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and semicrossed products
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Abstract. We take a new look at dilation theory for nonself-adjoint
operator algebras. Among the extremal (co)extensions of a repre-
sentation, there is a special property of being fully extremal. This
allows a refinement of some of the classical notions which are im-
portant when one moves away from standard examples. We show
that many algebras including graph algebras and tensor algebras of
C*-correspondences have the semi-Dirichlet property which collapses
these notions and explains why they have a better dilation theory.
This leads to variations of the notions of commutant lifting and Ando’s
theorem. This is applied to the study of semicrossed products by au-
tomorphisms, and endomorphisms which lift to the C*-envelope. In
particular, we obtain several general theorems which allow one to
conclude that semicrossed products of an operator algebra naturally
imbed completely isometrically into the semicrossed product of its C*-
envelope, and the C*-envelopes of these two algebras are the same.
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1 Introduction

This paper is a general study of dilation theory for arbitrary nonself-adjoint
operator algebras. It began with an attempt to formalize those properties
need to obtain dilation theorems for covariant representations of an operator
algebra and an endomorphism, in order to understand the semicrossed product
and its C*-envelope. In this paper, we discuss versions of commutant lifting and
Ando’s theorem and consider when they allow us to determine the structure
of a semicrossed product and its C*-envelope. This forced us to revisit basic
notions in dilation theory, and to introduce a notion stronger than that of
extremal (co)extensions. We feel that certain notions in dilation theory are too
closely modelled on what happens for the disk algebra. This algebra has been
shown to have many very strong properties, and they are often not perfectly
reflected in the general case. Certain refinements should be considered to clarify
the various dilation properties in a general context.

Dilation theory. Dilation theory for a single operator has its roots in the
seminal work of Sz.Nagy [57] which is developed in the now classical book
that he wrote with Foiaş [58]. Dilation theory for more general operators was
initiated by the deep work of Arveson [5, 6]. The ideas have evolved over the
past six decades. The basic ideas are nicely developed in Paulsen’s book [45].

In formulating general properties related to commutant lifting and Ando’s the-
orem, we were strongly motivated, in part, by the general module formulation
expounded by Douglas and Paulsen [26] and the important study by Muhly
and Solel [40]. The language used there is a module theoretic approach, while
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we will mostly talk about representations instead. But the general constructs
can, of course, be formulated in either language. Douglas and Paulsen focus on
Shilov modules as a primary building block. Muhly and Solel adopt this view,
but focus more on a somewhat stronger property of orthoprojective modules.
They may have gone further, as we do, had they known what we do today. We
will argue that these are more central to the theory.

Another important influence is the Dritschel–McCullough [27] proof of the ex-
istence of Arveson’s C*-envelope [5, 6], first established using different methods
by Hamana [31]. They provide a proof strongly influenced by ideas of Agler [1].
What they show is: given a completely contractive representation of a unital
operator algebra A, that among all dilations of this representation, there are
always certain representations which are maximal in the sense that any further
dilation can only be obtained by appending a direct sum of another represen-
tation. These dilations always exist, as they show, and they are precisely those
representations which extend to a ∗-representation of the C*-envelope. It is in
this manner that they establish that the existence of the C*-envelope.

This fact was anticipated by Muhly and Solel in [41] where they show, assum-
ing Hamana’s theorem, that every representation has a dilation which is both
orthoprojective and orthoinjective. It is easy to see that this is a reformulation
of the maximal dilation property. Indeed, one can see that a representation
ρ is orthoprojective if and only if it is maximal as a coextension (called an
extremal coextension)—meaning that any coextension can be obtained only by
appending a direct sum of another representation. Dritschel and McCullough
proved that these exist as well. The dual version shows that orthoinjective
representations coincide with the extremal extensions.

An extremal (co)extension of a representation ρ on H is called minimal pro-
vided that the whole space is the smallest reducing subspace containing H.
This is a weaker notion than saying that H is cyclic. However, there can be
many extremal coextensions which are minimal but H is not cyclic. Among
extremal (co)extensions, there are some preferred (co)extensions which we call
fully extremal because they satisfy a stronger maximality property. While
in many classical cases, this notion reduces to the usual extremal property,
we argue that in general they are preferred. The existence of fully extremal
(co)extensions is established by an argument similar to Arveson’s proof [8] of
the existence of maximal dilations.

Commutant lifting. The classical commutant lifting theorem was estab-
lished by Sz.Nagy and Foiaş [59]. Many variations on this theorem have been
established in various contexts for a variety of operator algebras. Douglas and
Paulsen [26] formulate a version for arbitrary operator algebras, and we propose
a modification of their definition.

Shilov representations of an operator algebra A are those which are obtained by
taking a ∗-representation of the C*-envelope and restricting it to an invariant
subspace for the image of A. All extremal coextensions (orthoprojective repre-
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sentations) are Shilov. The converse holds in some of the classical situations,
but is not valid in general. As we will argue, the notions of commutant lifting
are better expressed in terms of fully extremal coextensions rather than Shilov
coextensions. Limiting the family of coextensions for which lifting occurs in-
creases the family of algebras with this property. Indeed the strong version of
commutant lifting can only hold when there is a unique minimal fully extremal
coextension (of ρ).

The Douglas-Paulsen formulation of commutant lifting starts with a (com-
pletely contractive) representation ρ of an operator algebra A, an operator X
in the commutant of ρ(A), and a Shilov coextension σ of ρ; and they ask for a
coextension of X to an operator Y of the same norm commuting with σ(A). As
remarked in the previous paragraph, this only holds when the minimal Shilov
extension is unique. We show that this holds whenA is semi-Dirichlet, meaning
that

A∗A ⊂ A+A∗,

such as the disk algebra, the non-commutative disk algebras, and all tensor
algebras of graphs and C*-correspondences. The fact that this large class of
popular algebras has this remarkable property has perhaps kept us from looking
further for an appropriate definition of commutant lifting in other contexts.

We were also influenced by a different approach of Paulsen and Power [46, 47]
and subsequent work of theirs with the first author [22, 15]. In this version, the
coextension σ is not specified, and one looks for common coextensions σ and Y
which commute. We will use extremal coextensions only, rather than arbitrary
Shilov coextensions, with the obvious parallel definitions. The first version will
be called strong commutant lifting, and the latter commutant lifting. A crucial
point is that strong commutant lifting turns out to be equivalent commutant
lifting plus uniqueness of the minimal fully extremal coextension.

The intertwining version of commutant lifting proved to be challenging in this
context. The resolution of this problem was critical to obtaining good dilation
theorems for semicrossed products.

Ando’s theorem. Ando’s Theorem [2] states that if A1 and A2 are commut-
ing contractions, then they have coextensions Vi which are commuting isome-
tries. For us, an Ando theorem for an operator algebra A will be formulated as
follows: given a (completely contractive) representation ρ of an operator alge-
bra A and a contraction X in the commutant of ρ(A) , there is a fully extremal
coextension σ of ρ and an isometric coextension V of X which commutes with
it. Even in the case of the disk algebra, our formulation is stronger than the
original, as it asks that one of the isometries, say V1, should have the form

V1 ' VA1 ⊕ U

where VA1
is the minimal isometric coextension of A1 and U is unitary (see

Corollary 7.11).
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In the classical case of the disk algebra, the universal algebra of a contraction,
the generator of a representation, A = ρ(z), plays a role parallel to the operator
X which commutes with it. For this reason, commutant lifting can be applied
recursively to A and X, alternating between them, in order to obtain Ando’s
Theorem. So in this context, the Sz.Nagy-Foiaş Commutant Lifting Theorem
[59] is equivalent to Ando’s Theorem. But for other algebras, there are two
distinct aspects, dilating ρ to an extremal coextension and simultaneously co-
extending X to a commuting contraction, and on the other hand coextending
X to an isometry and simultaneously coextending ρ to a commuting represen-
tation.

Paulsen and Power [47] formulate Ando’s theorem as a dilation result forA⊗min

A(D), or equivalently that

A⊗min A(D) = A⊗max A(D).

Such a result holds for a wide class of CSL algebras [46, 22, 15]. The stronger
version of commutant lifting only holds in a restricted class [40]. See [40,
chapter 5] for a discussion of the differences. In our language, they start with a
representation ρ and a commuting contraction X, and seek a maximal dilation
π and a simultaneous dilation of X to a unitary U commuting with π(A).
We show that this is equivalent to the weaker property of obtaining some
coextension σ of ρ and an isometric coextension V of X which commute. This
is only ‘half’ of Ando’s theorem in our formulation.

Another property that we will consider is an analogue of the Fuglede theo-
rem: that the commutant of a normal operator is self-adjoint. We formulate
this for an operator algebra A with C*-envelope C∗e(A) as saying that for any
∗-representation π of C∗e(A), the commutant of π(A) coincides with the com-
mutant of π(C∗e(A)). We show that a number of operator algebras have this
property including all function algebras, the non-commutative disk algebras
and more generally the tensor algebras of all finite directed graphs.

Semicrossed products. If A is a unital operator algebra and α is a com-
pletely isometric endomorphism, then the semicrossed product

A×α Z+

is the operator algebra that encodes the system (A, α) in the sense that its
(completely contractive) representations are in bijective correspondence with
the covariant representations of the dynamical system. Concrete versions of
these algebras occur in work or Arveson [4, 11]. When A is a C*-algebra,
the abstract semicrossed product was defined by Peters [48]. The extension to
arbitrary nonself-adjoint operator algebras is straightforward.

The structure of these semicrossed products can often be better understood
by showing that the C*-envelope is a full C*-algebra crossed product. Peters
[49] does this for the semicrossed product that encodes a discrete dynamical
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system. The operator algebras of multivariable dynamical systems is developed
in [16]. The C*-envelope is further explained in [25], extending Peter’s analysis
to this context. More recently, the second author and Kakariadis [32] develop an
important generalization of these techniques to very general operator algebras.
They show that for nonself-adjoint operator algebras, one first should try to
imbed a general semicrossed product into a C*-semicrossed product. They
show how to accomplish this, and demonstrate that often the two operator
algebras have the same C*-envelope.

When α is the identity map, the semicrossed product is closely tied to com-
mutant lifting. What we show here is that commutant lifting theorems can be
sufficient to understand other semicrossed products provided the algebra has
some other nice properties. We concern ourselves only with endomorphisms
that extend to ∗-endomorphisms of the C*-envelope. When A satisfies the
Ando property, every semicrossed product by a completely isometric automor-
phism is isometrically isomorphic to a subalgebra of the semicrossed product of
C∗e(A). These general techniques recover various results in the literature about
the structure of crossed products, especially of the non-commutative disk al-
gebras [17] and tensor algebras of C*-correspondences [32]. To our knowledge,
all of these results used the strong commutant lifting property (SCLT), which
implies uniqueness of fully extremal extensions. Indeed, the theorems relate to
algebras with a row contractive condition, the most general of which are ten-
sor algebras of C*=correspondences. Our new result requires only commutant
lifting, and applies much more widely.

With a stronger commutant lifting property and the Fuglede property, we can
do the same for endomorphisms which lift to the C*-envelope. This applies, in
particular, for the disk algebra (which has all of the good properties studied
here). This recovers our results [18] for the semicrossed product of A(D) by an
endomorphism of the form α(f) = f ◦ b, in the case where b is a non-constant
finite Blaschke product. These general results that imbed a semicrossed product
into a C*-algebra crossed product are actually dilation theorems. Typically
one proves a dilation theorem first, and then deduces the structure of the C*-
envelope. However the papers [32, 18] actually compute the C*-envelope first
and deduce the dilation theorem afterwards. One of the original motivations
for this paper was an attempt to identify the C*-envelope of a semicrossed
product using general dilation properties such as commutant lifting. Three
such theorems are obtained in section 12.

2 A review of dilations

In this paper, an operator algebra will be a unital abstract operator algebra
A in the sense of Blecher, Ruan and Sinclair [12]. A representation of A will
mean a unital completely contractive representation ρ on some Hilbert space
H. An extension of ρ is a representation σ on a Hilbert space K = H⊥ ⊕ H



Dilation theory 7

which leaves H invariant, and thus has the form

σ(a) =

[
σ11(a) 0
σ12(a) ρ(a)

]
.

Dually, a coextension of ρ is a representation σ on a Hilbert space K = H⊕H⊥
which leaves H⊥ invariant, and thus has the form

σ(a) =

[
ρ(a) 0
σ12(a) σ22(a)

]
.

A dilation of ρ is a representation σ on a Hilbert space K containing H so that
ρ(a) = PHσ(a)|H. A familiar result of Sarason [55] shows that K decomposes
as K = H− ⊕H⊕H+ so that

σ(a) =

σ11(a) 0 0
σ21(a) ρ(a) 0
σ31(a) σ32(a) σ33(a)

 .
A representation ρ is an extremal coextension if whenever σ is a coextension of
ρ, it necessarily has the form σ = ρ⊕σ′. That is, ifH is a subspace of K and σ is
a representation of A on K which leaves H⊥ invariant and PHσ(a)|H = ρ(a) for
a ∈ A, then H reduces σ. Similarly, a representation ρ is an extremal extension
if whenever σ is an extension of ρ, it necessarily has the form σ = ρ⊕σ′. That
is, if H is a subspace of K and σ is a representation of A on K which leaves
H invariant and PHσ(a)|H = ρ(a) for a ∈ A, then H reduces σ. Finally, a
representation ρ is an extremal representation or a maximal representation if
whenever σ is a dilation of ρ, it necessarily has the form σ = ρ⊕σ′. That is, ifH
is a subspace of K and σ is a representation of A on K so that PHσ(a)|H = ρ(a)
for a ∈ A, then H reduces σ. A dilation σ of ρ is an extremal dilation or a
maximal dilation of ρ if it is a maximal representation.

Hilbert modules. In the module language espoused by Douglas and Paulsen
in [26], a representation ρ makes the Hilbert space H into a left A module Hρ
by a ·h := ρ(a)h for a ∈ A and h ∈ H. If K =M⊕H and σ is a representation
of A on K which leavesM invariant, so that with respect to the decomposition
K = H⊕M of σ is

σ(a) =

[
σ11(a) 0
σ12(a) σ22(a)

]
,

then Kσ is an A-module with Mσ22
as a submodule and Hσ11

as a quotient
module, and there is a short exact sequence

0→Mσ22
→ Kσ → Hσ11

→ 0.

Here all module maps are completely contractive. So an extension σ of σ22 on
M corresponds to larger Hilbert module Kσ containingMσ22 as a submodule;
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and a coextension σ of σ11 corresponds to the Hilbert module Kσ having Hσ11

as a quotient module.

A module Pρ is orthoprojective if whenever there is an isometric short exact
sequence of module maps

0 //Mσ22

ι // Kσ
q // Pρ // 0 ,

meaning that ι is isometric and q is coisometric, then there is an isometric
module map ϕ : P → K so that Kσ = M⊕ ϕ(P) as an A-module. It is not
difficult to see that this is equivalent to saying that ρ is an extremal coextension.
The term orthoprojective was coined by Muhly and Solel [40], and we think that
it is superior to the Douglas-Paulsen terminology of hypo-projective because of
its more positive aspect. Similarly, one can define orthoinjective modules, and
observe that they are equivalent to extremal extensions. A maximal dilation
corresponds to a module which is both orthoprojective and orthoinjective.

The C*-envelope. Every unital operator algebra A has a completely isomet-
ric representation ι on a Hilbert space H so that the C*-algebra C∗(ι(A)) =:
C∗e(A) is minimal in the sense that if σ is any other completely isometric rep-
resentation on a Hilbert space H′, then there is a unique ∗-homomorphism π
of C∗(σ(A)) onto C∗e(A) so that the following diagram commutes:

A ι //

σ

��

C∗e(A)

C∗(σ(A))

π

99ssssssssss

The C*-envelope was described by Arveson [5, 6] in his seminal work on non-
commutative dilation theory. Its existence was established by Hamana [31].

Muhly and Solel [41] show that maximal dilations exist by invoking Hamana’s
theorem. They accomplish this by showing:

Theorem 2.1 (Muhly-Solel). A representation is maximal if and only if it is
both orthoprojective and orthoinjective. Equivalently, a representation is maxi-
mal if and only if it is both an extremal coextension and an extremal extension.

Dritschel and McCullough [27] establish the existence of maximal dilations
directly based on ideas of Agler [1]. In this way, they provide a new and more
revealing proof of the existence of the C*-envelope. In fact, they show that
every representation has an extension which is extremal; and dually also has a
coextension which is extremal. In particular, the maximal representations of A
are precisely those representations which extend to ∗-representations of C∗e(A).

Arveson [10] provides a refinement of this result in the separable case by show-
ing that there are sufficiently many irreducible maximal representations, which



Dilation theory 9

are the boundary representations that Arveson introduced in [5] as an ana-
logue of the Choquet boundary of a function algebra. We will not require this
strengthened version.

Extremal versus Shilov. Douglas-Paulsen [26] and Muhly-Solel [40] focus
on Shilov modules. One starts with a ∗-representation π of C∗e(A) on a Hilbert
space K. Consider Kπ as an A-module. A submodule H of Kπ is a Shilov mod-
ule. It is easy to deduce from the discussion above that every orthoprojective
module is Shilov. Unfortunately, the converse is false. We provide an example
below. In the language of representations, a Shilov module corresponds to a
representation which has an extension to a maximal representation. However
it may still have proper coextensions.

Shilov modules are useful because every completely contractive A-module M
has a finite resolution of the form

0→ S1 → S2 →M→ 0,

where S1 and S2 are Shilov. Using orthoprojective modules, one can obtain

S2 →M→ 0

with S2 orthoprojective. But since submodules do not inherit this extremal
property, one does not obtain a short exact sequence. Indeed, while this pro-
cedure can be iterated, there need be no finite resolution. This occurs, for
example, in the theory of commuting row contractions due to Arveson [9, §9].
However Arveson also argues that, in his context, these are the natural resolu-
tions to seek.

Our view is that it is the extremal coextensions rather than Shilov coextensions
which play the role in dilation theory that best models the classical example
of the unilateral shift as an isometric model of the disc algebra.

Example 2.2. Consider the non-commutative disk algebra An. It is the unital
subalgebra of the Cuntz algebra On generated as a unital nonself-adjoint subal-
gebra by the canonical isometric generators s1, . . . , sn of On. A representation
ρ of An is determined by Ai = ρ(si), and it is completely contractive if and
only if

A =
[
A1 . . . An

]
is a contraction as an operator fromH(n) toH [51]. The Frazho-Bunce-Popescu
dilation theorem [30, 13, 50] states that A has a coextension to a row isometry.
Conversely, it is clear that any coextension of a row isometry must be obtained
as a direct sum. Thus these row isometric representations are precisely the
extremal coextensions and correspond to orthoprojective modules. The Wold
decomposition [23] shows that this row isometry decomposes as a direct sum of
a Cuntz row unitary and a multiple of the left regular representation of the free
semigroup F+

n on Fock space. This representation generates the Cuntz-Toeplitz
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C*-algebra, and thus is not a maximal representation. It can be extended to a
maximal dilation in many explicit ways [23]. It is clear in this case that every
∗-representation of On sends

s =
[
s1 . . . sn

]
to a row unitary, and the restriction to any invariant subspace is a row isometry.
Thus every Shilov module is orthoprojective.

Example 2.3. Let An be the universal algebra of a row contraction with com-
muting coefficients. This algebra was studied extensively by Arveson beginning
in [8]. The basic von Neumann inequality was proven much earlier by Drury
[28], but the full version of the dilation theorem was due to Müller and Vas-
cilescu [43] and later, Arveson. Arveson further showed that the multipliers
S1, . . . , Sn on symmetric Fock space H2

n in n variables form a canonical model
for An. Also H2

n is a reproducing kernel Hilbert space, and An is the algebra
of continuous multipliers. The C*-algebra generated by these multipliers is the
C*-envelope of An [8].

The dilation theorem shows that every commuting row contraction has a coex-

tension to a direct sum S
(α)
i ⊕Ui where α is some cardinal and Ui are commuting

normal operators satisfying
n∑
i=1

UiU
∗
i = I.

These are precisely the extremal coextensions and determine the orthoprojec-
tive modules. Surprisingly they are also the maximal representations. So while
one can dilate in both directions to obtain a maximal dilation of a representa-
tion ρ, only coextensions are required.

However, no submodule of the symmetric Fock space is orthoprojective. They
are all Shilov, but none model the algebra in a useful way. Davidson and Le [21,
Example 4.1] provide an explicit example of this phenomenon in their paper
on the commutant lifting theorem for An.

3 Fully Extremal Coextensions

There is a natural partial order ≺ on dilations: say that ρ ≺ σ if σ acts on a
Hilbert space K containing a subspace H so that PHσ|H is unitarily equivalent
to ρ. There is also a partial order on extensions ≺e: say that ρ ≺e σ if σ
acts on a Hilbert space K containing an invariant subspace H so that σ|H is
unitarily equivalent to ρ. Similarly, for coextensions, say that ρ ≺c σ if σ acts
on a Hilbert space K containing a co-invariant subspace H so that PHσ|H is
unitarily equivalent to ρ.

Dritschel and McCullough [27] establish the existence of extremals dominating
ρ in each of these classes. We want something a little bit stronger. It is possible
for an extremal coextension σ of ρ to have a proper extension which is also a
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coextension of ρ, so that σ is not extremal in the partial order ≺. We provide
an example shortly. We will require knowing that ρ has a coextension which is
extremal with respect to ≺.

Definition 3.1. If ρ is a representation of A, say that a coextension σ of ρ is
fully extremal with respect to ρ if whenever σ ≺ τ and ρ ≺c τ , then τ = σ⊕ τ ′.
Similarly we define an extension σ of ρ to be fully extremal with respect to ρ if
whenever σ ≺ τ and ρ ≺e τ , then τ = σ ⊕ τ ′.

