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ABSTRACT Infrared dim and small target detection is widely used in military and civil fields. Traditional 

methods in that application rely on the local contrast between the target and background for single-frame 

detection. On the other hand, those algorithms depend on the motion model with fixed parameters for multi-

frame association. For the great similarity of gray value and the dynamic changes of motion model parameters 

in the condition of low SNR and strong clutter, those methods possess weak robustness, low detection 

probability, and high false alarm rate. In this paper, an infrared video sequences encoding and decoding model 

based on Bidirectional Convolutional Long Short-Term Memory structure (Bi-Conv-LSTM) and 3D 

Convolutional structure (3D-Conv) is proposed, addressing the problem of high similarity and dynamic 

changes of parameters. For solving the problem of dynamic change in parameters, Bi-Conv-LSTM structure 

is used to learn the motion model of targets. And for the problem of low local contrast, 3D-Conv structure is 

adopted to extend receptive field in the time dimension. In order to improve the precision of detection, the 

Decoding part is divided into two different full connection with distinctive active function. Simulation results 

show that the trajectory detection accuracy of the proposed model is more than 90% under the condition of 

low SNR and maneuvering motion, which is better than traditional method with 80% in DB-TBD 20% in 

others. Real data experiment illustrate that that our proposed method can detect small infrared targets with a 

low false alarm rate and high detection probability. 

INDEX TERMS Deep Learning (DL), Neural Network (NN), dim and small target detection, Long Short-

Term Memory(LSTM), 3D Convolutional. 

I. INTRODUCTION 

With the advantages of strong concealment and wide field of 

view, space-based infrared detection system plays a great role 

in the military and civil fields, and has been widely concerned 

by academia and industry. Aiming to find targets in advance 

and make decisions, the detection of dim and small target is 

one of the important research directions in that system, and has 

great significance in space defense, satellite search and rescue, 

national security and other fields. Due to the small area, low 

intensity and lack of texture of the target detected by this 

platform, and the existence of various noises in the imaging 

system, dim and small target detection is a great challenge [1]. 

In recent years, many methods have been proposed. 

The detection algorithms can be divided into single-frame-

based, multi-frame-based, and neural-network-based. 

A. Single-frame-based 

Assuming that the original infrared image is composed of 

background image with low rank, target image of sparse, and 

noise image, Gao et al. migrates the study of Low Rank (Low 

Rank)  [2 - 4] and convert the target detection problem into a 

Sparse and Low Rank matrix recovery problem under 

constraint conditions. Then the IPI model [2] is proposed by 

Gao C, which is effectively solved using accelerating proximal 

gradient descent (APG) or alternating direction multiplier 

method (ADMM). However, the model requires strict 

background low-rank assumptions, so it is lack of robustness 
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in practical application. Moreover, the solution of the model 

requires multiple iterative operations, which makes it difficult 

to guarantee the real-time performance of the algorithm. 

According to the human visual system (HVS), Chen et al. 

proposes a detection algorithm [5] based on the local contrast 

(LCM). This method enhances the small target using human 

eyes perceive mechanism: Because the strong contrast area 

can be highlighted by the human eye, and the area which exist 

targets meet the conditions, targets can be enhanced through 

calculating local contrast. Many improved LCM algorithms [6, 

7] are proposed. But, all of these algorithms require that the 

gray value of the target satisfies the local maximum hypothesis. 

With the similar gray values between targets and its 

neighborhoods in the condition of low SNR, LCM and others 

cannot enhance the target. 

B. Multi-frame-based 

In order to address the problems of dim target detection 

under low SNR, multi-frame detection algorithms are 

proposed. A typical method is called Tracking Before 

Detection algorithm (TBD). Using tracking algorithms with 

the fixed-parameters motion model, false detection are 

eliminated by data association between continuous images in 

TBD. Popular methods of tracking include particle filtering, 

Kalman filtering, random finite set (RFS) and other algorithms 

[8]. To introduce the time dimension information, a time 

variance filter (TVF) algorithm [9] for multi-frame sequences 

is proposed by Lvping yue et al., which focuses on the 

intensity distribution of grayscale values of each pixel in time 

and analyze the characteristics respectively.  

