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ABSTRACT: The intrinsic viscosity and the sedimentation constant of randomly 
branched polydisperse polymers were calculated using a molecular-weight distribution 
function derived by Stockmayer and incorporating this function into the theories of 
intrinsic viscosity and friction constant of a branched molecule. Randomly branched 
polydisperse polymers were prepared by copolymerization of methyl methacrylate with 
ethylene dimethacrylate and the hydrodynamic properties were determined by experi­
ment and compared with the theories. It was found that the intrinsic viscosity of 
randomly branched polymers was well characterized by Zimm and Kilb's g1/ 2-rule, at 
least in the theta state. 
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Dilute solution properties of branched poly­
mers have been studied both experimentally and 
theoretically by many investigators. Especially 
in recent years, characteristic samples such as 
the star-type molecule have become available, 
due to anionic polymerization techniques, and 
detailed experimental studies have been carried 
out for clarifying the effect of branching on the 
average chain dimension, intrinsic viscosity and 
so on. 1 •2 Thus in the case of a star molecule, 
it is now well established that the intrinsic visco­
sity [ r; h obeys the prediction of Zimm and 
Kilb's theory,3 i.e., 

( 1 ) 

where [r;]r is the intrinsic viscosity of a linear 
molecule having the same molecular weight as 
the star molecule. The notation g represents the 
well-known "contraction factor" which is defined 
in terms of the mean square radii of gyration, 
<S2)b and (S2) 1, by 

( 2) 

In these equations, all quantities stand for the 
values measured in the theta state. 

On the other hand, in the case of randomly 
branched molecules it is rather difficult to assess 
the effect of branchi_ng separately from the effect 

of molecular weight distribution. As was pointed 
out by Kilb4, the z-average value of <S2) of an 
unfractionated sample, for example, becomes 
quite insensitive to the average degree of branch­
ing as a result of mutual cancellation between 
the effects of branching and molecular weight 
distribution. It is also uncertain whether the 
intrinsic viscosity obeys eq 1 or not. 

To clarify the effects of branching on the 
dilute solution properties of randomly branched 
molecules, therefore, it seems essential to prepare a 
sample with a suitably characteristic distribution 
of molecular weight and to carry out experi­
ments carefully on it, preferably in theta solvents. 
This series of papers represents the results of 
experiments performed along these lines. In 
part I, a series of model branched polymers is 
prepared by copolymerization of methyl meth­
acrylate(MMA) with ethylene dimethacrylate­
(EDMA) and the hydrodynamic properties, in­
trinsic viscosity, and sedimentation constant, of 
unfractionated polydisperse samples are investi­
gated. This combination of monomers is known 
to give an ideal model sample of randomly 
branched polymers, for vinyl bonds in these 
two monomers are equal in reactivity. 

In part II, the hydrodynamic properties and 
the radius of gyration of fractionated samples 
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of this polymer will be studied both in theta 
and good solvents. 

THEORETICAL 

Calculation of Intrinsic Viscosity of Randomly 
Branched Polymers 

A calculation of intrinsic viscosity of randomly 
branched polydisperse polymers has been present­
ed by Kilb. 4 We here repeat this calculation 
not only with the exponent of g factor in eq 1 
equal to 1/2 but also 1 and 3/2 in order to make 
a detailed comparison with experimental results. 

According to the theory of Stockmayer5 •6 , the 
weight fraction of (/, n)mer, Wn,l which con­
tains l bi-functional monomers and n tetra-func­
tional monomers is given approximately as 

Wo,l=(2X/Yw) exp {-X(l +r/2)) 

Wn,i =[r X 3 /2n(2n+ 1)(2n+2)]Wn-i,i 

( 3 ) 

( 4) 

where X=2l/Yw is the relative degree of poly­
merization (DP), Yw is the weight-average DP 
of the primary molecules and r is a parameter 
often termed the branching parameter. r is 
equal to pYw, where p is the fraction of double 
bonds contained in divinyl molecules(EDMA) 
which form cross-linking. The weight fraction 
w. of molecules having a relative degree of 
polymerization X and the average number of 
branch units in a molecule are then calculated 
by eq 5 and 6. 

