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We consider the coupled evolution of density, (scalar) metric, and dilaton perturbations in the transi-
tion from a “stringy” phase of growing curvature and gravitational coupling to the standard radiation-
dominated cosmology. We show that dilaton production, with a spectrum tilted towards large frequen-
cies, emerges as a general property of this scenario. We discuss the frame independence of the dilaton
spectrum and of the inflationary properties of the metric background by using, as model of source, a
pressureless gas of weakly interacting strings, which is shown to provide an approximate but consistent
solution to the full system of background equations and string equations of motion. We combine various
cosmological bounds on a growing dilaton spectrum with the bound on the dilaton mass obtained from
tests of the equivalence principle, and we find allowed windows compatible with a universe presently
dominated by a relic background of dilatonic dark matter.

PACS number(s): 98.80.Cq, 11.27.+d

I. INTRODUCTION AND MOTIVATIONS

It is well known that fluctuations of the metric back-
ground are amplified in the context of inflationary cosmo-
logies and that the amplification of their transverse,
traceless (spin 2) component can be interpreted as gravi-
ton production [1]. Models of the early Universe based
on the low-energy string-effective action (which we shall
refer to, for short, as “string cosmology”) are character-
ized by the additional presence of a dilaton background
¢(t). It is natural to expect an amplification of the fluc-
tuations 8¢ =y of the dilaton background, with the cor-
responding dilaton production, to accompany that of the
metric for a suitable time evolution of the cosmological
fields.

In this paper we discuss such a dilaton production in
the context of the so-called “pre-big-bang” scenario [2],
characterized by an accelerated evolution from a flat,
cold, weakly coupled initial regime to a final hot, highly
curved, strong-coupling regime, marking the beginning of
the standard ‘“post-big-bang” decelerated Friedmann-
Robertson-Walker cosmology. With this background,
the spectrum of the produced dilatons tends to grow with
frequency, just as in the (previously discussed [2,3]) case
of graviton production. As we shall see in Sec. III, the
high-frequency part of the spectral distribution Q, of the
dilaton energy density can be parametrized (in units of
critical density p, =H?*/G =M}H?) as
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where Mp==10'° GeV is the Planck mass. Here H, is the
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curvature scale evaluated at the time ¢; marking the end
of the inflationary epoch (which we assume to coincide
with the beginning of radiation dominance); v,=H a,/a
is the maximum amplified proper frequency; H =d /a,
where a, as usual, is the scale factor of the background
metric. The integral over  is thus dominated by the
highest frequency w;,
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and the condition (), <1, required to avoid the dilatons
overclosing the universe in the radiation-dominated era
(a~H™'?), yields the constraint H,SMp, already
known [2,3] from the graviton spectrum.

The produced dilatons, however, cannot be massless.
Large distance dilaton couplings can be estimated [4] and
turn out to be at least of gravitational strength. This
violates the universality of gravity at low energy and, in
particular, induces corrections to the effective Newton
potential (in the static weak-field limit), which may be
reconciled with the present tests of the equivalence prin-
ciple [5] only for a dilaton mass satisfying [4,6]

mZmy=10"*eV .

(1.3)

The expression (1.2) is thus valid only until the energy
density stays dominated by the relativistic modes, with

o(t)>m. But, at the present time f, (with
Hy~107%'M,), the maximum frequency o, is
w(ty)=H ﬂ~10_4 2 - eV (1.4)
1lto 1oy = M, . .

As H, <Mp, even the highest mode must then become
nonrelativistic before the present epoch, because of the
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constraint (1.3). At the scale H(¢,,)=m the modes with
o(t,, ) Sm begin to oscillate coherently, with frequency
m, and when they are dominant the dilaton energy densi-
ty becomes nonrelativistic, with
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(the dependence on the spectral index & disappears for
fast enough growth of the spectrum, as shown in Sec. V).
Such a fraction of critical density grows in time during

the radiation era, while in the matter era (a ~H ~%/3) it
becomes fixed at the maximum constant value
172 (6~—3)/2
1
Q, ~Gm?|— — , 0<8<1
X H, [H |
1/2 (1.6)
1
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where H,~10%H is the curvature scale at the matter-
radiation transition. The condition Qx <1 provides then,
for any given inflation scale H,, an upper limit for the di-
laton mass

mS(H,MpHS 4)V/8+D <5<

1.7

mSHYM3H 32, 8>1, 7

valid for m < H, under the assumption that its lifetime is

sufficiently long to reach the matter-dominated era (if

m > H, the dilaton must decay before becoming dom-

inant with respect to the radiation, as we shall see in Sec.
V, and the critical density bound cannot be applied).

In addition to the constraint (1.7), which is an unavoid-
able consequence of the quantum fluctuations of the dila-
ton background, one should also consider, in general, the
constraints following from possible classical oscillations
of the back-ground around the minimum of the potential
[7]. The initial amplitude of such oscillations is, however,
to a large extent model dependent and, as discussed in
Sec. V, we shall work under the assumption that classical
oscillations are negligible with respect to the quantum
fluctuations amplified by the cosmological evolution.
This assumption will give us the maximum allowed re-
gion in parameter space.

In the absence of classical oscillations, the upper limit
on m obtained from Eq. (1.7), combined with the lower
limit (1.3), define for each value of § and H, an allowed
window for the dilaton mass such that, near the upper
end of the window, the produced dilatons can close the
Universe. Such dilaton dominance, however, can last
only until their energy density is dissipated into radia-
tion, which occurs at a decay scale

3
H;~T; ;= m_

: (1.8)
M3
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We are thus led to the first interesting result of this
analysis. If §20.1, the upper limit (1.7) turns out to be
larger than the lower bound (1.3) even for inflation scales
H,>10"°M,. Moreover, always for H,>10"°Mp, the
largest value of m allowed by Eq. (1.7) is m ~100 MeV
{obtained for > 1) and it implies H; S H,. This means
that, for fast enough growing spectra, and “realistic” (at
least in a string cosmology context) inflation scales
H, >107°M,, we can be left today with a background of
relic dilatons possibly representing a significant fraction
of the dark matter background [8]. The allowed ranges
of m corresponding to this interesting possibility lie
around the upper limits given in (1.7) and thus depend on
8 and H, in a complicated way. For 0.15850.72 the
range of H, for which this possibility can be realized is
given by

Hl < 10~(23—328)/(4—8)MP (1.9)

while for 6 >0.72 values of H,/Mp up to 1 are possible
(the case 8= 1 is illustrated in Fig. 1). The lower bound
on & is imposed by the simultaneous requirements
H,>10"°M, and m > m,, together with Eq. (1.7). As
H, /M, is varied between 107> and 1 the corresponding
dilaton mass varies over the whole domain from 107 % eV
to 100 MeV. For lower spectral slopes (6<0.1), the
present existence of a dominant dilaton background be-
comes possible only for (unrealistically) low inflation
scales, as first pointed out in Ref. [9] for the case of scalar
perturbations with a flat (§=0) spectrum. Note that, ac-
cording to Eq. (1.9), a final inflation scale H, exactly
coinciding with the string scale itself, ~ 107'M p, would
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FIG. 1. The dashed area defines the allowed windows for the
dilaton mass m (given in units of m,=10"* eV) and the final
inflation scale H,, which are compatible with a present large
contribution of nonrelativistic dilatons to {}, under the assump-
tion that they are produced with a fast enough growing spec-
trum §=1. For lower spectral slopes the allowed window is
shifted towards lower values of mass, according to Eq. (1.7).
Masses higher than 100 MeV are excluded by dilaton decay,
masses lower than 107% by tests of the equivalence principle.
Inflation scales higher than M, are excluded in order to avoid
overcritical density in the primordial relativistic particle pro-
duction. The logarithm is to base 10.
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be compatible with the present light dilaton dominance
only for §20.61.

The inflation scale H, determines also the amplitude of
scalar perturbations ¢ of the metric itself and it is thus
constrained by the scalar contribution to the cosmic mi-
crowave background radiation (CMBR) anisotropies (the
contribution of tensor perturbations turns out to be negli-
gible in our context, as their spectrum grows very fast
with frequency [2,3]). The behavior of the scalar pertur-
bation spectrum, as we shall see, depends in general on
the adopted model of matter sources and background
evolution, and it is fair to say that our present knowledge
of the details of the stringy pre-big-bang phase is too poor
to make stringent predictions on the exact value of the
spectral index 8. On the other hand, fortunately enough,
the properties of a massive dilaton background are only
weakly dependent on the value of the spectral index for
8> 0 and rapidly become spectrum independent as soon
as 6= 1. The particular example chosen in this paper (see
Sec. IV) to discuss dilaton production, namely, a three-
dimensional isotropic, dilaton-dominated background
with negligible matter sources, gives the same spectrum
(very fast growing, §=3) for scalar (), dilaton (), and
tensor (h,,) perturbations. However, such an example is
chosen here for simplicity only, in order to develop a first
qualitative sketch of the scenario associated with dilaton
production, and it should not be taken as particularly in-
dicative of the spectral properties of the metric perturba-
tions. For a phenomenological discussion it is better to
leave open the possibility of different spectra for 3 and
(a possibility that is in general allowed in this context, as
we shall see in Sec. III) and to parametrize the scalar
(metric) energy density as
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with n —1 in general different from 8.

The interesting question to ask at this point is whether,
in the same range of H,, which we believe to be realistic,
it is possible to produce enough dilatons to close the
present universe and, at the same time, to generate scalar
perturbations with a spectrum consistent with the anisot-
ropy observed by the Cosmic Background Explorer
(COBE) [10]. This amounts to requiring

10—5<_H_1<1
TR

P
Qg ~1, (1.11)
n—1
w
Qylwgt,)~GH? w-" ~10710
1

where w,=H|, is the minimum amplified frequency corre-
sponding to a wave crossing the Hubble radius today and
t, is the time of matter-radiation equilibrium, nearly
coincident with the time of recombination.

The answer, perhaps surprisingly, is yes: the last re-
quirement of Eq. (1.11) is compatible with the two first
requirements, provided the scalar spectrum is also grow-
ing, with
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This allowed range of n is well contained in the range of
the spectral index originally determined by COBE [10],
n=12x0.5, and is also consistent with the new recent fit
[11], which gives n=1.5+0.5. It may be interesting to
recall, in this context, that growing scalar perturbations,
with n ~1.25, are also required for a simultaneous fit of
the COBE anisotropies and of the observed bulk motion
and large voids structures on a 50 Mpc scale [12]. Grow-
ing scalar spectra can be obtained in the ‘“hybrid
inflation” model proposed by Linde [13] and recently
generalized to the class of “false vacuum inflation” [14]
(see also [15]). Note also that the condition (1.12) would
not be incompatible with the lower bound on 8 required
for a present dominant dilaton background [according to
Eq. (1.9)], even in the case of equal scalar and dilaton
spectrum 6=n —1.