But it would cause missed detection and a large number of 

false alarms when the targets have not strong gray value. 

Wang J et al. use dynamic programming algorithm (DP-TBD) 

to carry out path integral for the target intensity, and use multi-

frame accumulation to carry out noise reduction processing 

and target enhancement at the same time [10, 11]. For using 

the value function to carry out the optimal accumulation at 

each moment to search for the global strategy combination, 

DP-TBD assumes that the gray value of the target on the full 

path maintains maximum value. The global strategy 

combination maximizes the value function by searching the 

path of the target movement. Therefore, the key point of this 

method lies in the selection of the value function. This 

algorithm has high detection accuracy, but its practical 

application is limited due to the huge computation amount and 

the harsh assumptions. Liu et al. extends the IPI model of two-

dimensional space to three-dimensional space [12], but this 

method is also subjected to low-rank hypothesis. Peng et al. 

proposes STLDM algorithm [21]. By extending LCM of a 

single frame to a three-dimensional LCM, the local contrast of 

the space-time joint can be calculated. This method effectively 

uses the information of time dimension. 

C. Neural-network-based 

There are relatively few researches using neural network to 

detect dim and small target in video sequences [16 - 18]. Due 

to the small proportion of target area, lack of rich texture 

information and low target intensity, target detection 

algorithms in the general field, such as Fast-RCNN, YOLO, 

SSD, etc. [14, 15], are not suitable for such application 

scenarios. Shi M et al. [17] proposes a method for a single 

frame image using semantic segmentation, better background 

suppress factor and SNR gain can be obtained by segmenting 

the image pixel by pixel. In order to extract spatial-temporal 

information at the same time, Sinn Y U et al. [16] uses 3D-

Conv to conduct time-space joint detection of multi-frame 

images. This method introduces 3D-Conv structure to process 

multi-frame infrared images for the first time. For the 

relatively simple processing of video sequences in this method, 

there are problems such as imperfect extraction of image time-

sequences information. Due to the difficulty in obtaining 

images of space-based infrared dim and small target, data-

driven deep learning methods cannot be rapidly developed. In 

order to make up for the lack of data in the field, Young et al. 

[19] use the ASSET system to simulate image data sets. 

Neural network can effectively utilize the key features 

hidden in the video sequences to ensure the robustness of the 

algorithm under the condition that the target gray level is 

similar to the background gray level. For that, we propose a 

Encoding-Decoding model of infrared video sequences is 

proposed: Bi-Conv-LSTM structure is used for addressing the 

problem of dynamic change of parameters and 3D-Conv 

structure is used for encoding video sequences into high-

dimensional feature vector, and two-way full connection (FC) 

structure is used for calculating the target positions and 

confidence simultaneously. 

Our main contribution of the thesis is in the fellow:  

• We propose a Encoding-Decoding model of infrared 

video sequences which contains Bi-Conv-LSTM and 

3D-Conv structure. Experiments show that our model 

have more effective than traditional method. 

• Simulation and real datasets are used to verify the 

validity of the model; 

In real data experiments, our method achieve the best 

performance. 

This paper is organized as follows: Section Ⅱ introduces 

the proposed Encode-Decoding model and the design of the 

loss function. Section Ⅲ  introduces experiments. In this 

section ,we discuss the convergence of proposed model, the 

detection performance in different SNR and motion models. 

Section Ⅳ is summary. 
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II. Method 

A. TIME SLIDING WINDOW 

The First Input First Output (FIFO) queue is established in this 

paper for processing continuous-time images in video 

sequence, and the method of time sliding window is adopted. 

The diagram is shown in Fig 1. When the new frame data is 

updated, the image data of the first frame is deleted from the 

FIFO, and the new image data is added at the tail of the FIFO 

to maintain the time continuity of the video sequences. 

