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We design a universal quantum homogenizer, which is a quantum machine that takes as an input a system

qubit initially in the state r and a set of N reservoir qubits initially prepared in the same state j . In the

homogenizer the system qubit sequentially interacts with the reservoir qubits via the partial swap transforma-

tion. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an

arbitrarily small neighborhood of the state j irrespective of the initial states of the system and the reservoir

qubits. This means that the system qubit undergoes an evolution that has a fixed point, which is the reservoir

state j . We also study approximate homogenization when the reservoir is composed of a finite set of identically

prepared qubits. The homogenizer allows us to understand various aspects of the dynamics of open systems

interacting with environments in nonequilibrium states. In particular, the reversibility vs irreversibility of the

dynamics of the open system is directly linked to specific ~classical! information about the order in which the

reservoir qubits interacted with the system qubit. This aspect of the homogenizer leads to a model of a quantum

safe with a classical combination. We analyze in detail how entanglement between the reservoir and the system

is created during the process of quantum homogenization. We show that the information about the initial state

of the system qubit is stored in the entanglement between the homogenized qubits.

DOI: 10.1103/PhysRevA.65.042105 PACS number~s!: 03.65.Yz, 03.67.2a

I. INTRODUCTION

When a system interacts with a reservoir that is in thermal
equilibrium, then after some time the system is
thermalized—it relaxes towards the thermal equilibrium.
This implies that the information about the original state of
the system is ~irreversibly! ‘‘lost’’ and its new state is deter-
mined exclusively by the parameters ~temperature! of the
reservoir. If the reservoir is composed of a large number N of
physical objects of the same physical type as the system
itself, then the thermalization process can be understood as
homogenization: out of N objects ~the reservoir! prepared in
the same thermal state and a single system in an arbitrary
state, we obtain N11 objects in the same thermal state. This
intuitive picture is based on certain assumptions about the
interaction between the system and the reservoir, the physical
nature of the reservoir itself, and the concept of the thermal
equilibrium. This picture is at the heart of the model of
blackbody radiation, which triggered the birth of quantum
theory in the seminal work of Planck. In addition, this same
picture is very important in understanding many processes in
quantum physics as well as the fundamental concept of the
irreversibility @1,2#.

In this paper we present a rigorous analysis of the above
picture within the framework of quantum-information theory.
Specifically, we will consider a system S represented by a

single qubit initially prepared in the unknown state ̺S
(0) and

a reservoir R composed of N qubits all prepared in the state
j , which is arbitrary but the same for all qubits. We will
enumerate the qubits of the reservoir and denote the state of
the kth qubit as jk @3#. From the definition of the reservoir it
follows that initially jk5j for all k, so the state of the res-
ervoir is described by the density matrix j ^ N.

Let U be a unitary operator representing the interaction
between a system qubit and one of the reservoir qubits. In
addition, let us assume that at each time step the system
qubit interacts with just a single qubit from the reservoir ~see
Fig. 1!. Moreover, the system qubit can interact with each of
the reservoir qubits at most once. After the interaction with
the first reservoir qubit the system is changed according to
the following rule ~which is a completely positive map!:

̺S
(1)

5Tr1@U̺S
(0)

^ j1U†# . ~1!

Let us repeat the interaction N times, that is, via a sequence
of interactions the system qubit interacts with N reservoir
qubits all prepared in the state j . The final state of the system
is then described by the density operator

̺S
(N)

5TrR@UN . . . U1~̺S
(0)

^ j ^ N!U1
† . . . UN

† # , ~2!

where UkªU ^ ( ^ jÞk1j) describes the interaction between
the kth qubit of the reservoir and the system qubit. This
model of homogenization is very similar to the collision

model since the system becomes homogenized via a se-

FIG. 1. The scenario of homogenization with just three reservoir

qubits involved.
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quence of individual interactions with the reservoir qubits.
The interactions are assumed to be localized in time ~i.e.,
they act like ellastic collisions! @4#.

Our aim is to investigate possible maps induced by the
transformation ~2! and describe the process of homogeniza-
tion. Homogenization means that due to the interaction U the
states of the qubits in the reservoir change only little while
after N interactions the system’s state becomes close to the
initial state of the reservoir qubits. Formally,

D~̺S
(N) ,j !<d , ; N>Nd , ~3!

D~jk8 ,j !<d , ; k , 1<k<N , ~4!

where D(,) denotes some distance ~e.g., a trace norm! be-
tween the states, d.0 is a small parameter, which is chosen
a priori to the determination of the degree of the homogene-

ity and jk8ªTrS@U̺S
(k21)

^ jU†# is the state of the kth res-

ervoir qubit after the interaction with the system qubit.
The conditions ~3! and ~4! can be represented using a

geometrical picture. The Bloch sphere of unit radius is a
representation of the state space of a spin-~1/2! ~qubit! sys-
tem. The initial state r of the system qubit and the reservoir
state j are represented by two ~distinct! points of the Bloch
sphere. We can image another sphere of the radius d centered
at the point representing the reservoir state j ~in what fol-
lows we will call this sphere the d sphere!. The task is to
‘‘shrink’’ the original Bloch sphere representing the ~un-
known! initial state space of the system qubit into the d
sphere. So we start with N reservoir qubits in the state j and
the system qubit in an arbitrary state r and we end up with
N11 qubits within the d sphere centered at the point repre-
senting the original reservoir state j ~see Fig. 2!.

We note that homogenization is closely related to ther-

malization. There are, however, two main differences: in
thermalization, ~i! the state j of the reservoir qubits is not
completely unknown, but is a thermal state, that is, a state
diagonal in a given basis ~interpreted as the basis of the

eigenstates of a one-qubit Hamiltonian! and ~ii! the number
of qubits in the reservoir is considered to be infinite for any
practical purpose. Thermalization is studied in Ref. @5#.

Our paper is organized as follows. In Sec. II we show that
quantum homogenization can be realized with the help of a
partial swap operation. In Sec. III we show that the partial
swap for qubits generates a contractive map of the system
qubit with the fixed point being the initial state of the reser-
voir. This ensures the required convergence of the homog-
enization process @see Eqs. ~3! and ~4!#. The uniqueness of
the partial-swap operation is proved in Sec. IV. In Sec. V we
estimate the fidelity of the approximate homogenization map
as a function of the number N of reservoir qubits and the
parameter d ~the precision of the homogenization!, while in
the Sec. VI we will analyze how the reservoir qubits become
entangled as a consequence of their interaction with the sys-
tem qubit. In Sec. VII of the paper, finally, we address pos-
sible applications of the homogenization map.