Example 3.2. Fix an orthonormal basis e1, . . . , en for Cn, and let Eij be the
canonical matrix units. Consider the subalgebra A of Mn spanned by the
diagonal algebra

Dn = span{Eii : 1 ≤ i ≤ n}
and

span{Eij : |i− j| = 1, j odd }.

This is a reflexive operator algebra with invariant subspaces

Ce2i for 1 < 2i ≤ n
and

L2i+1 = span{e2i, e2i+1, e2i+2} for 1 ≤ 2i+ 1 ≤ n,

where we ignore e0 and en+1 if they occur. The elements of A have the form

A =



a11 0 0 0 0 . . .
a21 a22 a32 0 0 . . .
0 0 a33 0 0 . . .
0 0 a43 a44 a45 . . .

0 0 0 0 a55
. . .

...
...

...
...

. . .
. . .


Consider the representation ρ(A) = a11, the 1,1 matrix entry of A. Since Ce1

is coinvariant, this is a representation. The compression σ2 of A to M2 =
span{e1, e2} is a coextension of ρ given by

σ2(A) = PM2A|M2 = L1

[
a11 0
a21 a22

]
This is readily seen to be an extremal coextension of ρ. It is minimal in the
sense we use: it contains no proper reducing subspace containing Hρ = Ce1,
and is also minimal in the sense that Hσ = σ(A)Hρ.
However σ2 is not fully extremal. Let

Mk = span{ei : 1 ≤ i ≤ k}
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and set
σk(A) = PMk

A|Mk
.

Then σ2i+1 is an extension of σ2i and σ2i+2 is a coextension of σ2i+1. All are
coextensions of ρ. Each σ2i is an extremal coextension of ρ, as is σn = id even
if n is even. Moreover all are minimal in that they have no proper reducing
subspace containing Ce1. Only σn is fully extremal. Note that to get from ρ
to σn, one must alternately coextend and extend n− 1 times if at each stage,
you take a classical minimal extension or coextension.

One can also define an infinite version of this algebra where it takes a countable
number of steps to attain the fully extremal coextension.

Example 3.3. Let A(D) be the disk algebra. A representation of A(D) is
determined by T = ρ(z), and it is completely contractive if and only if ‖T‖ ≤ 1.
Every contraction coextends to a unique minimal isometry. So the extremal
coextensions must be isometries. But conversely, it is easy to see that any
contractive coextension of an isometry is obtained by adding a direct sum. So
when T is an isometry, ρ is an extremal coextension. The minimal isometric
dilation V of T yields a fully extremal coextension because the range of V
together with Hρ spans the whole space. Any (contractive) dilation of V must
map the new subspace orthogonal to the range of V . So if it is not a summand,
the range will not be orthogonal to Hρ, so it won’t be a coextension of ρ.

The extremal coextensions of ρ correspond to all isometric coextensions of T ,
namely V ⊕W where V is the minimal isometric dilation and W is any isometry.
But if W isn’t unitary, it can be extended to a unitary. This extension is still
a coextension of T . So the fully extremal coextensions correspond to V ⊕ U
where U is unitary.

Similarly, the maximal dilations of ρ correspond to unitary dilations of A. The
restriction of a unitary to an invariant subspace is an isometry. So a Shilov
representations are extremal coextensions. In particular, a minimal Shilov
dilation of ρ is a fully extremal coextension.

Example 3.4. Let A = A(D2) with generators z1 and z2. Then a completely
contractive representation is determined by a pair of commuting contractions
Ai = ρ(zi). By Ando’s Theorem [2], every commuting pair coextends to a
pair of commuting isometries. It is clear that any coextension of isometries
to a larger space can only be obtained by adding a direct summand. So the
extremal coextensions are the commuting isometries. It is also clear that any
restriction to an invariant subspace is still isometric.

Moreover every pair of commuting isometries extends to a pair of commuting
unitaries. These are the maximal dilations, and determine a ∗-representation
of

C∗e(A) = C(T2).

The restriction of a unitary to an invariant subspace is an isometry. So every
Shilov module is orthoprojective (an extremal coextension).
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What we wish to point out is that extremal coextensions of a representation ρ
of A(D2) need not be fully extremal. Let

A1 = A2 = 0 acting on H = C.

Identify H with Ce0,0 in

K = span{em,n : m,n ≥ 0},

where {em,n : m,n ≥ 0} is an orthonormal basis. Then it is clear that there is
a coextension of Ai to the commuting isometries

S1 = S ⊗ I and S2 = I ⊗ S,

where S is the unilateral shift. Let σ be the corresponding coextension of ρ.
This is an extremal coextension because the Si are isometries.

Enlarge this orthonormal basis further to obtain a space

L = span{ek,l : max{k, l} ≥ 1 or k = l = 0}

containing K. Let Ti be the commuting isometries given by

T1em,n = em+1,n and T2em,n = em,n+1.

Let τ be the induced representation of A(D2). It is clear by inspection that
H = Ce00 is coinvariant, and hence ρ ≺c τ . Moreover, τ is extremal because
Ti are isometries. The subspace K is invariant for T1 and T2, and Ti|K = Si.
Therefore σ ≺e τ . So σ is not fully extremal with respect to ρ.

We claim that τ is fully extremal with respect to ρ. Since it is extremal, it can
only fail to be fully extremal if there is a larger space M⊃ L and commuting
isometries Vi on M extending Ti so that L is not coinvariant, but Ce00 is.
Hence one of the isometries, say V1, has PL⊥V1PL 6= 0. Let

N = (RanT1 ∨ Ce00)⊥ = span{e1,l : l < 0}.

There must be a vector x ∈ N so that V ∗1 x 6= 0. Equivalently, there are vectors
y, z ∈ L⊥ so that V1y = z + x. Write x =

∑
l<0 ale1,l, and let l0 be the least

integer so that a−l0 6= 0. Let

x′ = T l0−1
2 x =

∑
l<0

al+1−l0e1,l =:
∑
l<0

a′le1,l ;

so that a′−1 6= 0. Also set

y′ = V l0−1
2 y and z′ = V l0−1

2 z.

Then

V1y
′ = V1V

l0−1
2 y = V l0−1

2 V1y

= V l0−1
2 (z + x) = z′ + x′.
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Moreover, z′ is orthogonal to the range of T l0−1
2 , which contains N . Hence

〈V2V1y
′, e1,0〉 = 〈V2(z′ + x′), e1,0〉

= 〈z′ + x′, e1.−1〉 = a′−1 6= 0.

Therefore
0 6= 〈V1V2y

′, e1,0〉 = 〈V2y
′, e0,0〉.

This contradicts the fact that τ is a coextension of ρ. Thus τ must be fully
extremal relative to ρ.

Now we turn to the issue of establishing that fully extremal coextensions (and
extensions) always exist.

Theorem 3.5. Let A be a unital operator algebra, and let ρ be a representation
of A on H. Then ρ has a fully extremal coextension σ.

If A and H are separable, then one can take σ acting on a separable Hilbert
space.

Proof. Our argument is based on Arveson’s proof [10, Theorem 2.5] that max-
imal dilations exist. He works with the operator system generated by A, which
is self-adjoint. As we will work directly with A, we need to consider adjoints
as well. The goal is to construct a coextension σ of ρ on a Hilbert space K so
that for every a ∈ A and k ∈ K,

‖σ(a)k‖ = sup{‖τ(a)k‖ : τ � σ, τ �c ρ} (1)

and

‖σ(a)∗k‖ = sup{‖τ(a)∗k‖ : τ � σ, τ �c ρ}. (2)

Once this is accomplished, it is evident that any dilation τ of σ which is a
coextension of ρ must have K as a reducing subspace, as claimed.

To this end, choose a dense subset of A×H, and enumerate it as

{(aα, hα) : α ∈ Λ}

where Λ is an ordinal. Suppose that we have found coextensions σα of ρ for all
α < α0 < Λ acting on Kα, where Kβ ⊂ Kα when β < α, so that

‖σα(aβ)hβ‖ = sup{‖τ(aβ)hβ‖ : τ � σα, τ �c ρ} (1′)

and

‖σα(aβ)∗hβ‖ = sup{‖τ(a)∗hβ‖ : τ � σα, τ �c ρ}. (2′)

for all β < α. This latter condition is automatic because each τ(a)∗ leaves H
invariant, and agrees with ρ(a)∗ there. But we carry this for future use.
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If α0 is a limit ordinal, we just form the natural direct limit of the σα for
α < α0, and call it σα0 . Note that it will now satisfy (1′) and (2′) for β < α0.

Otherwise α0 = β0 + 1 is a successor ordinal. Choose a dilation τ1 � σβ0 on
M1 ⊃ Kβ0 such that τ1 �c ρ and satisfies

‖τ1(aβ0
)hβ0
‖ ≥ sup{‖τ(aβ0

)hβ0
‖ : τ � σα, τ �c ρ} − 2−1

and

‖τ1(aβ0)∗hβ0‖ ≥ sup{‖τ(a)∗hβ0‖ : τ � σα, τ �c ρ} − 2−1.

Then choose recusively dilations τn+1 of τn on Mn+1 ⊃ Mn which are all
coextensions of ρ so that

‖τn+1(aβ0
)hβ0
‖ ≥ sup{‖τ(aβ0

)hβ0
‖ : τ � σα, τ �c ρ} − 2−n−1

and

‖τn+1(aβ0)∗hβ0‖ ≥ sup{‖τ(a)∗hβ0‖ : τ � σα, τ �c ρ} − 2−n−1.

The inductive limit is a representation σα0
with the desired properties.

Once we reach Λ, we have constructed a representation σ̃1 on K̃1 coextending
ρ and satisfying (1) and (2) for vectors h ∈ H. Now repeat this starting
with σ̃1 and a dense subset of A× K̃1, but still considering dilations which are
coextensions of ρ. This time, the equations involving the adjoint are important.
The result is a representation σ̃2 on K̃2 dilating σ̃1 and coextending ρ satisfying
(1) and (2) for all vectors k ∈ K̃1. Repeat recursively for all n ≥ 1 and in the
end, we obtain the desired coextension.

If A and K are separable, a countable sequence of points suffices, and at each
stage of this countable process, one obtains separable spaces. So the result is
a separable representation.

Remark 3.6. It easily follows from the proof of existence of fully extremal
coextensions that if σ is a coextension of ρ, then there is a dilation τ of σ
which is a fully extremal coextension of ρ.

Remark 3.7. A proof of existence of extremal coextensions can be made along
the same lines. It is only necessary to achieve σ �c ρ on K such that:

‖σ(a)k‖ = sup{‖τ(a)k‖ : τ �c σ}.

One can always achieve this by repeated coextension, and in this way one ob-
tains an extremal coextension σ of ρ with the additional property that H is
cyclic, i.e. K = σ(A)H. This is evidently not the case in general for extremal
coextensions, and in particular, for fully extremal coextensions. See the pre-
ceding examples and Remark 3.13.

The same result for extensions follows by duality.
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Corollary 3.8. Let A be a unital operator algebra, and let ρ be a represen-
tation of A on H. Then ρ has a fully extremal extension σ.

Corollary 3.9. If ρ1 and ρ2 are representations of A, then σ1 and σ2 are
fully extremal coextensions of ρ1 and ρ2, respectively, if and only if σ1 ⊕ σ2 is
a fully extremal coextension of ρ1 ⊕ ρ2.

In particular, σ1 and σ2 are extremal coextensions of A if and only if σ1 ⊕ σ2

is an extremal coextension.

Proof. First suppose that σ1 and σ2, acting on K1 and K2, are fully extremal
coextensions of ρ1 and ρ2, respectively. Suppose that τ is a representation on

P = K1 ⊕K2 ⊕ P ′

such that

τ � σ1 ⊕ σ2 and τ �c ρ1 ⊕ ρ2.

Then as τ � σi and τ �c ρi, we deduce that τ reduces Ki and hence reduces
K1 ⊕K2. So σ1 ⊕ σ2 is a fully extremal coextension of ρ1 ⊕ ρ2.

Conversely, if σ1 ⊕ σ2 is a fully extremal coextension of ρ1 ⊕ ρ2, suppose that
τ is a representation on P = K1 ⊕ P ′ satisfies τ � σ1 and τ �c ρ1. Then

τ ⊕ σ2 � σ1 ⊕ σ2 and τ ⊕ σ2 �c ρ1 ⊕ ρ2.

It follows that τ ⊕ σ2 reduces K1 ⊕ K2. So τ reduces K1. Whence σ1 is fully
extremal.

Applying this to ρi = σi yields the last statement.

If one starts with a representation ρ and alternately forms extremal extensions
and coextensions, it may require a countable sequence of alternating extensions
and coextensions in order to obtain a maximal dilation as in Example 3.2. One
advantage of fully extremal extensions and coextensions is that only one is
required to obtain a maximal dilation.

Proposition 3.10. Let ρ be a representation of A. If σ is an extremal co-
extension of ρ, and τ is a fully extremal extension of σ, then τ is a maximal
dilation.

Proof. Since τ is an extremal extension, it suffices to show that it is also an
extremal coextension. For then the Muhly-Solel result, Theorem 2.1, will show
that τ is a maximal dilation.

Say that ρ, σ and τ act on H, K and L respectively. Suppose that π is a
coextension of τ acting on P. Decompose

P = (L 	K)⊕H⊕ (K 	H)⊕ (P 	 L).
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Then we have

π =


τ11 0 0 0
τ21 ρ 0 0
τ31 σ32 σ33 0
π41 π42 π43 π44

 ,
where σ is represented by the middle 2× 2 square, and τ is represented by the
upper left 3×3 corner. The lower right 3×3 corner is a coextension of σ. Since
σ is an extremal coextension, we obtain

π42 = 0 = π43.

Thus we can rearrange the decomposition moving P 	L to the first coordinate
to obtain

π '


π44 π41 0 0
0 τ11 0 0
0 τ21 ρ 0
0 τ31 σ32 σ33

 .
This is a coextension of τ which is an extension of σ. By the fact that τ is a
fully extremal extension of σ, we deduce that π41 = 0 and so

π ' π44 ⊕ τ.

Therefore τ is also an extremal coextension.

The dual result is obtained the same way.

Corollary 3.11. Let ρ be a representation of A. If σ is an extremal extension
of ρ, and τ is a fully extremal coextension of σ, then τ is a maximal dilation.

The classical notion of minimal coextension is that the space is cyclic for A.
However, it seems more natural that the original space merely generate the
whole space as a reducing subspace. This is because fully extremal coextensions
do not generally live on the cyclic subspace generated by the original space.

Definition 3.12. An extremal coextension σ on K of a representation ρ ofA on
H is minimal if the only reducing subspace of K containing H is K itself. Like-
wise we define minimality for fully extremal coextensions, extremal extensions
and fully extremal extensions. This minimal (fully) extremal (co)extension is
unique if any two of these objects are unitarily equivalent via a unitary which
is the identity on H.

Say that a coextension σ on K of a representation ρ of A on H is cyclic if
K = σ(A)H.

Remark 3.13. These notions of minimality are subtle. Look at Example 3.2.
In general, to generate the space on which a coextension acts, one must alter-
nately take the cyclic subspace generated by σ(A) and σ(A)∗, perhaps infinitely
often, in order to obtain the reducing subspace generated by H.
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In Example 3.4, the 1-dimensional zero representation ρ has an extremal coex-
tension σ. It is minimal because

K = σ(A(D2))H,

i.e. H is cyclic for σ(A(D2)). However the extension τ of σ is also an extremal
coextension of ρ. While it is no longer true that τ(A(D2))H is the whole space,
it is nevertheless the smallest reducing subspace containing H, and so it is also
minimal. Thus it is a minimal fully extremal coextension.

It is important to note that there are minimal fully extremal coextensions
obtained in the natural way.

Proposition 3.14. Let ρ be a representation of A on H. Let σ be a fully
extremal (co)extension of ρ on K. Let σ0 be the restriction of σ to the smallest
reducing subspace K0 for σ(A) containing H. Then σ0 is fully extremal. More-
over, σ = σ0 ⊕ σ1 where σ1 is a maximal representation. Conversely, every
(co)extension of this form is fully extremal.

Proof. The proof is straightforward. Since K0 reduces σ, we can write

σ = σ0 ⊕ σ1

acting on K = K0⊕K⊥0 . Suppose that τ is a dilation of σ0 which is a coextension
of ρ. Then τ ⊕σ1 is a dilation of σ which is a coextension of ρ. Since σ is fully
extremal, we have a splitting

τ ⊕ σ1 ' σ ⊕ τ1 = σ0 ⊕ σ1 ⊕ τ1.

Hence
τ = σ0 ⊕ τ1.

It follows that σ0 is a fully extremal coextension of ρ.

Any dilation of σ1 yields a dilation of σ which is a coextension of ρ. As σ is
fully extremal, this must be by the addition of a direct summand. Hence σ1

is a maximal representation. Conversely, if σ0 is a (minimal) fully extremal
coextension of ρ and σ1 is a maximal representation, then σ = σ0 ⊕ σ1 is a
fully extremal coextension because any dilation of σ is a dilation of σ0 direct
summed with σ1.

The same argument works for extensions.

We refine Proposition 3.10. In light of Remark 3.7, we know that the coexten-
sions asked for in the following proposition always exist.

Proposition 3.15. Let ρ be a representation of A on H. Let σ be a cyclic
extremal coextension of ρ on K. Let π be a minimal fully extremal extension of
σ. Then π is a minimal maximal dilation of ρ.
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Proof. It suffices to show that the whole space, L, is the smallest reducing
subspace for π(A) containing H. In particular, it contains

π(A)H = σ(A)H = K.

But the minimality of π as a fully extremal extension of σ ensures that there
is no proper reducing subspace containing K. So π is minimal as a maximal
dilation.

We require a result which is more subtle than Proposition 3.15 but is valid for
fully extremal coextensions.

Theorem 3.16. Let ρ be a representation of A on H. Let σ be a minimal fully
extremal coextension of ρ on K. Let π be a minimal fully extremal extension of
σ. Then π is a minimal maximal dilation of ρ.

Moreover, the representation π determines σ, and thus two inequivalent mini-
mal fully extremal coextensions of ρ yield inequivalent minimal maximal dila-
tions of ρ.

Proof. Let π act on the Hilbert space L. Note that π is a maximal dilation of
ρ by Proposition 3.10. Let

M = π(A)∗H	H.

ThenM⊥ is the largest invariant subspace for π(A) in which H is coinvariant.
Let τ denote the restriction of π to M⊥. Since M⊥ contains K, we have

τ � σ and τ �c ρ.

Hence by the fully extremal property of σ, we deduce that

τ = σ ⊕ τ ′ on M⊥ = K ⊕ (M+K)⊥.

Now the smallest reducing subspace for π(A) containing H clearly contains
M. Thus it contains the smallest τ(A) reducing subspace of M⊥ contaning
H. But since τ = σ ⊕ τ ′ and σ is minimal as a fully extremal coextension, the
smallest τ(A) reducing subspace containing H is K. Then since π is a minimal
fully extremal extension of σ, we see that L is the smallest reducing subspace
containing K. So π is minimal.

From the arguments above, we see that σ is recovered from π by forming

M = π(A)∗H	H.

restricting π to M⊥ to get τ , and taking the smallest τ reducing subspace
of M⊥ containing H. The restriction to this subspace is σ. Hence π deter-
mines σ. Consequently, two inequivalent fully extremal coextensions of ρ yield
inequivalent minimal maximal dilations of ρ.
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The following is immediate by duality.

Corollary 3.17. Let ρ be a representation of A on H. Let σ be a minimal fully
extremal extension of ρ on K. Let π be a minimal fully extremal coextension of
σ. Then π is a minimal maximal dilation of ρ.

Moreover, the dilation π determines σ. Thus two inequivalent minimal fully
extremal extensions of ρ yield inequivalent minimal maximal dilations of ρ.

4 Semi-Dirichlet algebras

In this section, we consider a class of algebras where the theory is more like the
classical one. The semi-Dirichlet property is a powerful property that occurs
often in practice. From the point of view of dilation theory, these algebras are
very nice.

Definition 4.1. Say that an operator algebra A is semi-Dirichlet if

A∗A ⊂ A+A∗

when A is considered as a subspace of its C*-envelope.

A unital operator algebra (not necessarily commutative) is called Dirichlet if
A+A∗ is norm dense in C∗e(A).

Notice that since A is unital, we always have A + A∗ ⊂ span(A∗A), so semi-
Dirichlet means that

span(A∗A) = A+A∗.

The interested reader can note that in the case of w*-closed algebras, the proofs
below can be modified to handle the natural w*-closed condition which we call
semi-σ-Dirichlet if

A∗A ⊂ A+A∗w∗.

Free semigroup algebras and free semigroupoid algebras of graphs and nest
algebras all are semi-σ-Dirichlet.

The following simple proposition establishes a few elementary observations.

Proposition 4.2.

(i) A is Dirichlet if and only if A and A∗ are semi-Dirichlet.

(ii) If σ is a completely isometric representation of A on H, and

σ(A)∗σ(A) ⊂ σ(A) + σ(A)∗,

then A is semi-Dirichlet.

(iii) If σ is a Shilov representation of a semi-Dirichlet algebra A, then σ(A)
is semi-Dirichlet.



Dilation theory 21

Proof. (i) It is obvious that if A is Dirichlet, then both A and A∗ are semi-
Dirichlet. For the converse, notice that if A is semi-Dirichlet, then an easy
calculation shows that span(AA∗) is a C*-algebra [8]. SinceA generates C∗e(A),
this is the C*-algebra span(AA∗). Thus the semi-Dirichlet property for A∗ now
shows that A+A∗ is norm dense in C∗e(A).

(ii) If σ is completely isometric, then A = C∗(σ(A)) is a C*-cover of A. By the
minimal property of the C*-envelope, there is a quotient map q : A → C∗e(A)
so that qσ|A is the identity map. If σ(A)∗σ(A) is contained in σ(A) + σ(A)∗,
then passing to the quotient yields the semi-Dirichlet property.