Concluding this qualitative analysis, we can say that
the possibility of producing a dilaton background which
saturates the closure density, together with scalar pertur-
bations which provide the observed cosmic anisotropies,
seems to be naturally associated with a growing dilaton
spectrum 8> 0. The fact that such a spectrum is typical
of string-based pre-big-bang models represents, in our
opinion, an interesting aspect of such models and
motivates the study of dilaton production in the string
cosmology scenario. A requirement analogous to Eq.
(1.11), formulated, however, in the context of extended
inflation models where the fluctuation spectrum of the
Brans-Dicke scalar is not growing, may be satisfied [16]
only for a reheating temperature 7, < 10'* GeV, namely,
for very low scales H,~T?/Mp<10"12M,. We note,
finally, that the possibility of inflationary production of
massless scalar particles, associated with excitations of
the Brans-Dicke field, was also pointed out in Ref. [17]
and previously discussed in Ref. [18] for the massive case
(with m <H ), but always in the context of exponential
inflation, which is not the natural inflationary back-
ground corresponding to the low-energy string effective
action.

The paper is organized as follows. In Sec. II we
present the general exact solutions (for space-independent
fields) of the system of background field equations, in-
cluding classical string sources, following from the tree-
level string effective action at lowest order in a’. The ex-
plicit form of the solution is displayed, in particular, for a
perfect fluid model of sources, in D=d +1 dimensions,
for any given equation of state. The low curvature and
large curvature limit of such solutions are given both in
the Brans-Dicke and in the conformally related Einstein
frame. In Sec. III we derive the coupled system of scalar
(metric plus dilaton) perturbation equations, including
the perturbations of the matter sources in the perfect
fluid form. Such equations are applied to compute the
scalar perturbation spectrum for a specific case of back-
ground evolution motivated by a model of sources
(presented in Sec. IV) in which the dominant form of
matter is a sufficiently diluted, noninteracting gas of large
macroscopic strings. The background describes a phase
of growing curvature and accelerated kinematics (of the
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pre-big-bang type), which is expected to evolve towards
the standard radiation-dominated cosmology. The frame
independence of the inflationary properties of such a
background is also discussed in Sec. IV. The correspond-
ing spectrum of the produced dilatons is discussed in Sec.
V, where it is shown that, because of its fast growth with
frequency, the phenomenological constraints leave open a
window compatible with the possible dominance of not
yet decayed dilatons (in the hypothesis of negligible clas-
sical oscillations of the dilaton background). The main
results of this paper are finally summarized and briefly
discussed in Sec. VI.

II. GENERAL SOLUTION
OF THE BACKGROUND FIELD EQUATIONS

We will assume the evolution of the Universe to be de-
scribed at curvatures below the string and/or Planck
scale by

R+V, V%~ %a;g—: — o HagH "0 =87Gpe* T},
@.1)
R —(V,$)+2V,Vhé+V — %—E — 5 HypHP=0
2.2
3, (Vigle ¢H**F)=0 . (2.3)

Such a system of equations follows from the low-energy
(D-dimensional) effective action of closed (super)string
theory [19]:

= — 1 D \/ —¢ e
S T6nG, [ dPxvTgle "#[R +3,40"¢

—LH,  H"+V(¢)]

uve

+Sy . 2.4)
Here ¢ is the dilaton field and H,,,, the field strength of
the two-index antisymmetric (torsion) tensor B,
=—RB,,. We have included a possible dilaton potential
V(¢) and also a possible phenomenological contribution
of the matter sources represented by the action Sy,
whose metric variation produces the stress tensor T,,.

We shall consider, in this paper, homogeneous back-
grounds which are independent of all spacelike coordi-
nates (Bianchi type I, with d Abelian isometries) and for
which a synchronous frame exists where gy =1 and
80i=0=B, (conventions: u,v=0,1,...,D=d+1;
i,j=1,2,...,d). We shall assume, moreover, that the
action S, describes “bulk” string matter, satisfying the
classical string equations of motion in the given back-
ground. At the tree level Vis a constant. In terms of the
“shifted dilaton”

¢=¢—1ln|det(g,,)| , (2.5)

the field equations (2.1)-(2.3) can be written in matrix
form as [20]
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$2—26—1Te(Mn)—V =0, (2.6)
b2+ LTe(Mn)—V=pe?, (2.7)
%(e_$MnM)=T (2.8)

{a dot denotes differentiation with respect to the cosmic
time ¢, and we have used units in which 877G =1, so that
p and T have both dimensions L ~2). Here M is a 2d X 2d
matrix

—G™'B
G—BG 'B

'G~1

M= pg-1

) (2.9

where G and B are matrix representation of the d Xd spa-
tial part of the metric (g;;) and of the antisymmetric ten-
sor (Bj;), in the basis in which the O(d,d ) metric 7 is, in
off-diagonal form,

01

10 (2.10)

TI:

(I is the unit d Xd matrix). T is another 2d X 2d matrix
representing the spatial part of the string stress tensor
[20] (including the possible contribution of an antisym-
metric current density source of torsion). Finally p is re-
lated to the energy density p= T by

p=pV/ |det(g,, ) . .11

The three equations (2.6)-(2.8) correspond, respec-
tively, to the dilaton equation (2.2) and to the time and
space part of Egs. (2.1) and (2.3) for the homogeneous
background that we have considered. Their combination
provides the covariant conservation equation for the
source energy density, which can be written in compact
form as [20]

p+iTH(ToMaMn)=0 . (2.12)
The set of equations (2.6)—(2.8) and (2.12) is explicitly
covariant under the global O(d,d ) transformation [21,20]

$—8, p—p, M—>ATMA, TATTA, (213
where A is an O(d,d ) constant matrix satisfying
AfgA=y . (2.14)

For a suitable class of dilaton potentials such a system
can be solved by quadratures, following the method
presented in Ref. [2].

Here we shall concentrate, in particular, on the case
V=0, corresponding to strings in critical space-time di-
mensions (which does not exclude, however, a description
of d =3 cosmology in case we add the right number of
spectator dimensions in order to compensate the central
charge deficit). We introduce a suitable (dimensionless)
time coordinate x, such that

P=TL dr

(L is a constant with dimensions of length) and we define

(2.15)
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r=f"—_T—dx' : 2.16)
p

Equations (2.6)—(2.8) can then be integrated a first time,
with the help of Eq. (2.16) and of the O(d,d ) identity

(MaMn)P=—(Mn)? 2.17)
to give [2]
__ e
p—4——2-D , (2.18)
- 2
———E(x +xq) , (2.19)
4r
f=—, 2.20
MqyM D (2.20)
where
D=(x +x0)2—%Tr(l"'p7)2 2.21)

(a prime denotes differentiation with respect to x and x,
is an integration constant).

By exploiting the fact that M is a symmetric O(d,d)
matrix MyM =1 and that, because of the definition of T
(see Ref. [20]),

MyI'=—TIyM , (2.22)

Eqgs. (2.19) and (2.20) can be integrated a second time to
give

$(x)=¢0—2f%(x+xo) , (2.23)

Mx)=P,exp | —4 [ ry My, @.24)

where ¢, and M are integration constants [ M, is a sym-
metric O(d,d) matrix] and P, denotes x ordering of the
exponential. For any given ‘“equation of state,” provid-
ing a relation T=T(p) between the spatial part of the
stress tensor of the sources and their energy density, Egs.
(2.23) and (2.24), together with (2.18), represent the gen-
eral exact solution of the system of string cosmology
equations, for space-independent background fields and
vanishing dilaton potential.

Such a solution presents, in general, singularities, for
the curvature and the effective coupling constant e?,
occurring in correspondence with the zero of D(x). It is
important to stress that, near the singularity, the contri-
bution of the matter sources becomes negligible with
respect to the curvature terms in the field equations (just
as in general relativity, in the case of Kasner’s anisotropic
solution).

The relative importance of the source term is measured
indeed by the ratio [see, for instance, Eq. (2.7)]

o) =——

(d —1)Tr(Mn)?

(we have normalized ) in such a way that it reduces to
the usual expression for the effective energy density in
critical units Q=p/p, when the dilaton is constant and
the metric isotropic). According to Eqgs. (2.18) and (2.20),

(2.25)
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. e?
MnM=-L—I" , (2.26)
so that, by exploiting the O(d,d) properties of M,
. o2
Tr(Mn)*=— ?Tr( ). (2.27)
Therefore
2 D
d—1 Tr(Ty)?

goes to zero at the singularity (D —0).

In this limit, the matter contribution becomes negligi-
ble and the general solution presented here reduces to the
V=0 case of the general vacuum solution of the string
cosmology equations [22]. Denoting indeed by ¢, a singu-
lar point such that D(z,)=0 and I'(z,)#0, from Eq.
(2.26) we have, near this point,

MnMe *=4 , 2.29)
where the constant matrix A satisfies
I'(¢,) T
A= 2 =—A', MnA+ Aq9yM =0 (2.30)

because of the property (2.22) of I'. Moreover, from
(2.18) and (2.19),

T2 6’2'; 2

d) =m(x +x0) s (2.31)
so that, by using (2.27),

72 )2 e

¢ *+ 1 Tr(M7) =ZI7D(tC)=0 . (2.32)

Equations (2.29) and (2.32) correspond exactly to the
equations defining the general vacuum solution of Ref.
[22], for the case of vanishing dilaton potential.

Consider now the particular case in which B, =0 and
we are in a diagonal but not necessarily isotropic, Bianchi

type-I metric background:

(this is the background that will be used here to discuss
dilaton production). The matter sources can be
represented in the perfect fluid form, but with anisotropic

pressure:
T3=p, T/=—p;8!, p;/p=vy;=const . (2.34)

In this case we obtain, from the previous definitions,

0 pidy;
- _,'6 O

ij

—F,SU 0
D=(x+xyP?=3 (y;x +x,=alx —x Nx—x_) .
i

I'= N F,-=’}’,~x +x,~ N (2.35)
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where 2./ 114+ 32
a()~1e)" 2] ,
ﬁiZPf‘/m’ a=1_27/%’ — 2
i ¢~— 21n|t| ’
1 ? 12y 2.44)
ok [2 YiXi—XoE | |2 ¥i%i—Xo (2.36) Syi—1 @
i i ¢~2—1n|t$ ,

+a |3 xF—x§

i

1/2
{ ,

and x;,x, are integration constants. The general solution
(2.18), (2.23), and (2.24) becomes explicitly [23]

a;

el Xx—x
g =ag|(x—x  Nx—x )T, .37
X—Xx_
F— % “1a|X "X+ -
el=e(x —x  Nx—x_)| 7V |—— , (2.38)
X—Xx_
4 x—x, | 7
-« _ +
p:Fe O|(x_x+)(x__x‘)|(a 1)/a }_—:__xj ,
(2.39)
where
o=y,
' (2.40)
ax;+ty; [ ViXi—Xg
a; = 2 172 »
al |[Syxi—xo| +a |3 x}—x}
i i

and a,, ¢, are additional integration constants.

