Myocardial fibrosis and specific 

genetic substrate related to an arrhythmic phenotype have 

emerged as additional risk stratification markers.

Genotype–phenotype studies have led to the realiza-

tion that patients with specific genotypes benefit from an 

ICD for primary prevention even in the absence of severe 

LV dysfunction. Patients carrying malignant LMNA var-

iants were firstly recognized as a distinct group with a 

higher SCD risk [101]. In a recent HRS expert consen-

sus document, recommendations for ICD placement in 4 

more genes associated with an increased arrhythmic risk 

in moderately reduced LVEF (BAG3, PLN, FLNC, and 

TMEM43) were provided [107–111].

More specifically:

– LMNA In a cohort comprising 269 LMNA carriers, 

the presence of 2 or more of the following risk factors 

were associated with malignant VAs and SCD: non-

sustained ventricular tachycardia (NSVT), LVEF < 45% 

at first evaluation, male sex, and non-missense muta-

tions [59]. An ICD implantation is a class IIa indication 

for LMNA carriers and ≥ 2 of these risk factors [60, 70, 

101].

– BAG3 Various pathogenic BAG3 variants have been 

associated with DCM, characterized by high pen-

etrance > 40 years and a high risk of progressive heart 

failure (HF) [67] (p. 3), [112–114]. A point mutation 

in BAG3 gene is already known for causing myofibril-

lar myopathies with HCM or restrictive cardiomyopa-

thy [67] (p. 3), [110] [113]. There was large phenotypic 

variability, with 8 out of 18 mutation carriers with DCM 

undergoing heart transplantation or dying of advanced 

heart failure, while 3 other carriers showed no penetrance 

[67]. Risk factors for adverse outcomes in patients with 

BAG3 pathogenic variants include: male sex, decreased 

LVEF, and enlarged LVEDD [112].

– PLN A large multicenter cohort study found that carriers 

of the founder pathogenic R14del PLN variant were at 

high risk for malignant VAs or end-stage HF. Sustained 

or NSVT and LVEF < 45% were independent risk factors 

for the aforementioned outcomes [111]. High mortality 

and a poor prognosis were noted from late adolescence. 

Of note, R14del may cause both, DCM, and ARVC. 

Therefore, in patients with phospholamban cardiomyo-

pathy and LVEF < 45% or NSVT, an ICD should be con-

sidered (class IIa indication) [7].

– FLNC Filamin C plays an essential role in the attachment 

of sarcomeres to the plasmatic membrane. Truncating-

FLNC variants have been associated with skeletal and 

cardiac myofibrillar myopathies [115] and an overlapping 

phenotype of left-dominant arrhythmogenic cardiomyo-

pathy and DCM with high risk of malignant VAs and 

premature SCD. An autosomal dominant inheritance 

pattern was indicated with very high penetrance above 

40 years old (97%). The phenotype comprised LV dila-

tion and LV dysfunction, myocardial fibrosis, inferolat-

eral negative T waves, and low QRS voltages on ECG. 

VAs were observed in 82% of the patients with a frequent 

family history of SCD (40 cases in 21 out of 28 families) 

[64]. Twelve carriers experienced sudden cardiac arrest 

with a mean LVEF of 39.6% ± 12% (range 21 to 54%). 

Accordingly, in individuals with FLNC mutation and 

LVEF < 45% an ICD is a class IIa indication [7].

– TMEM43 A study in carriers of a transmembrane pro-

tein 43 variant (p.S358L-TMEM43) found better survival 

in those treated with an ICD rather than those under the 

conventional non-ICD management [110]. Males seem 

to have a worse prognosis than female carriers since 

affected males were hospitalized 4 times more often 

than affected females and died younger [116]. The most 

frequent ECG abnormality was poor R wave progression 

and was mostly seen in males [110].

– DSP Desmoplakin has been implicated in the develop-

ment of LV dysfunction and may be involved in DCM 

and left dominant ARVC [117]. LGE in the LV may be 

the only abnormality found in patients carrying patho-

genic variants of DSP with a normal ECG and arrhyth-

mias of LV origin [92]. The mutation follows an autoso-

mal dominant inheritance pattern.

Non-invasive parameters that have been used in ischemic 

cardiomyopathy such as premature ventricular complexes, 

NSVT, late potentials, and prolonged QTc [118] may also be 

relevant in DCM [119], though further studies are warranted.

