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1. This note is a continuation of our earlier paper [-3], in which we developed 
a dilation theory for a certain class of contraction operators acting on a 
separable, infinite dimensional, complex Hilbert space ~ .  The notation and 
terminology in what follows is taken from [3]. For the convenience of the 
reader we recall a few pertinent definitions. The algebra of bounded linear 
operators on ~ is denoted by Y ( ~ ) .  If T~Se(2C), the ultraweakly closed 
algebra generated by T and l~e is denoted by dr; we recall that d r  can be 
identified with the dual space of the quotient space Q r = ( z c ) / •  where (zc) 
denotes the ideal of trace-class operators in 5~(24 ~) and •  is the pre- 
annihilator of d r  in (z c), under the pairing 

(A, [L])=tr(AL), Aedr,  [L] eQT. 

The open unit ball in 112 is denoted by ID, and we write ] f =  ~ID. The class 
A(J4e)c~(~ t  ~ consists of all those absolutely continuous contractions T (i.e., 
all those contractions T whose unitary part is absolutely continuous or acts on 
the space (0)) such that the Sz.-Nagy-Foias functional calculus @T: H~~ 
is an isometry. If TsA(Juf) then r is the adjoint of an isometry qST of QT onto 
the predual LI(Ty)/H~(TY) of H~176 ") (cf. [3, 5]), and via the pair {q~r, ~-br}, the 
pair of spaces {LI(TY)/H~(TY), H~ can be identified with the pair {Qr, d r} .  

If x, y ~ Jt ~, we write x | y for the rank-one operator defined, as usual, by 
(x | y) (u) = (u, y) x, u ~ ~ .  Of course, x | y ~ (z c), and if some r e  ~(~,~) is given, 
we write [x| (or simply [ x |  when no confusion can result) for the 
image of x|  in Qr. If n is any cardinal number satisfying 1-<n-<No, we 
denote by A , ( ~ )  the set of all those T in A(,;4 ~) for which every system of 
simultaneous equations 

[xl | y j] = [-Lij], 0_-< i, j < n 
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(where the I-Lu] are arbitrary elements from Qr) has a solution {xi}0=<z<,, 
{Y;}o~;<,- When no confusion will result, we write simply A,  for A,(24~). In 
[3] we began the structure theory of the classes A, ,  and, in particular, the 
dilation theory of the class A~o. A primary motivation for the introduction of 
these classes in [3] was as follows. Let ( B C P ) = ( B C P ) ( ~ )  denote the set of all 
those completely nonunitary contractions T in Y(24 ~) for which the intersec- 
tion o-e(T)c~ID of the essential spectrum of T with ID is sufficiently large that 
almost every point of II" is a non-tangential limit point of o-~(T)c~ lid (such sets 
are said to be dominating for ]F). It was shown in [4] (and also in [7]) that 
(BCP)aAso ,  so all of the results obtained in [3] for operators in Aso apply, in 
particular, to (BCP)-operators. (In fact, in [4], an increasing family 
{(B CP)o}o <_o z ~ of classes of contractions is introduced, with (B CP) = (B CP)o, 
and it was shown there that U (BCP)ocAso.)  

0<0<i 

In [2] it was shown that all (BCP)-operators are reflexive, and the main 
purpose of this note is to show that all operators in the larger class As  o are 
reflexive (Theorem 1.7). This is worthwhile because we show in the third paper 
[1] of this sequence that many familiar operators belong to A~0 and thus are 
reflexive. In particular, we will show in [1] on the basis of Theorem 1.7 that 
every weighted unilateral shift W that is a contraction whose spectrum satisfies 
~r(W)= 11" is reflexive, thus generalizing considerably the results on reflexivity of 
[8]. 

We write Lat (T) for the lattice of invariant subspaces of an operator T, and 
if ~ , ~ # e L a t ( T )  with ~/g D~#, so J g @ . X  is a semi-invariant subspace of T, we 
write T, g e ~  for the compression of T to this semi-invariant subspace. We also 
write P~t for the (orthogonal) projection whose range is a subspace ~r Our 
principal tool is the following result of Robel [7, Proposition 6.1]. 

Proposition 1.1. Suppose Te(BCP)(J~),  y e ~ f  ~, and e>O. Then there exists a 
subspace ill  ~ ~ such that tilt ~ Lat (T), T IJr ~ (B CP) (J/Q, T~e e ~ ~ (B CP) (2/t" 0 J/l), 
and IIP~YI[ <e. 

We will also need the following easy lemma. 