This solution has two curvature singularities at x =x . .
Near the singularity, the presence of matter becomes
negligible,

alx—x  Ax—x_)

Q(X)z 2-—-)
(d—13 (y;x+x;)

0, (2.41)

and one recovers the anisotropic vacuum solution of
string cosmology in critical dimensions [24,25]. Indeed,

for x —x ., one has |[x|~|t Ia/( ttaZar, ), and the solution
behaves like
[ E -
a(t)y~lt—t |7, ¢~—Inlt—rt.], (2.42)
where
+ xii’)/ixt 412
,—:————-——_’ N =1 . 2.43
B; P ;(B, ) ( )

In the large |x| (small curvature) limit, on the con-
trary, the relation between x and cosmic time is
|x|~]¢]2/?~® and the solution (2.37)-(2.39) behaves
like (for |x|— % )

1+ 37}

> F22 B0 X7)

p~|t| .

The critical density parameter, in this limit, goes to a
constant

=37
i

Q,=——", (2.45)
which is obviously Q=1 for an isotropic, radiation-
dominated background with y,=1/d.

It is interesting to point out that, for any solution a;,¢
corresponding to a given set of equations of state p; =y ,p,
there are the corresponding ‘“‘dual” solutions obtained
through the reflection y;,——y;, which leads to
a;(y;)—a;(—y;)=a; y;), preserving, however, the
values of ¢ and p (scale-factor duality [25,26]). Such a
duality transformation, combined with the time inversion
t— —t, transforms any given metric describing (for
v;>0) decelerated expansion with decreasing curvature,
g, <0, H;>0, H, <0, into a new solution describing (for
v; <0) a superinflationary expansion with increasing cur-
vature &; >0, H; >0, and H; > 0 (see also [2]).

It is convenient, for later use, to write down explicitly
the isotropic version of the asymptotic backgrounds
(2.42) and (2.44), as a function of the cosmic time ¢ and
conformal time 7 such that dt=adn. In the (d+1)-
dimensional isotropic case, the small curvature limit
(2.44) becomes, in cosmic time,

a(t)~|t|2y/(1+dy2)’ ¢~£Iy;1—1na, p~a-d(y+1)

(2.46)
while in terms of 17 we have

|7’|27/(1—2y+dy2> ) (2.47)

a(n)~

The vacuum dilaton-dominated limit (2.42) becomes, in
the isotropic case,

az(t)~[t| TV . ~Vd (Vd +1)ina (2.48)
and, in conformal time,
a¢(7’)~!7’1¥1/(1/gi1) . (2.49)

Note that for y=1/d and t— + o, Eq. (2.46) describes
the standard radiation-dominated cosmology with
¢=const; the dual case y=—1/d and t—0, with ¢ <0,
describes instead a typical pre-big-bang configuration {2],
with a superinflationary expansion driven by a perfect gas
of stretched strings [27]. The dual solution obtained
through a more general O(d,d) transformation, applied
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to the radiation case, corresponds to a nondiagonal
metric and an effective viscosity in the source stress ten-
sor and has been discussed in Ref. [20].

We note, finally, that the solution presented in this sec-
tion is given explicitly in the Brans-Dicke (BD) frame,
whose metric coincides with the o-model metric to which
strings are directly coupled. The passage to the Einstein
(E) frame, defined as the frame in which the graviton and
dilaton kinetic terms are diagonalized and the action
takes the canonical form

l To | V.
Se= J 4%V Tegll—R (8}, + 83,860,851 ,
167Gy

(2.50)

is obtained through the conformal rescaling
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gfv"‘g,we 2/td=1) b= d——_I] ¢ . (2.51)

The E-transformed scale factor az and the cosmic time
coordinate ¢ are thus related to the original BD ones by

ag=ae #7V dtp=dte ¢4V (2.52)

The asymptotic limit (2.46) of the previous general
solution thus becomes, in the E frame,

aE(tE)~|tE]B ’

2 1" @=ni—dy)
_ - —ay
¢E d—1 ’}’_1 lrlaE ’
(2.53)
pe~ag*’?,
B 2(1—vy)

Cd—D(1+dy)=2dy—1)
where pg is conformally related to the BD energy density
p by

— __$d+D/Nd—1)
PE=Pp—F= =pe . (2.54)
V gkl
In conformal time
aE(n)~Inl—2(7—1)/(d-—1)(1—2y+d72) 2.55)

[note that the conformal time coordinate is the same in
the E and BD frames,

(2.56)

because of Eq. (2.52)]. The high curvature limit (2.48) be-
comes, in the E frame,

al (tg)~tg|'?, ¢E ~Fv2d(d—1)nag (2.57)
and, in conformal time,
ak (gp)~|n|t/é-1 (2.58)

It should be stressed that the radiation-dominated solu-
tion, with ¥ =1/d and ¢ =const, is obviously the same in
both frames; see Egs. (2.53) and (2.46). We note also that
in the vacuum dilaton-dominated case, the duality trans-
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formation, which is represented in the BD frame by the
inversion of the scale factor, with the related dilaton
shift,

ay—azx =a£1’ ¢t_’¢3F =¢j:_2d lnai ’

in the E frame becomes a transformation between the
weak-coupling and the strong-coupling regime
#r9% = —4t
without changing the metric background.
Concluding this section, we want to stress that the
solutions discussed so far describe the situation in which
the dilaton potential can be neglected, namely, the back-
ground evolution at early enough times when the effective
coupling e? is small enough. Indeed, because of non-
renormalization theorems, the potential is expected to ap-
pear at the nonperturbative level only and has to be ex-
tremely small (V(¢)~exp[ —exp(—¢)]) in the weak-
coupling regime. At later times and large couplings, the
main effect of the dilaton potential will be taken into ac-
count in the form of a dilaton mass term (see Secs. III
and V), which freezes the Newton constant at its present
value.

(2.59)

(2.60)

III. SCALAR PERTURBATIONS
WITH DILATON AND PERFECT FLUID SOURCES

In order to obtain the equations governing the classical
evolution of scalar perturbations, we choose to work in
the Einstein frame, where the explicit form of the equa-
tions is simpler. This is a legitimate choice since, as we
shall see at the end of this section, the scalar perturbation
spectrum, just like the graviton spectrum [23], is the
same in the Einstein and Brans-Dicke frames.

In ihe E frame, the background field equations (with
B,, =0, but with a nonvanishing dilaton potential V) take
the form

2R} —8,R=23,43"9+8;[V—1(V$)*|+ T} ,

F) 4
By 27 =
VA ¢+a¢ +eT=0,

(3.1)
(3.2)

where ¢ =V'2/(d —1) (the Einstein frame index E will be
omitted throughout this section). The coupling of the di-
laton to the stress tensor of the matter sources is fixed by
the conformal rescaling (2.51) and (2.54). We start, for
simplicity, with a (d+1)-dimensional isotropic back-
ground, with perfect fluid sources,

gy =diag(1,—a%,;), ¢=¢(1)
T,=(ptplu,u*—ps,, ut=8f,

(3.3)

and we consider the pure scalar part of the metric pertur-
bations 8g,,,=h,, together with the perturbations of the
dilaton background 8¢=y and of the matter sources
6p,0p,8u” (in the linear approximation scalar, vector,
and tensor perturbations are decoupled and evolve in-
dependently). We use here for the metric the Bardeen
variables ®,9¥, which are invariant under those
infinitesimal coordinate transformations which preserve
the scalar nature of the fluctuations [28-30]. In the lon-
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gitudinal gauge we have thus the first-order expressions
(30]

hoo=2®=h%, hy,=0,

hy=2a’$d (3.4)

G 2 i
ij hf—:;aﬁﬁf,
8T2=6p, 8Ti=—>5i6p, 5T°—3—35u .

These are to be inserted into the first-order perturbation
of the Einstein equations (3.1),

—2h""R . +28"8R ,,— 5,(gPOR ;3 —h R o)

= —h*90, 43,4 +3 X" b+0,63Y +5. g(‘;
—187(2g%%3 935 —h 3 ,$3ph) +8T), , (3.5)
and of the dilaton equation (3.2),
—hPV YV b+, VEy —g P81 %53,
+ 8 (3.6)

+<(8p—dbp)=0
a¢2X (6p—ddp)

Here the covariant derivatives are to be performed with
respect to the background metric g,,, and R ,,,8T are
to be computed to first order in 4,

By using the background field equations, the (i, ) com-
ponent of Eq. (3.5), with i}, gives

nv?

O=(d—-2W, (3.7)
which allows us to eliminate everywhere one of the two
Bardeen variables. The (i,0) component gives a con-
straint which can be written, in terms of the conformal
time 7, as

—x¢' (=(p+pladuy;

3 [Z(d—l) ga—'(d—2)¢'+¢'

(3.8)

(a prime denotes differentiation with respect to 7). The
(0,0) component provides an expression for the density
perturbation 3p in terms of the scalar variables 1 and y:

__d-2

A=D1 T 3=

¢'Zl¢

2 g4
\/ dalll

¢'X’+—~a x+a%p (3.9)

04

T 2d—1)
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Finally, the (i,i) component of Eq. (3.5) and the per-
turbed dilaton equation (3.6) give, respectively,

2
¥ +(2d —3) ¢+ (d—2) 2——+(d 4) "7 l
d—2 ,,»
T2a-n? l¢
U |9V , 2
TEEST % a¢a Y +a*sp (3.10)
X' +d—1)= x+ 22V gy
3¢
__ . _ L 2
=2d—1)¢' —2(d —2) (p dp)+ a¢ a‘y

—-;-az(ﬁp—dﬁp) . (.11

The linear system formed by the four coupled equa-
tions (3.8)—(3.11) determines the classical evolution of
four independent perturbation variables ¥, ¥, 8p, and bu
{an additional relation between 8p and 8p is to be provid-
ed by the detailed model of matter sources). In the ab-
sence of dilaton background (¢ =0=Y) one recovers the
usual system of equations for hydrodynamical perturba-
tions [30], while in the absence of fluid sources
(T}, =0=38T) one has the usual perturbation system for
a scalar field minimally coupled to the metric [30].

When ¢ and T, are both nonvanishing and &p can be
parametrized in terms of 8p as 6p =€(¢)8p, we may elimi-
nate 8p by means of Eq. (3.9), and the system reduces to a
pair of second-order differential equations (3.10) and
(3.11) for the coupled variables ¥ and .

By introducing the bi-dimensional vector

Z= ['// ] 3.12
% (3.12)

and by parameterizing the dilaton background as
¢=pPIna, B=const, (3.13)

the above-mentioned pair of equations can be represented
in compact form as

z,;'+2£a—,42,;+<sz+C)zk=o, (3.14)

where Z; =(i,,X, ) represents the Fourier component of
the perturbation variables, V2Z, = —k?*Z,, and
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1—e
1 — N
1(2d —3+de) R
A= . )
—~(d—1) —"2—(1—de>+3] Hd—1—F(1~de)B
_ € 0
B=|_(1—de}d—1) 1|’ (3.15)
" 1 ’ 2
PRV PR S _l—e n||a
2d-24-+(d=2) [d—atdet 5 —p | |4 | 0
C=
BZ a:
—ed(d=2)(y—e) [dd—1)—E- | | £ 0

(we have neglected here the possible contribution of the
dilaton potential by setting 8V /3¢ =0=03%F /3¢4%). We
note that a system of coupled scalar perturbation equa-
tions similar to (3.14) was previously considered also in
Refs. [31,32] where, however, a scalar field model of
source (“inflaton” matter) was used instead of the fluid
model adopted in this paper.