II. PARTIAL-SWAP OPERATION

Let us start with the definition of the so-called swap op-
eration S acting on the Hilbert space of two qubits, which is
given by relation @6#

Suc& ^ uf&5uf& ^ uc&. ~5!

With this transformation

S̺
(0)

^ jS†
5j ^ ̺

(0), ~6!

after just a single interaction, the state of the system S is
equal to the state j of the reservoir qubit and the interacting
qubit from the reservoir is left in the initial state of system.
This means the condition ~3! is fulfilled, while the condition
~4! is not—since recall that we want it to hold for all ̺

(0).
In order to fulfill both conditions ~3! and ~4! we have to

find some unitary transformation that is ‘‘close’’ to the iden-
tity on the reservoir qubit, while it performs a partial-swap

operation, so that the system qubit at the output is closer to
the reservoir state j than before the interaction. The swap
operator is Hermitian and, therefore, we can define the uni-
tary partial swap operation

P~h !5~cos h !11i~sin h !S , ~7!

which serves our purposes. In what follows we denote
sin h5s and cos h5c.

In the process of homogenization, the system qubit inter-
acts sequentially with one of the N qubits of the reservoir
through the transformation P(h). After each interaction, the
system qubit becomes entangled with the qubit of the reser-
voir with which it interacted ~for more details on the issue of
entanglement, see Sec. VI!. The states of the system qubit
and of the reservoir qubit are obtained by partial traces. Spe-
cifically, after the first interaction the system qubit is in the
state described by the density operator

̺S
(1)

5c2
̺S

(0)
1s2j1ics@j ,̺S

(0)# , ~8!

while the first reservoir qubit is now in the state

FIG. 2. The d neighborhood of the reservoir’s state j inside the

Bloch sphere. After N interactions between the system and the res-

ervoir, the states of all reservoir qubits and the system qubit are

contained within this d sphere.
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j185s2
̺S

(0)
1c2j1ics@̺S

(0) ,j# . ~9!

We can recursively apply the partial-swap transformation
and after the interaction with the nth reservoir qubit, we have

̺S
(n)

5c2
̺S

(n21)
1s2j1ics@j ,̺S

(n21)# , ~10!

as the expression for the density operator of the system qubit,
while the nth reservoir qubit is in the state

jn85s2
̺S

(n21)
1c2j1ics@̺S

(n21) ,j# . ~11!

Since we are interested only in those terms in expressions
~10! and ~11! that are proportional to the operator j we can
rewrite the above equations in the form

̺S
(n)

5s2 (
k50

n21

c2kj1rrest
(n)

5~12c2n!j1rrest
(n) ~12!

and

jn85s2~12c2(n21)!j1jn ,rest . ~13!

In the following section, we are going to show that rrest
(n)

converges monotonically to the null operator as n→` . In

this case, obviously ̺S
(n)

→j , so the condition ~3! is fulfilled

if the number of qubits N is large enough. In addition, as n

increases, jn8 becomes more and more similar to j , since the

commutator in Eq. ~11! goes to zero; in other words,

D~jn8 ,j !<D~jn218 ,j !. ~14!

Therefore, condition ~4! will be fulfilled for all k if and only
if it is fulfilled for k51. This gives us a restriction on the
parameter h that enters the partial swap; this restriction will
be studied in Sec. V.

III. HOMOGENIZATION IS A CONTRACTIVE MAP

In this section we want to show that ̺S
(N)

→j monotoni-

cally for all parameters hÞ0. This means, in particular, that
condition ~3! does not put any constraint on h . To show this
convergence, we use the Banach theorem @7# that concerns
the fixed point of a contractive transformation. Let S be a
space with a distance function D(̺ ,j), then the transforma-
tion T is called contractive if it fulfills the inequality
D(T@̺# ,T@j#)<kD(̺ ,j) with 0<k,1 for all ̺ ,jPS. A
fixed point of the transformation T is an element of S for
which T@j#5j . The Banach theorem states that a contractive
map has a unique fixed point @8# and that the iteration of the
map converges to it, i.e., TN@̺#→j for each ̺PS. We note
that contractive transformations within the context of
quantum-information processing have been recently dis-
cussed also in Ref. @9#.

In our case S is the set of physical states, i.e., the set of all
density matrices of a single qubit. The map T that we are

considering is defined by ̺S
(0)

→T@̺S
(0)#5̺S

(1) . We must

show that the map is contractive and that j is a fixed point of
the map.

We begin by finding the superoperator induced by the

transformation U in the left-right form, i.e., as a linear op-
erator acting on the space of trace-class operators T(H) ~see
Ref. @10#!. We choose the operators 1

2 1,sx ,sy ,sz ~where sn

are the Pauli matrices! as a basis for T(H), where H repre-
sents the Hilbert space of a qubit. In this case an arbitrary
density operator of a qubit can be written as

̺5
1

2
11wW •sW , ~15!

where uwW u<1/2. We can write a state that is an element of
T(H) in a vector form, i.e., ̺5(1,wx ,wy ,wz). Let j5

1
2 1

1 tW•sW 5(1,tx ,ty ,tz) be the state of the qubit in the reservoir.
After the first interaction P with the first reservoir qubit, the
system qubit evolves according to Eq. ~10! with n51. This
transformation can be described as

̺S
(0)

→̺S
(1)

5s2j1c2
̺S

(0)
1ics@j ,̺S

(0)#

5
1

2
11~s2 tW1c2wW !•sW 1ics@ tW•sW ,wW •sW #

5
1

2
11@s2 tW1c2wW 22cs~ tW3wW !#•sW

5
1

2
11wW 8•sW , ~16!

where we used the identity sks l5dkl11i« jkls j and

w j85s2t j1~c2d j l22cs « jkltk!w l ~17!

with j5x ,y ,z . Now we can express the transformation ̺S
(0)