(iii) If σ is Shilov, then there is a ∗-representation π of C∗e(A) on K and an
invariant subspace H so that σ(a) = π(a)|H. The map

σ̃(x) = PHπ(x)|H for x ∈ C∗e(A)

is a completely positive map extending σ. In particular,

σ̃(a∗) = σ(a)∗ for a ∈ A.

For a, b ∈ A, we calculate

π(a∗b) =

[
∗ ∗
∗ σ̃(a∗b)

]
= π(a)∗π(b)

=

[
∗ ∗
0 σ(a)∗

] [
∗ 0
∗ σ(b)

]
=

[
∗ ∗
∗ σ(a)∗σ(b)

]
Hence

σ̃(a∗b) = σ(a)∗σ(b) for all a, b ∈ A.

Since A is semi-Dirichlet, we can write

a∗b = lim
n
c∗n + dn

where cn, dn ∈ A. Thus,

σ(a)∗σ(b) = σ̃(a∗b) = limσ(cn)∗ + σ(dn).

That is,

σ(A)∗σ(A) ⊂ σ(A) + σ(A)∗.

It now follows from (ii) that σ(A) is semi-Dirichlet.

Example 4.3. Observe that if A is a function algebra with Shilov boundary
X = ∂A, then span(A∗A) is a norm closed self-adjoint algebra which separates
points. So by the Stone-Weierstrass Theorem, it is all of C(X). So the semi-
Dirichlet property is just the Dirichlet property for function algebras.
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Example 4.4. The non-commutative disk algebras An are semi-Dirichlet. This
is immediate from the relations s∗jsi = δijI.

Indeed, it is easy to see that all tensor algebras of directed graphs and tensor
algebras of C*-correspondences are semi-Dirichlet. For those familiar with the
terminology for the tensor algebra of a C*-correspondence E over a C*-algebra
A, the algebra T +(E) is generated by

σ(A) and {T (ξ) : ξ ∈ E},

where σ and T are the canonical representations of A and E, respectively, on
the Fock space of E. The relation

T (ξ)∗T (η) = σ(〈ξ, η〉)

yields the same kind of cancellation as for the non-commutative disk algebra
to show that

T +(E)∗T +(E) ⊂ T +(E) + T +(E)∗.

Example 4.5. There is no converse to Proposition 4.2(ii). Consider the disk
algebra A(D). The Toeplitz representation on H2 given by σ(f) = Tf , the
Toeplitz operator with symbol f , is completely isometric. This is Shilov, and
so has the semi-Dirichlet property. This is also readily seen from the identity

T ∗f Tg = Tf̄g for all f, g ∈ A(D).

However the representation
ρ(f) = Tf(z̄)

generated by ρ(z) = T ∗z is also completely isometric. However

ρ(z)∗ρ(z) = TzT
∗
z = I − e0e

∗
0.

This is not a Toeplitz operator, and so is a positive distance from

ρ(A(D)) + ρ(A(D))∗ = {Tf̄+g : f, g ∈ A(D)}
= {Tf : f ∈ C(T)}.

We will establish the following theorem.

Theorem 4.6. Suppose that A is a semi-Dirichlet unital operator algebra. Let
ρ be a representation of A. Then ρ has a unique minimal extremal coextension
σ, it is fully extremal and cyclic (i.e. K = σ(A)H). Moreover, every Shilov
representation is an extremal coextension.

We begin with a couple of lemmas.

Lemma 4.7. Suppose that A is a semi-Dirichlet unital operator algebra. Let ρ
be a representation of A, and let σ be a cyclic extremal coextension of ρ on K.
Then σ is fully extremal.
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Proof. Suppose that that τ is an extremal coextension of ρ which is a dilation
of σ. Say τ acts on L ⊃ K. Let π be a fully extremal extension of τ . Then π is
a maximal dilation of ρ by Proposition 3.10. Moreover L is invariant for π(A)
because τ is extremal, as is K for the same reason. Therefore

τ(a) = π(a)|L and σ(a) = π(a)|K = τ(a)|K.

Also H is semi-invariant for π(A) and coinvariant for τ(A) in L.

If σ is not a direct summand of τ , then K is not coinvariant for τ(A). Thus
there is a vector x ∈ L 	K and a ∈ A so that

PKτ(a)x 6= 0.

This vector in K can be approximated by a vector σ(b)h for some b ∈ A and
h ∈ H sufficiently well so that

〈τ(a)x, σ(b)h〉 6= 0.

Now a∗b ∈ A∗A can be written as

a∗b = lim
n
cn + d∗n where cn, dn ∈ A.

Therefore

0 6= 〈τ(a)x, σ(b)h〉 = 〈π(a)x, π(b)h〉
= 〈x, π(a∗b)h〉 = lim

n→∞
〈x, π(cn)h+ π(dn)∗h〉

= lim
n→∞

〈x, π(dn)∗h〉 = lim
n→∞

〈x, τ(dn)∗h〉

Here we used the fact that

π(cn)h = σ(cn)h ∈ K,

which is orthogonal to x, and then the fact that the compression of π(dn)∗ to
L is τ(dn)∗. This calculation shows that H is not coinvariant for τ , contrary to
our hypothesis. This means that τ does indeed have σ as a direct summand.
So σ is fully extremal.

Lemma 4.8. Suppose that A is a semi-Dirichlet unital operator algebra. Let
ρ be a representation of A. Then any two cyclic Shilov coextensions σi of ρ,
i = 1, 2, on Ki are equivalent. Hence a cyclic Shilov coextension of ρ is fully
extremal.

Proof. Let σi, i = 1, 2, be two minimal cyclic Shilov coextensions of ρ on Ki;
so that Ki = σi(A)H. Let πi be the maximal dilations of ρ on Li ⊃ Ki such
that Ki is invariant and πi(a)|Ki = σi(a) for a ∈ A. The idea is to follow the
standard proof by showing that there is a map U ∈ B(K1,K2) given by

Uσ1(a)h = σ2(a)h
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which is a well defined isometry of K1 onto K2. To this end, it suffices to verify
that

〈σ1(a1)h1, σ1(a2)h2〉 = 〈σ2(a1)h1, σ2(a2)h2〉

for all a1, a2 ∈ A and h1, h2 ∈ H.

By hypothesis, we can find bn, cn ∈ A so that

a∗2a1 = lim
n
bn + c∗n.

We calculate

〈σi(a1)h1, σi(a2)h2〉 = 〈πi(a1)h1, πi(a2)h2〉
= 〈πi(a∗2a1)h1, h2〉
= lim
n→∞

〈
(
πi(bn) + πi(cn)∗

)
h1, h2〉

= lim
n→∞

〈
(
ρ(bn) + ρ(cn)∗

)
h1, h2〉.

This quantity is independent of the dilation, and thus U is a well-defined isom-
etry.

Since Ki = σi(A)H, it follows that U is unitary. It is also evident that U |H is
the identity map. So U is the desired unitary equivalence of σ1 and σ2.

Since A always has a cyclic extremal coextension σ, it must be the unique
cyclic Shilov coextension. By Lemma 4.7, σ is fully extremal.

Proof of Theorem 4.6. Let τ be any minimal extremal coextension of ρ on L ⊃
H. Set

K = τ(A)H and σ = τ |K.

Also let π be a fully extremal extension of τ . By Proposition 3.10, π is a
maximal dilation of ρ. Since L is invariant for π(A) and K is invariant for τ(A),
it follows that K is invariant for π(A). Hence σ is Shilov. By Lemma 4.8, σ is
fully extremal. It follows that τ = σ ⊕ τ ′. However τ is minimal. So

τ = σ and L = K = τ(A)H.

Hence τ is cyclic. By Lemma 4.8, τ is unique.

Now let σ be a Shilov representation of A. Let τ be a cyclic extremal coexten-
sion of σ. By Lemma 4.8, σ and τ are equivalent coextensions of σ. Therefore
τ = σ. Thus σ is extremal.

The consequences for Dirichlet algebras are apparent.

Corollary 4.9. If A is a Dirichlet operator algebra, then every Shilov exten-
sion and every Shilov coextension is fully extremal; and the minimal extremal
(co-)extension of a representation is unique. Moreover the minimal maximal
dilation of a representation is unique.
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Proof. The first statement is immediate from Theorem 4.6 and its dual. Let
π be a minimal maximal dilation of a representation ρ on a Hilbert space L.
Let K = π(A)H. This is the minimal Shilov subspace containing H. Thus
by Theorem 4.6, it is the unique minimal fully extremal coextension of ρ. Let
L0 = π(A)∗K. This is the minimal Shilov extension of σ. Hence by the dual of
Theorem 4.6, this coincides with the unique minimal fully extremal extension
of σ. By Corollary 3.10, the restriction of π to L0 is a maximal dilation. Since
π is minimal, L0 = L. So π is obtained by taking the unique minimal extremal
coextension of ρ to get σ, followed by the unique minimal extremal extension
of σ. So π is uniquely determined.

While semi-Dirichlet algebras behave exceptionally well for coextensions, they
are not nearly so well behaved for extensions.

Example 4.10. We consider extensions for representations of the non-
commutative disk algebra An. Denote the generators by s1, . . . , sn, and write
s =

[
s1 . . . sn

]
. A representation ρ on H is determined by a row contraction

A = ρ(s) =
[
ρ(s1) . . . ρ(sn)

]
=:
[
A1 . . . An

]
,

where ‖A‖ =
∥∥∑

iAiA
∗
i

∥∥1/2 ≤ 1. We have seen that A has a unique minimal
coextension to a row isometry, and this is the unique minimal fully extremal
coextension.

Now consider an extension σ of ρ acting on K. This correspond to simultaneous
extensions of Ai to

Bi = σ(si) =

[
Ai Bi,12

0 Bi,22

]
such that B =

[
B1 . . . Bn

]
is a row contraction. It is straightforward to verify

that it is extremal if and only if B is a coisometry. We claim that: an extension
σ of ρ is fully extremal if and only if B is a coisometry such that

RanB∗ ∨H(n) = K(n).

Indeed, if this condition holds, then there is no proper extension of B; so
consider any row contractive coextension C of B which is an extension of Ai.
Then C∗i are extensions of B∗i which are coextensions of A∗i . So

C∗ =

[
B∗ X
0 Y

]
=

A∗ 0 0
B∗12 B∗22 X2

0 0 Y

 .
Since B∗ is an isometry, we require that RanX be orthogonal to RanB∗. And
since C is an extension of A, we have RanX is orthogonal toH(n). Therefore by
hypothesis, RanX is orthogonal to K(n), and thus X = 0. Therefore C = B⊕Y
is a direct sum.



26 K.R. Davidson and E.G. Katsoulis

Conversely, suppose that there is a unit vector x = (x1, . . . , xn)t in K(n) which
is orthogonal to RanB∗ ∨H(n). Define an extension of B∗i to K ⊕ C by

C∗i =

[
B∗i xi
0 0

]
.

Since xi ∈ H⊥, this is a coextension of A∗i . So C determines an extension of A
which is a coextension of B. Clearly it does not split as a direct sum. Finally,
C is a coisometry because C∗ =

[
B∗ x
0 0

]
is an isometry. In particular, C is a

row contraction.

Next we observe that the minimal fully extremal extensions are far from unique
in general by showing how to construct a fully extremal coextension.

Start with A which is not coisometric. Then

D =
(
I −

∑
AiA

∗
i

)1/2 6= 0.

Consider a fully extremal extension B as above. Then B is a coisometry on
K = H⊕K0; whence

[
A B12

]
is a coisometry in B(K,H). Therefore

IH =
[
A B12

] [
A B12

]∗
= AA∗ +B12B

∗
12.

Hence
B12B

∗
12 = D2,

and thereforeB12 = DX whereX =
[
X1 . . . Xn

]
is a coisometry in B(K(n)

0 ,H).
Let R = RanX∗. Then to be fully extremal, we have that B∗22 is an isometry

from K0 onto R⊥ ⊂ K(n)
0 . Now let V be any isometry in B(K(n)

0 ) with RanV =

R⊥. Then V ∗B∗22 is a unitary in B(K0,K(n)
0 ). Decompose the unitary

S := B22V =
[
S1 . . . Sn

]
where Si ∈ B(K0). Observe that Si are isometries such that∑

i

SiS
∗
i = I;

in other words they are Cuntz isometries. Since

B22 = B22V V
∗ = SV ∗

in B(K(n)
0 ,K0), we decompose this as

B22 = SV ∗ =
[
T1 . . . Tn

]
.

We obtain

Bi =

[
Ai Bi,12

0 Bi,22

]
=

[
Ai DXi

0 Ti

]
.
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Conversely, if we choose any coisometry X in B(K(n)
0 ,H), we may define R =

RanX∗, choose an isometry V in B(K(n)
0 ) with RanV = R⊥, and a set of

Cuntz isometries Si in B(K0), then the formulae above yield a fully extremal
extension. This may not be minimal in general, but the restriction to the
smallest reducing subspace containing H is a minimal fully extremal extension.
This restriction will not change X. So if two minimal fully extremal extensions
are equivalent, then at the very least, there is a unitary U ∈ B(K0) so that
XU = X ′. It is easy to see that there are many inequivalent choices for X even
if D is rank one.

5 Commutant Lifting

Many variants of the commutant lifting theorem have been established for a
wide range of operator algebras. They differ somewhat in the precise assump-
tions and conclusions. The general formulation in Douglas-Paulsen [26] and
Muhly-Solel [40] uses Shilov modules. But we will formulate it using only fully
extremal coextensions. The second definition is motivated by the lifting results
of Paulsen-Power [47].

Definition 5.1. An operator algebra A has the strong commutant lifting prop-
erty (SCLT) if whenever ρ is a completely contractive representation of A on
H with a fully extremal coextension σ on K ⊃ H, and X commutes with ρ(A),
then X has a coextension Y in B(K) with ‖Y ‖ = ‖X‖ which commutes with
σ(A).

An operator algebra A has the commutant lifting property (CLT) if whenever
ρ is a completely contractive representation of A on H and X commutes with
ρ(A), then ρ has a fully extremal coextension σ on K ⊃ H and X has a
coextension Y in B(K) with ‖Y ‖ = ‖X‖ which commutes with σ(A).

An operator algebra A has the weak commutant lifting property (WCLT) if
whenever ρ is a completely contractive representation of A on H and X com-
mutes with ρ(A), then ρ has an extremal coextension σ on K ⊃ H and X has
a coextension Y in B(K) with ‖Y ‖ = ‖X‖ which commutes with σ(A).

The important distinction is that in SCLT, the coextension is prescribed first,
while in CLT, it may depend on X.

It is clear that the more that we restrict the class of coextensions for which
we have strong commutant lifting, the weaker the property. Thus SCLT us-
ing only fully extremal coextensions is asking for less than using all extremal
coextensions, which in turn is weaker than using all Shilov extensions. As we
will want a strong commutant lifting theorem, it behooves us to limit the class
of extensions. On the other hand, as we limit the class of coextensions, the
property CLT becomes stronger.

Observe that for the SCLT and CLT, it suffices to consider minimal fully ex-
tremal extensions. This is because any fully extremal extension decomposes as
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σ = σ0 ⊕ τ where σ0 is minimal. Any operator Y commuting with σ(A) will
have a 1,1 entry commuting with σ0(A).

Example 5.2. The disk algebra has SCLT by the Sz.Nagy–Foiaş Commutant
Lifting Theorem [59]. In fact, as noted above, any isometric dilation is an
extremal coextension, but not all are fully extremal. So A(D) has the SCLT
with respect to the larger class of all extremal coextensions, and these are all of
the Shilov extensions. The reason it works is that every isometric coextension
splits as σ0 ⊕ τ where σ0 is the unique minimal isometric coextension.

Example 5.3. The non-commutative disk algebra An also has SCLT by
Popescu’s Commutant Lifting Theorem [50]. As noted in Example 2.2, the
extremal coextensions are the row isometric ones, and these are Shilov. As in
the case of the disk algebra, it is only fully extremal if it is the direct sum of
the minimal isometric coextension with a row unitary.

More generally, the tensor algebra of any C*-correspondence has SCLT by the
Muhly-Solel Commutant Lifting Theorem [42].

Example 5.4. The bidisk algebra A(D2) does not have WCLT, since com-
mutant lifting implies the simultaneous unitary dilation of three commuting
contractions [60, 44].

Example 5.5. The algebra An of continuous multipliers on symmetric Fock
space (see Example 2.3) has SCLT [21]. The extremal extensions are in fact
maximal dilations, and so in particular are fully extremal.

The relationship between SCLT and CLT is tied to uniqueness of minimal
coextensions. We start with an easy lemma.

Lemma 5.6. Let A be a unital operator algebra. Suppose that σ is a minimal
dilation on K of a representation ρ on H, in the sense that K is the smallest
reducing subpace for σ(A) containing H. If X is a contraction commuting with
σ(A) such that PHX|H = I, then X = I.

Proof. Since ‖X‖ = 1 and PHX|H = I, X reduces H. Note that for all h ∈ H
and a ∈ A,

Xσ(a)h = σ(a)Xh = σ(a)h

and

X∗σ(a)∗h = σ(a)∗X∗h = σ(a)∗h.

So the restriction of X to σ(A)H is the identity. As X is a contraction, it
reduces this space. Similarly, the restriction of X∗ to σ(A)∗H is the identity;
and X reduces this space as well. Recursively we may deduce that X is the
identity on the smallest reducing subspace containing H, which is K.

Theorem 5.7. Let A be a unital operator algebra. Then A has SCLT if and
only if it has CLT and unique minimal fully extremal coextensions.
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Proof. Assume first that A has CLT and unique minimal fully extremal coex-
tensions. Let ρ be a representation of A on H with a fully extremal coextension
σ on K ⊃ H, and suppose that X commutes with ρ(A). By CLT, there is a
fully extremal coextension τ on L ⊃ H and X has a coextension Z in B(L)
with ‖Z‖ = ‖X‖ which commutes with τ(A). By uniqueness of minimal fully
extremal coextensions, there is a fully extremal coextension µ on K0 so that

σ ' µ⊕ σ′ and τ ' µ⊕ τ ′.

With respect to the latter decomposition, Z can be written as a 2 × 2 matrix
commuting with µ(a) ⊕ τ ′(a) for all a ∈ A. Moreover, the corner entry Z11

is a coextension of X. A simple calculation of the commutator shows that
µ(a) commutes with Z11. Thus Y ' Z11 ⊕ 0 is the desired coextension of X
commuting with σ(A).

Conversely, suppose that A has SCLT. A fortiori, it will have CLT. Suppose
that a representation ρ on H has two minimal fully extremal coextensions σ1

and σ2 on K1 = H⊕K′1 and K2 = H⊕K′2, respectively. Then ρ⊕ρ has σ1⊕σ2

as a fully extremal coextension. This can be seen, for example, because of the
identities (1) and (2) in the proof of Theorem 3.5. The operator X = [ 0 I

I 0 ]
commutes with (ρ⊕ ρ)(A). So by SCLT, X has a coextension Y on K1⊕K2 of
norm 1 which commutes with (σ1⊕σ2)(A). Since PH⊕HY |H⊕H = X is unitary,
Y reduces H⊕H.

Now Y 2 commutes with σ1 ⊕ σ2(A) and its restriction to H ⊕ H is X2 = I.
Thus by Lemma 5.6, Y 2 = I. In particular, Y is unitary. Let

Y12 = PK1
Y |K2

and Y21 = PK2
Y |K1

.

Observe that for a ∈ A,

Y21σ1(a) = σ2(a)Y21 and Y12σ2(a) = σ1(a)Y12.

Moreover the restriction of Y21 to H is X restricted to H ⊕ {0}, which is the
identity map if we identify H ⊕ {0} and {0} ⊕ H with H. We deduce that
Y12Y21 commutes with σ1(A) and coincides with I on H. So by Lemma 5.6,

Y12Y21 = I.

Similarly,
Y21Y12 = I.

Since they are contractions, Y12 is unitary and Y21 = Y ∗12. The identities above
now show that Y21 implements a unitary equivalence between σ1 and σ2 fixing
H. Hence the minimal fully extremal coextension of ρ is unique.

We can weaken CLT to WCLT if we strengthen the uniqueness hypothesis to
minimal extremal coextensions. This seems a fair bit stronger in comparison
however.
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Corollary 5.8. If A has WCLT and unique minimal extremal coextensions,
then A has SCLT.

Proof. If ρ is a representation of A, then the unique minimal extremal coex-
tension σ of ρ must be fully extremal, since by Theorem 3.5, there are fully
extremal coextensions and hence there are minimal ones. These are also min-
imal as extremal coextensions. Thus A has unique minimal fully extremal
coextensions. Moreover, as in the proof above, if a contraction X commutes
with ρ(A), then WCLT provides a coextension to a contraction Y commuting
with an extremal coextension τ . But τ = σ ⊕ τ ′. So arguing as before, the
compression Z of Y to Kσ commutes with σ(A) and is a coextension of X.
Now if ϕ is an arbitrary extremal coextension of ρ, again split ϕ = σ⊕ϕ′. One
extends Z to Z ⊕ 0 to commute with ϕ(A).

It is common to look for a version of commutant lifting for intertwining maps
between two representations. In the case of WCLT and SCLT, this is straight-
forward. Such a version for CLT is valid here too, but some care must be
taken.

Proposition 5.9. Suppose that A has SCLT. Let ρi be representations of A
on Hi for i = 1, 2 with fully extremal coextensions σi on Ki. Suppose that X
is a contraction in B(H2,H1) such that

ρ1(a)X = Xρ2(a) for all a ∈ A.

Then there is a contraction Y in B(K2,K1) so that

PH1
Y = XPH2

and
σ1(a)Y = Y σ2(a) for all a ∈ A.

Proof. Let ρ = ρ1 ⊕ ρ2. By Corollary 3.9, σ = σ1 ⊕ σ2 is a fully extremal
coextension of ρ. Observe that

X̃ =

[
0 X
0 0

]
commutes with ρ(A). Hence by SCLT, there is a coextension Ỹ of X̃ which
commutes with σ(A).

