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We study an effective field theory (EFT) describing the interaction of an approximate dilaton with a set

of pseudo-Nambu-Goldstone bosons (pNGBs). The EFT is inspired by, and employed to analyze, recent

results from lattice calculations that reveal the presence of a remarkably light singlet scalar particle. We

adopt a simple form for the scalar potential for the EFT, which interpolates among earlier proposals.

It describes departures from conformal symmetry, by the insertion of a single operator at leading order in

the EFT. To fit the lattice results, the global internal symmetry is explicitly broken, producing a common

mass for the pNGBs, as well as a further, additive deformation of the scalar potential. We discuss

subleading corrections arising in the EFT from quantum loops. From lattice measurements of the scalar and

pNGB masses and of the pNGB decay constant, we extract model parameter values, including those that

characterize the scalar potential. The result includes the possibility that the conformal deformation is clearly

nonmarginal. The extrapolated values for the decay constants and the scalar mass would then be not far

below the current lattice-determined values.

DOI: 10.1103/PhysRevD.101.075025

I. INTRODUCTION

Lattice studies of SUð3Þ gauge theories with matter field

content consisting of Nf ¼ 8 fundamental (Dirac) fermions

[1–5], as well as Nf ¼ 2 symmetric 2-index (Dirac)

fermions (sextets) [6–10], have reported evidence of the

presence in the spectrum of a light scalar, singlet particle, at

least in the accessible range of fermion masses. Motivated

by the possibility that such a particle might be a dilaton, the

scalar particle associated with the spontaneous breaking

of scale invariance, in Refs. [11,12] we analyzed lattice

data in terms of an effective field theory (EFT) framework

that extends the field content of the chiral Lagrangian. It

includes a dilaton field χ, together with the pseudo-Nambu-

Goldstone-boson (pNGB) fields π, along the lines dis-

cussed also in Refs. [13–16] and more generally in

Refs. [17–20].

Dilaton EFTs (see Ref. [21] for a pedagogical introduc-

tion) are of general interest, reaching well beyond the

study of SUð3Þ lattice gauge theories. The recently dis-

covered Higgs particle [22,23] might originate as a light

dilaton in extensions of the standard model (SM) of

particle physics. Suggestions in this direction can be found

for example in Refs. [24–26], and more recently these

ideas have been revived in the context of compositeness

and dynamical electroweak symmetry breaking (see for

instance Refs. [27–36]).

The Lagrangian density is comparatively simple. Besides

the kinetic terms, it contains two other types of terms,

responsible for explicit breaking of scale invariance: a

scalar potential VðχÞ for the dilaton field, and an additional
operator that depends both on the pNGB and dilaton fields,

which generates masses for the pNGBs. The latter must

be included because the lattice formulation of the gauge

theories of interest requires a mass term for the fermions,

which explicitly breaks both scale invariance as well as

chiral symmetry.

By studying the pNGB mass and decay constant as a

function of the fermion mass, one can extract from the

lattice data for the two nearly conformal gauge theories

information about the potential VðχÞ and other dynamical

quantities. An example is a certain parameter y, interpreted
as the mass dimension of the chiral condensate in the

underlying theory in its strong-coupling regime [37]. In

Ref. [11] we found, independently of VðχÞ, y ∼ 2, com-

patible with expectations from studies of strongly coupled

gauge theories near the edge of the conformal window [38]

(see also Refs. [5,39]). We also found the shape of the
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potential at large field excursions to be compatible with a

simple power law, VðχÞ ∝ χp with p close to 4 [12]. By

combining this result with the lattice measurement of the

scalar mass, we estimated the ratio of decay constants of the

dilaton and the pNGBs, finding roughly f2π=f
2

d ∼ 0.1. For

both of the two gauge theories, the dilaton EFT fared

remarkably well when used at the tree level.

In this paper, we address open questions facing the

dilaton EFT framework, and further assess its potential as a

tool in the interpretation of lattice data, here for theNf ¼ 8,

SUð3Þ gauge theory. To study extrapolation from the

regime of lattice data to the limit of massless NGBs, we

adopt a specific form for the scalar potential VðχÞ. In

addition to the scale invariant term ∼χ4, we include a single

operator with generic scaling dimension to break the

conformal symmetry [13,17,21]. We find that the lattice

data allows for the conformal deformation to be clearly

nonmarginal.

We discuss subleading corrections arising from quantum

loops (see also Refs. [19,20,40]) and new operators within

the EFT. We display the new operators that correct the

potential in the extrapolated chiral limit, and that are

generated in a loop expansion. We argue that corrections

to the dilaton EFT are parametrically suppressed in this

limit, and lead to relatively small effects. At finite fermion

mass, in the regime of the lattice data, we examine the class

of loop corrections corresponding to distortions of the tree-

level scalar potential, finding that they are small.

Section II introduces the dilaton EFT. We display all the

tree-level scaling relations used in the analysis of the lattice

data. In Sec. III we perform a numerical global fit of the

lattice data taken from Ref. [3] for the Nf ¼ 8, SUð3Þ
gauge theory, determining the six independent parameters

of the tree-level EFT. In Sec. IV we discuss subleading

corrections and estimate their size. We conclude by

summarizing and discussing our main findings in Sec. V.

II. LAGRANGIAN DENSITY AND

SCALING RELATIONS

We develop further the framework we adopted in

Refs. [11,12], by assuming that the strongly coupled

dynamics of the underlying nearly conformal gauge theory

is captured by a dilaton EFT satisfying the following

conditions.