→̺S
(1) as

S 1

wx8

wy8

wz8

D 5S 1 0 0 0

s2tx c2 2cstz 22csty

s2ty 22cstz c2 2cstx

s2tz 2csty 22cstx c2

D S 1

wx

wy

wz

D ,

~18!

or more formally, as ̺S
(1)

5T̺S
(0) , where T is the matrix

representing the superoperator acting on the linear space
T(H). If we express the matrix T as

T5S 1 0W T

s2 tW T
D , ~19!

then it is easy to check that in our case TtW5c2 tW . This implies
that the state j is a fixed point of the map under consider-
ation, i.e., Tj5j . The system state after the nth iteration
then reads
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̺S
(n)

5
1

2
11F (

j50

n21

s2Tj tW1TnwW G•sW

5
1

2
11F s2 (

j50

n21

c2 j tW1TnwW G•sW

5
1

2
11@~12c2n! tW1TnwW #•sW , ~20!

where for the last equality we summed the geometric sum

( j50
n21(c2) j

5(12c2n)/(12c2). Of course, c2n
→0 unless c

5cos h51. Numerically one can check that Tn
→O, where

O represents the zero operator. Thus ̺S
(n)

→j . In what fol-

lows we prove this convergence for all values of the param-
eter h .

To prove that the map T is contractive, we must define a
distance function on S. Let us introduce the trace distance
D(̺ ,v)5Tru̺2vu and the vectors v5(1,vx ,vy ,vz) and

rW5wW 2v
W . For a qubit we have

D~̺ ,v !5Tru~wW 2v
W !•sW u5TrurW•sW u52urWu , ~21!

since the eigenvalues of the operator rW•sW are given by l6

56urWu. In order to find the contraction parameter k for our
transformation T we proceed as follows. From the Eqs. ~19!
and ~21! we obtain

D~T@̺# ,T@v# !5TrurW 8•sW u52urW 8u, ~22!

where rW 85wW 82v
W 85s2 tW1TwW 2s2 tW2Tv

W 5T(wW 2v
W )5TrW

5c2rW22cs tW3rW . Since u tWu2<1/4 and urW 8u2
5c4urWu2

14c2s2u tW3rWu2
5urWu2c2(c2

14s2u tWu2sin2b), where b<p is

the angle between the vectors tW and rW , we find that the con-
traction coefficient k5c . This last equality is due to the fact

that urW 8u<urWuc . If c5cos h,1 then the map T is contractive
and the convergence to the fixed point j is assured.

IV. UNIQUENESS OF THE PARTIAL-SWAP OPERATION

In what follows we will discuss the question of the choice
of the unitary transformation U that describes the interaction
between a system from the reservoir and the initial system
undergoing the homogenization process. If both the system
and the reservoir state are the same, the interaction should
not affect either qubit, and this should be true no matter what
the state of the system and reservoir qubit are. This implies
that the unitary operator must satisfy the following two con-
ditions:

Tr1~Ur ^ rU†!5r , ~23!

TrS~Ur ^ rU†!5r ~24!

for any single-qubit state r . Let us first discuss the case of
pure states. If r represents a pure state then the condition
~23! says that Ur ^ rU†

5r ^ j1, where j1 needs to be de-
termined. However from the second condition ~24! it follows

that Ur ^ rU†
5j2 ^ r , where j2 is unknown. Putting the last

two results together we obtain that

Ur ^ rU†
5r ^ r ~25!

for any r representing a pure state. From here it follows that
the unitary transformation U acting on the joint Hilbert space
H

2
5H^ H must be of the form

U:uc& ^ uc&→e iwuc& ^ uc&, ~26!

where the parameter w is independent of the state uc& . There-
fore, the action of the unitary transformation is fixed on the
symmetric subspace of H

2 up to a phase factor e iw. Neither
the two conditions ~23! and ~24! nor the condition ~26! tell us
anything about the action of the unitary transformation U on
the antisymmetric subspace of H

2. This means that the ac-
tion of U on the antisymmetric subspace is arbitrary. How-
ever, in the case of qubits the antisymmetric subspace is one
dimensional and we can proceed further. Because the anti-
symmetric subspace is one dimensional and invariant under
the action of the unitary transformation U, we have

U~ uc&uc'&2uc'&uc&)5e iu~ uc&uc'&2uc'&uc&), ~27!

where u is a constant depending on U. Now the transforma-
tion U is given by Eqs. ~26! and ~27! up to two constants w
and u . What we would now like to show is that these condi-
tions require that U be a partial-swap operator up to a global
phase factor. This phase factor has no physical consequences.
If we define the unitary operator U8 to be

U85expi(2u2w)/2U ,

then Eqs. ~26! and ~27! give us

uc&uc&→
U8

e i(w2u)/2uc&uc&,

uc&uc'&2uc'&uc&→
U8

e i(u2w)/2~ uc&uc'&2uc'&uc&).

Comparing these equations to Eq. ~7!, we see that U8 is just
the partial-swap operator with h5(w2u)/2. We can, there-
fore, conclude that in the case of qubits, the partial swap is
the only possible operator that satisfies the conditions of ho-
mogenization Eqs. ~23! and ~24!. The partial swap uniquely
determines yet another universal quantum machine @11#: the

universal quantum homogenizer.

V. APPROXIMATE HOMOGENIZATION

In what follows we will analyze homogenization not as
the limit of the infinite number of interactions, but as an
approximate process after a finite number of steps. Let us
suppose that the parameter d from Eqs. ~3! and ~4! is fixed.
This parameter characterizes our approximation. We will use
the partial-swap evolution for the description of the homog-
enization.

In the first step we give a condition on the parameter h of
the partial swap ~7!. For our map T, we have that

D(̺S
(N) ,j)<D(̺S

(N21) ,j)<D(̺S
(0) ,j). On the other hand
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from Eq. ~14! we know that D(jN8 ,j)<D(jN218 ,j). As we

have discussed earlier, we can adjust the parameter h so that

the condition D(j18 ,j)<d is fulfilled. Obviously, the dis-

tance D(j18 ,j) depends on the initial state of the system,

̺S
(0) , and on h . Therefore we have to determine the maxi-

mum value of h , for which the distance is less than or equal
to d , independent ~the universality condition! of the initial
states of the system and reservoir. For a qubit the maximum

value of trace distance is achieved for wW 52 tW , correspond-
ing to the situation in which the states are pure and mutually
orthogonal. The argument for this can be easily seen from a
geometric representation of a qubit. In this case

D~j18 ,j !52s2Tru tW•sW u52s2, ~28!

since for a pure state u tWu5 1
2 . From Eq. ~28! we get the simple

relation

sinh<Ad/2. ~29!