W.=(Yw/2):Z:: Wn,x 
n 

n.= I;nWn,x!I: Wn,x 
n n 

Following Stockmayer, we can put 

Xw=Yw/(1-r) 

Xn=Yn/(l-r/4) 

( 5 ) 

( 6) 

( 7) 

( 8 ) 

where Xw, Xn and Yw, Yn are the weight-average 
and the number-average degrees of polymeri­
zation of the branched and primary molecules 
respectively. The weight-average number of 
branch units (or cross-links) per molecule in the 
whole polymer can be shown as 

nw= I;n.W.JI; W.=r/(1-r) ( 9) 
" " 

We express the intrinsic viscosity of a mono­
disperse linear polymer as 
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(10) 

where k is the DP of the linear polymer, K and 
a are constants. The intrinsic viscosity of a 
monodisperse branched polymer having the same 
degree of polymerization k may be written in 
the form: 

[ r; ]b =B(g)[ r; ]i (11) 

where B(g) is a function of g. The average 
value of the intrinsic viscosity of polydisperse 
branched molecules is then given by 

(12) 

The weight-average value of B(g) per molecule 
having degree of polymerization k(=YwX/2) is 
given by 

<B(g))= I;B(g)Wn,xf I: Wn,x (13) 
n n 

Inserting eq 5 and 13 in eq 12 and replacing 
summation by integration results in 

<[r;]b)=K(Yw/2)"f(r, a) 

f(r, a)= r Xa<B(g))W.dx 

(14) 

(15) 

The average intrinsic viscosity of the correspond­
ing linear molecules having the same weight­
average degree of polymerization as the branched 
molecules is obtained from eq 8 and 14. 

<[r;]i)=K[Yw/2(1-r)tf(0, a) (16) 

Consequently: 

<[r;hJ<[r;]i)=(l-r)"f(r, a)Jf(O, a) (17) 

According to Zimm and Stockmayer7, the g value 
of a randomly branched polymer is not highly 
sensitive to the form of the distribution of the 
branch unit and is given by 

<g(n))=[(l +n/6)1 12 +4n/3rcr112 (18) 

Thus the average value of g about molecules 
having degree of polymerization k is approxi­
mately 

<g)= I;g(n) wn,x!I: wn,x 
n n 

[(1 +n,)6)112 +4n.J3nT112 (19) 

Moreover, in order to simplify the calculation, 
<B(g)) is assumed to be equal to B(<g)). 
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Table I. Theoretical values <[1Jlt)l<[1Jh) as functions of r, a, and B(g) 

<[1Jh>J<[1Jlr> 

r a=0.5 a=0.6 a=0.7 

gl/2 g g3/2 gl/2 gl/2 g g3/2 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
0.10 0.969 0.951 0.934 0.967 0.967 0.945 0.925 
0.20 0.936 (0.94)• 0.901 0.870 0.933 0.932 0.891 0.854 
0.30 0.900 0.849 0.805 0.895 0.893 0.833 0.782 
0.40 0.858 (0.87)• 0.792 0.737 0.852 0.849 0.770 0.706 
0.50 0.811 0.729 0.665 0.802 0.799 0.701 0.626 
0.60 0.754 (0.79)• 0.658 0.587 0.740 0.738 0.623 0.539 
0.70 0.685 0.576 0.500 0.670 0.664 0.533 0.444 
0.80 0.593 (0.61)• 0.476 0.400 0.575 0.567 0.425 0.337 
0.90 0.458 (0.47) • 0.341 0.276 0.434 0.424 0.283 0.209 
0.92 0.419 0.307 0.245 0.394 0.383 0.247 0.180 
0.94 0.372 0.266 0.210 0.346 0.313 0.192 0.137 
0.96 0.317 0.218 0.170 0.292 0.283 0.161 0.111 

. ( ), Kilb's value . 

Table II. Results of calculation of W,, n,, <h-1(n)), and h-1(n,) in the case of r=0.50 
-----

X w. n, <h-l(n)) h-1(nz) 