Without further approximations, ¢ and ) are thus in
general nontrivially mixed, with time-dependent mixing
coefficients determined by the explicit model of sources
y=p/p and €=8p /8p and by the background kinemat-
ics a(t) and ¢(¢) according to Eq. (3.14). The solution of
(3.14) provides in turn, for any given background
configuration, a unique determination of the density con-
trast 8p/p through Eq. (3.9) and of the velocity perturba-
tion &u; through Eq. (3.8).

Equations (3.8)-(3.11) are linear in the perturbations
and just describe their classical evolution without specify-
ing their absolute magnitude. As clearly stressed in Ref.
[30] (see also Refs. [33,34]), in order to determine the ab-
solute magnitude of the vacuum fluctuations and their
spectral distribution, one must express the perturbations
in terms of the correctly normalized variables satisfying
canonical commutation relations. These can be deter-
mined by expanding the action to second order in the
fluctuations.

For the pure metric-scalar field system (7', =0) such a
canonical variable is known to be fixed by the following
linear combination of ¥ and ¥ [35-37]:

a’¢’
v=aytzy, z= pral (3.16)
For a pure fluid source (¢=0), with constant €, the
canonical variable is instead [38,39]
1/2
e (3.17)

w=if~Eyp), E=L

a

where f is the velocity potential determining the fluid
perturbations as

aVp+pdu;=—Ved,f ,

ap=—L (ptp)p— -
(4 e P P a? Ve

, ,
e fvptp ] (3.18)

I
(we have assumed d =3 in the previous three equations).
The variables v,w play the role of “normal coordinates”
decoupling the system of perturbation equations and re-
ducing the action to the free scalar field form [30]. Only
when ¢ is expressed in terms of such variables one gets a
canonical normalization of the Fourier modes ,, and
then the correlation function for the metric fluctuations

<¢(X)l/}(x'))=f_dk£ Sl;cl:cr

provides the correct spectral distribution for the metric
18K 2=k, | (3.20)

and for the dilaton 8,(k) through Eq. (3.16).

If T} and ¢ are both nonvanishing, one could try a per-
turbative approach to the spectrum (as in Refs. [32,40]),
by keeping fixed the definitions of v and w as a zeroth-
order approximation. In such case, the constraint (3.8)
gives (in d =3)

a' 1 1 —
Y — = —4' —-_\/ .
P+ agb 4¢)( n ep+p)f

18,(k)[? (3.19)

(3.21)

By eliminating f and y in terms of v and w through Egs.
(3.16) and (3.17), by using the constraint (3.21) and the
background field equations, one can then express the
Fourier mode 9, from Eq. (3.9), as

¢k=¢k(vvv,’w7w,,k) . (3.22)

Moreover, the system of equations formed by Eq. (3.11)
and by the combination of Eqgs. (3.9) and (3.10), obtained
by eliminating 8p, can be written as a system of two
second-order differential equations for the coupled modes
v, and w;. Its solutions, when inserted into Eq. (3.22),
provide a first approximation to the scalar perturbation
spectrum (3.20). From Eq. (3.17) one then has the corre-
sponding dilaton spectrum |8,|=k*"|y, |, and from Egs.
(3.18) and (3.17) the density perturbation spectrum
18,1 =k3"(8p/p);l.

In general, dilaton and metric fluctuations will have
different spectral distributions |8,/%[8,|. The coupled
system of equations is rather complicated, but it seems
possible, in principle, to obtain a large variety of spectra
as the equation of state and the ratio 8p /8p are appropri-
ately varied [41].
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In this paper we shall consider a model (see Sec. IV for
its motivations) in which the universe evolves from a
three-dimensional, dilaton-dominated phase of the pre-
big-bang type (with negligible fluid sources T, =0=8T,)
to the standard radiation-dominated phase (p =p/3), adi-
abatic (e=1), and with frozen Newton constant
(¢=const). More complicated scenarios will be analyzed
in future works [41]. The phase of pre-big-bang inflation
is assumed to extend in time from — co up to the time
n=—m;<0, which marks a sudden transition to the
phase of radiation dominance. For < —m, the con-
straint (3.8) thus becomes

a’ 1
L Y= :
Vet =X (3.23)
where, according to Eq. (3.16),
% _z
Xk = p a¢k . (3.24)

When the constraint is inserted into Eq. (3.9), and Eq.
(3.24) is used in order to eliminate ¥ and X', we are led to
a relation of the form (3.22), namely,

1 ,,z
4)_

Uk
4k* " a

z

Y = . (3.25)

In the absence of matter sources, Eq. (3.11) becomes
equivalent to the combination of Egs. (3.9) and (3.10). By
expressing Y, in terms of v, according to Eq. (3.24), and
by eliminating ¢',1¢'' through Eq. (3.23), we finally get the
canonical perturbation equation [30], valid for 7 < —#,

"

k2—Z
V4

v+ v, =0. (3.26)

In the second radiation-dominated phase (7> —,),
we assume that the dilaton acquires a mass m and it stays
frozen at the minimum of the potential (with possible
small oscillations around it) so that

LA

3¢’ a¢?
In this case y decouples from the metric fluctuations [see
Eqgs. (3.8)-(3.11)], which are coupled now to the fluid
perturbations only; the canonical variable for their quant-
ization is thus given by Eq. (3.17). As a”/a=0 in the ra-
diation phase, it turns out, however, that for n> —,
both w and ay satisfy the free oscillator equation
w''/w=const (apart from the dilaton mass term, as-
sumed to be negligible at early enough times; see Sec. V).
As a consequence, ¥ and y will have the same spectrum
(identical, in this case, to the tensor perturbation spec-
trum), which can be computed by adopting a second
quantization approach, regarding the amplification of the
perturbations as a process of particle production from the
vacuum, under the action of the cosmological back-
ground fields [30].

The Bogoliubov coefficients ¢, for such a process are
obtained by matching the solution of Eq. (3.26) to a gen-
eral solution of the plane-wave type,

V=0 (3.27

uk=71f(c+e"ik”+c_eik’7) , (3.28)
valid for 7> —7,. By assuming, for n < —n, that

a~(—n)"% ¢=PBlna , (3.29)
we have

5—=£’~=———~“(aj” . (3.30)

z a n

The solution of Eq. (3.26), describing oscillations with
positive frequency at 7= — « and defining the initial vac-

uum state, is thus given in terms of the second kind
Hankel function H® as

Uk:ﬂmH(Vz)(kn)’ v=a+i. (3.31)

The continuity of v, and v; at the transition time
n=—1, fixes the Bogoliubov coefficient c_(k) and the
corresponding expectation number of particles produced
in the mode k. For k $1 we obtain

(n(k))=|c_(k)|*=(kn,) 21 (3.32)

(higher mode production turns out to be exponentially
suppressed [3,42] and can be neglected for the purpose of
this paper). In terms of the proper frequency w=k /a,
the energy density p, of the produced dilatons is thus
characterized by a spectral distribution wdp,/
dw~ow*|c_|% which may be written, in units of critical
density p, =H?/G,

_a)dpx Got | @ TATe
Qlon=—"— -t~ 5| -
Pec do H 4
24 2 4
e | e T EL e
"o, H a |’

(3.33)

where w,(t)=Ha,/a(t) is the proper frequency of the
highest excited mode (here we have supposed a2 —1).
This is the same spectrum as that obtained in the gravi-
ton case [43], with an intensity normalized to the final
inflation scale H,. It is growing for a phase of
superinflationary pre-big-bang expansion (a < 1), flat for
de Sitter inflation (a=1), and decreasing for power-law
inflation (a > 1).

It should be stressed that this second quantization ap-
proach is convenient to discuss the squeezing properties
of the produced radiation [3,34,44-47], but, with regard
to the perturbation spectrum, it is completely equivalent
to the more traditional approach in which one computes
the parametric amplification of the perturbation ampli-
tude. In this second approach one has indeed, according
to the “effective potential” 2"’ /z of Eq. (3.26), a mode am-
plitude which is constant |v;|~1/V'k in the initial re-
gion 7— —oo, where k?>>|z"/z|=~7n"?% and which
grows with powerlike behavior in 7 in the nonoscillatory
region defined by k?<<|z"'/z| (in the subsequent radia-
tion era the solution for v is again oscillating, with frozen
amplitude). In the nonoscillatory region
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7_dy
z¥n")

—k% [ "—2"(11',7 Tdn'2 ") +0kY)  (3.34)
2y

v, =cz+c,z

(cy,c, are integration constants) is the general solution of
Eq. (3.26) to first order in k? (the first subleading term
has been included to have nontrivial derivative of v /z).
This gives, for the background (3.29) (with obvious
redefinition of ¢,,c, and introducing a further numerical
constant ¢;),

ve=cynl "%,y E—cyk?q2Te . (3.35)

For a>0 (inflationary expansion) the first term is the
dominant one in the |n|—0 limit and the wave
amplification achieved in this limit can thus be estimated
as [30]

ve(m) | 1
DV > _—
¢ ‘/k Uk ko~aH
z 1 k*n?
~—" | — 1— (3.36)
\/k Uy k~aH 2(1_2a)
|
|’ G|’ an
Gl8,*~G | =~ ~ |- zGHfl L
k~aH AN |k~aH an

~GH?3(kn,)? **=GH?

in agreement with Eq. (3.33) fora ~¢!/2~H 172,

As already stressed in Ref. [23] for the tensor perturba-
tion case, we want to remark finally that the scalar per-
turbation spectrum is the same in the £ and BD frames,
as a consequence of the equality of the two conformal
time coordinates (see Sec. II). Indeed, quite independent-
ly of the computational method (first or second quantiza-
tion) the spectral behavior of the energy density is fixed
by the Bessel index v of the solution of Eq. (3.26), which
depends, in turn, on the slope of the effective potential
z" /z. For a generic d =3 background in the E frame we
have [recall Eq. (2.55)]

a(y)=—KL

) 3.40
1—2y+3y2 (.40
so that, according to Eq. (3.30),
e o B AN ot DLE | N € W)
Z g a g Uy (1‘2‘}’4‘3’}’ )

Equation (3.26) for v, is not conformally invariant, and in
the BD frame the effective potential becomes
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The variable at the denominator is to be evaluated at
the time 7=~k ~!, where the mode k “hits” the effective
potential barrier z' /z~%"2 (in other words, at the time
of first horizon crossing, when H =w). By inserting this
value of v into Eqgs. (3.25) and (3.20) and recalling the
definition of z, we are led to

k

|’

¢
which is the standard expression for the scalar perturba-
tion spectrum [35,48] associated with the inflation-
radiation transition (see Sec. IV for a proof of the fact
that the same result is recovered in the case of contract-
ing backgrounds). The same spectrum is obtained for the
dilaton perturbations as we have, from Eq. (3.24),