The second step is to determine the minimum number of
interactions, N, that ensures for an arbitrary initial state of the
system that the final state is in a sphere of radius d around
the reservoir state j . The worst case, i.e., when the number
of necessary iterations is maximal, is intuitively the case

when D(̺S
(0) ,j) is maximal. In Sec. III we proved the con-

vergence of the system state to j for any hÞ0. Therefore we
are sure that such an N exists. As was just discussed in the

previous paragraph, the distance D(̺S
(0) ,j) is maximal when

the two states are pure and mutually orthogonal. Moreover,
our transformation T does not change the commutation rela-

tion, which is initially equal to zero, i.e., @̺S
(N) ,j#50 for all

N. Introducing wW 52 tW for the commuting states we obtain

̺S
(N)

5
1

2
11~122c2N! tW•sW , ~30!

and for the distance we find

D~̺S
(N) ,j !5Tru~wW 82 tW !•sW u52c2NTru tW•sW u. ~31!

This distance is maximal if we fix N and maximize over all

̺S
(0) and j . Again, since u tWu5 1

2 for pure states, we obtain the

distance D(̺S
(N) ,j)52c2N

52(cos h)2N. If the parameters h
and s in the experession ~29! are such that sin h5Ad/2, then
we can find the lower bound Nd on the number of reservoir
qubits that are necessary to achieve the homogenization with
a required fidelity,

N>Nd5
ln d/2

ln~12d/2!
. ~32!

Both bounds on the parameters h and N are completely de-
termined by the parameter d . After performing N iterations,
N11 qubits are in states belonging to the d neighborhood of
the initial state of the reservoir, no matter what the states j
and ̺S

(0) were.

We see that if we fix the number of reservoir’s qubits N,
then the other two parameters are determined by the relations
~32! and ~29!.

VI. ENTANGLEMENT VIA HOMOGENIZATION

In spite of all the progress in the understanding of the
nature of quantum entanglement, there are still open ques-
tions that have to be answered. In particular, a problem that
waits for a thorough illumination is the nature of multipar-
ticle entanglement @13#. There are several aspects of quan-
tum multiparticle correlations that have been investigated re-
cently. One example is the investigation of intrinsic N-party
entanglement ~i.e., generalizations of the Greenberger-
Horne-Zeilinger state @14#!. Another is the realization that in
contrast to classical correlations, entanglement cannot freely
be shared among many objects.

Coffman et al. @15# have recently studied a set of three
qubits, and have proved that the sum of the entanglement
~measured in terms of the tangle! between qubits 1 and 2 and
qubits 1 and 3 is less than or equal to the entanglement
between qubit 1 and the rest of the system, i.e., the sub-
system 23. Specifically, let us define the bipartite concur-
rence @16# of a two-qubit system in the state ̺ jk to be

C jk[C~̺ jk!ªmax$0,l12l22l32l4%, ~33!

where the l i’s are the square roots of the eigenvalues of the
matrix R5̺ jk(sy ^ sy)(̺ jk)*(sy ^ sy) listed in decreasing
order. The tangle is equal to the square of the concurrence,
i.e., t jk5(C jk)2. Using this definition we can express the
Coffman-Kundu-Wootters ~CKW! @15# inequality as

C12
2

1C13
2 <C1,(23)

2 . ~34!

In the same paper they conjectured that a similar inequality
might hold for an arbitrary number N of qubits prepared in a
pure state. That is, one has

(
k51;kÞ j

N

C j ,k
2 <C

j , j̄

2
, ~35!

where the sum on the left-hand side is taken over all qubits

except the qubit j, while C
j , j̄

2
denotes the concurrence be-

tween the qubit j and the rest of the system ~denoted as j̄ ).
Several interesting results in the investigation of the vari-

ous bounds on entanglement in multipartite systems have
been reported recently. In particular, Wootters @17# has con-
sidered an infinite collection of qubits arranged in an open
line, such that every pair of nearest neighbors is entangled.
In this translationally invariant entangled chain the maxi-
mum closest-neighbor ~bipartite! entanglement ~measured in

the concurrence! is bounded by the value 1/A2 ~it is not
known whether this bound is achievable! @17#. Later Koashi
et al. @18# considered a finite system of N qubits in which
each pair out of N(N21)/2 possible pairs is entangled ~the
so-called web of entanglement!. It has been proved that the
maximum possible bipartite concurrence in this case is equal
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to 2/N . Dür @19# considered other possible inequalities asso-
ciated with variously entangled qubits in multipartite sys-
tems.

Within the context of our investigation it is very natural to
ask, what is the nature of the entanglement created during the
process of homogenization. In this section we will address
several questions related to this issue. First, we will study the
bipartite entanglement between the system qubit and the res-
ervoir qubits, and then we will analyze entanglement be-
tween reservoir qubits, which is induced by the interaction
with the system qubit. We will show that the CKW bounds
are saturated, that is, the N11 qubit state created by a se-
quence of partial-swap operations in the homogenization
process satisfies the inequality in Eq. ~35! as an equality.

A. Bipartite concurrence

Let us consider the concurrence C jk
(n) between the j2th

and kth qubits ~irrespective of whether these are reservoir or
system qubits! after the nth interaction, assuming that ini-
tially the system was in the state ̺ and the reservoir qubits
were in the state j . Without loss of generality we shall al-
ways assume that j,k . The value j50 denotes the system
qubit and j51,2, . . . ,N denote the qubits of the reservoir.

The reduced density operator ̺ jk
(n) describing the two qu-

bits under consideration is given by the expression

̺ jk
(n)

5Trj k̄~Un•••U1@̺ ^ j ^ N# !, ~36!

with Ul@s#5P lsP l
† , where P l is the partial-swap operation

acting between the system qubit and the lth qubit of the
reservoir @see Eq. ~7!#. The line over the indices in the trace
formula denotes the partial trace over all subsystems except
those with the line over them.