(1) The EFT is governed by scale invariance over a finite

range of scales. The long distance dynamics yields a

space of degenerate, inequivalent vacua, which are

parametrized by a scalar field χ. Scale invariance is

spontaneously broken through a nonvanishing vac-

uum value fd for χ. A massless scalar particle, the

dilaton, then appears, with its couplings set by fd.
(2) Scale invariance is explicitly broken, while keeping

fd fixed. The dilaton is given a small mass md. As a

consequence, this explicit breaking is suppressed.

(3) The EFT admits an internal continuous global

symmetry with Lie group G, broken spontaneously

to a subgroup H. The spectrum includes a set

of pNGBs with couplings set by their decay

constant fπ .
(4) The global symmetry is G is then broken by

introducing a tunable mass m2
π for the pNGBs

associated with the spontaneous breaking of G. This
mass also breaks scale invariance explicitly, through

an operator with scaling dimension y. The vacuum

of the theory is shifted, and we denote by Fπ, Fd and

Mπ the decay constants of the pNGBs and dilaton,

and the pNGB mass in this vacuum.

(5) In the limit m2
π → 0, the vacuum of the theory is

selected dominantly by a single operator in the EFT

with scaling dimension Δ. When m2
π ≠ 0, there are

two sources of dilaton mass, and we denote the full

mass by Md.

In Refs. [11,12] we made use of conditions 1 through 4,

with G ¼ SUðNfÞL × SUðNfÞR and H ¼ SUðNfÞV . We

studied an EFT in which the pNGB and dilaton particles are

described by a set of fields π in the coset G=H and an

additional real scalar field χ. The tree-level Lagrangian

density is then the following [12]:

L ¼
1

2
∂μχ∂

μχ þ Lπ þ LM − VðχÞ; ð1Þ

where the dynamics of the pNGBs is governed by

Lπ ¼
f2π

4

�

χ

fd

�

2

Tr½∂μΣð∂
μ
ΣÞ†�: ð2Þ

The matrix-valued field Σ ¼ exp ½2iπ=fπ� transforms as

Σ → ULΣU
†
R under the action of unitary transformations

UL;R ∈ SUðNfÞL;R. It also satisfies the nonlinear con-

straints ΣΣ
†¼1Nf

. The explicit breaking of the global

internal symmetry is captured in the EFT by the term

LM ¼
m2

πf
2
π

4

�

χ

fd

�

y

Tr½Σþ Σ
†�; ð3Þ

where m2
π ≡ 2Bπm vanishes when the fermion mass m of

the underlying theory is set to zero. An interpretation of y
as the scaling dimension of the chiral condensate of the

underlying gauge theory at strong coupling can be found

for example in Ref. [37].

The Lagrangian must contain an additional, explicit

source of breaking of scale invariance, in the potential

VðχÞ. In Refs. [11,12], we showed that one can in principle
reconstruct the functional dependence of VðχÞ indirectly,

by studying the dependence on the fermion mass of

appropriate combinations of the mass and decay constant

of the pNGBs. To make further progress, we now commit to

a specific class of potentials. We make use of condition 5,
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employing a single operator breaking the scale invariance

of the potential.

We adopt the following choice of tree-level potential

VðχÞ:

VΔðχÞ≡
m2

dχ
4

4ð4 − ΔÞf2d

�

1 −
4

Δ

�

χ

fd

�

Δ−4
�

: ð4Þ

This potential, also discussed in Refs. [32,41], contains two

contributions. One is a scale-invariant term (∝ χ4) repre-

senting the corresponding operators in the underlying

gauge theory. The other (∝ χΔ) captures the leading-order

effect of the scale deformation in the underlying theory.

The normalization of the two coefficients is such that the

potential has a minimum at χ ¼ fd > 0, with curvaturem2

d,

corresponding to mass md for the dilaton.

In Sec. III, we employ VΔ to fit lattice data on the SU(3)

theory with Nf ¼ 8 Dirac fundamental fermions. We then

return to Eq. (1) and to VΔ in Sec. IV, to show explicitly that

this is the leading-order part of a systematic expansion

for the EFT in a small parameter. We perform a spurion

analysis for the potential terms, which we relegate to

Appendix A. Then in Sec. IV, we classify and estimate

the magnitude of corrections to the leading-order

Lagrangian, by means of a perturbative loop analysis.

A key feature of the EFT is that the dilaton mass (the

explicit breaking of scale symmetry) can be tuned as small

as necessary with fd held fixed. In the limit, the space of

VEVs becomes a moduli space, presumably reflecting the

same feature of the underlying gauge theory. It has been

suggested in Refs. [13,30] that the explicit breaking in the

underlying theory, and also in the EFT as a consequence,

can be made arbitrarily small by tuning the number of

flavors Nf arbitrarily close to the critical value Nc
f at

which confinement gives way to IR conformality, with the

emergence of fixed points generalizing Refs. [42,43]. This

can be arranged by taking Nf to be a continuous parameter

or working in the large-N limit. The authors of Ref. [13]

make extensive use of this plausible idea. We instead work

only with the EFT, employing condition 1 as one of its

principles.

We note finally that the form of VΔðχÞ interpolates

among several specific forms found in the literature. In

Ref. [11], we fitted the lattice data available then for the

Nf ¼ 8 theory employing two forms of some historical

interest. The choice Δ ¼ 2 gives the Higgs potential of the

standard model (up to an inconsequential additive constant)

V1 ≡
m2

d

2f2d

�

χ2

2
−
f2d
2

�

2

: ð5Þ

The choice Δ → 4, corresponding to a marginal deforma-

tion of scale symmetry, leads to

V2 ≡
m2

d

16f2d
χ4
�

4 ln
χ

fd
− 1

�

: ð6Þ

Discussion of this form can be found in Refs. [25,44]. It is

also considered in Ref. [17]. Another form [21], illustrating

the principles for building a dilaton potential, corresponds

to the limiting case Δ → 0.