Lemma 1.2. Suppose T is a completely nonunitary contraction in ~(Jr and 
{2,}~_1 is a sequence in ID that is dominating for 7y. Suppose also that 
Jg ~ Lat (T) and Z[Jg is a normal diagonal operator with the property that each 
2, is an eigenvalue of T[Jg of infinite multiplicity. Then Te(BCP).  

Proof. The hypothesis ensures that each 2, belongs to o-~(TlJr and since 
ale(T[~)cal~(T),  we conclude that ~(T)c~ID is dominating for g.  

The following result is an easy consequence of Proposition 1.1 and Lemma 
1.2. 

Proposition 1.3. Suppose TeAs0(Yt~), {ua . . . .  , u,} is any finite subset of Jr and 
e>0.  Then there exists J ~ e L a t ( T )  such that 

(i) both T[J/I and T~ee~ are (BCP)-operators, and 

(ii) l[P~u~[I <e for i= 1 . . . .  , n. 
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Proof. Let {2,}2=1c lD be dominating for ql', and let N be a normal diagonal 
operator of uniform infinite multiplicity whose eigenvalues constitute the se- 
quence {2n}~= l- By Proposition 4.2 of [3] there exist invariant subspaces JPlo 
DSU for T such that T~oe~ is unitarily equivalent to N. Thus N* is the 
restriction to an invariant subspace of (TIJgo)*, and it follows from Lemma 1.2 
that (TlJ/o)* (along with TlJ//o) belongs to (BCP)(JN0). Let Yl be the orthogo- 
nal projection of ul onto Jgo. By Proposition 1.1 there exists ~/EI 6La t (T]~o)  
such that (T]~o)IJga = r l J g l  is a (BCP)-operator and Ile~a,yll] <e. Note that 
~//~1 e L a t ( r )  and that ]]P~lulll--IlP:~,ya/I- By an obvious finite induction argu- 
ment we can find an invariant subspace Jg, c ~ l  for T such that Tl~g, is a 
(BCP)-operator and such that [[P~ui[[ <e, i=1,  . . . ,n.  Since Tl~neASo(d/Z,), 
we may apply Proposition 4.2 of [3] to T [ J ,  and the operator N O N  to 
conclude the existence of a decomposition 

J g , = ~ | 1 7 4  where JV1 and ~ArlOJffzGJVs 

belong to Lat(T]Jg,), and where (Tl~,)x~e,r is the operator N O N  acting on 
~ 2 @ ~ / ;  in the obvious way. We set M t = ~ 1 0 ~ 2 .  Clearly ~ e L a t ( T ) ,  and 
that TIJge(BCP)(Jg) follows as before. Furthermore the restriction of TJee~ 
to the invariant subspace ~ s  is the operator N, so, once again by Lemma 1.2, 
T~e~(BCP)(~g~@J//) .  Finally, since ~/g~Jg,, it is obvious that [[P.aud[ <e, i 
= 1, ..., n, so the proof is complete. 

The next corollary now follows from Proposition 1.3 by the same argument 
that Robel used to prove [7, Propositions 6.2 and 6.3] from [7, Proposition 
6.1]. 

Corollary 1.4. Suppose TEAkSo(Jt~). Then ~ admits a decomposition Jute= ~) ~ ,  
n=0 

such that the operator matrix (T~) for T relative to this decomposition is in upper 
triangular form and satisfies T,, ~ (B CP)(~,), O<n < oo. Furthermore ~ admits 

another decomposition ~ =  ~) ~r such that the operator matrix (~;) for T 
n= --oo 

relative to this decomposition is in upper triangular form and satisfies 
T,,s(BCP)(~A#,), - oo < n <  oo. 

The following theorem shows that, for operators in ASo, finite systems of 
simultaneous equations can be solved with reasonable estimates on the dis- 
tance from the initial data to the solution. 

Theorem 1.5. Suppose TeA~o(~f), { [ L i j ] } l  < i , j <  n is  a finite set of elements of 
Qr, {zl .. . .  , zm} is an arbitrary finite set of vectors from ~ ,  and e>0.  Suppose 
also that {x ~ . . . ,x  ~ and (yO, ...,yO} are sequences from ~ and 6 > 0  is such 

X o @ 0 that I I [L u ] - [  ~ Y~]ll<c$ for l<=i,j<=n. Then there exist sequences 
{xl, ..., x~} and {yz, ..., y,} of vectors from ~ such that 

FLu] = Ix, | y;], 1 < i, j =< n, (1) 

IIx ~ -x~ll < n ~  1/2, IlY ~ -Y~II <n6~12, (2) 



100 H. Bercovici et al. 

and 
II[(x~174 irEz~|176 
HE(y? - y 3  | zk] II <e, II rzk |  ~ - y i ) ]  II <e, (3) 

l <_i<_n, l_<k<_m. 