Using the definition ~33! of the concurrence, it is trivial to

see that C jk
(n)

50 for j ,k.n , that is, the qubits that have not

interacted yet are not entangled. On the other hand, a general
expression for the concurrence is difficult to derive, so we
concentrate our attention on a special case, when the reser-
voir is initially in a pure state uj& while the system qubit is in
an arbitrary state ̺ .

Following the homogenization scenario the system qubit

after (k21) interactions is in the state ̺0
(k21) , which can be

expressed in terms of the basis $uj& ,uj'&% as

̺0
(k21)

5ak21uj&^ju1~12ak21!uj'&^j'u1bk21uj&^j'

u1bk21
* uj'&^ju. ~37!

After we apply the kth partial-swap operation between the
system and the kth reservoir qubit we find the bipartite den-
sity operator in the matrix form ~in the given basis!

̺0k
(k)

5S ak21 cbk21 isbk21 0

bk21
* c ~12ak21!c2 isc~12ak21! 0

2isbk21
* 2isc~12ak21! s2~12ak21! 0

0 0 0 0

D ,

~38!

where c5cos h, s5sin h.

The matrix R constructed from ̺0k
(k) has only one nonzero

eigenvalue 4c2s2(12ak21)2. This implies for the concur-
rence,

C0k
(k)

52cs~12ak21!. ~39!

From Eq. ~10! we find the recurrence formula for the param-
eters ak ,

ak5ak21c2
1s2

512c2k~12a0!, ~40!

from which we obtain

C0k
(k)

52csc2(k21)~12a0!, ~41!

where a0ª^ju̺uj& and C0k
(k) is the concurrence measuring

the entanglement between the system qubit and kth reservoir
qubit just after their joint interaction ~i.e., it is supposed that
the system qubit has interacted all together just k times!. We
can conclude that the system qubit is entangled with the kth
reservoir qubit. On the other hand we can ask whether this
entanglement will persist after the system interacts later with
other reservoir qubits. In order to make the discussion sim-
pler we will study a particular case when initially the system
is in the state u1& while the reservoir qubits are in the state
u0&. Nevertheless, prior to this task we study another aspect
of multipartite entanglement within the context of homogeni-
zation. Specifically, we will study how a given qubit is en-
tangled with the rest of the system.

B. One qubit vs rest of the system

In the case of pure multiqubit states one can define a
measure of the entanglement between a single qubit and the
rest of the system @15# with the help of the determinant of the
density operator of the specific qubit under consideration. In
particular, let us begin the homogenization process with the
system and the reservoir qubits initially in pure states. After

n partial swaps the j th qubit is in the state ̺ j
(n)

5Tr j̄(Un•••U1@ uc&uj& ( ^ N)]). The degree of entanglement
between the j th qubit and the rest of the system is given by
the expression @15#

t j
(n)[@C j , j̄#

2ª4 det ̺ j
(n) , ~42!

where t j
(n) is the tangle, which is equal to the square of the

corresponding concurrence.
Obviously, for the j th qubit of the reservoir, the tangle is

zero until it interacts with the system qubit. After the inter-
action its value remains constant, irrespective of the further
evolution of the system qubit during the homogenization
process. This means that

t j
(n)

5H 0 if n, j<N

4 det j j8 if j<n<N .
~43!

In order to justify the last equation we note that all measures
of entanglement remain unchanged under local unitary trans-
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formations, and that all transformations Uk ~except the j th

one! are local with respect to the partition j % j̄ ~where j̄

denotes all qubits except j th!.
The tangle between the system qubit and the reservoir is

given by the expression

t0
(n)

54 det ̺0
(n) , ~44!

from which it follows that the shared entanglement between
the system qubit and the whole reservoir depends on the total
number of interactions n, unlike in the case ~43! of the res-
ervoir qubits.

C. The case zc‹0Äz1‹ and zj‹ jÄz0‹

In order to have a deeper insight into the problem of en-
tanglement induced by the homogenization process, let us
consider a specific initial state of the system and the reser-
voir: uc&05u0& and uj& j5u1& . In this case we find for the
tangle between the system and the rest of the reservoir qubits
after the nth interaction, the expression

t0
(n)

54 det ̺0
n
54c2n~12c2n!, ~45!

since ̺0
(n)

5(12c2n)u0&^0u1c2nu1&^1u @cf. Eq. ~12!#. It is

clear from this expression that as n→` the degree of en-
tanglement between the system and the reservoir is mono-
tonically decreasing. On the other hand, the state of
the j th qubit after the interaction with the system

qubit is j j85s2
̺0

( j21)
1c2u0&^0u5(12s2c2( j21))u0&^0u

1s2c2( j21)u1&^1u @cf. Eq. ~13!# from which it follows that

t j
( j)

54s2c2( j21)~12s2c2( j21)!. ~46!

In other words, after its interaction with the system qubit, the
j th qubit is constantly entangled with the rest of the system.
These simple examples illustrate the more general conclu-
sions presented in the previous paragraph.

Let us turn our attention to the bipartite concurrences

C jk
(n) . With the given initial conditions, we easily find the

state vector describing the whole system after n interactions,

uC&5cnu1&0 ^ u0& ^ N
1(

l51

n

u1& l ^ u0& ^ N l̄@ isc l21~c1is !N2l# .

~47!

We recall that N is the total number of reservoir qubits, and
that we have assumed that j,k . The state u0& ^ N l̄ denotes all
qubits except the qubit l in the state u0&. Tracing over the
appropriate subsystems we find the density matrices for j

,n,k ,

̺ jk
(n)

5j j8^ u0&^0u,

̺0k
(n)

5̺0
( j)

^ u0&^0u. ~48!

For k<n we find

̺ jk
(n)

5F c2n
1 (

l51,lÞk , j

n

s2c2(k21)G u00&^00u

1s2c2(k21)u01&^01u1s2c2( j21)u10&^10u

1s2c j1k22~c1is !k2 ju01&^10u

1s2c j1k22~c2is !k2 ju10&^01u ~49!

and

̺0k
(n)

5 (
l51,lÞk

n

s2c2(l21)u00&^00u1c2nu10&^10u

1s2c2(k21)u01&^01u1iscn1k21~c1is !n2ku01&^10u

2iscn1k21~c2is !n2ku10&^01u, ~50!

which determines the values of the concurrences. The corre-

sponding eigenvalues E of the matrices R jk
(n) , constructed

from the density matrices ̺ jk
(n) ~in the case n.k), are

E~R jk
(n)!5$4s4c2( j1k22),0,0,0%,

E~R0k
(n)!5$4s2c2(n1k21),0,0,0%. ~51!