0.000 0.000 E( +00) 
0.125 1.069 E(-01) 4.069 E(-05) 1.083 E( +00) 1.083 E( +00) 
0.250 1.830 E(-01) 3.255 E(-04) 1.083 E( +00) 1.083 E( +00) 
0.375 2.349 E(-01) 1.098 E(-03) 1.083 E(+o0) 1.083 E( +00) 
0.500 2.683 E(-01) 2.600 E(-03) 1.083 E( +o0) 1.082 E( +00) 
0.625 2.876 E(-01) 5.071 E(-03) 1.083 E( +00) 1.082 E( +00) 
0.750 2.963 E(-01) 8.743 E(-03) 1.083 E( +00) 1.082 E( +00) 
0.875 2.972 E(-01) 1.384 E(-02) 1.083 E( +00) 1.081 &( +00) 
1.000 2.925 E(-01) 2.058 E(-02) 1.083 E( +o0) 1.080 E( +00) 
2.000 1.925 E(-01) 1.518 E(-01) 1.084 E( +o0) 1.072 E( +00) 
3.000 1.149 E(-01) 4.280 E(-01) 1.087 E( +o0) 1.072 E( +00) 
4.000 7.342 E(-02) 7.900 E(-01) 1.094 E(+o0) 1.083 E( +00) 
5.000 5.054 E(-02) 1.178 E( +00) 1.104 E( +o0) 1.098 E( +00) 
6.000 3.672 E(-02) 1.570 E( +00) 1.116 E(+00) 1.113 E( +00) 
7.000 2.772 E(-02) 1.964 E(+00) 1.129 E( +o0) 1.129 E( +00) 
8.000 2.153 E(-02) 2.358 E(+00) 1.143 E(+00) 1.144 E(+00) 
9.000 1.709 E(-02) 2.753 E(+00) 1.157 E( +00) 1.159 E( +00) 

10.000 1.381 E(-02) 3.148 E( +00) 1.170 E( +00) L173 E( +00) 
11.000 1.132 E(-02) 3.543 E( +00) 1.184 E( +00) 1.186 E(+00) 
12.000 9.387 E(-03) 3.939 E(+00) 1.196 E( +00) 1.199 E( +00) 
13.000 7.863 E(-03) 4.335 E(+00) 1.209 E( +00) 1.211 E( +00) 
14.000 6.643 E(-03) 4. 731 E( +00) 1.220 E(+o0) 1.223 E( +00) 
21.000 2.406 E(-03) 7 .506 E( +00) 1.293 E( +00) 1.295 E( +00) 
28.000 1.035 E(-03) 1.028 E( +01) 1.352 E( +00) 1. 354 E ( +00) 
56.000 6.972 E(-05) 2.139 E(+0l) 1.524 E( +00) 1.523 E(+00) 
84.000 7.199 E(-06) 3.250 E( +01) 1.644 E( +00) 1.646 E( +00) 

----------------------- --- -- --------

Polymer J., Vol. 2, No. 4, 1971 491 



K. KAMADA and H. SA To 

Table III. Results of calculation of W,, n,, (h-1(n)), and h-1(n,) in the case of r=0.90. 

X w. n, (h-I(n)) h-1(n,) 
------·----- -------

0.000 0.000 E( +00) 
0.125 1.043 E(-01) 7.324 E(-05) 1.083 E( +00) 1.083 E(+o0) 
0.250 1. 741 E( -01) 5.857 E(-04) 1.083 E( +00) 1.083 E( +00) 
0.375 2.181 E(-01) 1.975 E(-03) 1.083 E( +00) 1.082 E( +00) 
0.500 2.433 E(-01) 4.674 E( -03) 1.083 E( +00) 1.082 E( +00) 
0.625 2.548 E(-01) 9.105 E(-03) 1.083 E( +00) 1.082 E( +00) 
0.750 2.568 E(-01) 1.567 E(-02) 1.083 E( +00) 1.081 E( +00) 
0.875 2.522 E(-01) 2.475 E(-02) 1.083 E( +o0) 1.080 E( +00) 
1.000 2.434 E(-01) 3.668 E(-02) 1.083 E( +00) 1.079 E( +o0) 
2.000 1.451 E(-01) 2.557 E(-01) 1.085 E( +00) 1.070 E( +00) 
3.000 8.646 E(-02) 6.579 E(-01) 1.091 E( +00) 1.078 E( +00) 
4.000 5. 772 E(-02) 1.125 E( +00) 1.102 E( +00) 1.095 E( +00) 
5.000 4.191 E(-02) 1.602 E( +00) 1.117 E(+00) 1.115 E(+o0) 
6.000 3.218 E(-02) 2.081 E( +00) 1.133 E( +00) 1.134 E(+o0) 
7.000 2. 569 E( -02) 2.561 E(+o0) 1.150 E( +00) 1.152 E( +00) 
8.000 2.111 E(-02) 3.042 E( +00) 1.167 E(+00) 1.169 E(+00) 
9.000 1. 773 E(-02) 3. 523 E( +00) 1.183 E( +00) 1.185 E( +00) 