A. Scaling relations

Here we summarize properties of the EFT and its

predictions to be used to study the numerical lattice data.

We draw on Refs. [11,12] supplemented by explicit use of

the potential VΔ in Eq. (4). The mass deformation encoded

in Eq. (3) contributes, in the vacuum hπi ¼ 0, an additive

term to VΔ. The entire potential is

WðχÞ ¼ VΔðχÞ −
Nfm

2
πf

2
π

2

�

χ

fd

�

y

; ð7Þ

leading to a new minimum for χ which determines its

vacuum value hχi ¼ Fd > fd. Also, there is a new curva-

ture at this minimum, determining the dilaton mass M2

d.

By employing the value hχi ¼ Fd in Eqs. (2) and (3), and

properly normalizing the pNGB kinetic term, the simple

scaling relations for the pNGB decay constant and mass

derived in Ref. [12] can be found. These relations, which

are independent of the explicit form of the potential, are

F2
π

f2π
¼

F2

d

f2d
; ð8Þ

M2
π

m2
π

¼

�

F2

d

f2d

�y
2
−1

: ð9Þ

The ratio Fd=fd, found by minimizing the entire potential

in Eq. (7), satisfies

�

Fd

fd

�

4−y 1

4 − Δ

�

1 −

�

fd

Fd

�

4−Δ
�

¼ R; ð10Þ

where

R≡
yNff

2
πm

2
π

2f2dm
2

d

: ð11Þ

The quantity m2
π is in turn related to the fermion mass m in

the underlying theory bym2
π ¼ 2Bπm. The left-hand side of

Eq. (10) is a monotonically increasing function of Fd=fd
for any value of Δ (in the physical region Fd > fd so long

as y < 4), indicating that R is a useful measure of the

deformation due to the fermion mass. Large values of R
correspond to a large deformation, with Fd displaced far

from its chiral limit fd. The EFT can be used for only a

finite range of fermion mass such that the approximate
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scale invariance of the underlying gauge theory is main-

tained. The ratio M2

d=m
2

d is given by

M2

d

m2

d

¼
3

4 − Δ

�

Fd

fd

�

2

−
Δ − 1

4 − Δ

�

Fd

fd

�

Δ−2

− Rðy − 1Þ

�

Fd

fd

�

y−2

: ð12Þ

Equations (8)–(12) can be reorganized into three simple

expressions that are more convenient for fitting lattice data.

Measurements exist only for the quantities F2
π ,M

2
π andM

2

d,

so we eliminate F2

d from the expressions. First, the two

scaling equations (8) and (9) can be combined to give

M2
πF

2−y
π ¼ Cm; ð13Þ

where C ¼ 2Bπf
2−y
π is treated as a fit parameter. Also, it

is convenient to combine Eqs. (10) and (12) with Eq. (9),

so that the exponential dependence on the unknown

fit parameter y is removed from these fit equations. We

arrive at

M2
π

F2
π

¼
2m2

df
2

d

yNfð4 − ΔÞf4π

�

1 −

�

fπ

Fπ

�

4−Δ
�

; ð14Þ

and

M2

d

F2
π

¼
m2

d

ð4 − ΔÞf2π

�

4 − yþ ðy − ΔÞ

�

fπ

Fπ

�

4−Δ
�

: ð15Þ

III. COMPARISON TO LATTICE DATA

We perform a global, six-parameter fit to lattice data,

employing Eqs. (13)–(15). We use the four dimensionless

parameters y, Δ, f2π=f
2

d, and m2

d=f
2

d, along with the two

parameters f2π and C, expressed in units of the lattice

spacing a. The larger uncertainty in the measurement ofM2

d

limits the precision achievable in extracting certain combi-

nations of these six parameters from the global fit.

Lattice data for the SUð3Þ gauge theory with Nf ¼ 8

Dirac fermions in the fundamental representation are taken

from the tables in Ref. [3]. The information we use is

displayed in Fig. 1. The error bars shown on the plots

represent combined statistical and fit-range systematic

uncertainties, but do not include any other systematics,

such as lattice artifacts arising from discretization and finite

volume. We refer to the original publication for details.

There is no publicly available information about the

correlation between M2

π=d and F2
π , and we therefore treat

them as independent measurements.

Our global fit leads to the set of parameter central values

shown in Table I. There are 15 data points in total and six fit

parameters, yielding Ndof ¼ 9. Evaluated at the minimum,

we find χ2=Ndof ¼ 0.38. The χ2 function used in our global

fit was constructed by simply summing separate contribu-

tions from each of the three fit equations. This function is

steeper in some directions in the six-parameter space than

in others, and there are visible correlations.

FIG. 1. Lattice measurements for the SUð3Þ theory with Nf ¼ 8 fundamentals, obtained from Ref. [3]. The lattice spacing is denoted

by a. For each value of the fermion mass m, we show the massMd of the dilaton, the massMπ of the pNGBs and the decay constant Fπ

of the pNGBs. The error bars encompass both statistical and fit-range systematic uncertainties, as presented in Ref. [3].

TABLE I. Central values of (dimensionless) fit parameters

obtained in the six-parameter fit of Eqs. (13)–(15) to the LSD

data taken from Ref. [3]. The uncertainty on these determinations,

and the associated correlations, are discussed in the main text and

illustrated in Figs. 2–4.