The square roots of these eigenvalues are the l i’s in Eq. ~33!.
For the concurrences we find

C jk
(n)

5H 0 for n,k<N

2s2c j1k22 for k<n<N ,
~52!

C0k
(n)

5H 0 for n,k<N

2scn1k21 for k<n<N .
~53!

We see that the concurrence between any two qubits of the
reservoir is zero until both of them have interacted with the
system qubit. Then the concurrence rises during the interac-
tion to a new value and remains constant in the subsequent
evolution. On the other hand, the value of the entanglement
between the system qubit and any qubit from the reservoir
becomes nonzero after their joint interaction, but then it
tends back to zero.

This means that the system qubit acts as a ‘‘mediator’’ of
entanglement between the reservoir qubits, which have never
interacted directly. It is obvious that later the two reservoir
qubits interact with the system qubit, smaller is the degree of
their mutual entanglement. Nevertheless, this value is con-
stant and does not depend on the subsequent evolution of the
system qubit ~i.e., it does not depend on the number of in-
teractions n).

Once we have derived expressions for the bipartite con-
currences, we can verify the CKW inequality ~35!, which in
our notation takes the form

S j~n !ª(
k51

N

@C jk
(n)#2<t j

(n)[@C
j , j̄

(n)
#2. ~54!

First, let us consider the entanglement of the system qubit
with the reservoir. Using Eq. ~53! we can explicitly evaluate
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the expression for the left-hand side of the inequality ~54!
and we can compare it with expression ~45! representing the
right-hand side of this inequality. We find that

S0~n !5 (
k51

n

@C0k
(n)#2

54c2n~12c2n!5t0
(n) , ~55!

which means that the bound on the bipartite entanglement
between the system and the reservoir qubits is saturated and
the two sides are equal.

In fact, this property is also valid for the reservoir qubits.
So, let us consider a qubit j of the reservoir. In the case n

, j all the C jk
(n) vanish. That means S j(n)505t j

(n) . If n

> j then

S j~n !5@C0 j
(n)#2

1 (
k51

j21

@Ck j
(n)#2

1 (
k5 j11

n

@C jk
(n)#2

54s2c2(n1 j21)
14s4c2( j22)S (

k51

j21

c2k
1 (

k5 j11

n

c2kD
54s2c2(n1 j21)

14s4c2( j22)~c2
2s2c2 j

2c2(n11)!

54s2c2( j21)~12s2c2( j21)!. ~56!

In the calculation we used the equality

(
k51

j21

c2k
1 (

k5 j11

n

c2k
5 (

k50

n

c2k
212c2 j. ~57!

Comparing this result with Eq. ~46! we obtain again the
equality in Eq. ~54!,

S j~n !5t j
(n)

5H 0 for n<N

4s2c2( j21)@12s2c2( j21)# for j<n<N .
~58!

To understand in greater detail the meaning of the above
expressions, let us consider the entanglement in the limit N

→` of a very large number of qubits in the reservoir. We
have to be careful with the definition of this limit. Let us first
recall the definition of homogenization. We want to obtain
homogenized qubits in states within some d neighborhood of
the reservoir’s state (u0&^0u in our case!. In Sec. V we
showed that if we have a large number of qubits N, we can
achieve an arbitrarily good homogenization, since in the
bound ~32! we can let d→0. In turn, the bound ~29! means
that d→0 is obtained for s→0. The behavior of the expres-
sion c2N in this limit is as follows: Since s→0, then c→1,
but still c,1, therefore limN→`c2N

50, too. Now, looking at
Eqs. ~52!, ~53!, ~55!, and ~58!, we see that in the limit N

→` all the concurrencies vanish. Therefore, the shared en-
tanglement between any pair of qubits is zero in this case,

i.e., limN→`C jk
(N)

50. Also the entanglement shared between

a given qubit and the rest of the homogenized system, ex-
pressed in terms of the function Sk(N), is zero,

lim
N→`

Sk~N !50, k50,1, . . . N . ~59!

So, that is how we define the limit N→`: first, we assume
that the system qubit has interacted with all the N qubits in
the reservoir for N finite, then, we let N go to infinity, always
assuming that we make the best possible homogenization
according to the bounds of Sec. V.

As a first result, it is instructive to realize that in the limit
N→` ~when d→0) the functions S0(N) and S j(N) are such
that

lim
N→`

S0~N !

Sk~N !
51, j51, . . . ,N , ~60!

which means that the entanglement of the system qubit with
the reservoir is the same as the entanglement of an arbitrary
reservoir qubit to the rest of the homogenized system. This
reflects the fact that not only states of individual qubits are
the same but also the amount of entanglement between each
of the qubits and the rest of the system are equal ~see Fig. 3!.

In spite of the fact that the pairwise entanglement between
qubits in the limit N→` tends to zero, the information about
the initial state of the system qubit is distributed among the
homogenized qubits. Thus we have infinitely many infinitely
small correlations between qubits and it seems that the re-
quired information is lost. However, as N goes to infinity we
have infinitely many qubits and the information redistributed
among them has to be vanishingly small. If we sum up all the
mutual concurrences between all qubits we obtain a finite
value,

lim
N→`

(
j,k

N

@C jk
(N)#2

5 lim
N→`

1

2 (
j50

N

S j~N !52. ~61!

FIG. 3. In this figure we schematically describe the process of

entanglement between the system qubit and the reservoir qubits via

homogenization. The initial state of the whole system is shown in

the left part of the figure: We have the system qubit denoted by the

black circle, while the reservoir qubits are denoted as white circles.