10.000 1.517 E(-02) 4.004 E( +00) 1.198 E( +o0) 1.201 E( +00) 
11.000 1.316 E(-02) 4.486 E( +00) 1.213 E( +00) 1.216 E( +o0) 
12.000 1.156 E(-02) 4.968 E( +00) 1.227 E( +00) 1.230 E( +00) 
13.000 1.025 E(-02) 5.450 E(+o0) 1.241 E( +00) 1.243 E( +00) 
14.000 9.171 E(-03) 5.932 E( +00) 1.254 E( +o0) 1.256 E( +00) 
21.000 4.966 E(-03) 9.309 E(+00) 1.332 E(+o0) 1.334 E( +00) 
28.000 3.197 E(-03) 1.269 E( +01) 1.396 E(+00) 1.398 E( +00) 
51.000 1.082 E(-03) 2.620 E( +01) 1. 580 E ( +00) 1.581 E( +00) 
84.000 5.613 E(-04) 3.972 E(+0l) 1. 709 E( +00) 1. 710 E( +00) 

The calculation was performed with the follow­
ing three types of function B(g): (i) Zimm­
Kilb type, B(g)=g112, (ii) Stockmayer-Fixman8 

type; B(g)=g, (iii) Flory-Fox type; B(g)=g31•2 

In the calculation of eq 15, Kilb's method was 
used; that is, in the range X=O to X=84 the 
integration was carried out by Simpson's rule, 
and in the range of X higher than 84, W, was 
replaced by a proper Gaussian function and the 
integral was reduced to the incomplete gamma 
function evaluated from Pearson's tables9 • The 
integration by Simpson's rule was performed on 
a high-speed NlAC 2202 computer. 

r increases. The ratio also decreases as the 
exponent of g in B(g) increases. 

f(r, a) was calculated for various r and a 
values. These results are given in Table I in 
the form of eq 14. In this table the values 
calculated by Kilb are also shown in brackets. 
These values are a little higher than ours. The 
reason for this discrepancy is not clear. As 
expected, the ratio of intrinsic viscosity of a 
branched molecule to that of a linear one mono-

In Tables II and III, values of W, and n, are 
given with r=0.50 and 0.90 as examples. 

Calculation of Sedimentation Constant of Poly­
disperse Branched Polymers. 

According to the theory of Kurata and 
Fukatsu10, in the limit of nondraining, the sedi­
mentation constant of a branched molecule Sb 
is given by 

(20) 

where S1 is the sedimentation constant of a 
linear molecule and h is the ratio of the Stokes 
radius of the branched molecule to that of the 
linear molecule of the same molecular weight. 
In the case of tetra-functional branching, h-1 

can be asymptotically given as 

h-1 ~J-P(7/4)(3n+ 1)114 
-2 

+(11/16)I'(5/4)(3n+ 1)-114 (21) 

tonously decreases as the branching parameter for large n. I' is the gamma function. 
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Now it is known for a monodisperse linear 
polymer that: 

(22) 

where K' and JJ are constants. Using the same 
method as for the calculation of intrinsic visco­
sity, therefore, we can obtain the weight-average 
sedimentation constant of polydisperse randomly 
branched polymers, i.e., 

<Sb)=K'(Yw/2)"[ X"<h,-1(n))W,dx (23) 

where <hx-1(n)) is written as 

00 't 00 

<h,-1(n))= I; h-1(n) Wn,,/ I; Wn,z (24) 
n=O n=O 

Thus the ratio of the average sedimentation con­
stant of branched molecules to that of linear 
molecules having the same weight-average degree 
of polymerization is given by 

<Sb)/<S1)=(1-r)" S(r, JJ)/S(0, JJ) (25) 

where 

S(r, JJ)= [ X"<h,- 1(n))Wxdx (26) 

The values of <hx -\n)) calculated by eq 24 
are summarized in the fourth column of Tables 
II and III. There are also shown in the fifth 
column the values of h-1(nx) which are obtained 
with the aid of eq 6 and 21. These two values, 
<h,-\n)), and h-1(n,) are practically in agreement 
with each other, as was the case for g(n). Thus 
we can safely put <h, -1(n)) :::.h-1(n,) in the calcu­
lation of eq 26. In these tables one finds that 
h-1(n,) tends to 1.083, instead of 1.0, in the 
limit of n,=0. This is, of course, due to the 
use of eq 21 in the range of small n where this 
equation is invalid. However, the error involved 
in eq 21 is as small as about 2% when n= 1 
and about 1% when n=5. Thus the error in­
volved in S(r, JJ) is neglibible for the region in 
which we are interested. 

