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Abstract
Diabetes is a chronic disease affecting 415 million people worldwide. People with
type 1 diabetes mellitus (T1DM) need to self-administer insulin to maintain blood
glucose (BG) levels in a normal range, which is usually a very challenging task.
Developing a reliable glucose forecasting model would have a profound impact on
diabetes management, since it could provide predictive glucose alarms or insulin sus-
pension at low-glucose for hypoglycemia minimisation. Recently, deep learning has
shown great potential in healthcare and medical research for diagnosis, forecasting
and decision-making. In this work, we introduce a deep learning model based on a
dilated recurrent neural network (DRNN) to provide 30-min forecasts of future glu-
cose levels. Using dilation, the DRNN model gains a much larger receptive field in
terms of neurons aiming at capturing long-term dependencies. A transfer learning
technique is also applied to make use of the data from multiple subjects. The proposed
approach outperforms existing glucose forecasting algorithms, including autore-
gressive models (ARX), support vector regression (SVR) and conventional neural
networks for predicting glucose (NNPG) (e.g. RMSE = NNPG, 22.9 mg/dL; SVR,
21.7 mg/dL; ARX, 20.1 mg/dl; DRNN, 18.9 mg/dL on the OhioT1DM dataset). The
results suggest that dilated connections can improve glucose forecasting performance
efficiently.
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1 Introduction

Diabetes is a severe chronic metabolic disorder that causes many secondary com-
plications, such as retinopathy and heart disease. According to the World Health
Organization, the global prevalence rate among adults has doubled in the past two
decades, reaching 8.5% in 2014 [1]. There are two main types of diabetes: type-
1 diabetes and type-2 diabetes. For type-1 diabetes mellitus (T1DM) subjects, their
pancreatic β cells lose partial or whole function to produce insulin [2]. There is cur-
rently no effective method to prevent T1DM, so people with T1DM require long-term
management of blood glucose (BG) to avoid hyperglycaemia (BG above 180 mg/dl)
and hypoglycaemia (BG below 70 mg/dl). Such management often requires proper
control by means of exogenous insulin delivery, proper diet and exercise.

In general, T1DM subjects need to measure their BG concentration several times
per day using standard BG metres. This conventional method normally involves
finger-prick tests. Rapid growth of wearable devices for continuous monitoring pro-
vide a feasible solution to alleviate this burden. One device is the continuous glucose
monitoring (CGM) system, which can continuously measure the BG levels (e.g. every
5 min). Moreover, the CGM, together with the insulin pump, can provide T1DM sub-
jects with closed-loop control systems [3]. These systems can be further enhanced by
BG forecasting. The prediction helps the calculation of optimum insulin boluses to
avoid possible adverse glycaemic events. Nevertheless, glucose prediction still faces
many challenges as there are many daily events that affect BG levels, such as insulin
injection, meal intake and exercise. In addition, people with T1DM have large inter-
person variability of glycaemic response to insulin, which makes accurate glucose
prediction more difficult [4].

Recently, machine learning (ML) techniques have shown great potential for data
analysis and prediction. ML approaches focus on learning the behaviours and extract-
ing features automatically from large datasets. There have been several traditional
ML applications on diabetes, such as least square support vector machine [5, 6],
random forest [7] and k-nearest neighbours [8]. As an essential branch of ML, the
approaches based on neural networks (NN) have also been implemented in diabetes
research. Most of the prior work use artificial neural networks (ANN) with fully
connected layers [9–11]. With the ever-increasing computational power and data stor-
age, researchers use a large number of hidden layers to build deep neural networks
(DNN). DNN utilises non-linear representations of the layers to extract high-level
features and enhance perceptual ability [12]. The superior performance of DNN has
been demonstrated in many fields, including medical imaging [13], genetics [14] and
using electronic health records (EHR) for the chronic diseases treatment [15].