2 2
*!k

It is important to stress that this expression, when mul-
tiplied by G, exactly coincides with the spectral energy
density (3.33) (modulo numerical factors of order unity),
evaluated in the radiation era. Indeed, multiplying and
dividing Eq. (3.38) by H? =~(a,7,) "2 we have

|8,k k3| 2

o~

k=~aH

, (3.37)
k=~aH

v

82 =k?| =~ Ly, =18l? -

k~aH

(3.38)

k~aH

2—2a
d
£ o SPx (3.39)
wl pC dw rad
[
ZII zll
- = (app,$sp)
Z ipp Z g
a” . |a " .
=\ —¢pp | “%¢BD+%¢BZD-
¢ |pp 2 |pp
(3.42)

In this frame, however, the spectrum is determined by
the conformally transformed backgrounds, namely, by
the solutions (2.46) and (2.47) of the BD field equations.
By inserting their explicit expressions for d =3 we get

—_ v (y—1D3By—-1)
BD W%;D (1—27""37’2)2 ’

(3.43)

which coincides with the effective E-frame potential
(3.41) because of the equality 77gp=75. The s2me results
holds for a dilaton-driven evolution, described by the
solution (2.57) and their BD-transformed expressions.
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IV. PRE-BIG-BANG SCENARIO
IN THE BRANS-DICKE AND EINSTEIN FRAMES

As seen in the previous section, the spectral distribu-
tion of the perturbations is uniquely fixed by the explicit
form of the background solution. The time evolution of
the background fields is determined, in turn, by the par-
ticular model of matter sources. As in our previous work
[20,27], our model of sources consists of a sufficiently di-
luted gas of classical fundamental strings whose mutual
interactions are described, in a mean-field approximation
sense, as the interaction of each single string with the
background generated by all the others according to the
tree-level effective action (2.4). The source stress tensor
appearing in Eq. (2.1) is thus given by a sum over all
strings (labeled by i) of the stress tensor of each individual
string T#", where

dX# dx} dX{ dx;
dr dr do do
X 82X ~x) 4.1)

TH(x)=

1
'n'a'\/Ta fda dr

and, for each i, the coordinates X* satisfy the string equa-
tions of motion in the given background,

2yu 2yu a a B B
Cie GO > CHPORN P GO G| 1 GO G e
dr? do? dr do dr do
4.2)
dX* dX  dX* dx* |_ dx* dx” _
®idr dr do do 8w Tdo

Here (27a’)”! is the string tension, ', the Christoffel
symbol for the background metric g,,, and 7 and o the
usual world-sheet time and space variables (we are using
the gauge in which the world-sheet metric is conformally
flat).

The general exact solution of the system of equations
(2.1)-(2.3), (4.1), and (4.2) is difficult to find and certain-
ly impossible to express in closed form. In some ap-
propriate asymptotic regime, however, the solution of the
string equations of motion, when inserted into the
energy-momentum tensor (4.1), provides an effective
equation of state which allows us to describe the string
sources in the perfect fluid approximation [20,27] and to
recover then the general background solutions of Sec. II.
The cosmological solution we are looking for is charac-
terized in particular by having, as an initial configuration,
the string perturbative vacuum, namely, flat space-time
with vanishing torsion and coupling constants, H,,,, =0
and ¢=— . In this regime strings move freely, do not
decay, and behave as a pressureless gas with an energy
density p. We shall assume p to be small enough initially
so that, as we shall see, it will represent a negligible
source of curvature. On the other hand, a finite p is cer-
tainly sufficient to make the dilaton evolve away from the
perturbative minimum.

Indeed, the negative branch (x <x_) of the general
background solution with perfect fluid sources, Eq.
(2.37)-(2.39), may be written in the case of vanishing
pressure (y; =0) as
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% -4
t—2T " 5_ 16L% ™
- ¢ 0L €
)= ) - )
a;(t)=a; ; e t(—27)]
@
__ldx_ e® _
L A} =const , 4.3)
£ 172
1
a,‘;, T= ;tiz , t=0

[¢; are integration constants and we have performed a
time translation to shift the singularity from x =x_ to
the origin by choosing x0=——T(e¢°/4L )]. This back-
ground is certainly consistent with the solution of the
string equations of motion (4.2) in the t— —oo limit.
Indeed, in this limit, the metric is flat:

a;=const, ¢~ —2In(—1), p=const (4.4)

and the solutions of Egs. (4.2) are characterized by
$.(dx'/dr)?*=3,(dx'/do)®. Equation (4.1) gives then
TJ=const and T/=0, namely, a stress tensor describing
dustlike matter in the perfect fluid approximation. For
t ~ —T, however, the curvature scale begins to increase,
the string sources progressively enter a nonoscillating un-
stable regime [27], and one must then take into account
the fact that the ratios y; =p; /p begin to evolve in time.

In connection with this last point we note that the
solution (4.3), which, for ¢t <0, gives

o= 2t;

e —2T)

= 2u-T)

¢ tt—2T) " @5
3 4

e ¢=——-———= ¢

T ii—ar) P

is characterized by two scales. One is the curvature scale
(|Hp|~T ™1 at t ~—T) at which the transition from flat
to curved space-time regime occurs and inflation begins.

At t ~ —T, the curvature H? is of the same order as ¢ °
or pe? while, much earlier, it was negligible. By contrast,
much later than ¢t =—T, it is pe® which becomes negligi-
ble and one recovers the vacuum solutions. T is a free
phenomenological parameter of the solution. The other
scale is the maximal scale |H,|~¢[!, at the time t ~ —1,,
after which the solution is no longer valid, because higher
orders in a’ have to be added to the low-energy effective
action (2.4). This final scale ¢, is thus determined by the
string tension as 7, ~V'a’=A,, where A, is the fundamen-
tal (minimal) length parameter of string theory [49],
which may be assumed to coincide roughly with the
present value of the Planck length I, =M, p’l. The impor-
tant point to stress is that, in any realistic inflationary
scenario, T and A, cannot be of the same order, as we will
now show.

When |t| < T, the solution describes an accelerated
evolution given asymptotically by

a; () ~(—1) ", |l <1, Sa?=1 (4.6)

and which is of the type given in Eq. (2.42) (we call “ac-
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celerated” a configuration in which 4, d, and H have the
same sign, positive for expansion, negative for contrac-
tion [2,23,27]). In this metric, the particle horizon along
any given spatial direction

ditn=a,0) [ dra7\(r) @7

evolves for |¢| << T like the scale factor d; ~a;, while the
event horizon

dit)=a;() [ dt'a7(t') (4.8)
t
|
5] Tt Hp B a, ty
T o Hl ao tl

‘) —12 ‘) -1/3
43 to

(the same condition is required to solve the flatness prob-
lem; see below). For an expanding d-dimensional isotro-
pic background a;=1/V'd [see Eq. (2.48)], and the previ-
ous condition gives in particular, for ¢, ~A,~M, !,

T 1030\/5/(\/E+1)7L H; S 10=30vd /(VZ+1)MP
~ 's? ~ .

(4.10)

We shall thus assume that the scale T appearing in the
solution (4.3) is much larger than the string scale
A, =Mp .

This fact has an important consequence. In this case
the background (4.3) becomes in fact a good zeroth-order
approximation to the general solution of the full system
of equations, consistent with the string equations of
motion not only in the asymptotic limit ¢ — — co.

By adopting an iterative approach, let us assume
indeed the solution (4.3) to be a zeroth-order approxima-
tion, and let us compute the first-order corrections by in-
serting that solution into the string equations of motion,
in order to obtain the corresponding value of y,(z). To
this aim we observe that the given background is charac-
terized, asymptotically, by an accelerated metric with
shrinking event horizons [see Eq. (4.6)]. We recall that,
in such a background, the string equations of motion ad-
mit oscillating solutions, corresponding to strings with
constant proper size L, provided L, is smaller than the
size of the event horizon ~H ~!(¢) (stable strings), while
the solutions describe nonoscillating strings with
L,(t)~a(t)if L, > H ~! (unstable strings) [27].

The evolution of a network of strings with some initial
distribution in backgrounds of the type discussed above
can be investigated [51]. One can show that the number
n(Lg,t) of strings (per unit length) of given size L, at
time ¢, must satisfy, in the given background, the approx-
imate evolution equation [51]

on 3

P = H- S [nLOL,~H™"],

ar oL, 4.11)

where 0 is the Heaviside step function. Its general solu-

H,

shrinks linearly in time d! ~(—t) for —0. The ratio of
the two proper sizes r(t)=d, /d; thus grows in time, for
|t] << T, as (—t)_ai—1~( —n)~ 1. On the other hand, the
horizon problem of the standard cosmological model [50]
is solved if, for every spatial direction, the growth of the
ratio ri(t), when |¢| is ranging from T to t,, is large
enough to compensate the decreasing of the ratio in the
subsequent decelerated phase down to the present time
to. This implies, on the hypothesis that the pre-big-bang
era is followed by the standard radiation-dominated (until
t =t,) and matter-dominated evolution,

172 1/3 172
El_ ﬂ ~1030 ot 4.9)
Hy | Mp '
f
tion can be written in implicit form as [51]
n[L,,a(H)]=nq(L,)8(H '—L)
L, -
+f > KL, —H "),
1 . (4.12)
B _ dlna
— |=ng(H™) 1+ —
4 ol |1 olnH ’

where ng is the initial string distribution.
The energy associated at a time ¢ with stable (ps) and
unstable (py; ) strings can be estimated as

-1
ps~ [ Lyn(L,ndL,,
s (4.13)
ﬁU~fH_lLsn(Ls,t)dLs )

However, for a perfect gas of stable strings pg =0, while,
for unstable strings, p;; =*py /d, with the sign fixed by
the exponent a; of Eq. (4.6), sgn{py} = —sgn{a;}, as dis-
cussed in [27]. Therefore, the ratio y =p /p as a function
of time, for a perfect gas of strings in an accelerated
metric background, can be approximated as
‘}’( t)= j:—}; —_—pUT .
Putps

By inserting into Egs. (4.13) and (4.14) the solution (4.12)
expressed for our particular metric (4.6), with an initial
string distribution ny(L,)~ L, 3, one then finds, for each
spatial direction [51],

_1
d

where H; is given by Eq. (4.5). The above results is valid
for |H;| <A, '~M, and is not very sensitive to the initial
string distribution.

We insert now this expression into the right-hand side
of the field equations (2.18) and (2.19), by recalling that,

4.14)

yit)=——=AH1), 4.15)
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for the pressureless background (4.3) one has, to zeroth
order,

e
0=y ==—1¢
Fr=x= 7t (4.16)
Then, to next order,
%o A da:
_— * ’ R [4 s t i
F,A——x,-—l—fhw}/i(x ydx ——42 Iti_—d_f—ooa_i
A t—2T
=T | 1= 25y | 220
! dr " t
(4.17)

According to our iterative approach, the integration of
Eqgs. (2.18) and (2.19) with D(x) determined by this new
expression for I'; provides a first-order approximation to
the background fields a(z),¢(f). The corrections to the
solution (4.3) due to a nonvanishing effective pressure of
the string gas are certainly negligible for [t|>>T, in
the regime in which the background (4.3) satisfies

H?<<pe®~¢?2. However, as clearly shown by Eq. (4.17),
if T >>A, then the first-order corrections keep small also
in the t ~ — T regime, in which H2~pe?~¢?, and even
in the limit t——¢,~A,, in which pe?<<¢’~H?>
Within the assumption that T is very large in string units,
the solution (4.3) then becomes a good approximation to
the exact solution of the system of background equations
and string equations of motion, for the whole range
—o0 St X —t A,

We stress that, in this scenario, when |t|<<T the
source term pe? becomes negligible with respect to H?
and ¢? [see Eq. (4.5)]; quite independently of the exact
value of the pressure and of the particular type of equa-
tion of state at the scale T, the background rapidly con-
verges, for |t| << T, to a phase of vacuum dilaton-driven
accelerated evolution (as discussed in Sec. II), described
by the metric (4.6). We are left, therefore, with two phe-
nomenological possibilities.