FIGURE 1.  Diagram of Time sliding window FIFO queue 

B.  NEURAL NETWORK MODEL 

Inspired by the general target detection models, a 𝑃𝑎𝑡𝑐ℎ ×𝑃𝑎𝑡𝑐ℎ spatial window is used for detecting small targets. In 

the high orbit remote sensing image, the infrared target 

occupies a small area and too large size of spatial window 

should not be used. Therefore, the Patch size is selected as 64 

pixels in this paper. The overall structure of the network model 

is shown in Fig 2. For processing video sequences, an infrared 

video sequences Encoding-Decoding structure is proposed in 

this paper. The model consists of two parts: The Encode part 

based on the Bi-Conv-LSTM structure and the 3D-Conv 

structure, and the Decoding part of the fully connected 

structure. In this model, Bi-Conv-LSTM structure is first used 

for processing video sequences inputs. Then the outputs of 

each time are concated as input of 3D-Conv structure. The 

concated data is called for Concatenate Matrix (CM). After the 

convolution of 3D-Conv structure pooling operation, 

Concatenate Matrix is squeezed into high-level feature vector, 

which contains in the location of the object and probability. 

The depth spatial-temporal feature extraction is completed in 

Encoding part. Then the Decoding part decodes the target 

information through the two-channel fully connected structure 

to obtain the target position and probability. 

Since the value of the probability of the existence of the 

target ranges from 0 to 1, the sigmoid activation function is 

used in the full connection structure for calculating the 

probability. It would lose the regression accuracy in the 

experiment using sigmoid activation function in the full 

connection of target position regression because the value of 

the target position ranges from 0 to Patch, so ReLU activation 

function is used in the full connection structure for calculating 

the position information. 

Traditional multi-frame detection algorithms need to 

assume the motion of the target as fixed parameters in advance, 

and the algorithms use a certain motion model to carry out 

target correlation matching among multiple frames. But in the 

actual situation, the assumed motion model deviated from the 

real motion because the information such as the target's 

position, speed and motion direction cannot be known in 

advance. It reduces the detection accuracy. In addition, in 

order to cover more motion models, those algorithms need to 

pay extra calculation cost. Therefore, traditional algorithms 

need to balance between calculation cost and detection 

accuracy. 

 For addressing the problems existing in the traditional 

multi-frame detection algorithms, we use the Bi-Conv-LSTM 

structure to extract the temporal features and automatically fit 

the motion model of the target in the data set. Having short-

term dependence and long-term dependence, motion models 

can be learned by LSTM structure. 

Ordinary LSTM structure processes sequences according to 

the order of time, so the information at the next moment can 

only be predicted based on the information at the previous 

moment. Future information is introduced by extending a 

backward LSTM in Bidirectional LSTM structure. In motion 

models, the introduction of future information can make the 

current prediction of information more accurate, so the 

bidirectional structure is used. The Bi-Conv-LSTM structure 

used in this paper is shown in Fig 3. It is a variant of LSTM 

 

FIGURE 2.  Overview of neural network structure 
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structure, and is used to process video sequences. After being 

processed by the Bi-Conv-LSTM structure, the images at each 

moment in the figure will flow into the next moment and are 

processed together with the images at the next moment. The 

figure contains two-time links, one processing forward along 

the time axis and the other processing backward along the time 

axis. The output of Bi-Conv-LSTM structure is the 

superposition of two links. Stacking the outputs at all times to 

obtain the Concatenate Matrix processed at the first level. 

Concatenate Matrix is obtained through the first-level 

processing of Bi-Conv-LSTM structure, and then the second-

level feature extraction of Concatenate Matrix is carried out 

by 3D-Conv structure. In the infrared video sequences, the 

continuous movement of dim and small targets is shown in Fig. 

4(a). The traditional single frame detection algorithm or multi-

frame detection algorithm can only detect targets with high 

local contrast. And the height of target and background are 

similar as shown in figure 4 (a), it is unable to identify the 

location of the target using the two-dimensional space only. 

But the target is clearly using the time dimension. Therefore, 

this paper introduces 3D-Conv structure to carry out feature 

mapping on Concatenate Matrix to fully extract spatial 

features. 

3D-Conv structure [20] is shown in Fig. 4(b). The 

difference between 3D-Conv structure and 2D-Conv structure 

is that 3D-Conv has time domain receptor field and can 

combine video sequences context information. So, 3D 

Convolution has great advantages in video classification, 

action recognition and human behavior recognition [20]. 

In order to simplify the calculation, the convolution kernel 

is designed to share weights in this paper, that is, the same 

convolution kernel is used on the same feature map. 