In this paper, we propose a deep learning algorithm to forecast glucose concentra-
tion for T1DM subjects based on dilated recurrent neural networks (DRNN) [16], as
depicted in Fig. 1. The architecture of the DRNN model mainly comprises a series
of DRNN layers with different sizes of dilation. Each DRNN layer consists of the
recurrent neural network (RNN) cell with plenty of hidden nodes, which can be
long short-term memory (LSTM) [17], gated recurrent units (GRU) [18] or simple
vanilla cells. The data not only recurrently flows inside the cells to capture the short-
term and long-term dependencies but also propagates forward to capture high-level
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Fig. 1 The architecture of the proposed BG forecast model using DRNN layers. There are some missing
gaps or outliers, which are shown in orange in the diagram that need to be corrected by pre-processing

features. The DRNN model is effective to process sequential signals and time series.
Moreover, the dilated structure can reduce many parameters and gain higher effi-
ciency [16]. We use Tensorflow to implement the algorithms [19]. We used two EHR
datasets to evaluate the performance of the DRNN models: OhioT1DM from clinical
trials [20] and in silicon dataset from the UVA-Padova simulator [21]. The predic-
tion results of DRNN are compared with many existing algorithms, including neural
network for predicting glucose (NNPG) [9], support vector regression (SVR) [22]
and the autoregressive model (ARX) [6]. The results show that DRNN achieves the
best performance in terms of the root mean squared error (RMSE), the mean absolute
relative difference (MARD) and the time lag, which is a common approach to mea-
sure the similarity and delay between two time series (prediction and original) using
cross-correlation.

2 Methods

2.1 Data Acquisition and Pre-processing

We evaluate our models using two datasets from both simulator and clinical trials. To
collect the simulated data, we use the UVA/Padova T1D simulator to generate 10 vir-
tual T1DM subjects. It is the only simulator for insulin trials approved by the Food
and Drug Administration (FDA) that can provide robust and reliable results [3]. The
historical glucose in this dataset is precisely sampled every 5 min and suitable for
the model as the input. We generate 103,680 5-min instances for each subject, corre-
sponding to the glucose data samples in 360 days. Each instance contains four data
fields: sampling time, CGM values, meal intake and insulin dose. We divide each
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360-day dataset into a training dataset and a testing dataset. The clinical OhioT1DM
dataset is obtained from six T1DM subjects who wear Medtronic 530G insulin pumps
and Medtronic Enlite CGM sensors to provide data during an 8-week period [20].
In addition, there are multiple relative data fields manually reported via an app on
a smartphone and a fitness band. The training and testing datasets are provided sep-
arately. The total number of instances of each subject in OhioT1DM is different,
varying from 13,310 to 15,431. There are 19 data fields for each instance, of which
the details are listed in [20]. For the clinical dataset, missing or outlier glucose sam-
ples occur frequently. They are due to practical problems, such as the absence of the
recording and transmission, errors in measurement and/or mistakes in archiving and
documentation. For example, readings from subject 591 illustrates the problem of
noisy and missing data; as for a three-day period between the 26 to 29 of December,
BG readings for the patient are missing, while prior to this period they remained fixed
for a 2-hour period which is unusual and indicates a recording error in the reading.

Consequently, we apply three methods to pre-process the clinical dataset: interpo-
lation or extrapolation, filtering and combination. In particular, we use the first-order
interpolation for training datasets to fill up the missing values. Then the training
data series pass through a median filter with small window-size to remove spikes
and outliers. The data pre-processing of the training set is shown in Fig. 2. Please
note that interpolation and median filter are only used for the training. In the testing,
extrapolation is adopted because future glucose samples are unknown.