The first is the case in which 7, and then the temporal
extension of the regime (4.6), is much larger than the
minimal value fixed by Eq. (4.9) to secure a phenomeno-
logically sufficient amount of inflation. This means, in
conformal time,
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-1

M, (4.18)

|77T|>>1030 [yl =gl ,

where 7, is the time when the largest scale, correspond-
ing to the minimum frequency mode wy=H,, was pushed
out of the event horizon during the pre-big-bang phase.
In this case, all today’s observable scales crossed the hor-
izon in the dilaton-driven regime (4.6), so that the
presently observed perturbation spectrum is wholly deter-
mined by the metric behavior of that regime, quite in-
dependently of possible earlier matter corrections to the
background.

The second possibility is the case of nearly ‘“minimal”
inflation, corresponding to the equality in the condition
(4.9), which implies then |97|~Inl. In this case the
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largest scales crossed the horizon when the contribution
of the string sources to the metric background was of the
same order as the dilaton contribution. As a conse-
quence, the low-frequency part of the scalar perturbation
spectrum may be affected by the matter corrections and
may be sensitive to the particular type of equation of
state. The spectrum is thus to be computed by including
the nontrivial mixing induced by the source terms T,
and their perturbations 8T ,,, as discussed in Sec. IIL.

As anticipated in Sec. III, in this paper we will discuss
the first possibility only. We shall assume, in particular,
that the phase of accelerated evolution responsible for the
solution of the standard kinematic problems and for the
amplification of the perturbations (at all presently acces-
sible scales) is described by a three-dimensional, isotropic,
dilaton-dominated background with

a(t)~(—1)7V3,
a(,n)N(__,n)—l/(\/3+1) ,

_ (4.19)
¢~(3+Vv3)na ,

[where t<—t;<0, n=<—m,<0], according to Egs.
(2.48) and (2.49). More complicated scenarios, in particu-
lar with higher-dimensional, anisotropic, sourceless back-
grounds, will be analyzed elsewhere [41].

The metric (4.19) describes superinflationary expansion
[52]. In order to obtain the dilaton spectrum, by apply-
ing Eq. (3.33), we must transform, however, the solution
(4.19) into the E frame, where it takes the form [see Egs.
(2.57) and (2.58)]

agltp)~(—tg)V?,

ag(m)~(—m17?, (4.20)

bp~—V12Inay .

This metric describes, for t—0_, a contracting back-
ground. Potentially, this represents a difficulty of the
whole scenario: indeed, the approximation of a diluted
string gas might be no longer valid in a contracting back-
ground, as well as the approximated expression (3.37) for
the perturbation spectrum, obtained in the case of
inflationary expansion. Most important, it might seem
impossible, in a contracting background, to achieve a
solution of the standard kinematic problems [50], thus
rendering “‘frame-dependent” the inflationary virtues of
the pre-big-bang scenario.

Surprisingly enough, however, this is not the case, as a
consequence of the fact that the contraction of the metric
(4.20) is of the accelerated type, with a <0, & <0, and
H <0 [one can show, in general, that all the BD solutions
describing super-inflationary expansion, with or without
matter sources, are transformed through the Weyl rescal-
ing (2.52) into E backgrounds whose metric describes ac-
celerated contraction [23]]. Let us show, first of all, that a
phase of accelerated contraction is equally good to solve
the kinematic problems of the standard model as a phase
of superinflationary expansion, characterized by & >0,
d>0, and H>0. Consider indeed the so-called flatness
problem: the spatial curvature term becomes negligible
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with respect to the other terms of the cosmological equa-
tions if the ratio
_ k _ k
U
goes to zero during inflation. Such a condition is certain-
ly satisfied by a metric which behaves, asymptotically, as

a(t)~(—t)°, (4.22)

(4.21)

t<0, a<l

for t —0_. For a <0 this metric parametrizes the known
case of pole inflation (superinflationary expansion [52)).
For 0 <a <1 one has instead accelerated contraction. In
both cases the curvature scale is growing and H,H
diverge as t —0_.

Accelerated contraction can also provide a solution to
the horizon problem. Indeed, by recalling the previous
definition of particle [Eq. (4.7)] and event [Eq. (4.8)] hor-
izon, one finds that the ratio of their proper sizes in the
background (4.22),

()_dgn
r2 t _de(t)

diverges for t —0_. This means that causally connected
regions will always cross the horizon, asymptotically, not
only in the case of superinflationary expansion (a <0),
but also in the case of accelerated contraction (0<a<1).
It is important to stress that the condition for a suc-
cessful resolution of the horizon and flatness problems,
when expressed in conformal time, is exactly the same for
superinflation and accelerated contraction. Quite in-
dependently of a, in fact, the ratio r, scales as 7~ !, while
r, scales as 17°. The horizon problem is solved if r,, eval-
uated at the end of inflation (9n=n,), is larger than a
present value of r, of order unity, rescaled up to 7.
Namely,
mil o Il
| f| |"7f| ’
where 7; denotes the beginning of the (contracting or ex-
panding) accelerated evolution [see also Eq. (4.9)]. The
flatness problem is solved if r;, at =1y, is tuned to a
small enough value, so that the subsequent decelerated
evolution leads to a present value of the ratio r (1) S 1.
This implies
2

~(_t)a—1 ,

(4.23)

(4.24)

2

N PR (4.25)
U To
which is clearly equivalent to the previous condition, as
expected.

Therefore, if the accelerated phase of the pre-big-bang
scenario is long enough to solve the kinematic problems
in the BD frame, where the metric describes
superinflationary expansion, then the solution holds also
in the E frame where the metric describes accelerated
contraction, because the conditions are the same in con-
formal time, and the conformal time is the same in the
two frames [23]. [We note, incidentally, that the kine-
matic problems can thus be solved also if one chooses
negative integration constants ¢; <0 and «; <0 for the
background solution (4.6), corresponding to a metric
describing accelerated contraction already in the BD

~

2533

frame.] For the solution of the entropy problem, of
course, a nonadiabatic phase associated with the
inflation-radiation transition is necessarily required, in
addition to the accelerated kinematic, as recently stressed
also in [53].

With regard to the dilution of the string gas, we recall
that in the BD frame a model of source as a weakly in-
teracting string network is a very good approximation.
In that frame, indeed, by starting at some initial time ¢;
with a packing factor = (average distance)/(average size)
of order unity, one ends up, at any subsequent time ts,
with a number of strings per unit of string volume which
is diluted as n;/n;=(a;/a, )4 (<1 since the metric is ex-
panding). In the E frame the metric is contracting, but
the string proper size LZE(¢) shrinks with time as
LE(t)=(ag/a)A,, where a is the BD scale factor. As a
consequence, the number of strings per unit of string
volume scales as 7(¢)=(LE/A;)%; “=a % and it is again
diluted as time goes up, exactly by the same amount as in
the BD frame. In other words, one finds that, at the end
of inflation, a region of space of initial linear dimensions
O(A,) has become exponentially large in Planck units ir-
respective of the frame one is using. With similar argu-
ments one can show [23] that the heating up of the string
gas with respect to the radiation, which is easy to under-
stand in the BD frame where the metric is expanding and
the radiation is redshifted, also occurs in the E frame in
spite of the fact that the radiation is blueshifted because
of the contraction.

We want to show, finally, that the result (3.36) for the
scalar perturbation spectrum is also valid if the
transformed metric, in the E frame, is a contracting one.
Consider in fact Eqgs. (3.34) and (3.35) for the mode v, in
the nonoscillating regime. Since the variable z=a¢/H
goes like a for ¢~flna, it might seem that for fast
enough contraction the second term of the expansion
could dominate asymptotically the first one, thus chang-
ing the perturbation spectrum. We must recall, however,
that in the scenario that we are considering the Universe
evolves from an initial phase of pre-big-bang conditions
to the standard, decelerated, radiation-dominated expan-
sion. In the BD frame the Universe is always expanding
Hygp >0, while in the E frame an initial contraction
(Hg <0) turns into a final expansion (Hg >0), with a
necessary turning point of Hy at some time n* near the
transition time —7;. On the other hand, the conformal
transformation  (2.52) gives (in d=3) Hp=
(Hgp—¢$/2)e%’%: it follows that 70, where Hz =0, and
that z— o« for n—7n*, so that the first term of the expan-
sion (3.34) is still the dominant one even in the E frame.

By setting, in this frame, a’'/a~(a’'/a),(n—n*) for
n—n*(z— ), the amplification of v, in this limit can
thus be estimated as [using Eq. (3.25)]

~ | 82z | Y |,
il = k% | z
o B L |1
\/76_(0'/0); Z |k~aH - Vk |z kol
4.26)
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where ¢,=¢'(n7,) and we have used the background
equation ¢'>=—6(a’/a). We thus recover for
18,/>=k>I4,|* in the E frame the standard result (3.37),
in spite of the contracting character of the transformed
pre-big-bang metric.

V. PHENOMENOLOGICAL CONSTRAINTS
ON THE DILATON SPECTRUM

In the simplified model of the pre-big-bang scenario,
motivated and discussed in the previous section, and de-
scribed by the background (4.20), the dilaton perturba-
tions are amplified with a growing spectral distribution:
one has, from Eq. (3.33),

H,
H

a,

a

(5.1

~ 21 Y
Q(w,1)~GHY o,

The total dilaton energy density p,(¢) is thus dominated
by the highest frequency mode w,,

Q[ :p(t —f Id—wﬂ Host)
2 4
H a
~GH2 1L it
~GHY I o , (5.2)

and since p, (1) decreases in time like the radiation densi-
ty (~a %), its value in critical units Q,(1) remalns con-
stant during the radiation-dominated era (H ~a ~2). The
requirements that the produced dilatons do not overclose
the Universe (1, <1) in the radiation era thus imposes
the condition

H,sM,, (5.3)
which is also needed from a similar constraint on gravi-
tons [this constraint is valid not only for the particular
case (5.1), but also, more generally, for all growing dila-
ton spectra whose integration leads to an (1,(¢) similar to
that of Eq. (5.2)].