Write Y as a matrix with respect to

K = K1 ⊕K2 = H1 ⊕H2 ⊕ (K1 	H1)⊕ (K2 	H2)

and rearrange this to the decomposition

K = H1 ⊕ (K1 	H1)⊕H2 ⊕ (K2 	H2).
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We obtain the unitary equivalence

Ỹ =

[
X̃ 0
∗ ∗

]
=


0 X 0 0
0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 '


0 0 X 0
∗ ∗ ∗ ∗
0 0 0 0
∗ ∗ ∗ ∗


Restricting to the upper right 2× 2 corner, we obtain

Y := PK1
Ỹ |K2

=

[
X 0
∗ ∗

]
.

Then Y is a contraction, and as an operator in B(K2,H1) we have

PH1
Y =

[
X 0

]
= XPH2

.

Finally the commutation relations show that

σ1(a)Y = Y σ2(a) for all a ∈ A.

A similar argument shows the following:

Proposition 5.10. Suppose that A has WCLT. Let ρi be representations of A
on Hi for i = 1, 2. Suppose that X is a contraction in B(H2,H1) such that

ρ1(a)X = Xρ2(a) for all a ∈ A.

Then there are extremal coextensions σi of ρi acting on Ki ⊃ Hi for i = 1, 2
and a contraction Y in B(K2,K1) so that

PH1
Y = XPH2

and
σ1(a)Y = Y σ2(a) for all a ∈ A.

Proof. Again form ρ = ρ1 ⊕ ρ2 and X̃ as above. Use WCLT to coextend ρ to
an extremal coextension σ and X̃ to a contraction Ỹ commuting with σ(A) on
K = H1 ⊕H2 ⊕ K′. Now notice that σ is an extremal coextension of both ρi.
Considering Ỹ as a map from

H1 ⊕ (H2 ⊕K′) to H2 ⊕ (H1 ⊕K′),

one finds that it has a matrix form

Ỹ =

 X 0 0
0 0 0
∗ ∗ ∗

 .
This has the desired form.
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Remark 5.11. The issue with CLT and fully extremal coextensions is that a
fully extremal coextension of ρ = ρ1⊕ρ2 need not even contain a fully extremal
coextension of ρi as a summand. Consider the subalgebra A ⊂M5 given by

A = span{E21, E32, E31, E34, E45, E35, Eii : 1 ≤ i ≤ 5}.

Let
ρ1(a) = E22a|Ce2 and ρ2(a) = E44a|Ce4 .

The minimal fully extremal coextensions of ρi are

σ1(a) = E⊥11a|(Ce1)⊥ and σ2(a) = E⊥55a|(Ce5)⊥ .

However the minimal fully extremal coextension of ρ1 ⊕ ρ2 is

σ(a) = (E22 + E33 + E44)a|span{e2,e3,e4}.

Thus a proof of the following result must follow different lines. This proof has
its roots in the work of Sz.Nagy and Foiaş. Notice that it allows a specification
of one of the coextensions. Normally we will use a fully extremal coextension
σ2 of ρ2.

Theorem 5.12. Suppose that A has CLT. Let ρi be representations of A on
Hi for i = 1, 2. Suppose that X is a contraction in B(H2,H1) such that

ρ1(a)X = Xρ2(a) for all a ∈ A.

Let σ2 be an extremal coextension of ρ2 on K2. Then there is a fully extremal
coextension σ1 of ρ1 acting on K1 and a contraction Y in B(K2,K1) so that

PH1
Y = XPH2

and
σ1(a)Y = Y σ2(a) for all a ∈ A.

Proof. Let K2 = H2 ⊕K′2, and decompose

σ2(a) =

[
ρ2(a) 0
σ21(a) σ22(a)

]
Observe that

[
X 0

]
∈ B(K2,H1) satisfies

ρ1(a)
[
X 0

]
=
[
ρ1(a)X 0

]
=
[
X 0

] [ ρ2(a) 0
σ21(a) σ22(a)

]
.

Therefore

X̃ =

 0 X 0
0 0 0
0 0 0


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commutes with the range of ρ = ρ1 ⊕ σ2.

Now we apply the CLT property to ρ and X̃ to obtain a fully extremal coex-
tension τ of ρ and contraction Ỹ coextending X̃ on L = H1 ⊕ K2 ⊕ L′ which
commute. We may write

τ(a) =

 ρ1(a) 0 0
0 σ2(a) 0

τ31(a) τ32(a) τ33(a)

 .
Observe that the lower right 2 × 2 corner is a coextension of σ2. Since σ2 is
extremal, we see that τ32 = 0. Define

σ1(a) =

[
ρ1(a) 0
τ31(a) τ33(a)

]
.

To complete the proof, we need to establish that σ1 is a fully extremal coex-
tension of ρ1. Suppose that γ is a representation of A which dilates σ1 and
coextends ρ1. Then γ ⊕ σ2 dilates σ1 ⊕ σ2 = τ and coextends ρ1 ⊕ σ2. Since τ
is fully extremal, γ = σ1 ⊕ γ′ as desired.

We make a few more definitions. (Apologies for all the acronyms.)

Definition 5.13. If A∗ has SCLT, CLT or WCLT, we say that A has SCLT*,
CLT* or WCLT*.

Say that A has maximal commutant lifting (MCLT) if for every representation
ρ on H and contraction X commuting with ρ(A), there is a maximal dilation
π of ρ on a Hilbert space K ⊃ H and a contraction Y commuting with π(A)
such that

PHπ(a)Y n|H = ρ(a)Xn for all a ∈ A and n ≥ 0.

If the maximal dilation π can be specified a priori, then say that A has strong
maximal commutant lifting (SMCLT).

It is clear that the commutant lifting properties for A∗ can be interpreted as
lifting commutants to (fully) extremal extensions instead of coextensions. On
rare occasions, one gets both. For example, the disk algebra A(D) is completely
isometrically isomorphic to its adjoint algebra. Hence it has both SCLT and
SCLT*.

The property MCLT for A is equivalent to MCLT for A∗. So we will not have
a property MCLT*.

The definition of MCLT contains the information that the compression of the
algebra generated by π(A) and Y to H is an algebra homomorphisms which
sends π to ρ and Y to X. It follows that H is semi-invariant for this algebra;
i.e. H is the difference of two subspaces which are invariant for both π(A) and
Y .

Theorem 5.14. If A has WCLT and WCLT*, then A has MCLT.



34 K.R. Davidson and E.G. Katsoulis

Proof. One uses WCLT to coextend ρ on H to an extremal coextension σ1

on K1 and coextend X to a contraction Y1 ∈ B(K1) commuting with σ1(A).
Then use WCLT* extend σ1 to an extremal extension τ1 on L1, and lift Y1

to a contraction Z1 ∈ B(L1) commuting with τ1(A). Alternate these proce-
dures, obtaining an extremal coextension σn+1 of τn on Kn+1 and a contractive
coextension Yn+1 ∈ B(Kn+1) in the commutant of σn+1(A); and then extend-
ing σn+1 to an extremal τn+1 on Ln+1 and extending Yn+1 to a contraction
Zn+1 ∈ B(Ln+1) in the commutant of τn+1(A). It is easy to see that at ev-
ery stage, the original space H is semi-invariant for both the representation
and the contraction—so that these are always simultaneous dilations of the
representation and the contraction.

Moreover, we can write σn+1 as a dilation of σn in the matrix form relative to

Kn+1 = (Ln 	Kn)⊕Kn ⊕ (Kn+1 	 Ln)

as

σn+1 =

∗ 0 0
∗ σn 0
∗ ∗ ∗


where the upper left 2 × 2 corner represents τn. The lower right 2 × 2 corner
is a coextension of σn. Since σn is an extremal coextension, the 3, 2 entry is 0.
Rearranging this as

Kn+1 = Kn ⊕ (Ln 	Kn)⊕ (Kn+1 	 Ln),

we have

σn+1 =

σn ∗ 0
0 ∗ 0
0 ∗ ∗

 .
A similar analysis holds for the τn. Therefore, with respect to

K1 ⊕ (L1 	K1)⊕ (K2 	 L1)⊕ (L2 	K2)⊕ . . . ,

these representations have a tridiagonal form

σ1 ∗ 0 0 0 0 0 . . .
0 ∗ 0 0 0 0 0 . . .
0 ∗ ∗ ∗ 0 0 0 . . .
0 0 0 ∗ 0 0 0 . . .
0 0 0 ∗ ∗ ∗ 0 . . .
0 0 0 0 0 ∗ 0 . . .
...

...
...

...
...

. . .
. . .

. . .


.

It follows that the direct limit π exists as a sot-∗ limit. Moreover, as π is a
limit of extremal coextensions, it is an extremal coextension; and similarly it
is an extremal extension. Thus it is a maximal dilation.
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The operators Yn and Zn each leave the subspaces H semi-invariant, and the
restriction of Zn to Kn is Yn, and the compression (actually a co-restriction) of
Yn+1 to Ln is Zn. Therefore the direct limit Y exists as a wot limit. It follows
that Y is a contraction that commutes with π(A). To see this, let xn ∈ Kn
and yn ∈ Ln. Then for a ∈ A,

π(a)xn = σk(a)xn for all k ≥ n.

Similarly,
π(a)∗yn = σk(a)∗yn for all k ≥ n+ 1.

So we can compute:〈
(π(a)Y − Y π(a))xn, yn

〉
=
〈
xn, Y

∗π(a)∗yn
〉
−
〈
Y π(a)xn, yn

〉
= lim
k→∞

〈
xn, Y

∗
k π(a)∗yn

〉
−
〈
Ykπ(a)xn, yn

〉
= lim
k→∞

〈
xn, Y

∗
k σk(a)∗yn

〉
−
〈
Ykσk(a)xn, yn

〉
= lim
k→∞

〈
(σk(a)Yk − Ykσk(a))xn, yn

〉
= 0.

So we have obtained the desired commutant lifting.

We can modify the proof of Theorem 5.7 characterizing SCLT to characterize
SMCLT.

Theorem 5.15. The following are equivalent for A:

(i) A has SMCLT.

(ii) A has MCLT and unique minimal maximal dilations.

Proof. Suppose that A has SMCLT. Then evidently it has MCLT. Moreover,
suppose that a representation ρ has two minimal maximal dilations π1 and
π2. Then π1 ⊕ π2 is a maximal dilation of ρ ⊕ ρ. Now (ρ ⊕ ρ)(A) commutes
with X = [ 0 I

I 0 ]. By SMCLT, this dilates to a contraction Y which commutes
with (π1 ⊕ π2)(A) and H⊕H is jointly semi-invariant for Y and (π1 ⊕ π2)(A).
Arguing exactly as in the proof of Theorem 5.7, we deduce that π1 and π2 are
unitarily equivalent via a unitary which fixes H. So A has unique maximal
dilations.

Conversely, it is routine to see that unique maximal dilations and MCLT yields
SMCLT. So (i) and (ii) are equivalent.

Remark 5.16. One might suspect, as we did, that SMCLT is also equivalent
to the following:

(iii) A has SCLT and SCLT*.

(iv) A has MCLT and unique minimal fully extremal extensions and coexten-
sions.
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But this is not the case.

If (ii) holds, then by Theorem 3.16 there is uniqueness of minimal fully extremal
coextensions; and Corollary 3.17 yields uniqueness of minimal fully extremal
extensions. So (iv) holds.

Also if (iii) holds, then there are unique minimal fully extremal extensions and
coextensions by Theorem 5.7 and its dual result for SCLT*. Also MCLT holds
by Theorem 5.14. So (iv) holds.

However, it is possible that SCLT and SCLT* hold, yet A does not have unique
minimal maximal dilations. See the example of 2×2 matrices developed in the
next section. Thus SMCLT fails to hold.

We do not know if SMCLT implies (iii).

In the case of semi-Dirichlet algebras, we have something extra. We do not
know if all semi-Dirichlet algebras have SCLT. However, Muhly and Solel [42]
show that the tensor algebra over any C*-correspondence has SCLT.

Proposition 5.17. Suppose that A is semi-Dirichlet and has MCLT. Then A
has SCLT.

Proof. Let ρ be a representation of A on H commuting with a contraction
X. Use MCLT to obtain a simultaneous dilation of ρ to a maximal dilation
π and X to a contraction Y commuting with π(A). Let K be the common
invariant subspace for π(A) and Y containing H. Since H is semi-invariant,
the restriction of π to K is a coextension σ of ρ. The compression Z of Y to K
is a contraction commuting with σ(A).

By Theorem 4.6, there is a unique minimal extremal coextension σ0 of ρ, and
it must coincide with σ|K0

where K0 = σ(A)H. Thus σ = σ0 ⊕ σ′. It follows
that the compression Z0 of Z to K0 commutes with σ0(A). Moreover, since
H is coinvariant for Z, it is also coinvariant for Z0. By Theorem 5.7, A has
SCLT.

Corollary 5.18. If A is a Dirichlet algebra, the following are equivalent:

(i) A has MCLT

(ii) A has SMCLT

(iii) A has SCLT and SCLT*

(iv) A has WCLT and WCLT*.

Finally we point out that there is also an intertwining version for MCLT.

Proposition 5.19. Suppose that A has MCLT. Let ρi be representations of A
on Hi for i = 1, 2. Suppose that X is a contraction in B(H2,H1) such that

ρ1(a)X = Xρ2(a) for all a ∈ A.
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Then there are maximal dilations πi of ρi acting on Ki ⊃ Hi for i = 1, 2 and a
contraction Y simultaneously dilating X in B(K2,K1) so that

π1(a)Y = Y π2(a) for all a ∈ A.

Proof. Again form ρ = ρ1 ⊕ ρ2 and X̃ as before. Use MCLT to dilate ρ to a
maximal dilation π and X̃ to a contraction Ỹ commuting with π(A) on

K = K− ⊕H1 ⊕H2 ⊕K+.

Write

Ỹ =


∗ 0 0 0
∗ 0 X 0
∗ 0 0 0
∗ ∗ ∗ ∗

 .
Now notice that π is an maximal dilation of both ρi. Considering Ỹ as a map
from

K− ⊕H1 ⊕ (H2 ⊕K+) to (K− ⊕H1)⊕H2 ⊕K+

one finds that it has a matrix form

Ỹ =


∗ 0 0 0
∗ 0 X 0
∗ 0 0 0
∗ ∗ ∗ ∗

 .
This is a dilation of X which commutes with π(A), where π is considered as a
dilation of both ρ1 and ρ2 using the two decompositions of K.

6 A 2× 2 matrix example.

Consider the algebra A = span{I2, n} ⊂M2 where

n =

[
0 0
1 0

]
.

Observe that A is unitarily equivalent to A∗. It is not semi-Dirichlet. We will
show that it has unique minimal extremal (co)extensions, which are always
maximal dilations. But it does not have unique maximal dilations. It also has
SCLT, SCLT* and MCLT, but does not have SMCLT.

Observe that a representation ρ ofA is determined byN := ρ(n), which satisfies
N2 = 0 and ‖N‖ ≤ 1. Conversely, any such N yields a completely contractive
representation. It is easy to check that N is unitarily equivalent to an operator
of the form [

0 0
B 0

]
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where B has dense range by setting H2 = RanN and decomposing H = H1 ⊕
H2. This can be refined by using the polar decomposition of B to the form[

0 0
A 0

]
⊕ 0 on H = RanN∗ ⊕ RanN ⊕ (kerN ∩ kerN∗),

where A is a positive injective operator.

Clearly C∗e(A) = M2. Thus a maximal representation π extends to a ∗-
representation of M2. Hence π(n) = N is a partial isometry such that

NN∗ +N∗N = I and N2 = 0;

or equivalently,

(N +N∗)2 = I and N2 = 0.

In other words, there is a unitary U so that

N '
[

0 0
U 0

]
'
[
0 0
I 0

]
.

Geometrically, this says that N is a partial isometry such that

RanN + RanN∗ = H.

Proposition 6.1. The algebra A of 2× 2 matrices of the form[
a 0
b a

]
has unique minimal extremal coextensions (extensions). Moreover they are fully
extremal coextensions (extensions), and in fact, are maximal dilations; and the
original space is cyclic (cocyclic).

Proof. We first show that a representation ρ which is not maximal has a proper
coextension. Use the matrix form

ρ(n) = N =

[
0 0
B 0

]
on H = H1⊕H2 where B has dense range. Suppose that B is not an isometry,
and let

DB = (I −B∗B)1/2 and DB = RanDB .

Consider PDBDB as an operator from H1 to DB . Then B may be coextended
to an isometry

V =

[
B

PDBDB

]
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mapping H1 to K2 = H2 ⊕DB . So ρ coextends to σ where

σ(n) = S =

[
0 0
V 0

]
=

 0 0 0
B 0 0

PDBDB 0 0


on

K = H1 ⊕K2 = H1 ⊕H2 ⊕DB .

Hence when ρ is extremal, B is an isometry with dense range, so it is unitary.
Thus ρ is a maximal representation.

The coextension constructed above is generally not extremal because V is not
unitary. So one can coextend S again using the same procedure. K2 splits as
RV ⊕D, where

RV = RanV and D = Ran(IK2
− V V ∗).

We now decompose

K = H1 ⊕D ⊕RV ,

and write

S =

 0 0 0
0 0 0

PRV V 0 0


Using the same dilation as the previous paragraph, but noting that

D[PRV V 0] = (IK2
− V V ∗),

we obtain the coextension τ of σ on a Hilbert space

L = H1 ⊕D ⊕RV ⊕D

by

τ(n) = W =


0 0 0 0
0 0 0 0

PRV V 0 0 0
0 PD(IK2

− V V ∗) 0 0


The bottom left 2× 2 corner is now a surjective isometry. So this is a maximal
dilation.

To see that τ is minimal as a coextension, we need to verify that

L = AH = H ∨WH.

To see this, we rewrite W with respect to the decomposition

L = H1 ⊕H2 ⊕DB ⊕D
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to get

W =


0 0 0 0
B 0 0 0

PDBDB 0 0 0
0 PD(IK2

− V V ∗) 0


Since the range of DB is dense in DB , this is contained in H ∨WH. For the
space D, we expand the expression for IK2

− V V ∗ on K2 = H2 ⊕DB :

IK2 − V V ∗ =

[
I 0
0 I

]
−
[
BB∗ BDB

DBB
∗ I −B∗B

]
=

[
I −BB∗ −BDB

−DBB
∗ B∗B

]
=

[
D2
B∗ −BDB

−BDB∗ B∗B

]
Thus one sees that

(IK2
− V V ∗)PH2

=

[
DB∗

−B

]
DB∗ .

Observe that DB∗ maps H2 onto a dense subspace of ker(I −BB∗)⊥, and

ker(I −BB∗) = RanV ∩H2 ⊂ ker(I − V V ∗) ∩H2.

The range of [
DB∗

−B

]
is easily seen to be the orthogonal complement of RanV , so this is D. Re-
stricting this map to the range of DB∗ does not affect the closed range, since
we only miss some of the kernel. Thus WH2 is dense in D. Therefore this is a
minimal extremal coextension.

Now we consider uniqueness. To this end, suppose that τ ′ is a minimal extremal
coextension of ρ on

L′ = H1 ⊕H2 ⊕ L3.

Then we can write

τ ′(n) = W ′ =

 0 0 0
B 0 0
X Y Z

 .
This is a partial isometry satisfying

W ′2 = 0 and W ′W ′∗ +W ′∗W ′ = I.

In particular, H1 is orthogonal to the range of W ′, so the restriction of W ′ to
H1 is an isometry. Therefore

X = UPDBDB
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where U is an isometry of DB into L3. Split

L3 = UDB ⊕ L4 ' DB ⊕ L4.

By identifying the range of U with DB , we have the refined form

W ′ =


0 0 0 0
B 0 0 0

PDBDB X1 Y1 Z1

0 X2 Y2 Z2

 .
The range of W ′H⊥1 is orthogonal to

W ′H1 ∨H2 = H2 ⊕DB .

So

X1 = Y1 = Z1 = 0.

Next note that minimality ensures that X2 has dense range in L4. So L4 is in

RanW ′ = kerW ′∗.

Hence Z2 = 0. Observe that

RanW ′ = RanV ⊕ L4,

and hence

RanW ′∗ = (RanW ′)⊥ = H1 ⊕D.

Moreover, the operator [
X2 Y2

]
is an isometry of D onto L4. Hence we may identify L4 with D in such a way
that we obtain [

X2 Y2

]
' PD(IK2

− V V ∗).

This shows that W ′ is unitarily equivalent to W via a unitary which fixes H.
Therefore the minimal extremal coextension is unique.

The proof for extensions follows immediately since A∗ is unitarily equivalent
to A.

Corollary 6.2. Every representation of the algebra A is Shilov.

Proof. By the previous theorem, one can extend ρ to a maximal dilation π.
Thus ρ is obtained as the restriction of a maximal representation to an invariant
subspace; i.e. it is Shilov.
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Example 6.3. Take ρ to be the character representation on H = C given by

ρ(aI2 + bn) = a.

This coextends to a maximal representation on K = H⊕ C as

σ(aI2 + bn) =

[
a 0
b a

]
.

It also extends to a maximal representation τ on K = C⊕H where

τ(aI2 + bn) = [ a 0
b a ] .

Note that σ and τ are not unitarily equivalent by a unitary which fixes H. So
these are inequivalent minimal maximal dilations.

Corollary 6.4. The minimal maximal dilation of a representation ρ of A is
not unique except when ρ is already maximal.

Proof. Let τ be the minimal extremal coextension of ρ, and let σ be the minimal
extremal extension of ρ. Then in the first case, H is identified with a coinvariant
subspace and in the latter with an invariant subspace. If these two dilations
are unitarily equivalent via a unitary which fixes H, then H is reducing, and
therefore by minimality, ρ = τ is maximal.

Next we show that A has commutant lifting.

Theorem 6.5. The algebra A of 2× 2 matrices of the form[
a 0
b a

]
has SCLT, SCLT* and MCLT, but not SMCLT.