Parameter Central value

y 2.06

a3−yC 6.9

Δ 3.5

a2f2π 1.2 × 10−5

f2π=f
2

d 0.086

m2

d=f
2

d 0.75
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The χ2 function is relatively steep in the y and C
directions, and depends only mildly on the other param-

eters. We show in Fig. 2 the 1σ contour plot of the six-

parameter global fit as a function of y and C. We have set

the remaining four parameters to values that minimize the

χ2 at each value of y and C. We find at the 1σ equivalent

confidence level that

y ¼ 2.06� 0.05; ð16Þ

with a corresponding value for C given by a3−yC ¼
6.9� 1.1. Notice in the plot the high level of correlation

between these two determinations.

The parameters y and C characterize the response of the

EFT to a nonzero fermion mass in the underlying theory,

and can be determined by fitting Eq. (13) alone to the

(relatively accurate) lattice data for F2
π and M2

π . This was

done in Refs. [11,12], making use of earlier LSD mea-

surements. Our six-parameter global fit leads to consistent

results. We also repeat the exercise of performing the two-

parameter fit of y andC on the updated LSDmeasurements,

and find that the central values of the fit are unaffected, but

in this case χ2=Ndof ¼ 0.26.

The ratio f2π=f
2

d is also relatively insensitive to the details

of the potential, in particular to Δ, but draws heavily on

the measurements of M2

d, and is hence affected by larger

uncertainties. By making use of the improved new LSD

measurements we find

f2π

f2d
¼ 0.086� 0.015: ð17Þ

This determination is consistent with the result in Ref. [12],

but with improved precision.

An exploration of the χ2 distribution in the full six-

dimensional parameter space reveals that it is relatively flat

in the Δ direction below Δ ∼ 4.25. In Fig. 3, we show the

result of this exploration restricted to a cut in which the

other five parameters are chosen to minimize χ2 for each

value of Δ. The curve evolves rapidly only aboveΔ ∼ 4.25,

strongly disfavoring larger values. Within the six-

dimensional space, a 1σ determination imposes the restric-

tion Δχ2 ≡ χ2 − χ2global min < 7.04 [45]. In our case, this

leads to the limit χ2 ≲ 10.4, shown as the grey dashed line

in the figure. This indicates the allowed range for Δ to be

0.1≲ Δ≲ 4.25; ð18Þ

with values in the range 3–4 moderately preferred. The full

range also include values slightly above 4 corresponding to

a “role-reversal” of the two terms in VΔ.

The weakness of the constraint onΔ has to be interpreted

with caution: the value of the χ2 at its global minimum is

rather small, which might indicate that either the uncer-

tainties on the input measurements are overconservative

or that the correlations are important, or possibly both.

For example, a trivial multiplicative rescaling of the global

χ2 to adjust χ2=Ndof ¼ 1 at the minimum would result in

restricting the allowed range to 1.6≲ Δ≲ 4.25. Because

we are taking the errors from the literature, and because

no systematic study of the correlation between different

measurements has been reported, we maintain our

conservative result in Eq. (18) as our best estimate of Δ.

The left panel in Fig. 4 is obtained by selecting values of

Δ and a2f2π , setting the remaining four parameters to

minimize χ2 for each value of Δ and a2f2π , and then

shading green the corresponding points on the plot that

satisfy Δχ2 < 7.04. In the right panel, we do the same, but

for values of Δ and m2

d=f
2

d. In this way, we indicate the

FIG. 2. The 1σ contour obtained from the six-parameter global

fit, restricted to the parameters y and C by setting the remaining

four parameters to the values which minimize the χ2, as described

in the text.

FIG. 3. The chi-squared minimum as a function of Δ,

obtained from the six-parameter global fit to the LSD data using

Eqs. (13)–(15). The grey dashed line represents the value of the χ2

corresponding to the1σ region in the full six-dimensional parameter

space. In making the plot, we optimized the choice of the remaining

five parameters, to minimize the χ2 for each value of Δ.
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extent of the six-dimensional joint 1σ confidence region in

the a2f2π,m
2

d=f
2

d andΔ directions. The figure illustrates that

the favored ranges for a2f2π and m2

d=f
2

d are correlated

with Δ. It also shows that if a preferred value of Δ was

identified, lifting the degeneracy of the χ2 along the Δ

direction, then a2f2π and m2

d=f
2

d would be determined with

good precision.

The correlation between a2f2π and Δ is particularly

informative. The measured values of a2F2
π vary from up

to 3 × 10−3 for the largest fermion masses studied by the

LSD collaboration, down to 4 × 10−4 for the smallest ones.

Its chiral extrapolation a2f2π is close to this range for the

smallest allowed values ofΔ, but becomes much lower asΔ

approaches 4. For Δ near its global-minimum value 3.5,

a2f2π is 1 order of magnitude below currently measured

values of a2F2
π . If future improved studies confirm that Δ

lies in this range, it could pose a challenge for numerical

exploration of the near-massless regime. Yet, with current

precision we cannot exclude values of Δ small enough to

allow improved lattice studies to reach this physically

interesting regime. In Appendix B, we show a plot of

a2F2
π versus am (on a logarithmic scale) for three values

of Δ, indicating how additional data points at smaller am
could begin to narrow the range of allowed Δ values.

The quantity m2

d=f
2

d is also strongly correlated with Δ.

Its central value is m2

d=f
2

d ≃ 0.75, and lies in the range

0≲m2

d=f
2

d ≲ 5.2, throughout the entire allowed domain of

Δ. This shows that the self-coupling of the dilaton in the

chiral limit m2
π → 0 is relatively weak.

To summarize, the six-parameter global fit yields a low

value of the χ2=Ndof at the minimum, validating the form

of the EFT we employed. The extraction of the parameters

y, C and f2π=f
2

d depends only weakly on the choice of

potential. Our global fit makes use of updated lattice

measurements, and is compatible with earlier determina-

tions [11,12]. We obtained a first measurement of Δ, for

which a broad range of values 0.1≲ Δ≲ 4.25 is allowed.