The limited size of dataset possibly degrades the model performance, so we cre-
ated a generalised training dataset that doubles the length of the original dataset to
find out some common features. Specifically, we keep all the data of the current sub-
ject accounting for the first half of training set and incorporate data from the other
five subjects with 10% each to form the second half of the training set. By doing
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Fig. 2 The pre-processed BG training data on Jan 2. Interpolation fills up a small missing interval that the
10 zeros between 7:35 and 8:25, and median filter removes the outliers and spikes on the curve [23]
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this, we obtain a combined training set. We first train a generalised model on this
combined dataset. Then a second phase training is conducted based on the trained
model and individual data for a specific T1DM subject by using a transfer learning
approach. Experimental results show that this two-phase method increases the size
of training dataset and the generality of the model, and it obtains a better prediction
accuracy in practice.

2.2 Recurrent Layers

The core backbone of the proposed model is the RNN layers and cells. Compared to
conventional NNs, the RNN can remember its input and is powerful at finding pat-
terns of sequential data. It has many applications, such as handwriting generation [24]
and machine translation [25]. A sequence of historical multi-dimensional data is fed
into the RNN layers as shown in Fig. 1. Basically, each cell contains several hidden
states referring to multiple timesteps. The high-dimensional hidden nodes are used
in every state to capture feature maps. After tuning a number of hyperparameters as
shown in Section 2.5, the vanilla RNN cells are selected in the DRNN architecture
because it shows the best overall prediction: the smallest prediction error and the
lowest computational expense. Figure 3 depicts the unrolled structure of vanilla RNN
layers.

The RNN cell in this architecture derives a conditional probability for the
prediction output p(yT |x0, x1, . . . , xT ), where yT is the prediction target and
x0, x1, . . . , xT is the input multi-dimensional time series with timesteps of T . In the
mathematical formulation, the recurrence and the cell output can be expressed as

ht = tanh(Whhht−1 + Whxxt + b), (1)

where ht is the layer output at timestep t , Whh and Whx are two weight matrices
of hidden states and input, respectively, b denotes the bias, ht−1 is the output from
last timestep and xt stands for the current input vector. Each hidden layer uses dis-
tinct weight matrices. It is noted that the parameters of vanilla architecture in (1) are
much less than LSTM and GRU (details in Table 1). Thus, the vanilla RNN cells are
efficient to train the whole network with less time and computational resource.

tanh
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Whh b

xt+1
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Fig. 3 The unrolled structure of vanilla RNN cells
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Table 1 RMSE performance for traditional LSTM and different DRNN models

Model Traditional LSTM DRNN (Vanilla) DRNN (LSTM) DRNN (GRU)

Simulated dataset 9.2∗∗ 7.8 7.9 7.9

OhioT1DM dataset 21.0∗∗ 18.9 20.2∗ 19.9

Number of parameters 4(n2 + m × n + n) n2 + m × n + n 4(n2 + m × n + n) 3(n2 + m × n + n)

∗p ≤ 0.05 ∗∗p ≤ 0.01

2.3 Multi-layer Dilated Connections

In general, vanilla cells face the problem of gradient vanishing, but the DRNN archi-
tecture tackles this challenge and improves the performance [16]. The concept of
dilation for RNNs means fetching the previous state output after skipping certain
numbers of timesteps in each hierarchical layer. As such, DRNN architecture has a
stack of cell-independent layers to realise multi-resolution. This structure makes the
vanilla cell outperform LSTM and GRU. Figure 4 presents a detailed illustration of
the proposed DRNN model.

We feed a vector as the input dictionary containing data from the multiple EHR
fields at each timestep. The bottom DRNN layer has dilation of 1, which is the same
as the standard structure of vanilla RNN cells as shown in Fig. 3. For higher hidden
layers with dilation d , the RNN cells fetch the state input by skipping d−1 timesteps.
Due to the flexibility of the RNN, we have a many-to-one structure: one predicted
value is obtained by considering a sequence of historical multi-dimensional data.
Specifically, the dilated connections with d > 1 and the cell output can be formulated
as

hl
t = f (hl−1

t , ht−dl )

= tanh(Whhht−dl + Whhl−1h
l−1
t + bl), (2)

where hl
t denotes the output of layer l at timestep of t and f (·) stands for any RNN

cell operation, including GRU, LSTM and vanilla RNN. Particularly, the second line
of the (2) expands the expression for vanilla cells. After passing through the DRNN

Hidden Layer
Dilation = 1

Input

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output

Fig. 4 An illustration of dilated connections of multi-layer RNN architecture. The dilation in three layers
increases exponentially from 1 to 4
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layers within total times steps T , the final output with L DRNN layers is denoted as
hL

T . Then the output vector propagates into a fully connected layer to regress toward
the scalar predicted values.