The data flow in the network structure is shown in Fig 5. 

ReLU activation function is uniformly used in structures 

outside the full connection layer, because there are structures 

that use ReLU activation function in the full connection layer. 

If sigmoid is used, the input values of the full connection layer 

will be too close to 0, thus causing the death of neurons. 

The number of parameters for the final model are shown in 

Table I. 

 

FIGURE 3.   Schematic diagram of Bi-Conv-LSTM in small target detection 

 

 

FIGURE 4.  (a) Multi-frame continuous motion diagram of a small target 
(b) Diagram of 3D Convolutional receptive field structure 

TABLE I 

NUMBER OF NEURAL NETWORK PARAMETER 

Layer Parameter 

bidirectional_1 (Bidirectional) 408 

Conv3d_1 (Conv3D) 1002 

Conv3d_2 (Conv3D) 2004 

Conv3d_3 (Conv3D) 8008 

Conv3d_4 (Conv3D) 32016 

Conv3d_5 (Conv3D) 128032 

Conv3d_6 (Conv3D) 320040 

dense1_1 (Dense) 2624 

dense1_2 (Dense) 2624 

dense2_1 (Dense) 2080 

dense2_2 (Dense) 2080 

dense3_1 (Dense) 1056 

dense3_2 (Dense) 1056 

outputs1 (Dense) 660 

outputs2 (Dense) 330 

total 504,020 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3110395, IEEE Access

 

VOLUME XX, 2017 9 

C. LOSS FUNCTION 

The model proposed in this paper can calculate both the 

probability of the presence of the target and the target position 

at the same time, so the loss function of the model need to 

contain two parts: 

Equation (1) represents the existence probability loss of the 

model, which is represented by catLoss. As for the confidence 

of the presence of the target, we consider it a classification 

problem. Here the binary cross entropy is used in the 

classification loss function. 

Equation (2) represents the regression loss of the model, 

which is represented by rLoss. Its main function is to guide the 

network correctly calculating the coordinate position of dim 

and small target. Inspired by the SSD network, the Smooth L1 

loss function is used, which can reduce the value of the loss 

function when the regression error is large, so as to avoid the 

gradient explosion problem. When the regression error is 

small, the loss value is increased appropriately to improve the 

accuracy of the network. 𝑐𝑎𝑡𝐿𝑜𝑠𝑠 = ∑−𝑦𝑖𝑝 log(�̂�𝑖𝑝)𝑖  (1) 𝑟𝐿𝑜𝑠𝑠 = ∑ �̂�𝑖𝑝 ∑ 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(�̂�𝑖𝑚 − 𝑦𝑖𝑚)𝑚∈{𝑥,𝑦}𝑖  (2) 𝐿𝑜𝑠𝑠 = 𝛼 ∗ 𝑐𝑎𝑡𝐿𝑜𝑠𝑠 + 𝛽 ∗ 𝑟𝐿𝑜𝑠𝑠 (3) 

The weight factors α and β in Equation (3) are used to weight 

the loss values of the two parts.  Since the value of target 

position ranges from 0 to Patch during training, and the value 

of target existence probability ranges from 0 to 1, the loss 

value of target position regression will be much higher than 

the that of classification. If the loss value of the two parts is 

not balanced in training, the loss of one part will be dominant 

in training, while the loss of the other part will produce the 

phenomenon of gradient disappearance. In order to make the 

two parts at roughly the same level, we set weights for the two 

parts respectively. 

III.  Experiments 

In this section, the evaluation index is firstly selected. And 

then generation method of the data set based on the point 

spread function is briefly described. Finally, the simulation 

data set with noise is used for experiments, and the comparison 

with current mainstream multi-frame detection algorithms is 

made to illustrates the advantages of the algorithm in 

processing low SNR target detection. 