After the interaction U01 between the system and the first reservoir

qubits a corresponding change of states ~represented in different

degrees of gray color! and establishment of the entanglement ~rep-

resented by the thick black line! is exhibited. After the interaction

U02 with the second reservoir qubit, a three-particle entangled state

is created, with various degrees of bipartite entanglement ~repre-

sented by black and gray lines, where the gray line corresponds to

the entanglement between reservoir qubits that have not interacted

directly!. In the right section of the figure we see the situation after

the interaction U03 of the system qubit with the third reservoir qu-

bit. All qubits are now entangled, black lines describe the entangle-

ment between the system and the reservoir qubits, which is estab-

lished due to the direct interaction, while gray lines correspond to

the entanglement between reservoir qubits induced by the interac-

tion with the system qubit.
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This supports our argument that the information about the
initial state of the system is ‘‘hidden’’ in mutual correlations
between qubits of the homogenized system. In the conclud-
ing section of the paper we will study how this information
can be recovered.

To clarify the meaning of Eq. ~61!, we recall the recent
results of Koashi et al. @18#. These authors have considered a
system of N qubits composing the web of entanglement. That
is, each of the N(N21)/2 possible pairs of qubits is en-
tangled, while the degree of entanglement is equal for all
pairs. It has been shown that the maximal degree of pairwise

entanglement in the web of entanglement is given by C jk
(N)

52/N , that is, the maximum tangle is t54/N2. Given that
there are N(N21)/2 possible pairs we find that the total
value of the pairwise tangle is

lim
N→`

N~N21 !

2

4

N2
52, ~62!

which is the same value as found in the homogenized system
under consideration.

VII. CONCLUSIONS AND DISCUSSION: APPLICATIONS

OF HOMOGENIZATION

In this paper we have shown that one can choose a unitary
transformation that exchanges information between a system
qubit and a qubit from a reservoir, which, when applied se-
quentially to the system and each qubit in the reservoir, will
generate an evolution that has the resevoir state as a fixed
point. In fact, the state of the system qubit and those of the
reservoir qubits become the same. Moreover, this unitary
transformation, which we call the partial-swap operation, is
the only transformation, which is independent of the initial
states of the system and the reservoir qubits, which will ac-
complish this.

This result is interesting per se since it allows us to un-
derstand in greater detail the dynamics of open systems @2#.
It is also a nontrivial fact that the partial-swap operation
applied to the system qubit and a set of reservoir qubits al-
lows us to realize an arbitrary contractive map of the system
qubit @12#.

On the other hand, the results presented in the paper can
be used in the context of quantum-information processing.
Specifically, quantum homogenization can be utilized for
quantum cloning and in a protocol realizing a quantum safe

with a classical combination.

A. Quantum cloning

It is well known that unknown quantum states cannot be
copied perfectly. Specifically, Wootters and Zurek @20# have
presented a very simple proof that a perfect cloning transfor-
mation for unknown quantum states is impossible. The ideal
quantum-cloning scenario would look as follows: The quan-
tum cloner is initially prepared in a state uS& that does not
depend on the unknown state uc& of the input qubit that is
going to be cloned. In addition, a qubit onto which the infor-
mation is going to be copied is available. This particle is

prepared in a known state denoted as u0&. The perfect copy-
ing transformation C should be of the form

uc&u0&uS&→
C

uc&uc&uS8&. ~63!

From the linearity of quantum mechanics it follows that the
cloning transformation ~63! is not possible.

Even though ideal cloning, i.e., the transformation ~63!, is
prohibited by the laws of quantum mechanics for an arbi-

trary ~unknown! state uc&, it has been shown that it is still
possible to design quantum cloners that operate reasonably
well @21#. These quantum cloners have been specified by the
following conditions.

~i! The state of the original system and its quantum copy
at the output of the quantum cloner, described by density

operators r̂1
(out) and r̂2

(out) , respectively, are identical, i.e.,

r̂1
(out)

5 r̂2
(out) . ~64!

~ii! If no a priori information about the in state of the
original system is available, then it is reasonable to require
that all pure states should be copied equally well. One way
to implement this assumption is to design a quantum copier
such that the distances between density operators of each

system at the output r̂ j
(out) ~where j51,2) and the ideal den-

sity operator r̂ j
(id) , which describes the in state of the origi-

nal mode, are input-state independent.
~iii! Finally, it is also required that the copies are as close

as possible to the ideal output state, which is, of course, just
the input state. This means that the quantum-copying trans-
formation has to minimize the distance between the output

state r̂ j
(out) of the copied qubit and the ideal state r̂ j

(id) .

It has been shown by various authors that quantum clon-
ers satisfying the above conditions do exist @21,22#. Re-
cently, experimental realizations of these quantum machines
have been reported as well @23,24#.

However, this is not the only approach to quantum clon-
ing; one can formulate the problem from a slightly different
perspective using the ideas of quantum homogenization.
First, one can lift the condition ~64! that the qubits at the
output are in the same state, that is, it can be assumed that
the qubits at the output are in the states that are similar, but
not identical. The second condition, which might be lifted is
that the ‘‘blank’’ qubit is initially in the known state u0&. We
can instead assume that both the input state of the original
and that of the ‘‘blank’’ are unknown. If this point of view is
adopted, then the quantum homogenization as characterized
by the conditions ~3! and ~4! can be successfully used for
approximate cloning. Specifically, in this scenario the reser-
voir qubits play the role of originals, that is, it is the state j
we want to copy, while the system, which is supposed to be
homogenized ~this system is initially in an unknown state

̺S
(0)), plays the role of the ‘‘blank’’ system onto which the

information is going to be copied. From the description of
quantum homogenization we see that quantum cloning in
this context is a process in which we start with N reservoir
qubits, all in the same state j , and end up with N11 qubits
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in states that are very close ~how close depends on the value
of N) to the state j , so we have performed a version of N

→N11 cloning on the reservoir state.

B. Quantum safe with a classical combination

After the system qubit is homogenized it is in the same
state as the reservoir qubits, so we can ask: What happened
to the information encoded in the initial state of the system
qubit? Is it irreversibly lost? Certainly not, because we con-
sidered only unitary transformations, and that means that the
information encoded in the initial state of the system qubit is
not lost but is transferred into quantum correlations between
all of the qubits. The parameters characterizing the state of
the system are transformed into parameters determining the
entanglement shared among the system and reservoir qubits.
One question is whether the initial state of the system qubit
can be recovered.