As illustrated in Fig. 4, the DRNN uses fewer parameters to compute a single pre-
diction compared to fully connected RNNs. Hence, it enhances the training efficiency
and alleviates the gradient vanishing problem. Moreover, the DRNN allows paral-
lel operations that are quite suitable for GPU computation [16]. The cell chains can
be computed in parallel using shorter sub-sequences. Taking the second layer with
dilation of 2 in Fig. 4 as an example, the computation of the chains of cell outputs
h2k , h2k+2 and h2k+1, h2k+3 can be accomplished in parallel. Thus, it further reduces
the training time cost with a parallel implementation. Other important benefits of
DRNNs are brought by exponentially increasing dilation ([1, 2, 4] in Fig. 4) [16].
On the one hand, the different dilation guarantees a variety of temporal resolution of
time series. On the other hand, it effectively reduces the average path length of recur-
rence between two timesteps by skipping nodes. Therefore, the DRNN models also
have superior capabilities to capture long-term dependencies. It partially explains
the better performance of the vanilla cell, because it only focuses on the short-term
dependencies with the simplest structure and leaves long-term patterns to dilated cell
connections.

2.4 Network Training

After the DRNN model construction, we start training the network to obtain the opti-
mal weights and bias with a large amount of data in batches. In the ML field, we
usually use the gradient descent algorithm to update network weights. Loading a
large dataset requires hardware with high memory capacity, and it is more likely to
end with a local optimum instead of the global optimum. Therefore, in our model, we
apply the mini-batch approach by using a subset of the data to update parameters for
each training step [26]. During the process of training, the hyperparameters are tuned
as described in Section 2.5. Three fields of the pre-processed data are chosen as the
input channels: historical BG (G), insulin bolus (I) and meal intake (M). In addition, a
time index (T) channel is added by normalising the one-day duration of 288 samples
into a range of [0, 1). For example, 0:00 and 12:00 refer to 0 and 0.5, respectively.
The target label y is set to the change between current BG(xt ) and future BG (xt+6).

Figure 5 shows the process of making batches by sliding down the window step
by step to extract a set of sequential data as well as a label. These batches are directly
fed into the model. In our model, a conventional method of adaptive learning rate,
RMSprop optimiser, is applied [27]. After sending a number of batches to the net-
work, we calculate the error between predicted values and labels, average the loss,
and then use backward propagation to update parameters. The outcome at the top
fully connected layer is the change value of BG concentration for the PH ahead. We
add it to the current BG to obtain the future glucose level. This process can be written
as

ŷT = �BG + xT = WFChL
T + bFC + xT , (3)

where ŷT is the future BG prediction, �BG is the prediction value of the change, xT

denotes current BG, WFC is the weight matrix and bFC is the bias. In other words,
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Fig. 5 An illustration of making batches with real examples from the clinical dataset. Sliding down the
windows, we obtain multiple entries in a batch

WFC and bFC are applied to the orange output in Fig. 4. We follow the default non-
linearity in the DRNN architecture, so there is no activation function in the fully
connected layer.

2.5 Hyperparameter Tuning

When constructing DRNN models, there are a number of hyperparameters that need
to be tuned manually. The combinatorial space is not very large, so we have per-
formed grid search for each hyperparameter. We extracted 10% data from the end
of training datasets as the validation datasets and kept the first 90% data to train
the models. Hence, for the simulated dataset, the overall split is 81% for train-
ing, 9% for validation and 10% for testing. Considering the task is to predict time
series using historical data, we used these validation datasets as 90% and 10% parti-
tion instead of conventional k-fold cross-validation. The evaluation process and final
hyperparameters in Table 2 are identical for all subjects in simulated and clinical
datasets.