Mild DCM in athletes vs. athletic heart syndrome

Left ventricular dilatation and low-normal left ventricu-

lar function (LVEF < 55%) occurs in 10–15% of competi-

tive athletes, especially those engaging in intense endur-

ance training. We demonstrate a practical diagram (Fig. 3) 

for differentiating between physiological left ventricular 

enlargement and subclinical DCM in athletes, adapted 

from Millar et al. [94].The combination of ECG, BNP, 

24 h-Holter monitoring, and CMR failed to diagnose more 

than 30% of athletic individuals with mild DCM. Exercise 
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echocardiography has a much better diagnostic ability. The 

inability of an individual to increase LVEF by > 11% or an 

increase of peak LVEF > 63% has more than 80% sensitivity 

and 90% specificity for DCM [94].

Genotype dictates sports participation eligibility

In the 2020 ESC Guidelines on Sports Cardiology, specific 

recommendations have been described for sports participation 

in individuals with DCM. In the absence of limiting symptoms 

or exercise-induced VAs, participation in low to moderate-

intensity recreational exercise should be considered in all DCM 

patients regardless of the LVEF [120]. In the presence of LMNA 

or FLNC genotype, high intensity exercise is prohibited, even in 

phenotype-negative individuals [120]. In contrast, participation 

in high- or very high-intensity exercise including competitive 

sports may be considered in asymptomatic individuals with 

the following: LVEF 45–50%, no frequent or complex VAs on 

Holter monitoring or during exercise testing, absence of LGE 

on CMR, ability to increase LVEF by 10–15% during exercise, 

and no high-risk genotype (LMNA or FLNC).

Genetics: the key to the future of DCM

Genetics have a promising potential to unlock and demystify 

many of the “blind spots” of the current management of 

DCM. The rapid expansion and advancements in genetics 

have come with its own challenges. The interpretation of 

genetic test results and accurate categorization of variants 

is a laborious and complicated process and should ideally 

be performed by multidisciplinary teams of molecular car-

diologists, molecular pathologists, clinical geneticists, and 

genetic counselors.

Genotype‑directed treatment

With the development of genetics, the concept of direct-

ing the treatment according to the genotype seems promis-

ing [121]. Τhe understanding of gene-specific pathogenetic 

mechanisms and the unraveling of the functional effects of 

each variant should dictate different therapeutic strategies. 

The first attempts towards personalized management of 

DCM patients based on precision medicine have been made:

• The gain-of-function variant pR222Q in the SCN5A gene 

is associated with a severe form of arrhythmic DCM 

[122–124]. Standard heart failure therapies are relatively 

ineffective in these patients while a dramatic improve-

ment was seen after administration of sodium-channel 

blocking drugs [123, 125, 126].

• The study of molecular changes involved in LMNA-

mutated mice revealed increased cardiac activity of the 

ERK1/2, JNK and p38 MAP kinases. Treatment with a 

p38 inhibitor in LMNA-mutated mice showed preven-

tion of LV dilation and LV dysfunction [127]. Increas-

ing evidence of beneficial effects of p38 inhibition led to 

an international phase 3 clinical trial (NCT03439514), 

investigating the benefit of ARRY-371797 in symp-

tomatic DCM patients carrying the pathogenic LMNA 

variant. This randomized, double-blind study is the first 

genotype-specific treatment study which will hopefully 

pave the way for other gene-specific treatments.

• Truncating mutations in the TTN gene seem to cause an 

increase in the cardiac metabolism that eventually leads 

to sarcomere dysfunction [128, 129]. Targeting the meta-

bolic alterations caused by TTN mutations could offer a 

Fig. 3  Diagram for distinguishing between subclinical DCM and ath-

letic heart syndrome. BNP, brain natriuretic peptide; DCM, dilated 

cardiomyopathy; ECG, electrocardiogram; EF, ejection fraction; NT-

proBNP, N-terminal pro hormone BNP; SCD, sudden cardiac death; 

 VO2, oxygen consumption. # For a pathogenic or likely pathogenic 

variant in a gene associated with dilated cardiomyopathy, * excluding 

Troponin rise after strenuous exercise
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potential gene-directed treatment for preventing progres-

sion into the DCM phenotype.