Results for JJ=0.50, 0.45, and 0.40 are given 
in Table IV in the form of eq 25. It is interest­
ing to note that the weight-average sedimentation 
constant of the polydisperse branched molecules 
having Stockmayer's molecular weight distribu­
tion is quite insensitive to the average branching 
and slightly smaller than that of the polydisperse 
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Table IV. Ratios of weight-average sedimentation 
constant of polydisperse branched and linear 

molecules having equal weight-average 
molecular weight as function of 

rand 1J 

(Sb)/(S1) 
r 

li=0.50 li=0.45 IJ=0.40 

0 1.000 1.000 1.000 
0.10 0.985 0.985 0.985 
0.20 0.976 0.976 0.976 
0.30 0.968 0.968 0.968 
0.40 0.962 0.961 0.961 
0.50 0.956 0.954 0.954 
0.60 0.951 0.948 0.949 
0.70 0.946 0.940 0.938 
0.80 0.942 0.931 0.926 
0.90 0.940 0.919 0.906 
0.92 0.943 0.917 0.900 
0.94 0.951 0.916 0.894 
0.96 1.010 0.954 0.916 

linear molecules with the same weight-average 
molecular weight. These results could not be 
predicted from the theory of Kurata and Fukatsu 
for a monodisperse branched molecule, and 
show that for a polydisperse sample the molec­
ular weight distribution has a remarkable effect 
on the average value of the sedimentation con­
stant. 

EXPERIMENTAL 

Samples 

Two series of randomly branched polymers, 
series A and B, were polymerized in ampoules 
at 60°C for 5 hr. The polymerization conditions 
and conversion are given in Table V. As the 
conversion was kept constant within each series, 
the weight-average degree of polymerization of 
the primary molecules would be equal in the 
series A and B resrectively, i.e., it is equal to 
the weight-average degree of polymerization of 
A-0 for series A and that of B-0 for series B. 
No gelation was detected under these polymeri­
zation condition. These polymers were purified 
by the precipitation method and put to use 
without further fractionation. In addition to 
these samples two fractionated samples having 
high moleculer weight, which were obtained by 
fractionating B-0, were also used as reference 
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Table V. Polymerization conditions of samples 

Sample no. MMA, ml EDMA, ml 
-- ---------

A-0 20 0 
A-1 20 0.03 
A-2 20 0.05 
A-3 20 0.07 
A-4 20 0.10 
B-0 120 0 
B-1 120 0.03 
B-2 120 0.05 
B-3 120 0.07 

linear molecules. 
All solvents used in measurements were puri­

fied from a special grade reagent by distillation. 

Light-Scattering Measurements 
Light-scattering measurements on all samples 

were made in methylethylketone (MEK) at 40°C 
using a Brice-type photoelectric photometer 
(manufactured by the Shimadzu Seisaku-Sho 
Company). Vertically polarized light of wave­
length 436 mµ was used as the incident beam 
and the vertical component of the scattered light 
was measured at each 10° interval from 30° to 
140°. 

Optical purification of the polymer solution 
was made by centrifugation or filtration through 

50 

4.0 

"b 

" 3.0 

2.0 

1.0 

0 1.0 

Benzene, ml AIBN, g Conversion, 96 

50 0.1 39.8 
50 0.1 40.4 
50 0.1 40.6 
50 0.1 40.5 
50 0.1 40.8 
90 0.3 51.0 
90 0.3 51.9 
90 0.3 51.5 
90 0.3 51.0 

-- --~ 

a cellafilter membrane. Calibration of the photo­
meter was made to benzene. The refractive­
index increments of sample A-0 and A-4 were 
measured using a Debye-type differential refracto­
meter (Shimadzu Seisaku-Sho Company) and 
was 0.122 (m//g) in MEK at 40°C for both 
samples. We therefore used this value for all 
samples. From the Zimm plot, the weight­

. average molecular weight, Z-average radius of 
gyration and second virial coefficient were ob­
tained. In the Zimm plot, the angular depend­
ence of the reciprocal scattered-light intensity is 
slightly concave downward for the samples B-2, 
B-3, and A-5, and is particularly noticeable in 
the last sample, as shown in Figure 1. For 

C=0.866 (9/citl 

2.0 

Sln 2(6/2) + 100 C 

Figure 1. Zimm plot of sample A-4 in MEK at 40°C. 
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other samples, linear Zimm plots are obtained. 