We feed DRNN with a sequence containing historical data. The length of
sequences was tuned among {6, 12, 18}, corresponding to the data in previous {30,
60, 90} min. Using the RMSE in (4) as the indicator of L2-loss, we have observed
that the model has the smallest RMSE when length equals to 12. From the datasets
of T1DM subjects, we incorporated historical BG (G), insulin bolus (I), meal intake
(M) and time index (T) and sent them to the DRNN as separate channels. The his-
torical G channel is necessary for prediction, so we explored channel combinations
among {G, [G, I], [G, M], [G, I, M], [G, I, M, T]}. The results show that the input
with four channels of [G, I, M, T] performs the best.

Table 1 presents the mean RMSE results for different RNN models. We con-
structed the traditional LSTM model by setting the dilation to [1, 1, 1] and compared
DRNN models among cells of {Vanilla,LSTM,GRU}. Assuming a cell state has an
n-dimensional hidden node and an m-dimensional input, the number of parameters
in each state is shown in Table 1, according to [28]. It is noted that, compared with
vanilla RNN, the LSTM and GRU architecture have a 4-fold and a 3-fold increase
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Table 2 DRNN
hyperparameters Parameter Value

Length of sequences 12 timesteps

Input channels [G, I, M, T]

Cell type Vanilla RNN

Dilation [1, 2, 4]

Hidden node dimension in each layer 32

RMSprop learning rate 0.001

RMSprop decay rate 0.9

Batch size 512

in parameters, respectively. Considering DRNN (LSTM) and traditional LSTM, we
can see that the dilation helps to reduce the RMSE and improves the performance.
Among DRNN models, we observed the vanilla cells have the best RMSE. Although
the RMSE of vanilla cells and GRU are close, especially on simulated datasets, we
still selected the vanilla RNN, considering its low computational expense as well as
a simple structure as shown in Fig. 3.

For the dilation, we first followed the settings in [16] and used five layers with
dilation of [1, 2, 4, 8, 16], but we observed overfitting occurred when validation loss
was significantly larger than training loss. We then reduced the complexity of the
model and found that three layers with dilation of [1, 2, 4] performed best. We tuned
the hidden node dimension among {16, 32, 64, 128} and mini-batch size among {256,
512, 1024} in a similar process, by observing the training and validation performance.
For RMSprop optimiser, we selected the learning rate of 0.001, comparing the values
of {0.01, 0.001, 0.0001}, and a value of 0.9 for the decay rate.

3 Results

In this section, we compare the DRNN model with three prediction algorithms in
recent works: NNPG, SVR and ARX. Using grid search, we carefully tuned the
hyperparameters for each algorithm to build a fair comparison. For the SVR model,
we first explored the kernels among RBF, Linear, Polynomial and Sigmoid. Then the
coefficient of γ was tuned among for RBF, Polynomial and Sigmoid, in a range of
[0.001, 10]. The penalty term C was tuned between [0.1, 1000]. Based on the tuning
performance, SVR is developed in Python environment with RBF kernel and settings
(C = 100, γ = 0.01, cachesize = 1000). NNPG is an application of ANNs with
three fully connected layers, realised by Keras in Python. For NNPG’s hyperparam-
eters, the search space for learning rate is [0.0001, 0.1], and batch size is tuned in the
range of {8, 16, 32, 64}. The learning rate of 0.001 and batch size of 32 are finally
selected, respectively. For the ARX algorithm, we use the function arx() with the
3rd order by the library of MATLAB. The input batch of testing sets is the same as
training sets in Fig. 5, including historical BG (G), insulin bolus (I), meal intake (M)
and time index (T). To assess the significance between the DRNN models and other
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considered methods, the t test is applied for calculating P values, where P < 0.05
and P < 0.01 stand for statistically significant. The PH in this work is set as 30 min
because it is widely used in existing work [6, 9, 22]. Besides, this PH is also suit-
able for T1DM subjects to take actions in advance to prevent adverse glycaemic
events [29].