The determination of the remaining two parameters is

potentially more accurate, but a2f2π andm
2

d=f
2

d are strongly

correlated with Δ. Improved measurements, especially of

the mass of the scalarM2

d, combined with a dedicated study

of correlations within lattice measurements, might resolve

the degeneracies and identify the boundary of the chiral

regime, for which F2
π ≃ f2π and M2

π ≪ M2

d.

IV. BEYOND LEADING ORDER

In this section we discuss the form and magnitude of

corrections to the EFT employed so far, developing the

corrections as a systematic expansion in small parameters.

We first discuss the EFT in the chiral limit m ¼ 0, starting

with corrections to the dilaton potential. When only the

dilaton and its self-interactions are included, we find that all

corrections are controlled by a single expansion parameter

m2

d=ð4πfdÞ
2. Then, continuing to work in the chiral limit,

we include the N2

f − 1 pNGBs. Counting factors depend-

ing on Nf now enter the quantum loop corrections, and are

accounted for.

It may be natural to postulate that the scale-breaking

quantity m2

d=f
2

d depends itself on Nf (relative to some

critical value Nfc) in a manner emerging from the under-

lying gauge theory [13,30], but this requires moving

outside the framework of the EFT. As already noted in

Sec. II, we work only within the EFT. Finally in Sec. IV B,

we include the explicit breaking of chiral symmetry which

was employed in Secs. II and III to fit the lattice data of the

LSD group.

A. The EFT in the chiral limit

1. The static potential

In the EFT employed so far, all of the dilaton’s self-

interactions are described by the potential VΔ in Eq. (4).

FIG. 4. The 1σ region obtained using the six-parameter global fit described in the main text, showing the range of a2f2π (left panel) and
m2

d=f
2

d (right panel) as a function of the weakly constrained parameterΔ. The black crosses mark the central values for the fit parameters.
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This form includes a single scale-violating term with

scaling dimension Δ, and is smooth in the limit Δ → 4.

Corrections to this potential VΔ can be organized into a

series of terms governed by the scale breaking parameter

m2

d=f
2

d. This can be implemented via a spurion analysis

as described in Appendix A. The full potential, taken to

be part of the Lagrangian density L, can be expressed

in the form

VðχÞ ¼ VΔðχÞ þ χ4
X

∞

n¼2

an

�

m2

d

ð4 − ΔÞf2d

�

n

×

�

1 −

�

fd

χ

�

4−Δ
�

n

; ð19Þ

where smoothness in the limit Δ → 4 is evident and where

the extremum of the full potential remains at χ ¼ fd.
This form also emerges from examining the dilaton loop

corrections to VΔ. Since the loop-expansion parameter is

naturally of order m2

d=ð4πfdÞ
2, one finds that the coef-

ficients an are of order 1=ðð4πÞ2Þn−1. We develop the

perturbation expansion adopting the background field

method [46] and employing dimensional regularization.

This implements the prominent role played by scale

invariance, retaining only logarithmic cutoff dependence

and finite parts, disregarding (defining away) power-law

cutoff dependence. The one-loop contribution to the

Coleman-Weinberg effective potential takes the form

δVCW ¼
1

64π2

�

ðM2Þ2 log

�

M2

Λ
2

�

þ c

�

; ð20Þ

where we have replaced the pole term 2=ϵ in dimensional

regularization with logðΛ2Þ where Λ is a momentum-space

cutoff. Here, c is a scheme-dependent constant, while

M2 ≡ ∂2

∂χ2
VðχÞ. Starting at tree level we take V ¼ VΔ.

Extracting only the cutoff-dependent part, correcting the

potential appearing in the Lagrangian density, we have

δV ¼ −
1

64π2
log

�

Λ
2

μ2

��

m2

dχ
2

ð4 − ΔÞf2d

�

2

×

�

3 − ðΔ − 1Þ

�

fd

χ

�

4−Δ
�

2

; ð21Þ

where μ is a typical scale characterizing the EFT, such as

fd. The expression δV can be rearranged into corrections

to the terms appearing in VΔ, supplemented by the n ¼ 2

term in Eq. (19). With Λ no larger than, say, 4πfd, we can

sensibly take the factor log ðΛ2=μ2Þ to be Oð1Þ. This then
leads to the estimate a2 ∼ 1=ð4πÞ2.
We can extend the scalar-loop expansion of the potential

to higher orders, organizing the logarithmically cutoff-

dependent contributions at each order into the form of

Eq. (19). This series contains all the zero-derivative

operators required for renormalization of the potential.

Each of the an coefficients can be estimated in this way,

leading, as indicated above, to an ∼ 1=ðð4πÞ2Þn−1.
Powers of Δ − 1 also appear in the estimates for every

an. Similarly, positive powers of Δ − 2 appear in each an
for n > 2 and positive powers of Δ − 3 appear in each an
for n > 4. Thus, as expected, for integral values Δ ¼ 1, 2,

3, the scalar-loop expansion generates only a finite number

of such terms. In general, the identification of m2

d=ð4πfdÞ
2

as the expansion parameter for scalar-loop corrections to

the potential, together with the estimate m2

d=f
2

d ¼ Oð1Þ
(Fig. 4) emerging from our numerical fits, ensures that

Eq. (19) constitutes a systematic, controlled set of correc-

tions to VΔ.

2. Derivative operators

It is possible to systematically identify the tower of

derivative operators via a spurion analysis, along the lines

of the Appendix A discussion of the static potential. Here

we instead consider the generation of derivative operators

in the loop expansion, those that appear with logarithmi-

cally cutoff-dependent coefficients.