If the dilaton would be massless, this would be the end
of the story. However, in spite of some recent attempt
[54] trying to motivate the possibility of a massless dila-
ton in a string theory context, present conventional wis-
dom seems to favor a nonvanishing dilaton mass, with a
mass value closely related, in particular, to the phenome-
nology of supersymmetry breaking (see [55] for a recent
discussion). But, even independently from possible super-
symmetry motivations, a nonvanishing mass seems to be
a compulsory consequence of the fact that dilatons cou-
ple nonuniversally to macroscopic matter, with coupling
strength larger than (or at least equal to) the gravitational
one [4]. We shall reproduce below, for completeness, the
argument given in Ref. [4] making it actually slightly
more general.

The large distance behavior of dilaton couplings is
determined indeed by the string effective action I', whose
general form, including possible loop corrections, can be
written as
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r=— [dPxVTG|[Zy(¢
+V($)]+ Ty
Ty=3 [d°xVIGILZ{($)G"d, 43,9, +Z; ($)¥]

JR(G)+Z4($)G*3,43,4

(5.4)

+interaction terms] .

Here Zy,2,,Z;,Z,, are complicated (known in princi-
ple, but unknown in practice) coupling functions, G, is
the (dimensional) sigma-model metric, and we have
represented the matter part of the action as a set of (di-
mensionless) scalar fields i, (fundamental fermions can be
added without difficulty [4]). In order to evaluate the
effective dilaton couplings we must restore, first of all, the
canonical form of the kinetic energy terms, by rescaling
field and masses. The dilaton coupling to matter fields is
then obtained from the effective interaction Lagrangian,
expressed in terms of the rescaled variables.

To this aim we note that the graviton kinetic term of
Eq. (5.4) reduces to the canonical Einstein Lagrangian by
setting

G‘szg’uvM}Z)ZEZ/(d*]) , (5.5)

where g,, is the dimensionless Einstein metric. By
defining a new scalar field (with canonical dimensions) o,
such that

172
do _,a-nn|_2d dInZpg _2_Z_¢; (5.6)
d¢ " d—1 | dé Zg ’
and new rescaled matter fields
: 1/2
N Z, (o)
=M = (5.7)
wl P ZR(O') 11/1

the action (5.4) can be written in canonical form as

apai R(g)
_ D/ _R(g) g _
fdx lgl [~ 167G, 9,00,0 —W(o)
+3 (483, 8:0,8
+1uHo)d7) ] , (5.8)
where 167G, =M} W=VME 1 Z;2/ 4" and
IM}EZ! (o)
"1’12(0-)': pm (5.9)

Zi(0)ZF 9 Na)

We expand now the effective matter-dilaton interaction
Lagrangian p29? around the value of o which extremizes
the dilaton potential (and which can always be assumed
to coincide with o =0, after a trivial shift). Defining

%.“:Z(U )$?=im,~2$?+g,-0$?+0(02) ’

we can express the rescaled mass of the matter fields as

(5.10)

m2=[u0)),—o=2M} (5.11)

i
R
i 72/(d—1)
ZiZk =0
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and the effective matter-dilaton couplings (including loop
corrections) as

_1(du
& 2 do ag=0
_1|dg dmi
2 |do d¢ o=0
_ m? 2d |dInZg _2_%1 o
AMETV2 |d—1 | d¢ Zgr |4=0
HCY)
x| L (BB (5.12)
dé Mp | |s=0

In the weak-coupling regime Zzx=2Z,=e ¢=g~?

where g is the gauge coupling constant of the superstring
unification group, and one finds that the effective dilaton

coupling strength g;/m; deviates from the standard

“gravitational charge” 1/ 4wGpm; by the factor

ki==____§i____
mi2V4ﬂGD
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a1 ] o [m
2 ag2 MP ¢=0
i
=1+ |—In | =+ , (5.13)
a¢ Zy | )4=o0

where the last equality refers to d=3. As already
stressed in Ref. [4], Eqgs. (5.12) and (5.13) clearly show
two important phenomenological effects. The first is that
string loop contributions violate the universality of the
effective dilaton couplings, as the factors k; are different
for particles whose mass has different origins; the second
is that the dilaton coupling is even stronger than the
graviton coupling, as k; = 1 for all known cases [4] and, in
particular, for the confinement-generated component of
hadronic masses. Such a conclusion has been recently
challenged [54] on the basis of a possible new mechanism
forcing Eq. (5.13) to give a vanishing (or very small) re-
sult. It is difficult for us to understand how such a can-
cellation can occur for any realistic present value of the
dilaton.

The existence of a nonuniversal scalar force of gravita-
tional strength may be reconciled with the Eotvos-
Dicke-Braginski experiments only if its range is finite
[56]. By considering the present results obtained from
tests of the equivalence principle [5], it follows in particu-
lar that the dilaton corrections to low-energy Newtonian
gravity are only allowed if their range is smaller than
about 1 cm, namely, for a dilaton mass

mXZmy=10"*¢V . (5.14)

We now turn to the discussion of bounds following
from the energy stored in the dilaton perturbations (or, if
we prefer, in actual scalar particles associated with that
field). Our discussion follows closely that of Ref. [8]). We

recall that the expression (5.2) for the dilaton energy den-
sity was obtained neglecting the contribution of the rest
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energy _to the proper oscillation frequency
E(t)=V/(k/a)*+m? [see Eq. (3.28)]. Therefore, for a
massive dilaton, Eq. (5.2) is only valid at early enough
times such that w,(¢)=k,/a > m [and thus it is certainly
not valid today, in view of the previous bound and of Eq.
(1.4)]. At later times Eq. (5.2) is to be corrected to take
into account the mass contribution. Let us suppose, first
of all, that m < H, =w,(t,), so that Eq. (5.2) holds initial-
ly, at the beginning of the radiation era, and that (1, stays
dominated by the highest mode w; also in the nonrela-
tivistic regime. The proper frequency , is redshifted as
the curvature scale decreases in time, and the dominant
mode becomes nonrelativistic at a scale H =H(t,)
such that

a
oyt )=H,—=m . (5.15)

nr

For Hs<H,, the

E ()= 4 wXt)+m? is dominated by the mass contribu-
tion, and the corrected dilaton energy density can be ob-
tained from Eq. (5.2) through the rescaling

2

oscillation frequency

3

Q)0 (0 ~GmH, | 21| 2L
X (1)1 X B 1 H a
a 3
=g | =X (5.16)
H? | a

(see also [8]). The cosmological bounds on , become
then bounds on the dilaton mass and provide us with a
phenomenologically allowed region in the (m,H,) pa-
rameter space.

Consider, first of all, the critical density bound , <1.
Once that the condition (5.3) is satisfied, the dilaton den-
sity p,, is certainly subcritical (and constant with respect
to the radiation density p,) for all scales H > H, .. When
the scale drops below H  , however, the dilaton density
becomes nonrelativistic according to Eq. (5.16), the ratio
py/ P, begins to grow in time like the scale factor, and the
equality p,=p, may be reached at some initial scale
H;=H(t;). We now have various phenomenological pos-
sibilities, depending on the value of H; and H .

Suppose first that the transition to the nonrelativistic
regime occurs when the universe is already matter dom-
inated, namely, for H,, < H, (where H,~10"%" &V is the
scale of radiation-matter transition), which means, ac-
cording to the definition (5.15),

m s/ HH, . (5.17)

In the matter-dominated era, the dilaton energy density
(in critical units) (5.16) stays fixed at the value
Q,~GH}>—2__ |
X V'H,H,

The requirement Q, <1 is thus automatically satisfied, in
this case, because of Egs. (5.9) and (5.17). The same hap-
pens if H > H,, but the scale H; of dilaton-radiation
equilibrium belongs to the epoch of matter domination
H;<H,. In this case, indeed, H,,=m?/H,, and H, is
fixed [according to Eq. (5.16)] by

(5.18)
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) _pxtad) @y om  [H [P

py(ti) P'y(tnr) ay, B 1\/H1H2 Hi .
(5.19)

The condition H; <H,, reading now m

SV'H H,(GH})™', again implies Q, <1, where Q, is
the constant dilaton density (5.18).

Dilatons are always subdominant even if H
> H; > H,, but the decay scale H; (1.8) is larger than H,,
so that dilatons are forced to dissipate their coherent en-
ergy density, converting it into radiation before becoming
dominant. In this case we have, from Eq. (5.16),

2 2773

(t,,) m°H
H=H, |2 =" lon,, (5.20)

py(tnr) M;

and the condition H, > H; reads
a, | 2 (5.21)

> — .
m ',

If, on the contrary, H > H;>H, and H;> H,, then in
order to avoid contradiction with the presently observed
density of nonrelativistic matter it is necessary, first of
all, to impose that dilatons already decayed, H, > H|,.
This gives m*> M3 H, (numerically, m > 100 MeV). This
is not sufficient though and one is left, in this case, with
two possible alternatives.

The first is the one in which the reheating temperature
T, associated with dilaton decay
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E (5.22)

T,~V'MpH,~

is smaller than the temperature scale Ty~1 MeV re-
quired by nucleosynthesis. This provides

m < 10* GeV . (5.23)

In such a case we must impose that nucleosynthesis
occurred before dilaton dominance Hy~(1 MeV)’/M,
> H; and that the entropy AS associated with dilaton de-
cay is small enough, in order not to destroy all light nu-
clei already formed. The temperature T; of the radiation
gas already present at the scale H; is, in fact, from Eq.
(5.20),

2/3
a; H
=T LS o~ . 172 ——d‘ ~
T,=T, 2 1 (Mp,H,;) [H ]

d i

1/6
m 10 }

MH3

(5.24)

The reheating of the radiation gas from T, to T, thus
prodaces an entropy increase

172
T

r

AS ~
S T,

(5.25)

3 H?
B mM3}

By imposing AS < 10 in order to preserve nucleosynthesis
[57] one obtains the bound
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3

m= 10 — .
MP

(5.26)

The second alternative corresponds to T, Ty, i.e.,
m 2 10* GeV, and allows then a nucleosynthesis phase
subsequent to dilaton decay. In such a case, the only
phenomenological constraint is possibly imposed by pri-
mordial baryogenesis. The maximum tolerable amount
of entropy, in order not to washout any preexisting
baryon-antibaryon asymmetry, is somewhat model
dependent, but in general AS <10’ seems to be accept-
able [57,58]. This implies the bound

3

- 1
m=z210 10—2 .
Mp

(5.27)

Note, however, that this last condition may be evaded in
the case of low-energy baryogenesis and, in particular, in
the case of baryogenesis associated with the dilaton decay
itself [55,58], occurring at scales not much distant from
nucleosynthesis.

The bounds so far considered refer to the case in which
the dilaton energy density stays always dominated by the
contribution of the highest-frequency mode w;, even in
the nonrelativistic regime. This is certainly true for the
distribution (5.1), with spectral index 6=3, but for a
more complete phenomenological discussion let us con-
sider also! the coherent oscillations, with frequency m, of
the lower modes with w(¢,, ) S m, which begin at the scale
H, =H(t,)=m, when the mode o, is still relativistic
(m>H_). For HSm such modes provide a nonrela-
tivistic contribution to the dilaton energy density which
can be written (for a general spectrum with § > 0) as
2 3

) m 5/2 a
N~Gm? | =L | [~ Zm
Q,(6)=Gm I H, 2
f 12 (6—3)/2 3
H, m ay
=Gm?*|— | |o— — 5.28
m {H J ‘Hl ( )

This contribution is initially negligible with respect to the
relativistic part of the dilaton energy density ~GH?
dominated by w;. However, during the radiation era it
grows in time with respect to GH % and it may dominate
the total dilaton energy if the equality

2 3/2
H,
H =GHi

8/2
H

m

m

- 5.29
H, ( )

Gm?

occurs at a scale H>H, =m?/H,, namely, for
(m /H)® 1> 1, which implies 8 < 1.