3.1 Criteria for Assessment

There are three criteria applied to evaluate the performance of testing, since a single
metric is not sufficient to provide a comprehensive analysis. In particular, we use
the RMSE and the MARD as the principal indicators to measure the error between
prediction BG levels and original values, and the time lag to measure the delay of the
prediction. The formulation of the RMSE is expressed as

RMSE =
√
√
√
√

1

N

N
∑

t=1

(ŷ(t |t−PH) − yt )2, (4)

where N denotes the total number of BG points in the dataset, ŷ(t |t−PH) is the
prediction of xt−PH and yt is the original value. Similarly, the MARD is given by

MARD = 1

N

N
∑

t=1

|(ŷ(t |t−PH) − yt )/yt | × 100%. (5)

With the cross-correlation of the predicted and actual BG values, the time lag τlag is
formulated as

τlag = arg max
k

(ŷk(k|k − PH) � y(k)). (6)

Using RMSE and MARD to evaluate the glucose prediction is a common approach
in many previous works [6, 9, 22, 30]. RMSE can effectively present the overall
performance of the prediction models. MARD reflects the relative error to the current
glucose levels and alters the risk of hypoglycemic [31]. The time lag evaluates how
fast the prediction models react to the abrupt changes of BG levels [9, 30].

3.2 Performance on the Simulated Datasets

Using UVA/Padova T1D simulator, we generate 10 adult subjects with a length of
360 days. The meal intake is set to 3 times per day without fixed schedule. We vary
the times of insulin events between 1 to 5, assuming they are not necessary to be taken
with the meal. The intra-day variability for meal size and time is set to CV = 10%
and ST D = 20, respectively [32]. Exercise is also considered as a daily event and
set to CV = 10%, although it is not used as an input channel. The intra-subject
variability is applied to guarantee the uniqueness of each subject case. We use the
data in the first 324 days to train the model and save the rest data of 36 days as the
testing datasets. The PH is set to 30 min for all the algorithms.

Table 3 presents the average RMSE and MARD results of 10 adult cases to com-
pare prediction methods. Notably, the DRNN model performs best with the smallest
mean RMSE and MARD. The DRNN model achieves mean RMSE of 7.8 mg/dl that
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Table 3 Prediction performance for the 10 simulated T1DM subjects

Method DRNN NNPG SVR ARX

RMSE (mg/dl) 7.8±0.6 13.1 ± 1.2∗∗ 11.9 ± 1.4∗∗ 11.3 ± 0.8∗∗

MARD (%) 4.8±0.6 7.2 ± 1.1∗∗ 6.1 ± 0.8∗∗ 6.8 ± 0.9∗∗

τlag (mins) 0.4 ± 0.3 9.3 ± 1.8∗∗ 6.8 ± 1.6∗∗ 4.8 ± 1.5∗∗

∗p ≤ 0.05 ∗∗p ≤ 0.01

is much lower than others best (ARX, 11.3 mg/dl). This is a remarkable improve-
ment in forecasting BG concentration. Meanwhile, the DRNN model has the RMSE
and MARD results with the smallest standard deviation, which accounts for its
generalised optimisation to various individual subjects.