Derivative operators, unlike the terms in VðχÞ, arise from
loops of NGBs as well as loops of the scalar itself. The

resultant operators of the effective action can involve both

the scalar and NGB fields. (Loops of massless NGBs do not

generate corrections to the static potential, unless equations

of motion are used to recast contributions to derivative

operators as contributions to the potential. We choose not

to do this, and so the above results are unchanged after

including NGB loops.)

Higher derivative terms in the action correspond to

corrections in momentum space with increasing powers

of p2=ð4πfπÞ
2 and p2=ð4πfdÞ

2, where p is a characteristic

momentum. With p2 ≤ m2

d, and with the parameter values

emerging from the fits of Sec. III, the corrections are small

unless overwhelmed by pNGB counting factors.

Consider first the single-dilaton loop diagram employing

VΔ once and the interaction in Eq. (2) once. Its logarithmi-

cally cutoff-dependent contribution to theEFTLagrangian is

ΔLð1Þ ¼
1

64π2
log

�

Λ
2

μ2

�

f2π

f2d

∂2VΔ

∂χ2
Tr½∂μΣ∂

μ
Σ
†�: ð22Þ

This two-derivative operator describes a correction of

order m2

d=2ð4πfdÞ
2 with respect to the tree-level operator

in Eq. (2). Another logarithmically cutoff-dependent, single-

dilaton loop contribution arises from utilizing the interaction

in Eq. (2) twice. It leads to the correction

ΔLð2Þ ¼
1

64π2
log

�

Λ
2

μ2

�

f4π

f4d
Tr½∂μΣ∂

μ
Σ
†�2: ð23Þ
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This four-derivative operator describes a correction to the

tree-level theory of relative order ðf2π=f
2

dÞp
2=2ð4πfdÞ

2.

These examples exhibit the effective expansion parameters,

which are small with the EFT-parameter values of Sec. III.

Corrections arising from loops of NGBs, which bring

in the NGB counting factor, are typically larger. Operators

involving only external scalar fields, for example, are

first induced by one loop of NGBs by keeping just

the quadratic-NGB-field contribution in the factor

Tr½∂μΣ∂
μ
Σ
†� in Eq. (2). Using this interaction leads to a

logarithmic-divergent, four-derivative contribution to the

EFT Lagrangian given by

ΔLð3Þ ¼
1

64π2
log

�

Λ
2

μ2

�

ðN2

f − 1Þ

χ2
ð∂μ∂μχÞ

2: ð24Þ

The appearance of χ in the denominator of this operator,

treating it as a background field in the evaluation of the

NGB loop, does not indicate the presence of a dangerous

singularity, as the vacuum value for χ is nonzero.

Taking logðΛ2=μ2Þ ∼Oð1Þ, this quantity makes a

contribution to the dilaton two-point function of order

ðN2

f − 1Þp2=2ð4πfdÞ
2 (in momentum space), relative to,

say, the dilaton kinetic term. Other four-derivative scalar-

field operators generated via a one-NGB loop graph also

lead to corrections of relative order ðN2

f − 1Þp2=2ð4πfdÞ
2.

Higher powers of ðN2

f − 1Þ will naturally arise at higher

orders in the loop expansion, but they will be accompanied

by correspondingly higher powers of p2=2ð4πfdÞ
2.

Additional corrections from loops of NGBs arise already

in familiar chiral perturbation theory. At one loop, they are

of relative order Nfp
2=2ð4πfπÞ

2, with higher powers of

this quantity entering at higher orders in the loop expan-

sion. Taken as a whole, the derivative operators describe

an expansion in quantities of order N2

fp
2=2ð4πfdÞ

2 and

Nfp
2=2ð4πfπÞ

2, along with terms with fewer powers

of Nf.

In the fits of Sec. III to the LSD lattice data, we have

concluded that Nff
2
π=f

2

d ≈ 0.7. Thus the effective expan-

sion parameters arising from the derivative operators are no

larger than of order N2

fp
2=2ð4πfdÞ

2. With the restriction

p2 ≤ m2

d, and drawing on the estimate m2

d=f
2

d ¼ Oð1Þ as

shown in Fig. 4, we can conclude that the corrections to our

classical EFT, as employed in the chiral limit, are likely to

be no more than of order 15%.

B. Beyond the chiral limit

In the presence of a nonvanishing fermion mass m, the

full tree-level potential for χ is given by WðχÞ in Eq. (7).

The NGBs now become pNGBs, with a nonvanishing mass

arising from LM in Eq. (3). The EFT can be recast in terms

of the lattice-measured quantities M2
π , M

2

d, F
2
π, and F2

d

using Eqs. (8)–(11). We can then apply Eq. (20), with VðχÞ

replaced by WðχÞ, to compute the logarithmically cutoff-

dependent correction to WðχÞ coming from dilaton loops,

beginning at the one-loop level. As in the chiral limit, these

corrections are quite small even for theNf ¼ 8 theory since

large counting factors are not present. Dilaton-loop con-

tributions to other quantities, described by derivative

operators, are similarly small.

There are also pNGB-loop corrections to the tree-level

EFT, and unlike in the chiral limit these include corrections

to the static potential. They arise from the scalar-pNGB

interaction present in LM in Eq. (3), reexpressed in terms of

the capital-letter, lattice-measured quantities. The logarith-

mically cutoff-dependent contribution at one loop is

δVðχÞpNGB ¼ −
1

64π2
log

�

Λ
2

μ2

�

× ðN2

f − 1ÞM4
π

�

χ

Fd

�

2y−4

;

ð25Þ

where the exponent 2y − 4 arises from the form of Eq. (3)

together with the form of the pNGB kinetic term in Eq. (2).