The previous bounds, obtained in the hypothesis of w,
dominance, are thus valid for all growing spectra with
8> 1. For lower spectral slopes, 0 <8 <1, the dominant
contribution to {1, (the one to be bounded) becomes that

of Eq. (5.28) and, as a consequence, the bounds acquire a

The necessity of considering lower modes and of distinguish-
ing two intervals in § was pointed out to us by A. Starobinsky.
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dependence on 8. Indeed, let H; be the scale marking the
equality p,=p,. Then the condition Q,<1, with Q,
given by Eq. (5.28) and 0<58 <1, is always satisfied for
H; < H,, which means

m <(H,MfHS )17+ (5.30)

It is also satisfied if H; > H,, but H; > H;, which means

m > (Hi~3Mp2) /28 (5.31)

If, however, H, > H, and H; > H,, then the dilatons must
have already decayed, H; > H,. Their decay generates an
entropy

T,

r

A:
S T,

3 H?_sma_g 1/2
— s (5.32)

M;

If m <10* GeV, the reheating temperature is too low to
allow nucleosynthesis: we must impose that nucleosyn-
thesis already occurred, H; < Hy, and that [57] AS <10,
which means

m S(107 M 2H}78)1/2d) (5.33)

If, on the contrary, m >10* GeV, the nucleosynthesis
scale is subsequent to dilaton decay and the only possible
constraint [57,58] is AS S 10°, namely,

m S(IO_IOMP—ZH?-S)V(Z_M . (5.34)

This completes the compilation of the phenomenologi-
cal bounds for a growing dilaton spectra §>0 with
m <H,. Let us consider also, for the sake of complete-
ness, the “heavy dilaton” case m > H |, although this case
is very unnatural in a string theory context where H, is
expected to be close to the Planck scale.

As discussed in Sec. III, in the radiation phase
(H <H,,a~n) the dilaton modes Y, decouple from the
other scalar fluctuations and satisfy the free equation
(which includes, in general, the mass contribution)

e+ (k2 +m%a?)¥, =0, ¥r=aXy - (5.35)
For all modes that are relativistic at the beginning of the
radiation era (= —m),), namely, for k >ma,, one then
recovers the dilaton spectrum (3.33) by matching the
pre-big-bang solution (3.31) with the plane wave (3.28),
which is the solution of Eq. (5.35) in the case of negligible
mass. If, however,

kl
m>H1=0)1(t1)=—— y
a,

(5.36)
then the mass term cannot be neglected even in the case
of the highest mode k,. All modes are nonrelativistic al-
ready at 7= —17, and satisfy the approximate equation

Xe+mia’,=0. (5.37)
By using the identity m%a*=m2H%a}7?% valid in the ra-
diation era, the general solution of (5.37), for

mH,a3n*~(m /H,)n/n,)*> 1, can be expressed as

—im 22 im. az 2
1 Heimy o Ty (5,38
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The matching of this solution with the Bessel solution
(3.31) then gives the Bogoliubov coefficient for the case
m>H,,

|c_(k)1227’;T(kn,)‘2"’| , (5.39)

and the corresponding nonrelativistic dilaton spectrum
(in critical units)

d 3
:@_&ZG_’EE%_[C_p
H? do H

2—2a [Hl ]2

Qw,1)

3

) a

@y

~Gm (5.40)

H

(we recall that 2—2a=3 for the particular pre-big-bang
model that we have considered).

For a relic background of massive dilatons with
m>H,, Eq. (5.2) is thus to be replaced by the nonrela-
tivistic energy density

2 3
@1 d H, ay
Qx(t)=f l—c?—&'l,((co,t)'sz2 —I-:T—] — (5.41)
One must thus impose the bound
msMp (5.42)

to avoid an overcritical density of massive dilatons at the
beginning of the radiation era. In this case there are no
further bounds on m since, as a consequence of Eq. (5.42),
the dilaton energy is dissipated before a possible domi-
nance. Indeed, the initial scale H; corresponding to
Q,=1is, from Eq. (5.41),

4
m

Mp
Therefore, H;/H,=H ;m /M3 <1, just because of Eq.
(5.42) (unless H, > Mp, but this is to be excluded to avoid
overcritical dominance of other massless particles, such
as gravitons, produced by the same background transi-
tion).

By collecting all previous phenomenological con-
straints we obtain a final allowed region in the (m,H,)
plane, which depends on 6 and which is illustrated in Fig.
2 for the three cases §=0, 0.5, and 1. We recall that for
large enough spectral slope 6> 1, the bounds become
slope independent and coincide with those of the §=1
case, which then defines the maximum allowed region for
a growing dilaton spectrum (as stressed also in [8]). As
clearly shown by the figures, one of the main effects of a
positive spectral index is that light, not yet decayed dila-
tons become compatible with higher and higher inflation
scales as & ranges from O to 1. If we take, for instance,
H,~10"°M, as a typical reference value, we find al-
lowed mass windows for a presently dominated back-
ground of relic dilatons for all spectra with §0.1. For
6% 1, moreover, even the TeV mass range, which is sup-
ported by some supersymmetry-breaking arguments [55],
but which lies in the most unfavorable region for the vari-
ous cosmological constraints, may become compatible
with H, ~10"M,.

H,=H, (5.43)
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FIG. 2. Maximum allowed region (inside the full lines) rela-
tive to the cosmological production of dilatons with growing
spectrum, illustrated for three different spectral slopes §=0, 0.5,
and 1 (the last case applies to all §=1). The dilaton mass is
given in units of m,= 107*eV. The lines marked by aq, b, c, d, e,
f, and g represent the most significant bounds quoted in the text
and correspond, respectively, to the following: a, m =m,, lower
bound on m from the equivalence principle; b, H, =Mp, upper
bound on H, from the closure density; ¢, 7,=1 MeV, lower
bound on the reheating temperature for nucleosynthesis: d,
m =M, upper bound on m > H, from the closure density; e,
m=(H,MH} *)/®+D ypper bound on m from the
present  matter-to-radiation energy density ratio; f,
m=(10"""M;2H*%~%)/2=® ypper limit on entropy production
in dilaton decay from primordial baryogenesis; and g,
m=(10" Mz 2H{7%)"/27® ypper limit on entropy production
from nucleosynthesis. The logarithm is to base 10.

We note, finally, that our allowed regions refer to the
cosmological amplification of the quantum fluctuations of
the dilaton background. The classical dilaton back-
ground is assumed here to sit at the minimum of the dila-
ton potential, with negligible (with respect to quantum
fluctuations) oscillations around it. The classical oscilla-
tion amplitude, however, could be too large to be negligi-
ble. In that case one should add, to the bounds discussed
here, the bounds on m obtained by taking into account
the contribution of the classical oscillations to the total
cosmological energy density [7]. The initial amplitude of
such possible classical oscillations depends, however, on
the details of the transition from the accelerated to the
decelerated regime. Having neglected such possible addi-
tional bounds, the allowed region determined here is to
be regarded, for each value of 8, as the maximal allowed
region in parameter space.

V1. CONCLUSIONS

In this paper we have presented the general solution of
the equations obtained from the low-energy string
effective action, for the case of space-independent back-
ground fields, vanishing dilaton potential, and classical
strings as possible matter sources. In the perfect fluid ap-
proximation, the solution is uniquely fixed by the choice
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of the equation of state. We have shown that a model of
initial sources such as a pressureless gas of weakly in-
teracting strings provides an approximate but consistent
solution to the full system of background equations and
string equations of motion.

This model supports a scenario in which an initial flat
perturbative string vacuum evolves towards a high curva-
ture, strong-coupling regime through a phase of ac-
celerated expansion or contraction. This is the so-called
pre-big-bang epoch, originally motivated in [2,25,27] by
the duality symmetries of the string effective action. Ac-
celerated contraction, typical of an Einstein frame repre-
sentation of the pre-big-bang scenario, works as well as
the more conventional inflationary kinematic (accelerated
expansion) in order to solve the standard cosmological
problems.

We have derived, for an isotropic background, the gen-
eral coupled system of scalar (metric plus dilaton) pertur-
bation equations and shown that the transition from the
pre-big-bang phase to the standard radiation-dominated
cosmology is associated with a copious production of cos-
mic dilatons whose spectral distribution grows with fre-
quency. We have discussed the consequent phenomeno-
logical bounds on the dilaton mass and on the inflation
scale by combining it with other bounds obtained from
tests of the equivalence principle. As a result, we have
found allowed windows for the dilaton mass compatible
with a possible “dilatonic” solution of the dark matter
problem.

The particular pre-big-bang model considered in this
paper leads, however, to scalar metric perturbations
which cannot be taken as the origin of the observed
CMBR anisotropy, since their spectrum grows too fast
with frequency. This can be a welcomed result to people
believing in a different source of anisotropy (e.g., in cos-
mic strings, which could naturally arise in this context as
remnants of the violent nonadiabatic transition from the
growing to the decreasing curvature regime). On the oth-
er hand, such a result cannot really be taken as typical of
our scenario, since we have neglected various effects
which may decouple metric and dilaton perturbations
leading to a different (possibly flatter) spectrum of metric
perturbations. We have in mind, for instance, the contri-
bution of matter sources to the background solutions dur-
ing the phase of parametric amplification of the vacuum
fluctuations and/or a nontrivial evolution of the internal
dimensions whose dynamical compactification introduces
at least one additional scalar variable in the perturbations
equations.

The most serious omission of this paper is, however,
the lack of a detailed description of the transition be-
tween the pre-big-bang regime (growing dilaton and cur-
vature scale) and the post-big-bang regime (constant dila-
ton and decreasing curvature scale). We avoided facing
this problem in this paper, as we believe that the low-
energy effective action adopted here cannot represent any
longer an adequate approximation for that purpose. A
recent investigation [59] strongly suggests that higher
curvature corrections should play a fundamental role in
solving the “gracious exit” problem in string cosmology.
Furthermore a nonperturbative dilaton potential must be
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added in the post-big-bang era in order to pin down the
dilaton to its present value and to give it a mass.

We do not conceal that the high curvature transition
from inflation to standard cosmology is, at present, the
least understood aspect of the whole string cosmology
scenario and that it certainly deserves future detailed in-
vestigations. We stress, however, that, once the mecha-
nism which stops the growth of the dilaton and of the
curvature and converts nonadiabatically their kinetic en-
ergy into radiation is clarified, the phenomenology
developed in this paper should remain valid without fur-

ther modifications and quite independently of the details
of the transition process.
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