The process of homogenization is described by a se-
quence of unitary operations. Consequently, it can be re-
versed: That is, the homogenized system can be ‘‘unwound’’

and the original state of the system ̺S
(0) and the reservoir j

can be recovered. Perfect unwinding can be performed only
when the N11 qubits of the output state interact, via the
inverse of the original partial-swap operation, in the ‘‘cor-
rect’’ order. The system particle must be identified from
among the N11 output qubits, and this and the reservoir
particles must interact in the reverse of the order in which
they originally interacted. Therefore, in order to unwind the
homogenized system, the classical information about the or-
dering of the particles is vital. Obviously, if there are at the
output N11 particles, then there exist (N11)! permutations
of possible orderings, only one of which will reverse the
original process. The probability to choose the system par-

ticle, which is in the state ̺S
(N) , correctly is 1/(N11). Even

when this particle is chosen successfully, then there are still
N! different possibilities of choosing the sequence of inter-
actions with the reservoir qubits. If one has no knowledge
about the output particles, the probability of successfully un-
winding the homogenization transformation is 1/(N11)!. As
we shall see, if at the beginning of the unwinding process the
reservoir particle is chosen incorrectly then the whole pro-

cess leads to a completely wrong result.
Therefore we can consider the quantum homogenization

as a process that generates a combination to a quantum safe.
The combination is the sequence in which the reservoir par-
ticles interact with the system particles, and the object in the
safe is the initial state of the system particle. The combina-
tion consists of classical information, and the object in the
safe consists of quantum information. The security here is
given by the homogeneity of the final ensemble; it is difficult
to distinguish among the particles by measuring them. The
unwinding process can be performed reliably only when the
combination is available. An important aspect of this scheme
is that if one has tried one possible unwinding of the state,
and measured the result to gain some information about it, it
is not possible at that point to try to unwind it in a different
way. That is, the nature of quantum-mechanical measure-
ment prevents repeated unwinding procedures on the same
homogenized set of particles.

To illustrate the above protocol let us assume that we
begin with the system qubit in the state u1& and nine reser-
voir qubits in the u0&. After quantum homogenization we try,
randomly, to unwind the process. Let us assume that we are
lucky and we have chosen the first qubit in the unwinding
process correctly, that is, it is the original system qubit. Even
with this good start, we have to find the rest of the combi-
nation, the proper sequence of the reservoir qubits, in order
to completely ‘‘open’’ the quantum safe. Here we adopt a
trial-and-error strategy, and we test all possible permutations
of the reservoir qubits. Obviously, in this case just one se-
quence is correct, i.e., just one sequence will result in open-
ing the quantum safe and recovering the system state. All
9!5362 880 possible permutations of the reservoir qubits
were tested. Since we have chosen the states of the system
and the reservoir qubits to be two orthogonal basis states of
a single qubit, we can parametrize the reconstructed system
state with just a single parameter s, i.e., runwound5

1
2 (1

1zsz)5@(11z)/2#u0&^0u1@(12z)/2#u1&^1u, such that
21<z<1. In Fig. 4 we plot the histogram representing the
number Ns of reconstructed states of the system qubit with s

falling into the bin with z5zn60.05. We see that a randomly
chosen combination will not open the quantum safe. In fact,
most of the reconstructed states are within the interval 21

FIG. 4. The result of the unwinding process with a trial-and-

error strategy when the system qubit is correctly chosen from a set

of ten homogenized particles. We plot a histogram representing the

number of reconstructed states of the system qubit with s falling

into the bin with z5zn60.05. There are altogether 9! sequences

that we have checked and just one results in a correct reversal of the

homogenization process.

FIG. 5. The result of the unwinding process with a trial-and-

error strategy when the system qubit is chosen incorrectly from a

set of ten homogenized particles. In the figure we represent results

of 939! random unwindings. None of these sequences lead to the

correct reversal of the original homogenization. We plot the histo-

gram representing the number of reconstructed states of the system

qubit with s falling into the bin with z5zn60.05.
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<z<0, i.e., between the reservoir state and the completely
random state.

Let us now consider what happens when we choose the
wrong qubit as the system qubit, i.e., what we have chosen as
the system qubit was, in fact, one of the original reservoir
qubits. As can be checked explicitly, in this case there is no
way to correctly unwind the homogenization process. Obvi-
ously, with no prior knowledge, the probability to choose an
incorrect system qubit from a set of N11 homogenized qu-
bits is N times larger than the probability to choose the sys-
tem qubit correctly. In addition, there are N3N! different
sequences for the unwinding procedure in this case and none
of them result in the initial state. In Fig. 5 we plot the results
of these unwinding procedures for the same choice of the
initial states as in the previous case.

We can conclude that the process of quantum homogeni-
zation can be unwound ~i.e., reversed! if and only if classical
information about the order of reservoir qubits is available. If

this information is discarded, the process becomes irrevers-

ible even though the overall dynamics is unitary. This irre-

versibility can be used to protect quantum information. A

detailed analysis of the security of the protocol that we have

proposed for this remains to be done, but the example we

have treated numerically strongly suggests that quantum in-
formation protected in this way is very secure.

ACKNOWLEDGMENTS

This was work supported in part by the European Union
projects EQUIP ~IST-1999-11053!, QUBITS ~IST-1999-
13021!, by the National Science Foundation under Grant No.
PHY-9970507, and by the Slovak Academy of Sciences.
N.G. and V.S. acknowledge partial financial support from the
Swiss FNRS and the Swiss OFES within the European
project EQUIP ~IST-1999-11053!.

@1# A. Peres, Quantum Theory: Concepts and Methods ~Kluwer,

Dordrecht, 1993!.

@2# E. B. Davies, Quantum Theory of Open Systems ~Academic,

London, 1976!.

@3# We implicitly assume that the reservoir qubits are distinguish-

able. The validity of this assumption depends on the physical

realization of the qubit. For instance, if the qubits are nuclear

spins—or more generally, if each qubit is a degree of freedom

of a given atom—the assumption is valid, since atoms are

distinguishable from one another under normal conditions.

@4# R. Alicki and K. Lendi, Quantum Dynamical Semigroups and

Applications, Lecture Notes in Physics Vol. 286 ~Springer-

Verlag, Berlin, 1987!.

@5# V. Scarani, M. Ziman, P. Štelmachovič, N. Gisin, and V.
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