Proof. It is enough to verify CLT. Since the minimal fully extremal coextensions
are unique, it then has SCLT by Theorem 5.7. Since A∗ ' A, it has SCLT* as
well. Thus by Theorem 5.14, it has MCLT. But by Theorem 5.15, it does not
have SMCLT.

We make use of the construction of the minimal extremal extension in the proof
of Theorem 6.1. Write

ρ(n) = N =

[
0 0
B 0

]
as before on

H = H1 ⊕H2 where H2 = RanN.

Suppose that it commutes with a contraction T . Then it is routine to check
that

T =

[
X 0
Y Z

]
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such that
BX = ZB.

Coextend ρ to the coextension σ on

K = H1 ⊕H2 ⊕DB

where

σ(n) = S =

 0 0 0
B 0 0
DB 0 0

 .
We first find a coextension of T to T̃ which commutes with S and has norm
one.

Consider the isometric dilation of N . Observe that

DN = (I −N∗N)1/2 =

[
DB 0
0 I

]
.

So the minimal isometric dilation acts on

(H1 ⊕H2)⊕ (DB ⊕H2)(∞),

and has the form

U =



0 0 0 0 0 0 0 0 . . .
B 0 0 0 0 0 0 0 . . .
DB 0 0 0 0 0 0 0 . . .
0 I 0 0 0 0 0 0 . . .
0 0 I 0 0 0 0 0 . . .
0 0 0 I 0 0 0 0 . . .
...

...
...

. . .
. . .

. . .
. . .

. . .
. . .


Notice that S is the upper left 3× 3 corner. By the Sz.Nagy-Foiaş Commutant
Lifting Theorem, we can coextend T to a contraction R commuting with U . It
has the form

R =


X 0 0 . . .
Y Z 0 . . .
C1 C2 C3 . . .
...

...
...

. . .


It is routine to verify that

T̃ =

X 0 0
Y Z 0
C1 C2 C3


commutes with S.
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Now we repeat the argument with S and T̃ . The same procedure was shown
in Theorem 6.1 to yield the minimal (fully) extremal coextension τ of ρ. The
operator T̃ is coextended once again to obtain a contraction commuting with
τ(n) = W . This establishes SCLT.

Remark 6.6. We will show that in the commutant lifting theorem for A, it
is not possible to coextend so that T̃ is an isometry. In the language of the
next section, this will show that A does not have ICLT (isometric commutant
lifting) nor the Ando property.

To see this, consider the identity representation

id(n) = N =

[
0 0
1 0

]
on H = C2. Then id(A) commutes with T = N . Suppose that there were a
coextension of id and T to σ and an isometry V on K so that σ(A) commutes
with V . Since id is maximal, σ = id⊕ τ . So

σ(n) = M = N ⊕M0

where M2
0 = 0. Let the canonical basis for H be e1, e2. Since Te2 = 0, we have

V e2 = v is a unit vector in H⊥; while

V e1 = Te1 = e2.

Therefore
v = V e2 = VMe1 = MV e1 = Me2 = 0.

This contradiction shows that no such coextension is possible.

7 Isometric Commutant Lifting and Ando’s Theorem

Paulsen and Power [47] formulate commutant lifting and Ando’s theorem in
terms of tensor products. In doing so, they are also able to discuss lifting com-
muting relations between two arbitrary operator algebras. They are interested
in dilations which extend to the enveloping C*-algebra, which are the maximal
dilations when this C*-algebra is the C*-envelope. The Paulsen-Power version
of Ando’s theorem involves maximal dilations and a commuting unitary. The
classical Ando Theorem, from our viewpoint, states that two commuting con-
tractions have coextensions to commuting isometries. We will give a similar
definition using extremal co-extensions instead which is actually stronger than
the Paulsen-Power version.

Definition 7.1. We say that A has isometric commutant lifting (ICLT) if
whenever ρ is a representation of A on H commuting with a contraction X,
then there is a coextension σ of ρ and an isometric coextension V of X on a
common Hilbert space K so that σ(A) and V commute.
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Remark 7.2. We can see ICLT as a commutant lifting result for A(D) relative
to A. More generally, we can formulate a relative commutant lifting property
for two operator algebras. We define this here, but will not pursue it except in
the case above. LetA and B be unital operator algebras. Say thatA has B-CLT
(or commutant lifting with respect to B) if whenever α and β are (completely
contractive) representations of A and B on a common Hilbert space H which
commute:

α(a)β(b) = β(b)α(a) for all a ∈ A and b ∈ B,
then there exists an extremal coextension σ of α on a Hilbert space K and a
coextension τ of β on K which commute.

Because there is no uniqueness for the classical Ando’s theorem, we do not seek
a strong form. So we do not use the adjective weak either. Note that ICLT is
not stronger than WCLT because the extremal condition is on the isometry, not
on the coextension of A. Nevertheless it does imply a much stronger conclusion,
as we show in Theorem 7.3 below.

It is often observed that Ando’s Theorem is equivalent to commutant lifting.
However neither direction is completely trivial. From Ando’s theorem, one
easily gets WCLT. So the uniqueness of the minimal isometric coextension, and
the fact that this is fully extremal, then yields SCLT. Conversely, in deducing
Ando’s theorem from WCLT, one is really using WCLT for both contractions.
One iteratively dilates one contraction to an isometry and lifts the other to
commute. The inductive limit is a pair of commuting isometries. We will see
this more clearly for operator algebras other than the disk algebra.

The next result shows that the Paulsen-Power version of Ando’s theorem is
equivalent to ICLT. It also shows why we consider A-CLT for A(D) as a strong
property for A, and makes it worthy of the term ICLT.

Theorem 7.3. For a unital operator algebra A, the following are equivalent:

(i) A had ICLT; i.e. if ρ is a representation of A on H commuting with
a contraction X, then there is a coextension σ of ρ and an isometric
coextension V of X on a common Hilbert space K which commute.

(ii) If ρ is a representation of A on H commuting with a contraction X, then
there is a Shilov coextension σ of ρ and an isometric coextension V of X
on a common Hilbert space K which commute.

(iii) If ρ is a representation of A on H commuting with a contraction X, then
there is a simultaneous dilation of ρ to a maximal dilation π on K and
of X to a unitary U commuting with π(A); i.e. there is a Hilbert space
K ⊃ H, a ∗-representation π of C∗e(A) on K and a unitary operator U
on K commuting with π(C∗e(A)) so that

PHπ(a)Un|H = ρ(a)Xn

for all a ∈ A and n ≥ 0.



46 K.R. Davidson and E.G. Katsoulis

Proof. It is evident that (iii) implies (ii) by restriction to the smallest invariant
subspace containing H. And (ii) clearly implies (i). So assume that (i) holds.
We will establish (iii).

First we dilate σ and V to τ and W so that W is unitary and commutes with
τ(A). To accomplish this, consider the system with Kn = K and V considered
as a map from Kn into Kn+1:

K1
V //

V

��

K2
V //

V

��

K3
V //

V

��

. . . // P

W

��
K1

V // K2
V // K3

V // . . . // P

Then P is the Hilbert space direct limit of copies of K under V . Let Jn denote
the canonical injection of Kn into P. Thus

Jn = Jn+1V for n ≥ 1.

The map V also determines isometries acting on each Kn, which we also denote
by V . The direct limit of this system of maps is a unitary W on P such that
its restriction to each Kn coincides with V . Hence

JnV = WJn for n ≥ 1.

In particular, W is an extension of V acting on K1, which we identify with K.

We define a representation τ of A on P by

τ(a)Jnk = Jnσ(a)k for a ∈ A, k ∈ Kn and n ≥ 1.

Clearly each subspace JnKn is invariant for τ and the restriction of τ to Kn
is equivalent to σ. In particular, τ is an extension of σ, where we identify K
with K1. Additionally, since τ is completely contractive when restricted to each
JnKn, we see that τ is completely contractive. Finally, for a ∈ A and k ∈ Kn
for n ≥ 2,

τ(a)WJn(a)k = τ(a)JnV k = τ(a)Jn−1k

= Jn−1σ(a)k = JnV σ(a)k

= WJnσ(a)k = Wτ(a)Jnk.

Therefore, W commutes with τ(A).

The completely contractive map τ extends to a unique completely positive
unital map on the operator system

A+A∗ ⊂ C∗e(A).

By Fuglede’s Theorem, W commutes with τ(A) + τ(A)∗. The commutant N
of W is a type I von Neumann algebra, and therefore it is injective. Therefore
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by Arveson’s Extension Theorem, there is a completely positive extension of
τ to C∗e(A) with range in N. By Stinespring’s Dilation Theorem, there is a
minimal dilation to a ∗-representation π of C∗e(A) on a larger Hilbert space.
Now a commutant lifting result of Arveson [5, Theorem 1.3.1] shows that there
is a unique extension of W to an operator U commuting with π(C∗e(A)). This
extension map is a ∗-homomorphism, so U is unitary. Moreover the fact that
the restriction of π|A to the space P is a homomorphism means that π is a
maximal dilation of τ , and hence of ρ.

The following corollary is a consequence of (i) implies (iii) above.

Corollary 7.4. Property ICLT implies MCLT for A.

Another easy corollary is a consequence of the fact that (iii) is symmetric.

Corollary 7.5. Property ICLT is equivalent to ICLT*. So if A has ICLT, so
does A∗.

Example 7.6. Finite dimensional nest algebras have ICLT by Paulsen and
Power [46, 47]. They actually prove variant (iii). They also claim that the
minimal ∗-dilation is unique. This follows because finite dimensional nest al-
gebras are Dirichlet. So by Theorem 5.15, they have SMCLT.

Dirichlet implies semi-Dirichlet for the algebra and its adjoint. So there are
unique minimal fully extremal (co)extensions. The proof of ICLT in fact first
coextends to an isometry in the commutant. Hence finite dimensional nest
algebras have SCLT and SCLT*.

Nest algebras have the SCLT, SCLT* and MCLT for weak-∗ continuous com-
pletely contractive representations.

The first part of the following proposition uses exactly the same proof as Propo-
sition 5.19 with the exception that the dilation Ỹ obtained can be taken to be
a unitary operator when ICLT is invoked.

Proposition 7.7. Suppose that A has ICLT. Let ρi be representations of A
on Hi for i = 1, 2. Suppose that X is a contraction in B(H2,H1) such that

ρ1(a)X = Xρ2(a) for all a ∈ A.

Then there are maximal dilations πi of ρi acting on Ki ⊃ Hi for i = 1, 2 and a
unitary operator U simultaneously dilating X in B(K2,K1) so that

π1(a)U = Uπ2(a) for all a ∈ A.

Consequently, there exist Shilov coextensions σi of ρi on Li and a coextension
of X to an isometry V ∈ B(L2,L1) so that

σ1(a)V = V σ2(a) for all a ∈ A.
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Proof. We only discuss the second statement. Let πi act on Ki = K−i ⊕Hi⊕K
+
i ,

where Li = Hi ⊕K+
i and K+

i are invariant subspaces for πi(A). With respect
to these decompositions, we have the matrix forms

πi(a) =

∗ 0 0
∗ ρi(a) 0
∗ π32(a) π33(a)

 and U =

∗ 0 0
∗ X 0
∗ U32 U33

 .
Set

σi(a) = PLiπi(a)|Li =

[
ρi(a) 0
π32(a) π33(a)

]
for i = 1, 2.

and

V = PL1
U |L2

=

[
X 0
U32 U33

]
Then σi are Shilov coextensions of ρi, V is an isometry, and

σ1(a)V = PL1π1(a)|L1PL1U |L2

= PL1π1(a)UPL2 = PL1Uπ2(a)PL2

= PL1UPL2π2(a)PL2 = V PL2π2(a)|L2

= V σ2(a).

We ask a bit more for what we will call the Ando property. This is stronger
than the classical Ando Theorem for A(D). The weak version for A(D) is just
Ando’s Theorem.

Definition 7.8. A unital operator A satisfies the Ando property if whenever ρ
is a representation of A on H and X ∈ B(H) is a contraction commuting with
ρ(A), there is a fully extremal coextension σ of ρ on a Hilbert space K and a
coextension of X to an isometry on K which commute.

Likewise say that A satisfies the weak Ando property if whenever ρ is a rep-
resentation of A on H and X ∈ B(H) is a contraction commuting with ρ(A),
there is an extremal coextension σ of ρ on a Hilbert space K and a coextension
of X to an isometry on K which commute.

If A∗ has the (weak) Ando property, say that A has the (weak) Ando* property.

It is apparent that the Ando property implies CLT and ICLT for A; and the
weak Ando property implies WCLT and ICLT. The converse of the latter fact
follows the same lines as the classical deduction of Ando’s theorem from CLT.
But the converse for the full Ando property is more difficult. The difference is
that an extremal coextension of a coextension is extremal, but a fully extremal
coextension of a coextension is generally not fully extremal. So more care has
to be taken, and a Schaeffer type construction makes it work.

Proposition 7.9. A unital operator algebra A has the weak Ando property if
and only if A has WCLT and ICLT.
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Proof. Let ρ be a representation of A which commutes with a contraction X.
Assume WCLT and ICLT. Coextend ρ andX to an extremal coextension σ1 and
a commuting contraction Y1 using WCLT. Then coextend σ1 to ρ1 and Y1 to
dilate to a commuting isometry by ICLT. Iterate these procedures recursively.
The inductive limit has the desired properties.

Theorem 7.10. A unital operator algebra A has the Ando property if and only
if A has CLT and ICLT.

Proof. Let ρ be a representation of A which commutes with a contraction X.
Assume CLT and ICLT. Use CLT to coextend ρ and X to a fully extremal
coextension σ and a commuting contraction Y on K ⊃ H. Then use ICLT to
coextend this to a Shilov dilation τ and commuting isometry V on L = K⊕L′.
Since σ is extremal, τ = σ ⊕ τ ′. Write

V =

[
Y 0
Z V ′

]
with respect to this decomposition of L. Then

τ ′(a)Z = Zσ(a) for a ∈ A.

Since τ is Shilov, there is a maximal dilation π which is an extension of τ on a
Hilbert spaceM containing L as an invariant subspace. So L′ is also invariant,
as it reduces π(A)|L = τ(A). Let P be the projection of M onto L′. Then

π(a)P = τ ′(a)

and thus
π(a)(PZ) = Pτ ′(a)Z = (PZ)σ(a) for all a ∈ A.

The representation σ⊕ π(∞) is a fully extremal coextension of ρ. Moreover, X
coextends to Y which coextends to

W =



Y 0 0 0 . . .
PZ 0 0 0 . . .
0 I 0 0 . . .
0 0 I 0 . . .

0 0 0
. . .

. . .
...

...
...

. . .
. . .


.

It is easy to see that W is an isometry. The relations established in the previous
paragraph ensure that W commutes with (σ⊕π(∞))(A). Thus we have verified
that A has the Ando property.

This yields a strengthening of the classical Ando Theorem. The usual Ando
Theorem verifies the weak Ando property, and hence ICLT. But the disk algebra
has SCLT. So by Theorem 7.10, it has the Ando property. We provide a direct
proof that is of independent interest.
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Corollary 7.11. The disk algebra has the Ando property; i.e. if A1 and A2

are commuting contractions on H, then they have commuting isometric coex-
tensions Vi on a common Hilbert space K. Moreover, we can arrange for V2

to be a fully extremal coextension (i.e. VA2
⊕ U , where VA2

is the minimal
isometric coextension and U is unitary).

Proof. If A is a contraction, let VA denote the unique minimal isometric coex-
tension of A. Let Vi be isometric dilations of Ai, i = 1, 2, acting on a common
Hilbert space K = H ⊕ K′. (The minimal dilations may not have additional
subspaces of the same dimension, for example if one is already an isometry. In
this case, we just add a unitary summand to one of them.) Let V = VA1A2

.

Note that both V1V2 and V2V1 are isometries of the form[
A1A2 0
∗ ∗

]
.

So by the uniqueness of the minimal dilation, we can write

V1V2 ' V ⊕W1 and V2V1 ' V ⊕W2,

where Wi is an isometry acting on a Hilbert space Ki (possibly of dimension
0).

Now we dilate A1 to
S1 := V1 ⊕W (∞)

1 ⊕W (∞)
2

and dilate A2 to
S2 := V2 ⊕ I(∞)

K1
⊕ I(∞)
K2

on
K ⊕K(∞)

1 ⊕K(∞)
2 .

So

S1S2 ' V ⊕W1 ⊕W (∞)
1 ⊕W (∞)

2 ' V ⊕W (∞)
1 ⊕W (∞)

2

and

S2S1 ' V ⊕W2 ⊕W (∞)
1 ⊕W (∞)

2 ' V ⊕W (∞)
1 ⊕W (∞)

2 .

These unitary equivalences both fix H. Therefore there is a unitary operator
U that fixes H so that

S2S1 = U∗S1S2U.

Now define isometric dilations U∗S1 of A1 and S2U of A2. Then

(U∗S1)(S2U) = U∗S1S2U = S2S1 = (S2U)(U∗S1).

This yields a commuting isometric dilation.

Moreover, if

VA2
=

[
A2 0
D2 J

]
,
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then S2U has the form

S2U '

A2 0 0
D2 J 0
0 0 I

I 0 0
0 U22 U23

0 U32 U33

 '
A2 0 0
D2 J 0
0 0 U ′


The basic observation is that J ⊕ I is an isometry on H⊥ with range equal to
the orthocomplement of RanD2. The same is therefore true for the lower 2×2
corner of S2U . By the uniqueness of the minimal isometric dilation, this corner
splits as a direct sum J ⊕ U ′ where U ′must map onto the complement of the
range of D and J . So U ′ is unitary as claimed.

Example 7.12. One might ask to dilate both A1 and A2 to commuting isome-
tries of the form VAi⊕Ui with Ui unitary. This is not possible, as the following
example due to Orr Shalit shows. Let

A1 = 0 and A2 = S,

where S is the unilateral shift on H = `2. Then

VA2
= A2 = S

and
VA1 = I ⊗ S acting on H⊗ `2.

Suppose that U ∈ B(H0) is unitary, and that

W1 = U ⊕ VA1

commutes with

W2 = A2 ⊕X = S ⊕X (with H appropriately identified).

Then they can be written as

W1 =


U 0 0 0 . . .
0 0 0 0 . . .
0 I 0 0 . . .
0 0 I 0 . . .
...

...
...

. . .
. . .

 and W2 =


X00 0 X02 X03 . . .

0 S 0 0 . . .
X20 0 X22 X23 . . .
X30 0 X32 X33 . . .

...
...

...
. . .

. . .

 .

Computing the two products yields

UX00 0 UX02 UX03 . . .
0 0 0 0 . . .
0 S 0 0 . . .
X20 0 X22 X23 . . .
X30 0 X32 X33 . . .

...
...

...
. . .

. . .


=



X00U X02 X03 X04 . . .
0 0 0 0 . . .
0 S 0 0 . . .

X20U X22 X23 X24 . . .
X30U X32 X33 X34 . . .

...
...

...
. . .

. . .


.
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Equating terms shows that

X00U = UX00, Xjj = S for j ≥ 2 and Xij = 0 otherwise.

Thus

W2 ' X00 ⊕ (S ⊗ I),

which is not VA2
direct sum a unitary.

Katsoulis and Kakariadis [32, Theorem 3.5] (in the special case of the identity
automorphism) show that every tensor algebra of a C*-correspondence has the
weak Ando property. As noted in Example 5.3, the Muhly-Solel Commutant
Lifting Theorem [42] shows that the tensor algebra T +(E) of a C*-corresp-
ondence E satisfies SCLT. Thus tensor algebras have the Ando property by
Theorem 7.10. This forms a large class of algebras with this property. This
includes all tensor algebras of graphs. The case of the non-commutative disk
algebra follows from [17]. We would like to know if all semi-Dirichlet algebras
have this property.

Theorem 7.13 (Katsoulis-Kakariadis). The tensor algebra of a C*-
correspondence has the Ando property.

Corollary 7.14. The tensor algebra of a directed graph has the Ando property.
In particular, the non-commutative disk algebras have this property.

The proof in [32] proves more, providing a lifting for relations that intertwine an
automorphism. More will be said about this later when we discuss semi-crossed
products.

Another proof can be based on an Ando type theorem of Solel [56, Theorem 4.4].
He shows that any representation of a product system over N2 coextends to
an isometric representation. One can think of a product system over N2 as a
pair of C*-correspondences over N together with commutation relations. Here
we only need a special case, where there is one C*-correspondence E over N,
and take the second correspondence to be F = C with the relations that F
commutes with E. Then a representation ρ of T +(E) which commutes with
a contraction X determines a representation of the product system. Applying
Solel’s Theorem yields the desired isometric lifting. This verifies ICLT and, in
fact, the weak Ando property. Now Theorem 7.10 shows that T +(E) has the
Ando property.

We finish this section by giving the intertwining version of the Ando property.

Theorem 7.15. Suppose that A has the Ando property. Suppose also that
ρ1 and ρ2 are representations of A on H1 and H2 and X is a contraction in
B(H2,H1) satisfying

ρ1(a)X = Xρ2(a) for all a ∈ A.
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Given a fully extremal coextension σ2 of ρ2, there exist a fully extremal coexten-
sion σ̃1 of ρ1 on K1, a maximal representation π determining a fully extremal
coextension σ̃2 = σ2 ⊕ π of ρ2 on K2, and an isometry W ∈ B(K2,K1) so that

PH1
W = XPH2

,

and

σ̃1(a)W = Wσ̃2(a) for all a ∈ A.

Proof. The proof parallels the proof of Theorem 7.10 using the intertwining
versions of CLT and ICLT. So we just sketch the plan.

One starts with the fully extremal coextension σ2 of ρ2 on K2. By Theo-
rem 5.12, coextend X to Y and ρ1 to a fully extremal σ1 on K1 so that

σ1(a)Y = Y σ2(a) for all a ∈ A.

Then use Proposition 7.7 to coextend Y to an isometry V and σi to a Shilov
representation τi on Li so that

τ1(a)V = V τ2(a) for all a ∈ A.