Osmotic Pressure Measurements 
In order to obtain the number-average molec­

ular weight, osmotic-pressure measurements were 
made in benzene at 37°C using a high-speed 
membrane osmometer (Hewlett Packard Co.). 
Gel cellophane was used as a semipermeable 
membrane. 

Sedimentation 
Sedimentation velocity was measured in ethyl 

acetate (EtAc) at 20°c using a Hitachi UCA-1 
type ultracentrifuge. Measurements were carried 
out on five solutions of initial concentration 
between 0.2 and 0.6 (g/d/) at rotor speed 40370 
r.p.m., and Schlieren diagrams were obtained 
at varying intervals. 

Viscosity 
A dilution viscometer of the Ubbelohde type 

was used. Measurements were carried out in 
three solvents, i.e., in MEK at 25°C; in EtAc 
at 20°C and in acetonitrile (CH3CN) at 45°C. 
Correction for kinetic energy was ignored in all 
measurements. 

RESULTS AND DISCUSSION 

The results of light-scattering and osmotic­
pressure measurements are summarized in Table 
VI. In the sixth column of this table are given 
indexes of polydispersity, Mw/Mn. As expected, 
the ratio increases with greater branching in the 
sample. The anomalous angular dependence of 
the reciprocal scattered-light intensity in the 
Zimm plot for sample A-5 is due to the broad 
molecular weight distribution. 

Figure 2 shows the double logarithmic plot of 
the radius of gyration against the weight-average 
molecular weight, Mw. These points fall in an 
almost straight line regardless of chain branching. 
This implies that the Z-average mean square 
radius of gyration of polydisperse branched 
molecules is equal to that of linear ones with 
the same Mw. When the molecular weight dis­
tribution is of the Stockmayer type, this type of 
behavior can be proved theoretically. 4 •6 In such 
a case details of branching cannot be obtained 
from the Z-average mean square radius of gyra­
tion of polydisperse samples. 

102·~------------

10 
N -~ 

X • J:: 
NI/) 

V 

1.0 

Mw 

Figure 2. Log-log plot of mean square radius of 
gyration against Mw: O, linear molecule; (), 
branched molecule, series A; o, branched mole­
cule, series B. 

Table VI. Results of light-scattering and osmotic-pressure measurements 
~----~·--- -- ---- -------------- -------

Sample no. Mwx 10-4 A2 x 104 [ mol/cc g2] <S2),1/2, A. MnX 10-4 Mw/Mn 

A-0 16.2 3.44 135 10.5 1.54 
A-1 19.5 2.51 159 10.9 1. 79 
Ac2 30.1 2.26 225 14.2 2.12 
A-3 40.8 1.84 328 13.6 3.00 
A-4 134.0 1.28 749 13.2 10.1 
B-0 29.6 2.60 230 20.9 1.41 
B-1 39.6 2.78 229 23.5 1.69 
B-2 47.7 2.20 377 27.5 1. 73 
B-3 62.0 2.20 440 24.1 2.57 
F-7 58.5 2.72 279 55.5 1.05 
F-8 94.0 2.34 423 74.5 1.26 

--~------·--
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In our samples, the weight-average molecular 
weight of primary molecules of the two series 

A and B are respectively equal to that of A-0 
and B-0. Accordingly we can evaluate the bran­
ching parameter r from eq 7, and hence nw 
from eq 9. These values are given in Table VIL Table VII. Branching parameter, r and weight­

average number of branch unit, nw, of samples 
The results of intrinsic-viscocity measurements 

in various solvents are shown in Table VIII. 
These intrinsic viscosities are plotted in double 
logarithm against Mw in Figure 3-5. 

Sample no. r nw[=r/(1-r)] 
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A-1 
A-2 
A-3 
A-4 
B-1 
B-2 
B-3 

Sample 
no. 

A-0 
A-1 
A-2 
A-3 
A-4 
B-0 
B-1 
B-2 
B-3 
F-7 
F-8 

0.170 
0.461 
0.603 
0.879 
0.253 
0.380 
0.523 

0.205 
0.856 
1.52 
7.25 
0.338 
0.613 
1.094 

In these figures, there are four plots ( open cir­
cles) for the linear molecles, where two of them 
are for the polydisperese molecules (A-0 and 
B-0) and the others are for the fractionated 
samples (F-7 and F-8). The [1] vs. Mw relation 

Table VIII. Results of intrinsic viscosities in various solvents 

MEK, 25°C EtAc, 20°C CH3CN, 45°C 

[7Jl, d//g k' [7Jl k' [7Jl k' 