It is important to establish that such corrections, with their

counting factors, are relatively small.

This can be assessed by computing the effect of Eq. (25)

on physical quantities such asM2

d, determined so far by the

tree-level potential WðχÞ. The correction is given by

δM2

d

M2

d

≈
1

64π2
log

�

Λ
2

μ2

�

ð2y − 4Þð2y − 5Þ

× ðN2

f − 1Þ
F2
π

F2

d

�

M2
π

F2
π

��

M2
π

M2

d

�

: ð26Þ

Again taking logðΛ2=μ2Þ ∼ 1, using ðN2

f − 1ÞF2
π=F

2

d ∼ 5.5

as determined by the fit of Sec. III, and noticing from Fig. 1

that the ratio M2
π=M

2

d is no larger than unity, we have

δM2

d=M
2

d ≲ 5ð2y − 4Þð2y − 5ÞM2
π=2ð4πFπÞ

2. Since the

factor M2
π=2ð4πFπÞ

2 is no larger than 0.05, this is a small

correction for y of order unity. With y in the range of

Eq. (16) as dictated by the LSD lattice data, it is a very

small correction. Similar results hold for the correction to

the decay constant Fd.

In addition to distorting the dilaton potential in the

regime away from the chiral limit, the pNGB loops also

induce other operators in this regime. These include

derivative operators, and additional corrections to LM

[Eq. (3)]. These terms again include pNGB counting factors

and lead to various momentum-dependent effects. We have

not yet compiled all these corrections to the EFT, to be

included along with corrections to the static potential in the

fits to the LSD lattice data. In Ref. [12], we provided rough

order-of magnitude estimates of these effects, concluding

that some could be relatively large for the Nf ¼ 8 theory.

As shown more carefully above, however, contributions to

APPELQUIST, INGOLDBY, and PIAI PHYS. REV. D 101, 075025 (2020)

075025-8



these quantities arising from corrections to the static

potential are relatively small.

These additional operators describe corrections that

should be no larger than the distortions to the dilaton

potential. Factors of Nf enter together with similarly small

kinematic factors. Also, it is worth noting that these factors

enter in much the same way they entered the derivative

operators in the chiral limit (now with measured masses and

decay constants replacing the extrapolated quantities). In

the static limit, as we noted in Sec. IVA, the corrections are

relatively small. These observations and the fact that the

tree-level EFT provides a good fit to the LSD lattice data,

suggest that loop corrections are small in the regime of the

data as well as in the chiral limit.

While this paper was being completed the aforemen-

tioned Ref. [47] became available. It discusses the same

tree-level Lagrangian, and contains a study of the structure,

but not the numerical size, of one-loop effects, focusing on

derivative operators rather than the scalar potential.

V. SUMMARY AND CONCLUSIONS

We have developed and explored an EFT describing the

coupling of an approximate dilaton to a set of pseudo-

Nambu-Goldstone bosons (pNGBs) originating from the

spontaneous breaking of a global symmetry. We employed

a tree-level scalar potential VΔ in Eq. (4), including one

operator of dimension Δ responsible for the breaking of

scale invariance. The parameterΔ is a priori unknown. The

tree-level potential is the first term in a series of operators

of size estimated by studying the loop expansion of the

EFT. The pNGBs are given a mass via a chiral-symmetry

breaking operator of dimension y which further breaks the

scale symmetry. The parameter y is also unknown a priori.

We first examined the EFT at the tree level, establishing

certain scaling relations expressing lattice-measurable

quantities in terms of its six free parameters. We applied

these relations to the currently available lattice data for

the scalar and pNGB masses M2

d and M2
π and the pNGB

decay constant F2
π obtained by the LSD collaboration for

the SUð3Þ gauge theory with Nf ¼ 8 fermions in the

fundamental representation. We performed a maximum

likelihood analysis validating the EFT interpretation of the

lattice data. The parameter ywas confirmed to lie close to 2,

with y ¼ 2.06� 0.05, consistent with earlier determina-

tions. We also obtained a first determination of the scaling

dimension Δ, finding that it can lie in a fairly broad range

0.1≲ Δ≲ 4.25. Figure 4 illustrates the high level of

correlation between Δ and the determination of other

parameters.

We then discussed corrections to the tree-level analysis

generated by cutoff-dependent loop diagrams within the

EFT. Small ratios, breaking scale symmetry and sometimes

chiral symmetry, enter all such terms. In the case of pNGB

loops, there are also counting factors that can be large in the

Nf ¼ 8 theory [12]. For the EFT in the chiral limit,

however, we concluded, in Sec. IVA, that with the

parameter values emerging from fits to the lattice data,

corrections to the tree-level potential and corrections

arising through derivative operators, are relatively small.

We commented on the general form of all such corrections.

Then, we discussed loop corrections away from the

chiral limit and in the regime of the lattice data in Sec. IV B.

We first argued that corrections to the potential, even those

arising from pNGB loops, are under control. Finally, we

discussed the role of derivative operators in this regime,

arguing that they should be no larger than the distortion to

the potential. The full compilation of all these corrections

is a future project. It would be interesting to perform this

entire analysis on the data of the SUð3Þ theory with Nf ¼ 2

sextets [6–10].