Pro@ Let d u = II [Lu] - [ x~ | yO] II, 1 __< i, j__< n, and let r be a positive number 
such that 

< n(61/2 - m a x  (dlj)l/2). (4) 
i , j  

Let m > 0  be an upper bound for 11x~ 11911, and llzkll for 1__<i, j < n  and 
1 <_k<_m. We choose a positive number t /such that 

and such that 

O=<t, t' 

~<min  (~/2, e/3M, e/3n6 ~/z} 

and I t ' - t l < 3 M r  I imply I1/~-l/tl<z/2n. 

(5 )  

(The reason for this choice of t/will appear later. We choose it now to make it 
clear that ;7 does not depend upon the choice of the upcoming vectors xi and 
yj.) It follows from Proposition 1.3 that there exists J / t s L a t ( T )  such that TIJr 
and S = T ~  are both (BCP)-operators and such that the norm of the 
(orthogonal) projection onto J/l of each of the 2n+m vectors {x~ . . . .  ,x~},~ 
{y0, .. y o}, and {zl, ., z,,} is less than ~/. We write ' 0 ., .. x i=P~o~xL,  t <i<n, and 
define similarly y), l<=j<n, and z'k, l<_k<m. (The idea of the proof of this 
theorem should now be clear. We will transfer the equation solving problem to 
the semi-invariant subspace 2 4 ' 0 ~ ,  using the fact that S=TaeG~ is a (BCP)- 
operator to solve equations there with "good"  bounds, and the smallness of 
the t /we have chosen will then give us the estimates we desire.) 

For 1 _-< i, j < n, let EMu] ~ Qs be defined by [Mu] = ~bs- 1 ~br([Lu]), and note 
that the EMu] are uniquely determined by the relations 

(S p, [Mu] )  = (Z p, C s ( E M J ) ) = ( T  p, ELu]), p=0 ,  1, 2 . . . . .  (7) 

In particular, since the [Lu] are arbitrary elements of Q, for u, waC@./ff,  we 
have 

[u | v]Q, = g,~- ~ q~-([u | v]e0 

by virtue of (7), since 

<SP,[u| v)=(TPu, v)=<TP, Eu| , 0=<p < o'a. 

Let e = M ~ / + m a x d ~ ,  where d'ij=]lEMu]-Ex~@y)]llr s. It now follows from 
i , j  

Corollary 6.13 and Remark 6.14 of E3] (applied with 0 = 0  to the operator S) 
that there exist sequences {xa .. . .  ,x,,} and {yl, ...,Yn} of vectors in H @ ~  such 

(8) 

(6) 
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that 

[MJ=[x i |  1<=i, j<=n, (9) 

IIx~-xill <n~ 1/2, Ily~-ydl <n~1/2, 1 <_i<_n, (10) 
and 

I[[(x}--xi)| ][[z~| 
(11) 

II[(y~-y3| IlEz'k| l<_i<_n, l<_k<m. 

By applying qSrqSs -t to (9) and using (8), we see that (1) is satisfied. We will 
now prove (2) for the x~'s, recalling that  q~s and qSr are isometries. We have 
from (5) and (10) that 

fix ~ - x d l  < IIx ~ -x~ l l  + I Ix~-xi l l  <(z/2)+nc~ 1/2, 1 <_iNn. (12) 

Furthermore,  from the inequalities 

d~j = II [Mij] - [x} | y)] I/as = II ILls] - [x~ | y)] II aT 

< II [L~j] -- Ix ~ | yO] [I OT + II [ x~ | yO] _ [x~ | y)] II e~-, 

we obtain 

, NO |  0 ~ , dii<=dij+ [l[ i yj]--fxzQyj][IQ~. 
-<_dij+ II[x~ | (y ~ -Y})]]IeT + IlE(x~174 

Therefore 
c~ = M r / +  max d'~j < (max d~) + 3 Mr/, 

i , j  i , j  

and from (6) we obtain 

0{ I/2 < max(dlj  2) + z/2n. (13) 
i , j  

Hence from (12), (13), and (4) we conclude that 

I l x ~  <z/2+n(maxd.t,,52)+z/2<ng) 1/2, l<_i<_n, (14) 
i , j  

as desired. Of course this argument  works equally well to prove that  
Ily~ _Y~ll < n al/2, 1 <-i< n. To conclude the proof of the theorem we content our- 
selves with proving the first inequality in (3). For  1 <i<n  and l < - k < m  we 
have 

11 [(x,  - x ~ | zk] 1[ ~ < II l-(x, - x 3  | z~] II QT + II [(xg --  x 3  | (zk -- z~)] II eT 
+ II ' o [(xl - x, ) | z[l II o~-, 

and using (11), (14), (5) and the fact that  qSs and qSr are isometries, we obtain 

l[ [(x~ - x 3  | z l ]  IIe,- = II [ (x,  - x'3 | z ; ]  II e~ < e/3, 

II[(X~-- X3| Zl)]lle~. < IIx~--X;II" Ilzk-- Z'~ll <=nctl/2tl <nc~l/2rl < g/3, 
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and 
II [ ( x ~  | z d  II~ _- < Ilx ~ -x~ll '  IIz~ll <~  .M<e/3. 