Figure 6 presents the prediction curves for the simulated case of adult 1. There
are three peaks observed around 8:00, 14:00 and 19:00, referring to the meal intakes.
Particularly, the DRNN model reacts rapidly near the turning points of peaks, and its
curve fits the sharp uptrends and downtrends much better than other methods. This
point is supported by the results of τlag in Table 3, where DRNN has the shortest time
lag. For the regions with the slow change, the DRNN curve also fluctuates gradually
and fits them well. These observations from Fig. 6 also accord with the smallest
RMSE and MARD performance by the DRNN model.
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Fig. 6 The forecasting curves for virtual adult 1 in one-day period. It is an average scenario from the
testing dataset
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3.3 Performance on the Clinical Dataset

As mentioned in Section 2.1, the clinical dataset, namely OhioT1DM, has six T1DM
subjects indexed as 559, 563, 570, 575, 588 and 591, which is provided by Blood
Glucose Level Prediction Challenge in KDH 2018 [20]. The data has already been
divided into a training dataset with the length of around 40 days and a testing dataset
of around 10 days. The DRNN model ranked top in the challenge, achieving relatively
high BG prediction performance [33].

Table 4 shows the specific RMSE and MARD results of six T1DM subjects
with four prediction methods. The DRNN model still exhibits the best perfor-
mance with the smallest RMSE and MARD for each T1DM subject. Overall,
compared with the simulated dataset, the RMSE and the MARD both increase,
as the prediction performs worse. The ranking of forecasting accuracy (average
RMSE) of different methods remains the same as the results of the simulated dataset:
DRNN>ARX>SVR>NNPG.

Among the clinical subjects, 570 has the smallest RMSE of 15.3 mg/dl and MARD
of 5.6%. Observing their training and testing data, it is noted that the number of miss-
ing data instances is 1309 for subject 575, while subject 570 only has 649 missing
points of short intervals. Hence, the quality of the data has an essential influence on
prediction performance, although we use multiple steps to pre-process data. In fact,
the missing interval appears every day in the dataset, as the 50-min gap in Fig. 7.

Table 4 Prediction performance for the 6 clinical T1DM subjects

Subject 559 563 570 575 588 591 Avg ± SD

DRNN

RMSE (mg/dl) 18.6 18.0 15.3 22.7 17.6 21.1 18.9 ± 2.6

MARD (%) 8.6 8.0 5.6 10.3 7.9 11.9 8.7 ± 2.2

τlag (mins) 4.8 6.3 2.2 12.3 8.6 14.1 8.1 ± 4.1

NNPG

RMSE (mg/dl) 23.3 21.2 19.0 27.4 21.9 24.9 22.9 ± 2.9∗∗

MARD (%) 10.2 9.4 7.1 13.4 9.7 14.8 10.8 ± 2.8∗∗

τlag (mins) 12.8 16.4 11.8 21.4 13.6 22.6 16.4 ± 4.2∗∗

SVR

RMSE (mg/dl) 23.5 18.3 20.4 23.6 20.6 23.5 21.7 ± 1.9∗

MARD (%) 9.8 8.3 6.2 10.2 8.4 12.6 9.2 ± 2.2∗

τlag (mins) 11.4 15.8 10.3 20.4 12.3 21.4 15.3 ± 4.3∗∗

ARX

RMSE (mg/dl) 18.7 19.6 16.8 23.6 19.5 22.4 20.1 ± 2.5∗

MARD (%) 8.0 8.4 6.0 10.6 8.3 12.0 8.9 ± 4.0

τlag (mins) 8.4 13.4 8.6 18.1 11.8 21.3 13.6 ± 4.8∗∗

∗p ≤ 0.05 ∗∗p ≤ 0.01
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Fig. 7 The prediction curves for clinical subject 570 on Jan 21 from the testing dataset. There is a missing
interval between 17:10 and 18:00, which contains 10 BG measurements

Thus, we use linear extrapolation to estimate the missing data for the testing set based
on the previous trend.

In Fig. 7, we compare the four prediction algorithms by their forecasting curves
for subject 570 on January 21. Similarly, the DRNN is quite sensitive. It has a rapid
response to the abrupt change of glucose levels, corresponding to the smallest τlag in
Table 4. The delay becomes particularly large for the uptrends, whereas the DRNN
curve fits the downtrends of the peaks quite well. For the nearly linear or slow
changing regions, the DRNN can forecast the future BG levels with relatively small
error.