0.360 0.555 0.329 0.550 0.194 1.04 
0.402 0.550 0.353 0.670 0.212 0.962 
0.458 0.557 0.377 0.645 0.218 1.00 
0.475 0.531 0.451 0.550 0.240 1.06 
0.632 0.512 0.574 0.546 0.290 0.994 
0.571 0.465 0.502 0.527 0.274 0.970 
0.585 0.465 0.532 0.545 0.279 1.02 
0.649 0.498 0.586 0.505 0.301 0.990 
0.698 0.486 0.617 0.480 0.306 1.01 
0.877 0.510 0.744 0.595 0.406 0.950 
1.191 0.456 1.027 0.540 0.504 0.920 

1.0 

--------- ,,.,. ---.- --Cl- _____ _ 

---u--

QI 1---------'---~--'------'----'---'--l.-'-...J-------' 
105 

Mw 
Figure 3. Log-log plot of intrinsic viscosity against Mw in acetonitrile at 45°C. Symbols 
are the same as in Figure 2 
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1.0 

---_,_ ... - ~-.... -­--(I ----o--~ 

0.1 '-----'----.J'---'---'--.J'---'--~-'------' 
105 

Figure 4. Log-log plot of intrinsic-viosocity against Mw in ethyl acetate at 20°C. Symbols 
are the same as in Figure 2. 

1.0 

--------
--- 0-- -.... -------<J----(1---

0.1 L-----L---L--.L---l._.L-..J_.L._J....L ____ _j 

105 
Mw 

106 

Figure 5. Log-log plot of intrinsic viscosity against Mw in MEK at 40°C. Symbols are 
the same as in Figure 2. 

is not particularly dependent on the molecular 
weight distribution of the sample and we can 
obtain the intrinsic viscosity and molecular 

weight relation for the polydisperse linear mole­
cules from the straight line shown in the figures 
as follows: 
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[r,i]i=3.31 x 10-4 Mw0 · 532 (in CH3CN at 45°C) 
(27) 

[r,ih=15.4x 10-5 Mw0 · 641 (in EtAc at 20°C) 
(28) 

[r,i]i=8.71 x 10-5 Mw0 · 695 (in MEK at 25°C) 
(29) 

T. G. Fox11 reported that the theta temperature 
for PMMA was 45°C in acetonitrile, but our 
results shows the theta temperature is slightly 
lower than 45°C. 

As shown in Table I, the value of <[r,ih>I 
<[r,i]1> is not greatly dependent on the exponent 
a of Mw in the viscosity equation. The intrinsic 
viscosity ratios in three different solvents, i.e., 
acetonitrile, ethyl acetate, and methylethylketone, 
can be compared with the theoretical values for 
a=0.50, 0.60, and 0.70, respectively. In order 
to make this comparison, experimental values of 
<[r,ih>l<[r,i]1> were obtained with the aid of the 
intrinsic viscosity equations 27-29 and plotted 
against r in Figures 6-8, respectively. In these 
figures, solid, dashed, and broken lines show the 
theoretical curves for g112, g, and g312, respec-

0 

tively. From these figures, it is clear that near 
theta temperatures or in poor solvent the viscosity 
equation of Zimm and Kilb is in close agree­
ment with the experiment, but in good solvents 
(data in MEK), experimental points deviate 
slightly downward from the g1 12 curve in the 
region of large r values. The reason for this 
deviation is not yet clear, but may be due to 
the excluded volume effect; for the theory of 
Zimm and Kilb is only valid at theta tempera­
tures. Thus it is concluded that the g112 rule 
is valid for randomly branched molecules in 
theta and poor solvents, but is invalid in good 
solvents for the sample with much branching. 
In such a case a slightly larger value, instead of 
1/2, may be used for the exponent of g. 

Zimm and Stockmayer calculated the weight­
average g value, <Y>w, for polydisperse randomly 
branched molecules with the aid of the Stock­
mayer distribution function. In the case of tetra­
functionality it is given simply as 

(30) 

05 1.0 

Figure 6. Ratios of intrinsic viscosities of polydisperse branched and linear molecules, 
having equal weight-average molecular weight, as a function of the branching parameter r­
Circles are experimental points measured in acetonitrile at 45°C and the symbols are the 
same as in Fgure 2. 