Equation (4) represents the image's global signal-to-noise 

ratio (SNR). In the formula, 𝐼𝑘 represents the intensity of the 

point target, and represents the gray value of the center point 

of the target in the image. σ represents the variance of 
Gaussian noise added to the image. 𝑆𝑁𝑅 = 𝐼𝑘𝜎  (4) 

In order to quantitatively describe performance, the mean 

absolute trajectory error (MAE) is defined, and the formula is 

as follows. The position of the target is described by horizontal 

and vertical coordinates, so the state space form of the target 

is a one-dimensional column vector. 𝑝𝑖𝑚 represents the value 

of the m-th dimension of the predicted results, and �̂�𝑖𝑚 

represents the true value of the m-th dimension of the ground 

trues. 𝑀𝐴𝐸 = ∑ ∑ |𝑝𝑖𝑚 − �̂�𝑖𝑚|𝑚∈{𝑥,𝑦}𝑛𝑖=1 𝑛  (5) 

An important index in the performance of dim and small 

target detection algorithms is the ability of trajectories detect, 

which reflects whether the algorithm model has sufficient 

detection accuracy for a continuously appearing target. 

Therefore, the concept of trajectory detection accuracy is 

defined in this paper, and the formula is shown in (6). 𝐹𝐷 = ∑ 𝑝𝑝∈{𝑃||𝑝 − �̂�| < 2}‖𝑇𝑟𝑎𝑐𝑘‖  (6) 

If the difference between the detected target and the real 

target is less than 2 pixels, the detection is judged to be true 

detection. The ratio of the number of all true detections to the 

actual track length is defined as the trajectory detection 

accuracy, and this value ranges from 0 to 1. 

A.  SIMULATION EXPERIMENT 

Due to the influence of light diffraction effect and point spread, 

the target dose not present a point on the image, but forms a 

light spot on the image in the remote imaging system. In this 

 

FIGURE 5.  Schematic diagram of data flow in neural network structure 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3110395, IEEE Access

 

VOLUME XX, 2017 9 

paper, the point spread function (PSF) is considered as two-

dimensional Gaussian function approximately. At present, the 

research in the case of minimum target detection are 

insufficient, so this paper mainly discusses the problem of 

detection of minimum target size in the range of 3 × 3. 

The point spread function approximated to the two-

dimensional Gaussian distribution formula is shown in 

Equation (7). Where ∆x and ∆y denote pixel size, which are 
set as 1 in this paper; i and j represent adjacent pixel indexes; 

Σ represents the ambiguity coefficient of the imaging system. 

𝑆𝑃𝐹 = 𝐼𝑘 × ∆𝑥 × ∆𝑦 × 𝑒−((𝑖×∆𝑥)2+(𝑗×∆𝑦)22𝜎2 )2𝜋𝛴2  (7) 

In order to control the size of the target, the size of the 

Gaussian template is set as 3×3, the weight of the center point 

of the template is set as 1, and the weights of the surrounding 

pixels decrease according to the two-dimensional Gaussian 

distribution function. The improved point spread function is 

shown in Equation (8). In order to make the target energy 

relatively concentrated in the template, the value of Σ is 

selected as 0.7 in this paper. The template image is shown on 

the left in Figure 6. 𝑆𝑃𝐹 = 𝐼𝑘𝑒−(𝑖2+𝑗22𝛴2 ) (8) 

Then, random noise is added to the image. In order to 

quantitatively control the SNR of images, the corresponding 

Gaussian noise with the mean of 0 and the variance of σ are 

added according to the definition of the global SNR of the 

image. The three images on the right of Fig 7 shows the dim 

targets generated by this method, which visually and 

intuitively resemble the real targets. The data generation flow 

chart is shown in Fig 7. 

The above method is used for generating a set of 64*64 size 

simulation images for experiment. Multiple groups of single 

target simulation data are randomly generated in the 

experiment, and each group of data contained 100 frames of 

continuous images. The starting and ending positions of the 

target are randomly generated, and the target velocity is 

determined by the formula below. 𝑣𝑚 = �̂�𝑓𝑟𝑎𝑚𝑒𝑚 − �̂�0𝑚𝑓𝑟𝑎𝑚𝑒  ,𝑚 ∈ {𝑥, 𝑦} (9) 

In Equation (9), �̂�𝑓𝑟𝑎𝑚𝑒𝑚 represents the random target 

termination position. �̂�0𝑚 represents the random target starting 

position. And 𝑓𝑟𝑎𝑚𝑒 represents the number of frames of a 

group of data. Here, 100 is selected. In this case, the target 

speed is a random number range from 0FPS to 0.5fps. The 

contiguous image data generated in this way are shown in Fig 

8. 