Since σi are fully extremal, we have τi = σi ⊕ τ ′i . If Z = PL1	K1V |K2 is the
2, 1 entry of V with respect to the decompositions Li = Ki ⊕ (Li 	Ki), then

τ ′1(a)Z = Zσ2(a) for all a ∈ A.

Since τi are Shilov, so are τ ′i . So choose maximal representations πi on Pi
which have invariant subspaces Mi so that πi|Mi

' τ ′i . Set

σ̃1 = σ1 ⊕ (π1 ⊕ π2)(∞) and σ̃2 = σ2 ⊕ (π2 ⊕ π1)(∞).

Then the isometry

W ∈ B(K2 ⊕ (P2 ⊕ P1)(∞),K1 ⊕ (P1 ⊕ P2)(∞)

described in the proof of Theorem 7.10 is the desired intertwiner. The details
are left to the reader.

8 Incidence Algebras

An incidence algebra is a subalgebra A of the n× n matrices, Mn, containing
the diagonal algebra Dn with respect to a fixed orthonormal basis. Clearly, A
is spanned by the matrix units Eij that it contains. One can define a partial
order R on {1, 2, . . . , n} by

i ≺ j (or (i, j) ∈ R) if Eij ∈ A.
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This can be identified with a directed graph, but note that generally the algebra
is not the same as the tensor algebra of the graph. There is a reduced partial
order obtained by identifying equivalent indices

i ≡ j if i ≺ j and j ≺ i.

The representation theory of the algebra of a partial order and its reduced
partial order are related simply by multiplicity.

The algebra A∩A∗ is a C*-algebra containing the diagonal Dn, and is spanned
by {Eij : i ≡ j}. A representation ρ restricts to a completely contractive
representation of A ∩ A∗, and thus is a ∗-representation. So each diagonal
matrix unit Eii is sent to an orthogonal projection Pi = ρ(Ei) onto a subspace
Hi. Since ρ is unital,

H =
∑

1≤i≤n

⊕Hi.

In general, there are contractions Tij ∈ B(Hj ,Hi) so that

ρ(Eij) = PiTijPj .

When i ≡ j, Tij is a unitary and Tji = T ∗ij . The homomorphism property
shows that

Tik = TijTjk when i ≺ j ≺ k.

These relations are sufficient to determine an algebraic homomorphism.

Not all choices of contractions {Tij : (i, j) ∈ R} yield a completely contractive
representation in general. However this does hold in some situations. Paulsen
and Power [46] establish this for nest algebras. Davidson, Paulsen and Power
[22] establish this for bilateral tree algebras. These are the algebras where the
reduced relation is generated as a transitive relation by a directed bilateral
tree (a directed graph with no loops). Finally the class of all such algebras was
determined by Davidson in [15] as the interpolating graphs.

Muhly and Solel consider unilateral tree algebras, which are the incidence al-
gebras A which are semi-Dirichlet. They show that graphically means that the
relation is generated by a directed unilateral tree (each vertex is the range of
at most one edge and there are no loops). These incidence algebras actually
coincide with the tensor algebra of the unilateral tree because there is always
at most one edge into each vertex. For example, the algebra

A = span{E11, E22, E33, E13, E23},

which is determined by the graph formed by edges from v3 to each of v1 and v2,
is a unilateral tree algebra. However A∗, which is determined by edges from v1

and v2 into v3 is not a unilateral tree algebra, but it is a bilateral tree algebra.
See [40, Chapter 5] for a discussion of “trees and trees”.
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If ρ is a representation of an incidence algebra A as above, then a coextension
σ will act on a Hilbert space

K =
∑

1≤i≤n

⊕Ki,

where Ki ⊃ Hi is the range of the projection σ(Eii), and is determined by
coextensions Vij of Tij in B(Kj ,Ki) of the form

Vij =

[
Tij 0
Dij Sij

]
with respect to the decompositions Ki = Hi⊕K′i. The homomorphism property
requires that

VijVjk = Vik whenever i ≺ j ≺ k.

In general, these are complicated relations to dilate. One of the simplest ex-
amples where things get complicated is the 2k-cycle graph C2k for k ≥ 2. This
graph has vertices {1, 2, . . . , 2k} and edges

2i+ 1 � 2i, 2i+ 1 � 2i+ 2 and 1 � 2k.

The algebra for this graph has representations such that ρ(eij) = Tij are all
contractions, but ‖ρ‖cb > 1 [15, Theorem 2.2]. This is related to the famous
example of Parrott [44] for A(D3) and a similar example due to Paulsen and
Power [47, Theorem 3.1] for the incidence algebra T2 ⊗ T2 ⊗ T2, where T2 is
the algebra of 2× 2 upper triangular matrices. Also see the exposition in [14,
Example 20.27].

The case of bilateral tree algebras is more condusive to analysis.

Theorem 8.1. Let A be a bilateral tree incidence algebra. Then a representa-
tion ρ is an extremal coextension if and only if each edge Eij is mapped to a
partial isometry Vij such that V ∗ijVij = ρ(Eii).

If ρ is a representation, then a coextension σ of ρ is fully extremal if and only
if it is extremal and Ki = Hi ∨ VijKj for all edges of the tree.

Proof. The key observation from [22] is that every matrix unit in A factors
uniquely as a product of matrix units in the tree T , corresponding to the
combinatorial fact that every edge in the transitive relation corresponds to the
unique path on the tree from one vertex to another. Thus if for each matrix
unit in the tree, Tij = ρ(Eij)|Hj is coextended to Vij , then we can extend
this definition to every matrix unit in a unique way; and the homomorphism
property guarantees that each is a coextension of Tij . It is possible to coextend
each Tij in the tree to an isometry from Kj to Ki. If more than one edge is
entering a single vertex i, then one has to ensure that Ki is large enough to
accomodate all Tij . (Of course, the ranges can overlap or even coincide.) By
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[22], this representation is still completely contractive. Thus to be extremal,
each ρ(Eij) needs to be isometric from Kj into Ki.
Conversely, if each Tij = ρ(Eij)|Hj is an isometry on Hj , consider any co-
extension σ of ρ. Then each σ(Eii) has range Ki ⊃ Hi, and each isometry
Tij coextends to a contraction Sij = σ(Eij)|Kj . Therefore Sij |Hj = Tij and
Sij |Kj	Hj is a contraction with range orthogonal to Hi. Hence K′ = K 	H is
reducing. Therefore σ decomposes as a direct sum of ρ and σ′ = σ|K′ .
Fully extremal coextensions of ρ are more complicated. If we start with ρ, and
coextend to an extremal σ, so that each Tij is coextended to an isometry Vij ,
it may be possible to dilate σ to τ �c ρ if there is some ‘room’ left. More
precisely, if for some edge Eij in the tree, we have

Ki 6= Hi ∨ VijKj ,

then one can extend σ to τ , a coextension of ρ, to use this extra space. Pick a
vector e ∈ K′i = Ki 	Hi which is orthogonal to the range of Vij . Form

K̃j = Kj ⊕ Cf.

Extend Vij to

Ṽij := Vij + ef∗.

It is apparent that this is indeed a coextension of ρ and an extension of σ which
is not obtained as a direct sum. So σ is not fully extremal.

Conversely, if for all edges i ≺ j of the tree,

Ki = Hi ∨ VijHj

then for any extension τ of σ, the operators Ṽij = τ(Eij) will have to map any

new summand of K̃j , namely K̃j	Kj , to a space orthogonal to Hi because it is

a coextension of ρ, and orthogonal to VijKj because Ṽij is a contraction. Hence

by hypothesis, it maps into K̃i 	Ki. This makes it apparent that τ splits as a
direct sum of σ and another representation. Therefore σ is fully extremal.

Corollary 8.2. Every Shilov extension of a bilateral tree algebra A is ex-
tremal.

Proof. A maximal representation π of A extends to a ∗-representation of Mn.
In particular, each π(Eij) is a unitary from Hj onto Hi. Thus any restriction
σ to an invariant subspace sends each vertex to a projection onto a subspace
Ki ⊂ Hi and each edge Eij to an isometry of Kj into Ki. By Theorem 8.1, σ
is extremal.

Remark 8.3. Since ρ(Eii) can be 0, an isometry can be vacuous. So for the
algebra An of Example 3.2, the coextensions σ2i are all extremal. But to be
fully extremal, each edge has to be mapped to an isometry with maximal range,
so only σn is fully extremal.
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Uniqueness. Let us explain why only the unilateral tree algebras have unique
minimal fully extremal coextensions. The unilateral tree algebras are semi-
Dirichlet. So this property is a consequence of Theorem 4.6.

A typical example is

A = span{E21, E31,D3} ⊂M3.

Consider a representation ρ on H = H1 ⊕ H2 ⊕ H3 where ρ(Ei1) = Ti for
i = 2, 3. Let

Di = PDi(I − T ∗i Ti)1/2 ∈ B(H1,Di),

where

Di = Ran(I − T ∗i Ti)

is the closed range of (I − T ∗i Ti)1/2. Coextend ρ to σ on K = K1 ⊕ K2 ⊕ K3

where

K1 = H1 and Ki = Hi ⊕Di for i = 2, 3

by setting

Vi1 =

[
Ti
Di

]
.

This is easily seen to be a fully extremal coextension by the previous proposi-
tion.

Any other isometric coextension τ will act on a Hilbert space L where Li =
Hi ⊕ L′i, and

τ(Ei1) =

[
Ti 0
UiDi Si

]
for i = 2, 3.

Here Ui is an isometric imbedding of Di into L′i and Si is an isometry of L′1
into L′i with range orthogonal to the range of[

Ti
UiDi

]
.

A bit of thought shows that this splits as a direct sum of a representation on

H1 ⊕ (H2 ⊕ U2D2)⊕ (H3 ⊕ U3H3)

which is unitarily equivalent to σ and another piece.

On the other hand, any graph which is a bilateral tree but not a unilateral
tree will have two edges mapping into a common vertex. The compression to
this three dimensional space yields the algebra A∗. We explain why A∗ has
non-unique minimal fully extremal coextensions.

Fix θ ∈ (0, π/4), and consider a representation ρ on

H = H1 ⊕H2 ⊕H3
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where Hi = C2 given by

ρ(E1i) = T =

[
cos θ 0

0 sin θ

]
for i = 2, 3.

Let

D = (I − T ∗T )1/2 =

[
sin θ 0

0 cos θ

]
.

Then for any unitaries Ui in the 2× 2 unitary group U2, we can coextend ρ to
an isometric representation σ on

K = C4 ⊕ C2 ⊕ C2

by setting

Vi =

[
Ti
UiD

]
for i = 2, 3.

These are all fully extremal coextensions of ρ by Theorem 8.1. Moreover they
are evidently minimal.

Consider when two such representations will be unitarily equivalent via a uni-
tary W which is the identity on H, and thus has the form

(I2 ⊕ V )⊕ I2 ⊕ I2.

Conjugation by W carries σ to the representation which replaces UiD by V UiD
for i = 1, 2. It is clear that one can arrange to match up the 1, 2 entry by
appropriate choice of V . But that leaves no control over the 1, 3 entry. The
possible minimal fully extremal coextensions of ρ are parameterized by U2.

Commutant lifting. Davidson, Paulsen and Power [22] showed that bilat-
eral tree algebras have ICLT, and hence MCLT. They do not generally have
SMCLT because of failure of unique dilations. Among finite dimensional inci-
dence algebras, these are precisely the algebras with ICLT [15, Theorem 4.6].

Muhly and Solel show that unilateral tree algebras satisfy SCLT. This now can
be seen from the fact that they have ICLT, whence MCLT. So by Theorem 4.6,
we can obtain unique minimal fully extremal coextensions, and that every
Shilov extension is fully extremal. So this implies SCLT.

The connected graphs which are unilateral trees and have adjoints which are
unilateral trees as well are evidently chains. So the incidence algebras with this
property are just direct sums of finite dimensional nest algebras. Since these
algebras are Dirichlet, they have many good properties from section 4.

Proposition 8.4. Bilateral tree algebras have WCLT and WCLT*, and well
as the weak Ando and Ando* properties.
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Proof. If A is a bilateral tree algebra, then so is A∗. So it suffices to prove
WCLT. Let ρ be a representation of A, and let X be a contraction commuting
with ρ(A). By [22], A has ICLT. Hence by Theorem 7.3 (ii), there is a Shilov
coextension σ and an isometric coextension V of X on K ⊃ H which commute.
By Corollary 8.2, σ is extremal. Thus A has WCLT and the weak Ando
property.

The goal now is to refine this construction to obtain fully extremal coextensions
to obtain CLT and hence the Ando property. We begin by establishing the
Ando property for T2, the 2× 2 upper triangular matrices. Since

T2 = span{E11, E12, E22},

a representation ρ is determined by ρ(Eii) = Pi = PHi , where H = H1 ⊕H2,
and a contraction X ∈ B(H2,H1) where ρ(E12) = P1XP2. A contraction A
commuting with ρ(T2) commutes with Pi, and so has the form A = A1 ⊕ A2;
plus we have A1X = XA2. Thus Ando’s Theorem for T2 can be reformulated
as a commutant lifting theorem:

Lemma 8.5. Suppose that Ai ∈ B(Hi) for i = 1, 2 and X ∈ B(H2,H1) are
contractions such that

A1X = XA2.

Then there are coextensions of Ai, i = 1, 2 and X to isometries Ãi in B(Ki)
and X̃ in B(K2,K1) so that

Ã1X̃ = X̃Ã2 and K1 = H1 ∨ X̃K2.

Proof. The algebra T2 is a tree algebra, and so has the weak Ando property by
the previous proposition. Hence there are isometric coextensions Bi of Ai and
Y of X so that

B1Y = Y B2,

acting on spaces Li ⊃ Hi. We will modify this to obtain the desired form.

Observe that the commutation relation implies that the range of Y is invariant
for B1. Let

L = H1 ∨ Y L2; and B′1 = PLB1|L.

Let Y ′ ∈ B(L2,L) be Y considered an an operator into L. Then

B′1Y
′ = PLB1PLY = PLB1Y = PLY B2 = Y ′B2.

Also since Y ′ is an isometry,

B2 = Y ′∗B′1Y
′.

In particular, the commutation relations hold, and

H1 ∨ Y L2 = L.
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The contraction B′1 may no longer be an isometry, but it is a coextension of
A1.

Let Ã1 be the minimal isometric dilation of B′1 on K1 ⊃ L. Write K′1 = K1	L.
With respect to K1 = L ⊕K′1, we have

Ã1 =

[
B′1 0
C D

]
.

Define
K2 = L2 ⊕K′1 and X̃ = Y ′ ⊕ I ∈ B(K2,K1).

Set

Ã2 = X̃∗Ã1X̃

=

[
Y ′∗ 0
0 I

] [
B′1 0
C D

] [
Y ′ 0
0 I

]
=

[
Y ′∗B′1Y

′ 0
CY ′ D

]
=

[
B2 0
CY ′ D

]
Thus A2 is a coextension of B2, and hence of A2. It is easy to verify that

Ã1X̃ = X̃Ã2.

Since Ã1 and X̃ are isometries, so is Ã2. Moreover, we now have

H1 ∨ X̃K2 = (H1 ∨ Y ′L2)⊕K′1 = K1.

Theorem 8.6. Bilateral tree algebras have the Ando and Ando* properties.

Proof. Again it suffices to establish the Ando property. We first assume that
the A ∩A∗ = Dn, so that the relation and reduced relation coincide.

Before proceeding, we make a few observations and set some notation. Suppose
that the tree T has vertices vi for 1 ≤ i ≤ n. Let ρ be a representation of the
algebra A commuting with a contraction A. Then since

ρ(vi) = Pi = PHi

are pairwise orthogonal projections summing to the identity, we see that

A =
∑

1≤i≤n

⊕Ai

where
Ai = A|Hi ∈ B(Hi).
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If eij is an edge of the tree, let

Tij = ρ(eij)|Hj ∈ B(Hj ,Hi).

We have

AiTij = TijAj ,

and conversely any A with these two properties commutes with A.

A finite bilateral tree has an elimination scheme, in the sense that every bilateral
tree has a vertex v which has at most one edge e such that either s(e) = v or
r(v) = v. This allows a proof by induction. So proceed by induction on the
number of vertices.

If the graph has a single vertex, then it has no edges and A = C. It is trivial
to verify Ando’s property in this case.

Now suppose that the result holds for every bilateral tree on fewer than n
vertices, and let T be a bilateral tree on n vertices. Let ρ and A be as above. We
may assume that T is connected; for otherwise we may dilate each component
by the induction hypothesis. So every vertex has an edge. Let vi0 be a vertex
with one edge e. Restrict the representation to T \{vi0 , e} acting on H⊥i0 , called
ρ′, commuting with A′ = A|H⊥i0 . Use the induction hypothesis to coextend ρ′

to a fully extremal coextension σ′ commuting with an isometric coextension B′

of A′. Let

Ranσ′(Eii) =: L′i for i 6= i0.

Then

B′ =
∑
i 6=i0

⊕B′i.

There are two cases: either s(e) = vi0 and r(e) = vj0 or r(e) = vi0 and
s(e) = vj0 . Assume the former. Let

ρ(e) = X ∈ B(Hi0 ,Hj0).

Then

Aj0X = XAi0 .

Use Lemma 8.5 to coextend Ai0 , Aj0 and X to isometries Ãi0 , Ãj0 and X̃ so
that

Ãj0X̃ = X̃Ãi0 and Kj0 = Hj0 ∨ X̃Ki0 .

We can decompose

Ãj0 = Vj0 ⊕Wj0 ,

where Vj0 is the minimal isometric coextension of Aj0 , with respect to

Kj0 = K0
j0 ⊕K

1
j0 .
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Similarly, decompose the isometry

B′j0 = Vj0 ⊕W ′j0

with respect to
L′j0 ' K

0
j0 ⊕ L

′1
j0 .

Define the coextension σ of ρ and isometric coextension B of A as follows. Set

Li = L′i ⊕K1
j0 for i 6= i0 and Li0 = Ki0 ⊕ L′1j0 .

Define

σ(eij) = σ′(eij)⊕ (Eij ⊗ IK1
j0

) for i 6= i0 and σ(e) = X̃ ⊕ IL′1j0
Bi = B′i ⊕Wi0 for i 6= i0 and Bi0 = Ãi0 ⊕Wj0 .

Here Eij⊗IK1
j0

is interpreted as the unitary that maps the copy of K1
j0

contained

in Lj to the corresponding copy in Li. One needs only verify that each σ(eij)
intertwines Bj with Bi and

Hi ∨ σ(eij)Lj = Li.

Both of these facts are routine. Thus a fully extremal coextension of ρ is
produced that commutes with an isometric coextension of A. This verifies
Ando’s property.

The second case, in which the edge e maps vj0 to vi0 is handled similarly by first
dilating the graph on n− 1 vertices, and producing a dilation of the one edge e
using Lemma 8.5. Then as above, split the two isometries over the vertex vj0
into the minimal isometric coextension direct summed with another isometry;
and then define an explicit coextension with the desired properties.

The following consequence is immediate.

Corollary 8.7. Bilateral tree algebras have CLT and CLT*.

9 The Fuglede Property

We introduce another property of an abstract unital operator algebra reminis-
cent of the classical Fuglede Theorem that the commutant of a normal operator
is self-adjoint.

Definition 9.1. Let A be a unital operator algebra with C*-envelope C∗e(A).
Say that A has the Fuglede Property (FP) if for every faithful unital ∗-
representation π of C∗e(A), one has

π(A)′ = π(C∗e(A))′.
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It is easy to characterize this property among abelian algebras.

Proposition 9.2. If A is an abelian operator algebra, then the following are
equivalent:

(i) A has the Fuglede property.

(ii) A is a function algebra.

(iii) C∗e(A) is abelian.

Proof. If (1) holds, then for every a ∈ A, π(a) lies in π(A)′ and hence in
π(C∗e(A))′. Thus π(C∗e(A)) is abelian. So (3) holds. If (3) holds, then A is a
function algebra since A separates points by the definition of the C*-envelope.
Finally if (2) holds, then π(A) is contained in π(C(X)) which is an algebra
of commuting normal operators. So the FP property follows from the usual
Fuglede Theorem.

The following is a useful class of operator algebras which has the FP property.

Proposition 9.3. Suppose that there is a family
{
Uk =

[
a

(k)
ij

]}
of unitary ma-

trices Uk ∈Mmk,nk(A) such that the set of matrix coefficients {a(k)
ij } generate

A as an operator algebra. Then A has FP .

Proof. If B commutes with π(A), then

B(m)π(Uk) = π(Uk)B(n).

By the Fuglede–Putnam Theorem, we obtain

B∗(m)Uk = UkB
∗(n).

Therefore B∗ commutes with each a
(k)
ij . As these generate A, we deduce that

π(A)′ is self-adjoint.

Example 9.4. The non-commutative disk algebras of Popescu, An, are gener-
ated by a row isometry S = [S1 . . . Sn]. The C*-envelope is the Cuntz algebra
On. As an element of M1,n(On), S is a unitary operator. Thus An has the FP
property. This property has been explicitly observed in [19, Proposition 2.10].

Example 9.5. The algebra A∞ generated by a countable family of isometries
with pairwise orthogonal ranges does not have the Fuglede property. This
is because ∗-representations of the C*-envelope, O∞, are determined by any
countably infinite family of isometries with pairwise orthogonal ranges, and
does not force the sum of these ranges to be the whole space. In the left regular
representation, the commutant of A∞ is the wot-closed algebra generated by
the right regular representation, which is not self-adjoint.
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Example 9.6. The algebra Ad of continuous multipliers on the Drury-Arveson
space H2

d is abelian, but the norm is not the sup norm. So this is not a function
algebra. Arveson [8] identifies the C*-envelope, which contains the compact
operators; so it is clearly not abelian.

Since Ad is a quotient of Ad, one sees that FP does not pass to quotients. One
can also see this by noting that there are quotients of functions algebras which
are not themselves functions algebras.