Thus I[ [( x~ - x i ) |  Zk] [10T < e as desired, and the proof is complete. 

The special case of Theorem 1.5 when n = 1 shows that [2, Proposition 1] is 
valid for all operators in A~o, and since the proof of [2, Corollary 1] only 
depends on [2, Proposition 1] we have the following. 

Corollary 1.6. Suppose T~A~o(3r and denote by ~T the smallest subalgebra of 
S ( H )  that contains T and 19e and is closed in the weak operator topology. Then 
~KT=~r , and the weak operator and ultraweak operator topologies coincide on 
tiT. 

It follows from this corollary and a result from [1] that every weighted 
unilateral shift operator W that is a contraction such that a(W)~JF satisfies 
~Kw = dw.  This partly answers Question 5 of [8]. 

Theorem 1.5 also shows that [2, Proposition 2] is valid for all operators in 
A~o, and since the proof of the reflexivity of (BCP)-operators used only [2, 
Proposition 2], we also have the following corollary, which generalizes Theo- 
rems 3, 4, and 5 of [2]. 

Theorem 1.7. Every operator in A~o(Jf ) is reflexive. In particular, all of the 
operators in the classes (BCP)o, 0 < 0 < 1, defined in [4] are reflexive. 

As mentioned earlier, the utility of Theorem 1.7 will be greatly enhanced by 
the appearance of [1], because of the large number of operators that turn out 
to belong to A~o. For the moment we deduce the following corollary of 
Corollary 1.6 and Theorem 1.7. 

Corollary 1.8. Suppose T~Coo and also T~ ~ A,(~f). Then T is reflexive, the 
n = l  

algebras Y~r and dT coincide, and the weak operator and ultraweak topologies 
agree on tiT. 

Proof. Exner showed in [6] that ( (~ A, ]  c~ CoocA~o . 
\ - -~  / n 

This corollary raises the interesting question whether operators in a fixed 
class A,  (n < No) and not in Coo have these same properties. 

We also note that the upper bounds on IIx~ and Ily~ given by (2) 
in Theorem 1.5 for all operators in A~o are better than those given in [4, 
Corollary 6.11] for (BCP)o-operators, so Theorem 1.5 generalizes [4, 
Corollary 6.11]. 

We close this note with a further consequence of Theorem 1.5. If n~N, we 
denote by ~ the direct sum of n copies of the Hilbert space H.. 

L ~ is a doubly indexed se- Corollary 1.9; Suppose TeAso, neN, and {[ ij]}i,j=l 
quence of elements in QT. Then the set of vectors (xl, . . . ,x,)  in ~ for which 
there exists a vector (Yl, ...,Y,) in Jr, satisfying (1) is dense in Jr,. 

Proof. Let 2o =(x ~ . . . ,x  ~ be an arbitrary vector in ~'~, let z be a positive 
number, and use as initial data in Theorem 1.5 the vectors (zx ~ . . . ,zx ~ and 
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(0, . . . , 0 )  in o@,. Then ,  a c c o r d i n g  to  t ha t  t h e o r e m ,  the re  exists  a s o l u t i o n  2~ 
= ( x ] ,  . . . ,x~),  ~ = ( y ] ,  . . . ,y~)  of  (1) such  t h a t  

[Ix~-mx~ ~/2, Jly~-OJp<n~ 1/2, l<_i<_n, (15) 

w h e r e  6 is a n y  f ixed pos i t i ve  n u m b e r  t h a t  exceeds  m a x  [l[Lij] 1[. Thus ,  s ince  for  
i,j 

every  z > 0 ,  the  p a i r  ( 1 / z ) 2 ~ , z ~  is a l so  a s o l u t i o n  of  (1), a n d  s ince  
L l(1/z) 2 ~ -  2 o]L--* 0 b y  (15), the  resu l t  fo l lows.  In  fact,  to  o b t a i n  [ [ (1 /z )2~-  2 o]L < e, it  
suffices to  t a k e  ~=n261/2/el/2, in w h i c h  case  the  vec to r  z ~  sat isf ies  
II~Y~II < rt4 ~/8. 
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