Firstly, a convergence experiment is designed to verify the 

convergence and generalization performance of the proposed 

model. Then the target detection performance experiment is 

designed to test the detection performance of the model, and 

the effectiveness of the model proposed in this paper is 

illustrated. Finally, the detection performance experiments 

under different motion models are designed to test the 

processing ability of the model to different motion models, 

which indicates that the model has the ability to deal with 

maneuvering moving targets. 

B.  CONVERGENCE EXPERIMENT 

In order to test the convergence and generalization 

performance of the model proposed in this paper, training data 

and test data are generated randomly. The training data include 

200 sets of positive category samples with single target and 

linear motion and 100 sets of Gaussian noise data without 

target. The test data consist of 100 set of single target data. 

The experimental environment of this paper is AMD Ryzen 

5 2600X processor, 24G RAM, NVIDIA GeForce GTX 1050 

TI graphics card, and 4G video memory. Windows 10 

operating system using Keras deep learning framework to 

complete the design of the network. 

We set the hyperparameter α and β in Loss function as 0.1 

and 10. As for the 𝑃𝑎𝑡𝑐ℎ in window size is about 64. 

In terms of iterative training algorithm, Adam delta 

algorithm with fast convergence speed is selected. This 

algorithm has the characteristics of self-adaptive learning rate, 

and the Batch of each training is set to 10. After 500 epoch 

training, the network model converged. The training error 

curve is showed in Fig 9(c). 

In the performance testing experiment, since the network 

can output the positions of multiple frames at the same time, 

we only select the output of the last frame as the actual 

detection result to compare with the ground trues considering 

that the recursive processing method is usually used in the 

practical application. The calculation formulas of the 

performance index are shown as above. 

Fig. 9(a) shows the average absolute trajectory error on the 

test data set. The error between the target position calculated 

by the model and the real position is kept within 1 pixel on 

most data. Fig. 9(b) shows the trajectory detection accuracy on 

the test data set. It can be seen from the figure that the detection 

FIGURE 6.  Gaussian template and generated dim and small targets. 

FIGURE 7.  Flow chart for generating simulation data. 

 

FIGURE 9.  (a) Average Absolute Trajectory Error; (b) Trajectory Detection 
Accuracy; (c) Training error curve 
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accuracy on most data sets reaches 100% and fluctuates 

between 85% and 100% on average. Therefore, it can be 

considered that the model has reached the convergence state. 

Meanwhile, the model proposed in this paper has good 

generalization performance, and its prediction results has high 

credibility. Table Ⅱ shows the average values of MAE and FD 

in the test set. MAE represents a difference of 1.3866 pixels 

between the detection results and the actual detection results, 

and the accuracy of the target trajectory is 94.89%, which 

further indicates that the model can effectively detects the 

target position. 

C.  TARGET DETECTION PERFORMANCE EXPERIMENT 

The detection performance of the algorithm is quantitatively 

analyzed by controlling the step change of the image signal-

to-noise ratio (SNR). In this paper, the image signal-to-noise 

ratio (SNR) changes continuously from 2 to 6, with 0.1 as the 

step value. Three groups of data are simulated under each SNR, 

so as to compare the performance of each detection algorithm. 

In order to reflect the effectiveness of the proposed model, 

we compare dynamic programming algorithm (DP-TBD) [11], 

time variance filter algorithm (TVF-TBD) [9], Kalman 

Filtering (KF-TBD) [8], Spatial-Temporal Local Difference 

(STLDM) algorithm [21] in this paper. The above algorithms 

cover the mainstream of dim and small target detection 

algorithm. The maximum threshold segmentation method is 

used at the same time as the benchmark. 

Fig. 10 shows the detection performance comparison curve 

of the algorithm. The abscissa is the SNR of targets, and the 

ordinate is the trajectory detection accuracy (FD). As can be 

seen from the figure, the performance of all algorithms 

increases with the increase of SNR. KF-TBD and TVF-TBD 

use adaptive threshold segmentation. The effect of these two 

 

FIGURE 8.  (a) Image sequence of simulation in SNR equal to 2  (b) Image sequence of simulation in SNR equal to 3  (c) Image sequence of simulation 
in SNR equal to 5. 