4 Discussion

4.1 Performance Analysis

Comparing the overall performance using the two datasets, the simulated dataset
resulted in smaller RMSE than the clinical dataset. This is because the scenarios
experienced by real T1DM subjects are much more complicated than those given
in UVA/Padova T1D simulator. There are many practical factors that can influence
blood glucose, such as illness and stress. For those factors, the hidden non-linearity
makes it difficult for DNN models to learn, although we have introduced various
activation functions into the network layers. Another reason for the degraded perfor-
mance on the clinical dataset is the defects in the dataset, as discussed in Section 2.1.
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The strategy to address this problem is to use pre-processing. We found that these
pre-processing steps can improve average RMSE by 0.3 mg/dl in the experiments.
Interpolation and extrapolation improve the performance of each subject, while the
transfer learning is especially effective to subject 591 that has a long-missing interval.

An interesting point in Fig. 7 is the DRNN curve fits better at downtrends than
uptrends. According to the EHR of subject 570, the rapid increase at 19:00 of BG
concentration happened after meal intake, followed by an insulin bolus that reduced
glycaemia quickly. Thus, one explanation for this phenomenon is that people man-
ually reported their estimates of meal information (like the time and carbohydrate
intake) possibly making them less reliable than the values of insulin dose.

4.2 Limitations and FutureWork

Although the DRNN model delivers state-of-art results and exceeds many existing
algorithms, there are still some limitations. We develop a purely data-driven model
that heavily relies on historical EHR. The quality of the data has a critical role
in the prediction performance. However, the size of clinical datasets is often lim-
ited. Several data fields are recorded manually, so sometimes they are inaccurate.
To improve the data quality, diabetes dynamics values could be integrated with data
pre-processing, for instance: P i (plasma insulin estimation) and Ra (glucose rate of
appearance). In most cases, the DRNN algorithm provides effective prediction for
users so people can have glucose intervention in time. However, it has a chance to
miss some alerts on potential hypoglycemia if users conduct exercise with high inten-
sity. Further research is required to integrate factors of exercise with the existing
algorithm. In addition, we have embedded the presented algorithm into an iOS app
which will be evaluated in a clinical trial in the near future.

Meanwhile, we can employ a hybrid algorithm of different approaches in future
work. For example, we can use shallow neural networks as the bottom layers, such as
fully connected or convolutional layers to extract features and pre-process the data.
Then, the feature maps are fed into the DRNN to obtain high-level features of time
series, similar to [30]. For state-of-the-art techniques, we consider using the DRNN
layer as a basic unit in generative adversarial network and reinforcement learning for
diabetes management. It is found that the dilation structure also benefits other types
of neural networks in processing time-aligned signals [23, 34]. We will focus on the
improvement of the dilated architecture. Moreover, we aim at building a user-friendly
deep learning platform for diabetes analysis, so researchers with little knowledge in
data science are able to develop DNN models conveniently [35].

5 Conclusion

In this paper, a deep learning model to forecast glucose concentration for T1DM sub-
jects is proposed using dilated recurrent neural networks. After data pre-processing,
a multi-dimensional time series, including historical blood glucose, insulin bolus,
meal intake and time index, is fed to the network to obtain the glucose prediction.
The main architecture of this model consists of several dilated recurrent layers and a
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fully connected output layer. Compared with the standard RNNs, the recurrent layers
in the DRNN model exponentially increase dilation to expand their receptive fields
and improve the prediction accuracy. With a properly trained model, we conducted
an evaluation with a new set of data and compared its performance with the results of
the NNPG, SVR and ARX methods. Our results show that the DRNN model achieves
the best performance with the smallest RMSE, MARD and time lag. Therefore, we
believe the DRNN model is a promising approach to achieve good BG prediction and
has great potential for future research in diabetes management.
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