Example 9.7. The tensor algebra of any finite graph has FP. It does not follow
immediately from Proposition 9.3, but does follow by a simple modification. A
finite graph G = (V,E, r, s) consists of a finite set V of vertices, a finite set E of
edges, and range and source maps r, s : E → V . The graph C*-algebra C∗(G)
is the universal C*-algebra generated by pairwise orthogonal projections pv for
v ∈ V and partial isometries ue for e ∈ E such that∑

v∈V
pv = 1, u∗eue = ps(e) and

∑
r(e)=v

ueu
∗
e = pv

unless v is a source, meaning that there are no edges with range v. The ten-
sor algebra of the graph T +(G) is the non-self-adjoint subalgebra of C∗(G)
generated by

{pv, ue : v ∈ V, e ∈ E}.

Then C∗e(T (G)) = C∗(G) [29, 33].

Suppose that π is a ∗-representation of C∗(G) and T ∈ π(T (G))′. Then T
commutes with π(pv) =: Pv, and thus T = ⊕

∑
v∈V Tv where Tv ∈ B(PvH). If

there are edges with r(e) = v, say e1, . . . , ek, then let s(ei) = vi and consider

U =
[
π(ue1) . . . π(uek)

]
∈ B(Pv1H⊕ . . . PvkH, PvH).

This is a unitary element, and

TvU = U(Tv1 ⊕ · · · ⊕ Tvk).

By the Fuglede-Putnam Theorem, we also obtain

T ∗vU = U(T ∗v1 ⊕ · · · ⊕ T
∗
vk

).

If there are no edges with range v, there is nothing to check. We deduce as in
Proposition 9.3 that T +(G) has FP.

Example 9.8. The algebra of any finite k-graph has FP. This is established as
in the case of a 1-graph.

Example 9.9. Let N be a nest (a complete chain of closed subspaces of a
Hilbert space). Set

A = T (N ) ∩ K+,
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where T (N ) is the nest algebra [14] and K+ = CI + K is unitization of the
space of compact operators. By the Erdos Density Theorem, T (N ) ∩ K con-
tains a norm 1 approximate identity; and thus A is weak-∗ dense in T (N ).
Therefore its commutant is trivial, and coincides with the commutant of K+,
the enveloping C*-algebra. Moreover, K+ is the C*-envelope because K is the
only ideal, and the quotient q of K+ onto C is clearly not isometric on A. A
∗-representation of K+ has the form

π(A) = q(A)IK0
⊕A⊗ IK1

on a Hilbert space K = K0 ⊕ (H⊗K1). By the earlier remark, the commutant
of π(A) is seen to be

B(K0)⊕ (CIH ⊗ B(K1)),

which is the commutant of π(K+). So A has FP.

In particular, any finite dimensional nest algebra T ⊂Mn has FP.

Example 9.10. More generally, let L be a completely distributive commutative
subspace lattice (see [14]); and let Alg(L) be the corresponding CSL algebra.
Let M be a masa containing (the projections onto) L. Also let

N = Alg(L ∩ L⊥).

Observe that L ∩ L⊥ is a completely distributive Boolean algebra, and thus is
atomic. Therefore

N = ⊕
∑
i

B(Hi)

is an `∞ direct sum with respect to the decomposition H = ⊕
∑
iHi, where

Hi are the ranges of the atoms of L ∩ L⊥.

Also by complete distributivity, Alg(L)∩K has a norm one approximate identity.
So again A = Alg(L) ∩ K+ is weak-∗ dense in Alg(L). It is straightforward to
see that

C∗e(A) = {λI +⊕
∑
i

Ai : Ai ∈ K+(Hi) and lim
i
Ai = 0}.

The irreducible representations of C∗e(A) are unitarily equivalent to compres-
sion to some Hi and the character that evaluates λ. So every representation is
a direct sum of these irreducible ones with multiplicity. As in the nest case, it
is straightforward to show that

π(A)′ = π(C∗e(A))′.

So A has FP.

We have one minor result relating FP with commutant lifting.
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Proposition 9.11. If an operator algebra A has FP and MCLT, then it has
ICLT.

Proof. Suppose that ρ is a representation of A on H and X ∈ B(H) is a
contraction commuting with ρ(A). Then by MCLT, there is a maximal dilation
π of ρ and a contractive dilation Y of X which commutes with π(A) and has
H as a common semi-invariant subspace. Since π is maximal, it extends to a
∗-representation of C∗e(A) which we also denote by π. By the Fuglede property,
Y commutes with π(C∗e(A)). Hence C∗(Y ) is contained in π(C∗e(A))′.

The standard Schaeffer dilation of Y to a unitary U on K(∞) has coefficients
in C∗(Y ). So U commutes with π(∞). This establishes ICLT.

Corollary 9.12. If an operator algebra A has properties FP, WCLT and
WCLT*, then it has the weak Ando property.

If an operator algebra A has properties FP, CLT and CLT*, then it has the
Ando property.

Proof. Theorem 5.14 shows that WCLT and WCLT* imply MCLT. So by the
preceding proposition, we obtain ICLT. By Proposition 7.9 and Theorem 7.10,
WCLT and ICLT imply the weak Ando property and CLT and ICLT imply the
Ando property.

10 Completely Isometric Endomorphisms

In the category of operator algebras, the natural morphisms are completely
bounded maps. Among the endomorphisms, those that work best for semi-
crossed products are the completely isometric ones. These are the analogue
of the faithful ∗-endomorphisms of C*-algebras. In this section, we investi-
gate lifting completely isometric endomorphisms of operator algebras to ∗-
endomorphisms of some C*-cover.

Let Aut(A) denote the completely isometric automorphisms of an operator
algebra A. If A is a C*-algebra, then (completely) isometric automorphisms
are automatically ∗-automorphisms. If A ⊂ A, let

AutA(A) = {α ∈ Aut(A) : α(A) = A}.

Similarly, let End(A) denote the completely isometric unital endomorphisms of
A. Again, for a C*-algebra, these are faithful unital ∗-endomorphisms. When
A ⊂ A, we let

EndA(A) = {α ∈ End(A) : α(A) ⊂ A}.

First we begin with an easy result.
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Proposition 10.1. Let A be a unital operator algebra. Then every completely
isometric automorphism of A lifts to a ∗-automorphism of C∗e(A) which fixes
A (as a set). Thus

AutA(C∗e(A)) ' Aut(A)

by restriction to A.

Proof. Let α ∈ Aut(A). Consider A as a subalgebra of C∗e(A). The map α
takes A completely isometrically and isomorphically onto itself, and the image
generates C∗e(A) as a C*-algebra. By the basic property of C*-envelopes, α
extends to a ∗-homomorphism α̃ of C∗e(A) onto itself. The kernel of α̃ is a
boundary ideal because the map is completely isometric on A, and hence is
{0}. Thus α̃ is an automorphism which fixes A as a set. The converse is
evident.

The restriction of α ∈ AutA(C∗e(A)) to A is injective since A generates C∗e(A)
as a C*-algebra. Thus the restriction map is an isomorphism.

Example 10.2. It is not true that every α ∈ End(A) lifts to an endomorphism
of C∗e(A). Take A = A(D) and let τ ∈ A(D) be the composition of a conformal
map of D onto the rectangle

{x+ iy : −1 < x < 0 and |y| ≤ 10}

followed by the exponential map. Thus τ maps D onto the annulus

A := {z : e−1 < |z| < 1}.

It follows that
α(f) = f ◦ τ

is a completely isometric endomorphism. However, since τ maps parts of T
into the interior of D, this map does not extend to an endomorphism of C(T).

Observe that α lifts to an endomorphism of C(D) by

α̃(f) = f ◦ τ.

Unfortunately this map is not faithful, as its kernel is

ker α̃ = I(A) = {f ∈ C(D) : f |A = 0}.

The remedy is a bit subtle. Let

X =
⋂
n≥0

τn(D).

This is a connected compact set with two key properties:

τ(X) = X and T ⊂ X.
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The latter holds because τ(T) contains T. Now consider A(D) as a subalgebra
of the C*-algebra C(X). The embedding is isometric because T ⊂ X. This is
a C*-cover by the Stone-Weierstrass Theorem. Here α extends to

ᾱ(f) = f ◦ τ.

This is a faithful ∗-endomorphism because τ is surjective on X.

Example 10.3. Here is a different example. Take

A = A(D)⊕ (c⊗ T )

where c is the space of convergent sequences and T = C∗(Tz) is the Toeplitz
algebra generated by the shift Tz on H2. It is easy to see that

C∗e(A) = C(T)⊕ (c⊗ T ).

Write an element of A as f ⊕ (Tn)n≥1, where limn→∞ Tn =: T0 exists. Fix
λ ∈ D and consider the map

α(f ⊕ (Tn)n≥1) = f(λ)I ⊕ (Tf , Tn−1)n≥2.

This is evidently a completely isometric unital endomorphism. However one
can restrict α to a map β which takes A(D) to a subalgebra of T by β(f) = Tf .
The range of β generates T as a C*-algebra, which is non-abelian. Therefore
there is no extension of β to a homomorphism of C(T) into T . Thus α does
not lift to a ∗-endomorphism of C∗e(A).

If |λ| = 1, we can embed A into

A = T ⊕ (c⊗ T )

in the natural way and extend α to the endomorphism

α̃(T ⊕ (Tn)n≥1) = qT (λ)I ⊕ (T, Tn−1)n≥2

where q is the quotient map of T onto C(T).

However if |λ| < 1, evaluation at λ is not multiplicative on T , so α does not
lift to an endomorphism of A. We can instead let

B = C⊕ T ⊕ (c⊗ T )

and imbed A by

j(f ⊕ (Tn)n≥1) = f(λ)⊕ Tf ⊕ (Tn)n≥1.

Clearly j is completely isometric. The C*-algebra generated by j(A(D)) is all
of B because

j(1)− j(z)∗j(z) = (1− |λ|2)⊕ 0
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shows that C⊕ 0 is contained in this algebra.

Observe that evaluation at λ is now a character of B. Moreover

j(α(f ⊕ (Tn)n≥1)) = j(f(λ)I ⊕ (Tf , Tn−1)n≥2)

= f(λ)⊕ f(λ)I ⊕ (Tf , Tn−1)n≥2.

So we may extend α to α̃ ∈ End(B) by

α̃(w ⊕ T ⊕ (Tn)n≥1) = w ⊕ wI ⊕ (T, Tn−1)n≥2.

A modification of Peters’ argument [48, Prop.I.8] shows that we can extend
completely isometric endomorphisms to automorphisms of a larger algebra.

Proposition 10.4. If A is a unital operator algebra and α ∈ End(A), then
there is a unital operator algebra B containing A as a unital subalgebra and
β ∈ Aut(B) such that β|A = α. Moreover, B is the closure of

⋃
n≥0 β

−n(A).

Proof. First observe that the standard orbit representation makes sense for A.
Let σ be a completely isometric representation of A on a Hilbert space H so
that C∗(σ(A)) ' C∗e(A). Form the Hilbert space H̃ = H⊗ `2 and define

π(a) =

∞∑
n=0

⊕σ(αn(a)) and V = I ⊗ S,

where S is the unilateral shift. Then it is evident that (π, V ) is an isometric
covariant representation of (A, α). In particular, π(A) is completely isometric
to A. Define the corresponding endomorphims α̃ on π(A) by

α̃(π(a)) = α̃
( ∞∑
n=0

⊕σ(αn(a)
)

=

∞∑
n=0

⊕σ(αn+1(a)) = π(α(a))

for a ∈ A.

Form the injective system

π(A)
α̃ //

α̃

��

π(A)
α̃ //

α̃

��

π(A)
α̃ //

α̃

��

. . . // B

β

��
π(A)

α̃ // π(A)
α̃ // π(A)

α̃ // . . . // B

Then B is a unital operator algebra containing A as a unital subalgebra and
β is a completely isometric endomorphism. However it is evident that β is
surjective, so β is an automorphism.

Finally, observe that B is the closure of
⋃
n≥0 β

−n(A).

Now we can use this to lift endomorphisms.
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Theorem 10.5. If A is a unital operator algebra and α ∈ End(A), then there
is a C*-cover A of A and an endomorphisms α̃ of A such that α̃|A = α.

Proof. Use Proposition 10.4 to lift α to an automorphism β of a larger algebra
B. Then apply Proposition 10.1 to lift it again to an automorphism β̃ of the
C*-algebra B = C∗e(B). Let A be the C*-subalgebra of B generated by A.
Since β̃|A = α, we see that A is invariant under β̃. Hence so is A∗. Since A is
generated by A and A∗, it is also invariant under β̃. So α̃ = β̃|A is the desired
∗-endomorphism.

While not all endomorphisms of A lift to C∗e(A), those that do lift behave well
when lifted to larger algebras. This simplifies the hypotheses in some of the
results in [32] as explained in the next section.

Proposition 10.6. Let A be a unital operator algebra and let A be a C*-cover.
Suppose that α ∈ EndA(C∗e(A)) and that β ∈ EndA(A) such that β|A = α|A.
Then αq = qβ, and hence β fixes the Shilov ideal JA, where q is the canonical
quotient map of A onto C∗e(A).

Proof. Observe that αq and qβ are ∗-homomorphisms of A into C∗e(A) which
agree on the generating set A. Thus they are equal. Hence

JA = kerαq = ker qβ.

It follows that
JA = {a ∈ A : β(a) ∈ JA} = β−1(JA).

In particular,
β(JA) ⊂ JA.

Extremal and fully extremal coextensions behave well under automorphisms,
but not for endomorphisms.

Proposition 10.7. Let ρ be a representation of a unital operator algebra A
with (fully) extremal coextension σ. If α ∈ Aut(A), then σ ◦ α is a (fully)
extremal coextension of ρ ◦ α.

Proof. Let ρ act on H and σ act on K ⊃ H. Suppose first that σ is extremal.
Since H is coinvariant for σ(A), it is also coinvariant for σ(α(A)). Thus σ ◦ α
is a coextension of ρ◦α. Suppose that τ is a coextension of σ ◦α. Then τ ◦α−1

is a coextension of σ. Hence it splits as

τ ◦ α−1 = σ ⊕ ϕ.

Thus
τ = σ ◦ α⊕ ϕ ◦ α.

So σ ◦ α is extremal.

A similar proof works for fully extremal coextensions of ρ ◦ α.
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Example 10.8. Let

A = A(D)⊕ (c⊗ C(D))

with elements (f, (gn)n≥1) where f ∈ A(D), gn ∈ C(D) for n ≥ 1 and
limn→∞ gn =: g0 exists. Define

α(f, (gn)n≥1) = (f(0), (f, gn−1)n≥2).

This is a completely isometric endomorphism.

A representation of A has the form

ρ(f, (gn)n≥1) = f(T )⊕
∑
n≥1

⊕ ρn(gn)

where T is a contraction and ρn are ∗-representations of C(D). It is straight-
forward to show that a representation of A is an extremal coextension if and
only if T is an isometry.

Taking T to be an isometry and ρn all vacuous (the zero representation on zero
dimensional space), we have an extremal coextension ρ such that

ρ ◦ α(f, (gn)n≥1) = f(0)I.

Since 0 is not an isometry, this is not extremal.

11 A Review of Semicrossed Products

Nonself-adjoint crossed products were introduced by Arveson [4, 11] as certain
concretely represented operator algebras that encoded the action of a subsemi-
group of a group acting on a measure space, and later a topological space.
McAsey, Muhly and Sato [37, 36] further analyzed such algebras, again relying
on a concrete representation to define the algebra. In [48], Peters gave a more
abstract and universal definition of the semicrossed product of a C*-algebra
by a single endomorphism. Actually he provides a concrete definition, but
then proves that it has the universal property which has become the de facto
definition of a semicrossed product.

One can readily extend Peter’s definition of the semicrossed product of a C*-
algebra by a ∗-endomorphism to unital operator algebras and unital completely
isometric endomorphisms.

Definition 11.1. Let A be a unital operator algebra and α ∈ End(A). A
covariant representation of (A, α) is a pair (ρ, T ) consisting of a completely
contractive representation ρ : A → B(H) and a contraction T ∈ B(H) such
that

ρ(a)T = Tρ(α(a)) for all a ∈ A.
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The semicrossed product A×αZ+ is the universal operator algebra for covariant
representations. This is the closure of the algebra P(A, t) of formal polynomials
of the form p =

∑n
i=0 t

iai, where ai ∈ A, with multiplication determined by

at = tα(a)

and the norm

‖p‖ = sup
(ρ,T ) covariant

∥∥ n∑
i=0

T iρ(ai)
∥∥.

This supremum is clearly dominated by
∑n
i=0 ‖ai‖; so this norm is well defined.

Since this is the supremum of operator algebra norms, it is also easily seen to be
an operator algebra norm. By construction, for each covariant representation
(ρ, T ), there is a unique completely contractive representation ρ×T of A×αZ+

into B(H) given by

ρ× T (p) =

n∑
i=0

T iρ(ai).

This is the defining property of the semicrossed product.

When A is a C*-algebra, the completely isometric endomorphisms are the
faithful ∗-endomorphisms. Peters [48] shows that when α is a faithful ∗-
endomorphism of A, the norm of A ×α Z+ can be computed by using orbit
representations. Let σ be a faithful ∗-representation of A on H. Form the
∗-representation π on H⊗ `2 by

π(a) =

∞∑
n=0

⊕σ(αn(a))

and let V = I⊗S, where S is the unilateral shift on `2. It is evident that (π, V )
is a covariant representation of (A, α). The corresponding representation π×V
of A×α Z+ is known as the orbit representation of σ.

Theorem 11.2 (Peters). If α is a faithful ∗-endomorphism of a C*-algebra A,
and σ is a faithful ∗-representation of A, then the orbit representation σ × V
provides a completely isometric representation of A×α Z+.

Moreover, Peters [48, Prop.I.8] establishes Proposition 10.4 in the case where
A is a C*-algebra. It follows [48, Prop.II.4] that A ×α Z+ is completely iso-
metrically isomorphic to the subalgebra of the crossed product algebra B×β Z
generated as a non-self-adjoint algebra by j(A) and the unitary u implementing
β in the crossed product. Kakariadis and the second author [32, Thm.2.5] show
that this crossed product is the C*-envelope:

Theorem 11.3 (Kakariadis-Katsoulis). Let α be a faithful ∗-endomorphism of
a C*-algebra A and let (B, β) be the lifting of α to an automorphism described
above. Then

C∗e(A×α Z+) = B×β Z.
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Since dilation theorems fail in many classical cases, such as commuting triples of
contractions [60, 44], one can circumvent the issue by considering only isometric
covariant relations. This semicrossed product was introduced by Kakariadis
and the second author [32]. The results there have immediate application for
us.

Definition 11.4. Let A be an operator algebra and let α ∈ End(A). A
covariant representation (ρ, T ) of (A, α) is called isometric if ρ is a complete
isometry and T is an isometry. The isometric semicrossed product A ×isα Z+

is the universal operator algebra for isometric covariant representations. This
is the closure of the algebra P(A, t) of formal polynomials of the form p =∑n
i=0 t

iai, where ai ∈ A, under the norm

‖p‖ = sup
(ρ,T ) isometric

covariant

∥∥ n∑
i=0

T iρ(ai)
∥∥.

Theorem 11.5 (Kakariadis-Katsoulis). If A is a unital operator algebra and
α ∈ EndA(C∗e(A)), then A ×isα Z+ is (completely isometrically isomorphic to)
a subalgebra of C∗e(A)×α Z+. Moreover,

C∗e(A×isα Z+) = C∗e(C∗e(A)×α Z+).

More generally, they consider an arbitrary C*-cover A of A. Let JA denote the
Shilov boundary, i.e. the kernel of the unique homomorphism of A onto C∗e(A)
which is the identity on A. Suppose that α ∈ EndA(A) also leaves JA invariant.
Then it is easy to see that this induces an endomorphism α̇ ∈ EndA(C∗e(A)).
Hence A×isα̇ Z+ is (canonically completely isometrically isomorphic to) a sub-
algebra of C∗e(A) ×α̇ Z+. They show that the same norm is also induced on
A ×α Z+ as a subalgebra of A ×α Z+. This result should be considered in
conjunction with Proposition 10.6.

Theorem 11.6 (Kakariadis-Katsoulis). If A is a unital operator algebra with
C*-cover A and α ∈ EndA(A) fixes JA, then A ×isα Z+ is also (canonically
completely isometrically isomorphic to) a subalgebra of A×α Z+.

In conjunction with Proposition 10.6, we obtain:

Corollary 11.7. If α ∈ EndA(C∗e(A)), A is a C*-cover of A and β ∈
EndA(A) such that β|A = α|A, then A ×β Z+ is completely isometrically iso-
morphic to A×α Z+.

12 Dilating Covariance Relations

We consider the following problem: suppose that α ∈ End(A) lifts to a ∗-
endomorphism of C∗e(A). When isA×αZ+ canonically completely isometrically
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isomorphic to the subalgebra of C∗e(A)×αZ+ generated by A and the element
t inducing the action α. To simplify statements, we will just say, in this case,
that A×α Z+ is a subalgebra of A ×α Z+. We are seeking general properties
of A which make this true.

Commutant lifting properties can be seen as special cases of dilation theorems
for semicrossed products in the case of the identity automorphism. The goal
of this section is to provide several theorems which allow one to obtain re-
sults about general semicrossed products from the various commutant lifting
properties.

The literature contains a number of dilation theorems for endomorphisms of
operator algebras. Ling and Muhly [35] establish an automorphic version of
Ando’s theorem, which is a lifting theorem for an action of Z2

+. Peters [48]
and Muhly and Solel [38, 39] dilate actions of Z+ on C*-algebras. Our first
result in this section uses SCLT and models our dilation theorem for the non-
commutative disk algebras [17]. We wish to contrast the explicit dilation ob-
tained here with the more inferential one obtained in Theorem 12.3 which
requires only CLT.