TABLE Ⅱ 

THE EVALUATION RESULTS OF THE TEST SET 

Index MAE FD 

 1.3866 pixels 94.89% 

 

TABLE Ⅲ 

TRAJECTORY DETECTION ACCURACY IN DIFFERENT METHOD AND DIFFERENT SNR 

SNR DP-TBD TVF-TBD KF-TBD Max-Value-baseline STLDM Our method 

2 76.96% 16.13% 10.96% 17.20% 25.13% 87.26% 

2.5 79.56% 36.33% 28.89% 32.40% 41.80% 93.93% 

3 80.89% 48.87% 44.07% 51.67% 61.07% 97.48% 

3.5 83.11% 66.60% 62.67% 69.33% 78.13% 97.85% 

4 85.70% 67.07% 70.89% 83.80% 89.33% 98.96% 

4.5 82.30% 75.47% 76.15% 92.93% 94.73% 96.74% 

5 88.30% 81.80% 76.81% 97.53% 98.20% 98.44% 

5.5 83.56% 82.27% 79.48% 99.13% 98.80% 99.78% 

6 92.59% 87.00% 76.67% 99.33% 99.67% 97.78% 

Average 83.66% 62.39% 58.51% 71.48% 76.32% 96.47% 
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methods is similar to the directly used of maximum 

segmentation. Because these two methods rely on the 

difference of target gray and background gray, the results of 

adaptive threshold segmentation are consistent with the results 

of maximum segmentation. DP-TBD is superior to KF-TBD 

and TVF-TBD. This is because the dynamic programming 

algorithm accumulate the maximum grayscale value over time 

and enhance the targets, thus increasing the information. The 

proposed method is superior to the current algorithm in the 

whole SNR condition and achieves the SOTA. This is because 

the Bi-Conv-LSTM structure and 3D-Conv structure extract 

the depth features of the video sequence and can find the key 

features that are ignored in the traditional algorithms. 

As for controlled experiment, we replace Bi-LSTM with 

ordinary LSTM structure. The result is shown in the Fig 10 

with brown curve. It can be seen that Bi-LSTM is better than 

non-bidirectional structure. 

Table Ⅲ shows the average trajectory detection accuracy of 

the algorithms at SNR from 2 to 6. It can be seen that the model 

proposed in this paper achieves the best detection results. 

We extract the real trajectory of small target movement and 

the model detection trajectory for comparison. Fig 11 shows 

the comparison results under four different SNR. As can be 

seen from the figure, the positions of dim and small targets 

detected by the model are distributed around the actual 

positions. The horizontal and vertical coordinates are within 

two-pixel deviations, and the overall trend is in line with the 

actual movement of the target. Results indicate that the 

proposed model can continuously detect the target within the 

allowable error range. 

Table Ⅳ shows the average absolute trajectory errors under 

different SNR. When the SNR increased, the average absolute 

trajectory errors are significantly improved. The model can 

achieve an average absolute trajectory error of less than 1.5 

pixels. 

D.  EXPERIMENTS UNDER DIFFERENT MOTION 
MODELS 

As the motion model set in the above experiment and that of 

selected by Kalman filter and dynamic programming 

algorithm are both uniform liner motion, it is well matched 

with the actual situation, and these methods have a good effect. 

In order to verify the effectiveness of the model proposed in 

this paper under different motion models, the targets of 

maneuvering movement are generated in this section to 

observe the detection ability of the model. 