An important result of this paper is that with the present

level of precision in the lattice measurements and the

absence of a reported study of correlations, the empirical

evidence allows for the breaking of scale invariance in the

chiral limit to be clearly nonmarginal. Within the EFT, Δ is

allowed to take values well below 4. As a consequence, the

allowed value of f2π ranges over more than an order of

magnitude. If Δ is small, lattice calculations could soon

reach the chiral regime, where the mass of dilaton would

approach some finite value. At the extremum, this could be

achievable by reducing the value of the fermion mass m by

only a factor of 2–3 with respect to the smallest values

already available in Ref. [3] (see Appendix B).
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APPENDIX A: SPURION ANALYSIS

We construct the EFT by starting from an exactly scale

invariant theory, possessing a moduli space of degenerate

vacua in which scale invariance is broken spontaneously.

We then weakly deform this EFT by adding perturbations

which break scale invariance explicitly. We can do this

by introducing a spurion field λðxÞ, which is a chiral

symmetry invariant but transforms under scale transforma-

tions x → eρx according to the rule

λðxÞ → eρð4−ΔÞλðeρxÞ: ðA1Þ

We take the scaling dimension, 4 − Δ, to be an unknown

free parameter to be determined from lattice data.

In the chiral limit, EFToperators are built from scale and

chirally invariant combinations of the fields, derivatives and

the spurion λ. Scale invariance is then explicitly broken in

the EFT by demoting λðxÞ → λ to a constant scale. We do
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not expect gauge theories such as QCD, (having Nf far

below the conformal window boundary value) to be well

described by EFTs constructed this way.

We focus here on contributions to the static potential for

the dilaton. We further require it to be analytic in λ,

although it is allowed to be nonanalytic in χ [17,32,48]
1

VðχÞ ¼ χ4
X

∞

n¼0

bn

�

λ

χ4−Δ

�

n

: ðA2Þ

This potential can be reorganized into the more convenient

form

VðχÞ ¼ χ4
X

∞

n¼0

an

�

λ

f4−Δd

�

n
�

1 −

�

fd

χ

�

4−Δ
�

n

; ðA3Þ

where

an ¼ ð−1Þn
X

∞

r¼n

br

�

λ

f4−Δd

�

r r!

n!ðr − nÞ!
: ðA4Þ

Note that the expression within the round brackets in

Eq. (A3) vanishes if Δ ¼ 4. Therefore the potential (and

the whole EFT) is organized as a perturbative expansion in

a quantity proportional to λj4 − Δj=f4−Δd , and reliably

truncated at a chosen threshold value of n.
In the leading order EFT, we work to linear order in λ,

truncating the potential:

VΔðχÞ ¼ a0χ
4 þ a1

λχ4

f4−Δd

�

1 −

�

fd

χ

�

4−Δ
�

: ðA5Þ

We can now recast VΔ in terms of more familiar

quantities. First, we can set a1 ¼ 1=Δ without loss of

generality (we can always rescale λ to compensate). We can

then change to more directly physical variables,

λ ¼
m2

df
2−Δ
d

ð4 − ΔÞ
; a0 ¼ −

m2

d

4Δf2d
; ðA6Þ

and finally recover the familiar VΔ potential:

VΔðχÞ ¼
m2

d

4ð4 − ΔÞf2d
χ4
�

1 −
4

Δ

�

fd
χ

�

4−Δ
�

: ðA7Þ

It can now be seen that the full potential is an expansion

in a quantity proportional to m2

d=f
2

d. As noted in Sec. IVA

[Eq. (19)], it takes the form

VðχÞ ¼ VΔðχÞ þ χ4
X

∞

n¼2

an

�

m2

d

ð4 − ΔÞf2d

�

n

×

�

1 −

�

fd

χ

�

4−Δ
�

n

; ðA8Þ

where we have observed in Sec. IVA that an ∼

1=ðð4πÞ2Þn−1. This form makes it evident that the particular

limit Δ → 4 is smooth for the entire potential, with m2

d, f
2

d

and an held fixed. In this limit, VðχÞ describes corrections
to the dilaton potential employed in Ref. [13].

APPENDIX B: APPROACHING

THE CHIRAL LIMIT

To illustrate how the value for Δ affects the dependence

of the pNGB decay constant aFπ on the fermion mass am,

we show this dependence explicitly in Fig. 5. Here, we

compare our predictions (restricted by the parameter fits

obtained in Sec. III) to the current LSD measurements. The

black circles represent the same data points for the Nf ¼ 8

theory that were shown earlier in the right panel of Fig. 1,

obtained originally from Ref. [3].

The widths of bands on the plot provide an indication of

the uncertainties in the extrapolation of the fit results. We

drew the bands and line as follows: To draw the red line,

we first set Δ to 0.1, the smallest value in its allowed range.

We then determined the five remaining model parameters

by minimizing the χ2. Using these values, we employed

Eqs. (10), (11) and (8) to draw the red line. We drew the

green band by first setting Δ ¼ 2 and then locating the top

and bottom of the 1σ allowed range for the parameter a2f2π
(see Fig. 4) by finding the values of a2f2π for which

Δχ2 ¼ 7.04, having minimized the χ2 with respect to the

other four parameters. This procedure defined two sets of

six model parameters, both of which define a line F2
πðmÞ

through Eqs. (10), (11) and (8). We then drew these two

FIG. 5. Figure indicating the EFT prediction for how F2
π varies

with fermion mass as the chiral limit is approached, assuming

different values for Δ. More details are provided in the text.

1
In Eq. (23) of Ref. [48], this potential was employed to

provide a field-theoretical interpretation of the Goldberger-Wise
stabilization mechanism [49] of the electroweak scale.
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lines on Fig. 5 with the area between them shaded green,

forming the green band. The yellow band was formed using

a similar procedure, except that the limit Δ → 4 was taken

at the end.

The green band, for example, indicates that for Δ ∼ 2,

the extrapolated pNGB decay constant squared is only a

factor of roughly 3 below its smallest lattice-measured

value.
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