Theorem 12.1. Suppose that A is a unital operator algebra satisfying SCLT
and ICLT. Let α ∈ Aut(A). Then every covariant representation (ρ, T ) of
(A, α) has a coextension (σ, V ) such that σ is a fully extremal coextension of ρ
and V is an isometry.

Proof. Let σ be a fully extremal coextension of ρ. Then by Proposition 10.7,
σ ◦ α is also fully extremal. By Corollary 3.9,

σ ⊕ (σ ◦ α)

is a fully extremal coextension of ρ ⊕ (ρ ◦ α). Now the covariance relation
implies that for a ∈ A,[

ρ(a) 0
0 ρ(α(a))

] [
0 T
0 0

]
=

[
0 ρ(a)T
0 0

]
=

[
0 T
0 0

] [
ρ(a) 0

0 ρ(α(a))

]
Using SCLT, we obtain a contractive coextension of [ 0 T

0 0 ] which commutes with
σ ⊕ (σ ◦ α)(A). The 1, 2 entry is a contractive coextension T1 of T such that

σ(a)T1 = T1σ(α(a)) for all a ∈ A.

So [
0 T1

0 0

]
also commutes with σ ⊕ (σ ◦ α)(A).

Now use ICLT to coextend this operator to an isometry V commuting with a
Shilov coextension τ of σ ⊕ (σ ◦ α). As σ ⊕ (σ ◦ α) is an extremal coextension,
τ decomposes as

τ = σ ⊕ (σ ◦ α)⊕ τ1.



Dilation theory 75

With respect to this decomposition K ⊕K ⊕ P, we can write

V =

0 T1 0
0 0 0
∗ D ∗

 .
In particular, the commutation relation shows that

τ1(a)D = Dσ(α(a)) for all a ∈ A.

A direct summand of a Shilov extension is Shilov, so τ1 is Shilov. Let π1 be a
maximal representation on L ⊃ P so that P is invariant, and π1|P = τ1. Then
consider PPD as an operator in B(K,L), and note that

π1(a)PPD = PPDσ(α(a)) for all a ∈ A.

Define a coextension of ρ by

π = σ ⊕
∑
n≥0

⊕
π1 ◦ αn

acting onM = K⊕L(∞). Since σ is a fully extremal coextension of ρ and each
π1 ◦ αn is maximal, it follows that π is a fully extremal coextension of ρ.

Now define an isometry W on M by

W =


T1 0 0 0 . . .
PPD 0 0 0 . . .

0 I 0 0 . . .
0 0 I 0 . . .
...

. . .
. . .

 .
Then one readily verifies that

π(a)W = Wπ(α(a)) for all a ∈ A.

This is the desired isometric coextension of the covariance relations.

Observe that Theorem 12.1 shows that if A has SCLT and ICLT, then

A×α Z+ = A×isα Z+.

Thus by applying Theorem 11.5 to see that it imbeds into C∗e(A)×αZ+. Since
α is an automorphism, the C*-envelope of this is just the full crossed product
C∗e(A)×α Z.

Theorem 12.2. Suppose that A has properties SCLT and ICLT, and α ∈
Aut(A). Then A ×α Z+ is (canonically completely isometrically isomorphic
to) a subalgebra of C∗e(A)×α Z+. Moreover,

C∗e(A×α Z+) = C∗e(A)×α Z.
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We wish to improve this theorem so that we require only CLT, not SCLT. This
requires a different approach, and does not yield a direct construction of the
isometric coextension of a covariant representation.

Theorem 12.3. Suppose that an operator algebra A has the Ando property,
and α ∈ Aut(A). Then

A×α Z+ = A×isα Z+.

Hence A×αZ+ is (canonically completely isometrically isomorphic to)a subal-
gebra of C∗e(A)×α Z+. Moreover,

C∗e(A×α Z+) = C∗e(A)×α Z.

Proof. Suppose that (ρ, T ) is a covariant representation of (A, α). Let σ0 be
a fully extremal coextension of ρ on a Hilbert space K0. Then by Proposi-
tion 10.7, σ0 ◦ α is also fully extremal. Theorem 7.15 yields a fully extremal
coextension σ1 of ρ1 on K1, an isometry V0 and a maximal dilation π0 so that

σ1(a)V0 = V0((σ0 ◦ α)⊕ π0)(a).

Recursively, we obtain fully extremal coextension σn+1 of ρ1 on Kn, an isometry
Vn and a maximal dilation πn so that

σn+1(a)Vn = Vn((σn ◦ α)⊕ πn)(a).

Let

π =
∑
n≥0

∑
k∈Z

⊕(πn ◦ αk)(∞).

Then set σ̃n = σn⊕π acting on K̃n. Extending Vn appropriately to an isometry
Ṽn, we obtain

σ̃n+1(a)Ṽn = Ṽn(σ̃n ◦ α)(a).

Now define a representation on

K̃ =
∑
n≥0

⊕K̃n

by

σ̃(a) =



σ̃0(a) 0 0 0 . . .
0 σ̃1(a) 0 0 . . .
0 0 σ̃2(a) 0 . . .

0 0 0 σ̃3(a)
. . .

...
...

. . .
. . .

. . .


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and

Ṽ =



0 0 0 0 . . .

Ṽ0 0 0 0 . . .

0 Ṽ1 0 0 . . .

0 0 Ṽ2 0
. . .

...
...

. . .
. . .

. . .

 .

This is an isometric covariant representation which coextends the contractive
covariant representation on H⊗ `2:

ρ(∞)(a) =



ρ(a) 0 0 0 . . .
0 ρ(a) 0 0 . . .
0 0 ρ(a) 0 . . .

0 0 0 ρ(a)
. . .

...
...

. . .
. . .

. . .


and

T ⊗ S =



0 0 0 0 . . .
T 0 0 0 . . .
0 T 0 0 . . .

0 0 T 0
. . .

...
...

. . .
. . .

. . .

 .
This latter representation induces the same seminorm on A ×α Z+ as the co-
variant pair (ρ(∞), T ⊗U) on H⊗ `2(Z), where U is the bilateral shift, because
this representation is an inductive limit of copies of (ρ(∞), T ⊗ S). However
(ρ(∞), T ⊗ U) has a seminorm which clearly dominates the seminorm arising
from (ρ, T ).

It follows that
A×α Z+ = A×isα Z+.

The rest follows as in Theorem 12.2.

In particular, one gets a dilation theorem that we cannot find by a direct
construction. Indeed, even the isometric dilation is not explicitly obtained,
unlike the proof of Theorem 12.1. This result considerably expands the class
of operator algebras for which we can obtain these results.

Corollary 12.4. Suppose that an operator algebra A has the Ando property,
and α ∈ Aut(A). Then every covariant representation (ρ, T ) of (A, α) dilates
to a covariant representation (π, U) of (C∗e(A), α) where π is a ∗-representation
of C∗e(A) and U is unitary.

The following result applies to endomorphisms, not just automorphisms. This
result was only recently established for the disk algebra [18]. The hypotheses
are quite strong.
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Theorem 12.5. Suppose that A is a unital operator algebra with SMCLT and
FP. Let α ∈ EndA(C∗e(A)). Then A×α Z+ is (canonically completely isomet-
rically isomorphic to) a subalgebra of C∗e(A)×α Z+.

Proof. To establish that A ×α Z+ is completely isometric to a subalgebra of
C∗e(A) ×α Z+, it suffice to show that if (ρ, T ) is a covariant representation of
(A, α), then ρ has a ∗-dilation π of C∗e(A) on a Hilbert space K ⊃ H and a
contraction S dilating T to K such that (π, S) is a covariant representation of
(C∗e(A), α) with H as a coinvariant subspace. For this then shows that

‖ρ× T (p)‖ ≤ ‖π × S(p)‖ ≤ ‖p‖C∗e (A)×αZ+
.

The reverse inequality is evident. Hence the norm on A ×α Z+ will coincide
with the norm as a subalgebra of C∗e(A)×α Z+.

First dilate ρ to a maximal dilation π. This extends to a ∗-representation of
C∗e(A) which we also denote by π. We may write:

π(a) =

∗ 0 0
∗ ρ(a) 0
∗ ∗ ∗

 for a ∈ A.

Observe that the covariance condition is equivalent to[
ρ(a) 0

0 ρ(α(a))

] [
0 T
0 0

]
=

[
0 T
0 0

] [
ρ(a) 0

0 ρ(α(a))

]
.

Now ρ⊕ (ρ ◦ α) dilates to a ∗-dilation

π ⊕ (π ◦ α).

So by SMCLT, there is a contraction dilating[
0 T
0 0

]
which commutes with (π ⊕ (π ◦ α))(A) of the form

S̃ =

[
∗ S
∗ ∗

]
so that H⊕H is simultaneously semi-invariant for (π⊕π ◦α)(A) and S̃. There
is no loss in assuming that the ∗ entries are all 0. Commutation again means
that (π, S) is a covariant representation of A.

Now by the Fuglede property, the adjoint[
0 0
S∗ 0

]
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also commutes with (π ⊕ (π ◦ α))(A). That means that

π(α(a))S∗ = S∗π(a) for all a ∈ A.

Equivalently, since π is a ∗-representation,

π(a∗)S = Sπ(α(a∗)) for all a ∈ A.

But the set of operators in C∗e(A) satisfying the covariance relations is a closed
algebra, and contains A and A∗, whence it is all of C∗e(A). Thus we have
obtained the desired dilation to covariance relations for (C∗e(A), α). Hence
A×α Z+ is (canonically completely isometrically isomorphic to) a subalgebra
of C∗e(A)×α Z+.

The following is immediate from the dilation theory for C∗e(A) ×α Z+ and
Theorem 11.5. Combining this with Theorem 11.3, one obtains an explicit
description of this C*-envelope.

Corollary 12.6. Suppose that a unital operator algebra A has FP and SM-
CLT, and α ∈ EndA(C∗e(A)). Then every covariant representation (ρ, T ) of
(A, α) dilates to a covariant representation (π, U) of (C∗e(A), α) where π is a
∗-representation of C∗e(A) and U is unitary. Moreover,

C∗e(A×α Z+) = C∗e(C∗e(A)×α Z+).

13 Further Examples

The disk algebra. The first application yields a recent result about semi-
crossed products by completely isometric endomorphisms for the disk algebra
[18]. We note that endomorphisms which are not completely isometric are also
treated there, but our results do not apply in that case.

The C*-envelope of the disk algebra A(D) is C(T), which is generated by
the unitary element z. The classical Fuglede Theorem shows that A(D) has
FP. Also the classical Sz.Nagy–Foiaş Commutant Lifting Theorem yields the
properties SCLT and SMCLT. Ando’s property is Corollary 7.11, which was a
strengthening of Ando’s theorem. As A(D) is Dirichlet, we have uniqueness of
extremal coextensions and of extremal extensions, which are also consequences
of the original Sz.Nagy theory. As A(D) ' A(D)∗, we have SCLT* as well.
Indeed, A(D) has all of the properties studied in this paper.

Suppose that α ∈ EndA(D)(C(T)). Then b = α(z) ∈ A(D); and has spectrum

σA(D)(b) = σA(D)(z) = D and σC(T)(b) = σC(T)(z) = T.

Thus Ran(b) = D and Ran(b|T) = T. It follows that b is a non-constant finite
Blaschke product. We have α(f) = f ◦ b for all f ∈ C(T).
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Theorem 13.1. Let b be a non-constant finite Blaschke product, and let
α(f) = f ◦ b in EndA(D)(C(T)). Then A(D)×α Z+ is (canonically completely
isometrically isomorphic to) a subalgebra of C(T)×α Z+; and

C∗e(A(D)×α Z+) = C∗e(C(T)×α Z+).

This is explicitly described as C(Sα)×β Z where Sα is the solenoid

Sα = {(zn)n≥1 : zn = b(zn+1), zn ∈ T, n ≥ 1}

and β is the backword shift on Sα.

Proof. The first statement follows from Theorems 12.5. The detailed descrip-
tion of the C*-envelope comes from the Kakariadis-Katsoulis Theorem 11.3.

It is worth restating this theorem as a dilation result.

Corollary 13.2. Let b be a non-constant finite Blaschke product and suppose
that S and T are contractions satisfying ST = T b(S). Then there exist unitary
operators U and V , dilating S and T respectively, so that UV = V b(U).

The non-commutative disk algebras. For n ≥ 2 finite, the non-
commutative disk algebra An has the Cuntz algebra On as its C*-envelope.
The Frazho-Bunce-Popescu dilation theorem [30, 13, 50] shows that the mini-
mal extemal coextension of a representation is unique. This also follows because
An is semi-Dirichlet. Popescu [52] proves the SCLT property in a similar man-
ner to the original proof of Sz.Nagy and Foiaş. The FP property follows from
Proposition 9.3.

There are many distinct ways to extend the left regular representation to a
maximal representation (see [23, §3]). In particular, the minimal fully extremal
extensions are not unique. Nevertheless, An has ICLT and MCLT. This follows
from our paper [17] specialized to the identity automorphism.

The completely isometric automorphisms of An are the analogues of the con-
formal automorphisms of the ball Bn of Cn. These were first described by
Voiculescu [61] as ∗-automorphisms of On which fix the analytic part. These
are the only such automorphisms of An [24]. See also [53]. Thus we recover our
results on semicrossed products of An in [17] as a consequence of Theorem 12.2.

Theorem 13.3 (Davidson-Katsoulis). If α ∈ Aut(An) = AutAn(On), then

C∗e(An ×α Z+) = On ×α Z.

It is also easy to determine End(On). Every n-tuple of isometries ti ∈ On
such that

∑n
i=1 tit

∗
i = 1 determines an endomorphism with α(si) = ti by the

universal property of the Cuntz algebra. For the endomorphism α to leave An
invariant, it is then necessary and sufficient that ti belong to An. Given that
End(On) is so rich, the following result seems surprising.
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Theorem 13.4. For n ≥ 2 finite,

EndAn(On) = AutAn(On).

Proof. We represent An on `2(F+
n ) by the left regular representation λ with

generators Li = λ(si), where
Liξw = ξiw.

Note that
C∗(λ(An)) = En

is the Cuntz-Toeplitz algebra, and that

q : En → En/K = On

is the quotient by the compact operators. Let Rn denote the wot-closed right
regular representation algebra generated by Ri, 1 ≤ i ≤ n, where

Riξw = ξwi.

Then λ(An)′ = Rn [3, 23]. We use the notation Rvξw = ξwv for words v ∈ F+
n .

Suppose that α ∈ EndAn(On). Then ti = α(si) are isometries in An such that

n∑
i=1

tit
∗
i = 1.

We want to clarify when this is possible. Let

Ti = λ(ti) and T =
[
T1 . . . Tn

]
.

Then q(Ti) = ti, and thus T is an essential isometry, as are each Ti. However
since q is a complete isometry on An, we have ‖T‖ = 1.

We claim that each Ti is an isometry. Indeed, if ζ ∈ `2(F+
n ) with ‖ζ‖ = 1 and

‖Tiζ‖ 6= 1, then
‖Ti(Rvζ)‖ = ‖RvTiζ‖ = ‖Tiζ‖.

Since Rn1 ζ tends to 0 weakly, we see that Ti is not an essential isometry, contrary
to fact. Since ‖T‖ = 1, the T1, . . . , Tn are isometries in λ(An) with pairwise
orthogonal range. So T is a row isometry. Since

q(

n∑
i=1

TiT
∗
i ) = 1,

we deduce that

P = I −
n∑
i=1

TiT
∗
i

is a finite rank projection.
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The range of each Ti is a cyclic invariant subspace for Rn, with cyclic vector
ζi = Tiξ∅. Let N = RanP . Then N⊥ is the sum of the ranges of the Ti, and
so it is invariant for Rn with wandering space

W = span{ζi : 1 ≤ i ≤ n}.

Thus N is coinvariant. Let

Ai = PNRi|N and A =
[
A1 . . . An

]
.

Then A is a row contraction with a row isometric dilation

R =
[
R1 . . . Rn

]
.

The minimal row isometric dilation is unique [50], and any other is the direct
sum of the minimal dilation with another row isometry. Since R is irreducible,
this is the minimal dilation of A.

By [20], the wandering space W of N⊥ is given by

W = (N +

n∑
i=1

RiN)	N.

Note that

IN −
n∑
i=1

AiA
∗
i = PN (I −

n∑
i=1

RiR
∗
i )|N = (PNξ∅)(PNξ∅)∗.

This is non-zero because if N were orthogonal to ξ∅, then ξ∅ would also be
orthogonal to the invariant subspace it generates, which is the whole space.
Thus N is not contained in

∑n
i=1RiN because this space is orthogonal to ξ∅.

So now we compute

n = dimW = dim(N +

n∑
i=1

RiN)− dimN

≥ (1 + ndimN)− dimN

= 1 + (n− 1) dimN.

Therefore dimN ≤ 1; whence dimN = 1 because no n-tuple of isometries Ti
in Ln is of Cuntz type.

The only coinvariant subspaces of dimension one are Cνλ, where νλ is an eigen-
vector of R∗n [3, 23]. These are indexed by points λ in the open unit ball Bn of
Cn. It now follows from the analysis in [24] that α is an automorphism. Briefly,
one can compose α with an automorphism θλ so that λ = 0 and so N = Cξ∅.
Then

W = span{ξi : 1 ≤ i ≤ n}.
So {ζi} form an orthonormal basis for W . The unitary U ∈ Un which takes ξi
to ζi induces a gauge unitary Ũ which takes each Li to Ti, as this is the unique
element of An with Tiξ∅ = ζi. Hence θλα = ad Ũ is an automorphism; whence
so is α.
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Finite dimensional nest algebras. A finite dimensional nest algebra
can be described as the block upper triangular matrices with respect to a
decomposition H = H1 ⊕ · · · ⊕ Hk of a finite dimensional Hilbert space into a
direct sum of subspaces. These are the incidence algebras which are Dirichlet.
They have SCLT, SCLT*, ICLT, ICLT*, MCLT and the Ando property. By
Example 9.9, finite dimensional nest algebras have FP.

The only isometric endomorphisms are isometric automorphisms. These are
unitarily implemented, and the unitary preserves the nest. (Ringrose [54] char-
acterizes the isomorphisms between nest algebras in infinite dimensions, and
includes the more elementary finite dimensional case. See [14].) Hence the
unitary has the form U = U1 ⊕ · · · ⊕ Uk with respect to the decomposition of
H. Clearly adU extends to a ∗-automorphism of the C*-envelope B(H) 'Mn,
where n = dimH.

Graph Algebras and Tensor algebras of C*-correspondences. The
tensor algebra T +(E) of a C*-correspondence E over a C*-algebra A is semi-
Dirichlet. Thus every Shilov coextension of a representation ρ, and in par-
ticular every extremal coextension of ρ, is fully extremal; and the minimal
extremal coextension of ρ unique. So in particular, the minimal fully extremal
coextension is a cyclic coextension. Muhly and Solel [42] show that the ten-
sor algebra of a C*-correspondence has SCLT. The C*-envelope is the Cuntz-
Pimsner algebra O(E) [42, 29, 34]. Kakariadis and Katsoulis [32] establish that
for every α ∈ AutT +(E)(O(E)) such that α|A = id, the semi-crossed product
T +(E) ⊗α Z+ imbeds canonically, completely isometically as a subalgebra of
O(E) ⊗α Z; and this is its C*-envelope. In particular, taking α = id, one
obtains the Ando property, so it has ICLT and SCLT.

Thus, by circular reasoning, Theorems 12.1 and 12.2 apply. The point however
is that the dilation theorems for automorphisms follow immediately once one
has the appropriate commutant lifting theorems, which basically deal with the
identity automorphism. In principle, and often in practice, this is much easier.

An important special case of a tensor algebra is the tensor algebra T +(G) of a
directed graph G. Some of the properties are somewhat easier to see here. In
addition, by Example 9.7, finite graph algebras have FP.

Bilateral Tree Algebras. In the case of a bilateral tree algebra A, one
readily sees that C∗e(A) is a direct sum of full matrix algebras corresponding to
the connected components of the graph. The automorphisms of finite dimen-
sional C*-algebras are well understood. Modulo inner automorphisms, one can
only permute subalgebras of the same size. Automorphisms of the tree algebra
are more restrictive, and modulo those inner automorphisms from unitaries in
A ∩A∗, they come from automorphisms of the associated directed graph.

Bilateral tree incidence algebras have the Ando property by Theorem 8.6.
Hence by Theorem 12.3, we obtain:
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Corollary 13.5. Let A be a bilateral tree algebra, and let α ∈ Aut(A). Then

C∗e(A×α Z+) = C∗e(C∗e(A)×α Z+).

Hence if (ρ, T ) is a covariant representation of (A, α), there is a maximal di-
lation π of ρ and a unitary dilation U of T so that (π, U) is a covariant repre-
sentation of (C∗e(A), α).

It is an interesting question to look at the infinite dimensional WOT-closed
versions. A commutative subspace lattice (CSL) is a strongly closed lattice of
commuting projections. A CSL algebra is a reflexive algebra whose invariant
subspace lattice is a CSL. Since every CSL is contained in a masa, one can
instead define a CSL algebra to be a reflexive algebra containing a masa. The
seminal paper, which provides a detailed structure theory for these algebras, is
due to Arveson [7]. See also [14].

When dealing with weak-∗ closed operator algebras, the class of all representa-
tions is generally too large. Instead one restrict attention to weak-∗ continuous
(completely contractive) representations. To apply the results from this paper,
a weak-∗ version needs to be developed.

A CSL algebra is a bilateral tree algebra if the lattice satisfies an measure
theoretic version of the discrete bilateral tree property. We will not define this
precisely here, but refer the reader to [22] for the full story. The approximation
results from [22] show that every bilateral tree algebra can be approximated in
two very strong ways by a sequence of finite dimensional subalgebras which are
completely isometrically isomorphic to bilateral tree incidence algebras. These
results should be a crucial step towards deducing similar dilation results for
semicrossed products of these infinite dimensional bilateral tree algebras by
weak-∗ continuous endomorphisms.
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