498 

Curved lines are the theoretical with a=0.50: solid curve, B(g)=g 112 ; dashed curve, B(g)=g; 

broken curve, B(g)=g312• 
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() 

0.5 

0 0.5 1.0 

Figure 7. Ratios of intrinsic viscosities of polydisperse branched and linear molecules, 
having equal weight-average molecular weight, as a function of the branching parameter r­
Circles are experimental points measured in ethyl acetate at 20°C and the symbols are the 
same as in Figure 2. Solid curve is the theoretical with a=0.60 and B(g)=g1! 2 • 

1.0 

0.5 

0 0.5 1.0 

Figure 8. Ratios of intrinsic viscosities of polydisperse branched and linear molecules 
having equal weight-average molecular weight, as a function of the branching parameter r­
Circles are experimental points measured in MEK at 40°C and symbols are as for Figure 2. 
Curved lines are the theoretical with a=0.70: solid curve, B(g)=g112; dashed curve, B(g)=g. 
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If we use eq 31 

<[ 11]b>=<g4)w 112<[ 11]1) (31) 

we could easily obtain the weight-average 
branch units, nw, of the sample from the in­
trinsic-viscosity ratio <[ 11 ]b)/<[ 11]1) with the aid 
of eq 30 and 31. In the theta state, the nw 
obtained from eq 17 and 9 is compared with 
the nw' from eq 30 and 31 for various <[11h)/ 
<[ 11 ]i) values in Figure 9. The slope of the 
straight line in Figure 9 is larger than 1/2, that 
is, nw' is larger than the nw obtained from the 
intrinsic viscosity precisely taking into account 
the distribution of the molecular weight and 
the branch unit of the sample. The error in­
volved in nw' increases as the branching increases 
and it is about 20% for nw=l (for r=0.50) and 
about 40% for nw=lO (for r=0.90). Thus, 
considering the error involved in the determina­
tion of molecular weight, for the sample having 
a relatively small number of average branch 
units, we can qualitatively evaluate the weight­
average number of branch units of a sample 
from the simple equations 30 and 31. 

1/1/ 
1/ 

1/ 
'/ 

1.0 t::-------74.:,__------l----1 

/" 

0.1 ~~-.L-...1-.L..L_L_l_il.L _ __l_!_.!__LL..LI_LJ__..J 

10 0.1 1.0 
nw 

Figure 9. Relation between weight-average num­
ber of branch unit of polydisperse branched mole­
cules nw, obtained by eq 17 and 9, and nw' derived 
by simple eq 30 and 31. 

The results of sedimentation measurements are 
given in Table IX. S0 m is an apparent sediment­
ation constant which was obtained by following 
the movement of the peak position in Schlieren 
diagrams and the usual extrapolation to zero 
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concentration. k, is the parameter of concen­
tration dependence which was obtained from 
the slope in 1/Scm vs. concentration plots, where 
Scm is the apparent sedimentation constant at 
a given concentration. It is found in Table 
IX that the value of S0 m is almost constant in 
each series independent of the molecular weight 
and branching, but rather decreases with decreas­
ing the molecular weight. As mentioned previ­
ously, S0 m was obtained from the peak in the 
Schlieren diagram; it does not represent a true 
average sedimentation constant in such poly­
disperse systems. The peak position corresponds 
rather to the maximum position of the molec­
ular weight distribution curve for the sample. 
In Tables II and III one finds the maximum 
position of W, is near X=0.875 and 0.750 for 
r=0.50 and 0.90 respectively, and that is also 
near X=l.0 for r=0. That is, as r increases, 
the peak position of the molecular weight distri­
bution curve moves slightly in the direction of 
lower molecular weight. The slight change in 
S0 m, in spite of the large variation of Mw, in 
Table IX is considered to represent these pheno­
mena. 

Table IX. Results of sedimentation-velocity 
measurements 

Sample no. Som(S) ks 

A-0 IO. I 0.570 
A-1 IO. I 0.451 
A-2 10.5 0.516 
A-3 9.81 0.348 
A-4 9.92 0.296 
B-0 13.4 0.913 
B-1 13.7 0.9IO 
B-2 13.6 0.840 
B-3 13.6 0.819 

To make a comparison with the theoretical 
value in Table IV, we tried laborious calculations 
to obtain the weight-average sedimentation con­
stant <S) with the usual methods but owing to 
the broad molecular weight distribution of the 
samples irregularities occurred at the stage of 
diffusion correction and it was impossible to 
obtain this average value. Thus it is concluded 
that for polydisperse branched molecules it is 
impossible to evaluate the chain branching from 
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the sedimentation constant and if we wish to 
learn more about it, we must use samples as 
monodisperse as possible. 
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