• Several gene-editing methods that may directly alter vari-

ants are currently under investigation. One such method 

is the genome-editing tool known as CRISPR/Cas9 

which can target specific single-gene mutations such as 

DMD [130]. An in vivo genome editing study showed 

restoration of dystrophin expression and cardiac function 

in dystrophic mice [131].

• Another attractive approach is the utilization of induced 

pluripotent stem cells (iPSCs) and their subsequent dif-

ferentiation into cardiomyocytes (iPSCs-CMs). Stud-

ies using iPSC-CM modeling have been used in LMNA 

[132], DES [133], TNNT2 [134, 135], PLN [136], RBM20 

[137], TTN [138], and BAG3 [139] variants, with a great 

fraction of these describing disruption of sarcomeres, 

decreased contractile force and dysfunctional regulation 

of calcium. In vivo use of β-blockers and calcium antago-

nists showed phenotype attenuation. Two iPSC-CM stud-

ies on PLN R14Del used targeted gene correction and 

lead to full phenotype reversion in vitro [136, 140].

Therefore, functional genomics may help in guiding treat-

ment after the identification of the specific function-altering 

effects of genetic defects. The main challenges in this field 

are to identify the specific functional change and study any 

modifier genes or environmental factors that possibly affect 

the phenotype expression.

Genetic screening and variant classification

The most important step in genetic testing is the correct 

identification and interpretation of a pathogenic variant. Not 

only there is a multitude of variants of unknown significance 

(VUS), but also already published genes are currently being 

re-analyzed and re-classified. The ClinGen Cardiovascular 

Clinical Domain Working Group for cardiovascular disor-

ders is currently in the process of adapting some guidelines 

of variant interpretation in the genes known to be involved 

in DCM [141]. Table 2 shows a list of the most up-to-date 

genes that should be included in the screening of DCM 

according to the latest position papers and guidelines. In 

addition, specific ICD indications and genotype–phenotype 

correlations are included.

Decoding the impact of disease‑modifying factors

The large heterogeneity in phenotype expression of a spe-

cific genetic variant is a common clinical conundrum. It 

highlights the complex genetic architecture of DCM includ-

ing the presence of multiple variants in the same individual, 

modifier genes, and the effect of environmental and demo-

graphic variables such as age, ethnicity [142], sex, and life-

style. For example, deleterious TTN variants are more likely 

to manifest with a DCM phenotype in Europeans than in 

African-Americans [141]. A multi-parametric score, predict-

ing the likelihood of DCM expression or arrhythmic risk, 

while considering the genotype and disease-modifying fac-

tors of each individual would be an ideal clinical tool but 

an enormous amount of research is needed before this is 

achieved and applied in practice.

Prognostic markers and genotype 
correlation: the importance of long term 
follow‑up

An important parameter used during follow-up of DCM patients, 

that reflects improvement and a better prognosis is LVRR.

With adequate pharmacological and device treatment, 

about 40% of DCM patients experience significant LVRR 

[143]. After treatment initiation, the process of LVRR usually 

needs from 6 months to 2 years to take place [144]. LVRR and 

the time required to achieve it seem to be strongly related to 

the long-term prognosis of DCM patients [145]. Some impor-

tant parameters shown to be affecting the prognosis of the dis-

ease and the likelihood of LVRR in the first stages of DCM, 

should be systematically assessed both at diagnosis and during 

follow-up. These include right ventricular function [146, 147], 

functional mitral regurgitation (MR) [148, 149], the presence 

of LBBB at diagnosis or during follow-up [81, 143].

Recent studies researched the correlation between genotype 

and the likelihood of LVRR independent of other clinical param-

eters. Verdonshot et al. suggest an increased likelihood of LVRR 

with TTN pathogenic variants [150]. In contrast, LMNA muta-

tions seem to be strongly associated with a lower rate of LVRR. 

Likewise, another study by dal Ferro et al. demonstrated a lack 

of LVRR with specific genotypes including FLNC, DES, DMD, 

and other cytoskeletal Z-disk genes, followed by LMNA while 

again TTN mutations seemed to be associated with higher rates 

of LVRR under optimal medical treatment [151].