Firstly, the motion model is established. It can be 

considered as a first-order Markov model. The state at time k 

is denoted as 𝑋𝑘 , which contains the position and velocity 

information of the target and is a four-dimensional vector [𝑥 𝑣𝑥 𝑦 𝑣𝑦]𝑇 . The state transfer matrix denotes as F, and 

the noise variance matrix of the transfer process is Q. The state 

transfer formula is as follows. 𝑋𝑘+1 = 𝐹 ⋅ 𝑋𝑘 + 𝑄 ⋅ 𝑟𝑎𝑛𝑑 (10) 

𝐹 = [1 𝑇 0 00 1 0 00 0 1 𝑇0 0 0 1] (11) 

𝑟𝑎𝑛𝑑 = [Δ𝑣𝑥Δ𝑣𝑦] (12) 

𝑄 = [  
 𝑇𝑞122 𝑞1 0 00 0 𝑇𝑞122 𝑞1]  

 𝑇𝑟𝑎𝑛  (13) 
In this section, the same data generation method is used to 

generate target data of maneuvering movement combined with 

first-order Markov model. Fig. 12 shows the detection results 

of three groups of maneuvering targets when SNR is 3 and 5 

respectively. The upper part of the figure represents the 

comparison figure of maneuvering motion detection when the 

SNR is 3, and the lower part represents the detection situation 

when SNR is 5. The model can be effectively applied to the 

maneuvering motion model. When the target rotates greatly, 

the horizontal and vertical coordinate errors are still 

guaranteed to be within two pixels. It is proved that the 

proposed model has the adaptive ability of the motion model 

 

FIGURE 10.  Trajectory detection accuracy in different method. 

TABLE Ⅳ 

AVERAGE ABSOLUTE TRAJECTORY ERROR IN DIFFERENT SNR 

SNR MAE 

2-3 1.7802 

3-4 1.4461 

4-5 1.4344 

5-6 1.2163 

Average 1.4696 

 

TABLE Ⅴ 

TRAJECTORY DETECTION ACCURACY AND AVERAGE ABSOLUTE TRAJECTORY 

ERROR IN DIFFERENT SNR AND MOVING MODEL 

SNR FD MAE 

SNR=5 

80.49% 2.7478 

86.84% 3.0389 

97.78% 1.8572 

SNR=3 

85.06% 2.5854 

94.94% 1.7479 

98.89% 1.5261 
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without the need of priori modeling the motion model of the 

target. 

Table Ⅴ shows the trajectory detection accuracy and mean 

absolute trajectory error in the above cases. In the 

maneuverable motion, the target's motion pattern does not 

appear in the training set. But due to the effect of the Bi-Conv-

LSTM network, the model can recognize the motion pattern 

adaptively. Results shows that the structure has a good ability 

of motion model generalization. 

E.  REAL DATA EXPERIMENT 

In this section, we use one real infrared video sequences 

containing dim targets to evaluate the performance of the 

 

FIGURE 13.  Image sequences in OTCBVS. 

 

FIGURE 11.  Comparison of detection results with actual trajectories in different SNR. 

 

FIGURE 12.  Comparison of detection results with actual trajectories in different SNR and moving model 
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proposed algorithm. Sequence  is from the "Plane Motion and 

Tracking" image sequence in the OTCBVS Dataset 05, which 

contains a single object (with very few pixels) moving from 

the top right to the bottom left in the field of view, the image 

size is 320*240 pixels, and the sequence is 760 frames.  

The images in Sequence  is shown as Fig 13.  

Algorithms used for comparison include single-frame-

based (IPI, HWLCM) and  multi-frame-based (STLDM, TVF-

TBD). The parameter of each algorithm are set in the 

following table. 

The ROC curve in two  sequences are shown in Fig 14. 

It can be seen that our method achieve the best performance 

compared to other methods in real inferred data. 

IV. Conclusion 

In this paper, a Encode-Decoding model based on neural 

network is proposed for targets detection with low visual 

salience and strong maneuvering in infrared video sequences. 

We use Bi-Conv-LSTM structure and 3D-Conv structure to 

encode the infrared video sequences, compress the video into 

feature vectors. And the full connection layer is used as the 

decoding structure to infer the target's confidence and position. 

Comparing with the traditional algorithm, the proposed model 

not only has stronger robustness under low SNR and low 

visual salience, but also can be applied to the maneuvering 

target with better applicability. The simulation results further 

illustrate the advantages of this model. This  method can be 

applied in space-based infrared system or IRST, which 

provides research ideas for further exploration of the detection 

of dim and small targets with extremely low SNR, low visual 

contrast and strong maneuvering movement. Future work will 

focus on more complex backgrounds. By studying more 

realistic infrared data, background and noise suppression can 

be integrated into this model. 
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