About 15% of DCM patients show normalization of their LV 

size and function after sufficient medical treatment. It seems 

that they maintain an apparently normal cardiac function during 

a 10-year follow-up. However, in a longer follow-up duration 

(15 years) 5% of these patients seem to deteriorate again. Their 

cardiac function progressively worsens and may die of refractory 

heart failure, require heart transplantation or ICD implantation 

[29, 152]. This is known as the “apparent healing phenomenon”. 

Therefore, even patients that have apparently healed should con-

tinue their lifelong follow-up and medical treatment.
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Table 2  Genes to be screened in the workup of DCM — genotype–phenotype correlation and ICD indications [20, 68–70, 154]

Gene (protein) Frequency in 

patients with 

DCM  [155]

Inheritance pattern Phenotype [77, 156]

TTN [157] (Titin) Truncating 

variants 

18–25% 

[30, 53, 54]

AD, AR Low prevalence of LBBB, atrial fibrillation

Higher frequency of LVRR [158, 159]

ACTC1 [160] (Actin — alpha cardiac 1)  < 1% AD p. Gly247Asp variant is associated with atrial 

septal defect and late onset DCM [161]

p.(H175R) and p.(Y220H) have been associated 

with severe forms of childhood DCM [160]

LDB3 [162] (LIM domain binding 3)  < 1% AD Associated with LVNC phenotypes [163]

MYBPC3 [164] (Myosin-binding protein C) 2% AD Weak evidence — has been reported in end stage 

(burned out phase) HCM

LVNC phenotype

MYH6 [165] (Myosin heavy chain 6, alpha) 4% AD AV conduction defects, sick sinus syndrome

MYH7 [166] (Myosin heavy chain 7) 4% AD AV conduction defects may coexist with myopathy 

early onset

TAZ [167] (Tafazzin) Unknown X-linked DCM with syndromic features: Barth syndrome 

(DCM, myopathy, neutropenia, short stature)

TNNC1 [168] (Troponin C)  < 1% AD

TNNI3 [169] (Troponin I)  < 1% AD, AR

TNNT2 [166] (Troponin T)  < 1% AD

TPM1 [170] (Tropomyosin 1)  < 1% AD

LMNA [171] (Lamin A/C) 6% [25, 27] AD Accelerated disease

Atrial fibrillation

VAs often before overt LV dysfunction

AV conduction defects (marked bradycardia/AV 

block)

BAG3 [67] (BCL2–associated anthanogene) Unknown AD High penetrance > 40 years

worse prognosis in nonsense variants

Male sex, reduced LVEF and increased LVEDD 

associated with a worse prognosis [172] (p. 3)

May coexist with myopathy

FLNC [173] (Filamin C) 0–3% AD VAs often before overt LV dysfunction

Low QRS voltage

Overlapping phenotype of dilated and left-dominant 

arrhythmogenic cardiomyopathies complicated by 

frequent premature SCD

RBM20 [66] (RNA binding motif protein 20) Unknown AD Malignant VAs

High risk of SCD

TMEM43 [174] (Transmembrane protein 43)  < 1% AD Poor R wave progression in precordial leads

Founder variant in Newfoundland

SCD (M > F) [174]

PLN [175] (Phospholamban) 0–12% AD Low QRS amplitude, RBBB and loss of inferior 

R waves

Founder mutation in Netherlands

High risk of SCD

Significant posterolateral and free wall fibrosis in 

PLN R14del

DSP [107] (Desmoplakin) 1–13% AD, AR (Carvajal syndrome), Low QRS Voltage, VAs

Extensive fibrosis may precede LV systolic 

dysfunction and LV dilatation

Episodic myocardial injury

Cardiocutaneous syndrome

DSG2 [176] (Desmoglein 2) 4–15 AD Frequent LV involvement

DSC2 [155] (Desmocollin 2) Unknown AD, AR
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Conclusions

Dilated cardiomyopathy, an “umbrella” term describing the final 

common phenotype of various etiologies and gene–environment 

interactions, is now entering a new epoch. We are witnessing 

the end of the “one-size-fits-all” approach aiming to alleviate 

symptoms or possibly delay disease progression and the begin-

ning of the precision medicine era. We endorse the concept that 

we are no longer targeting symptomatic treatment, but instead, 

we are searching and targeting for the root of the disorder in each 

individual, with disease prevention or even disease reversal as 

a goal [153]. We believe that the creation of multi-disciplinary 

teams in healthcare units may form the core of the individual-

ized management of DCM patients bringing the best patient 

care possible.
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