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1 Introduction

The Standard Model (SM) is an extremely successful theory that has been rigorously tested

at the Large Hadron Collider (LHC) and elsewhere. Nevertheless it is widely expected that

the SM is only an effective field theory (EFT), valid up to some cutoff scale Λ. The Standard

Model Effective Field Theory (SMEFT) generalizes the SM by adding a complete, but not

over-complete basis of operators at every mass-dimension d rather than stopping at d = 4.1

The counting and classification of operators in the SMEFT has a long history. Starting

with dimension-5 there is a single type operator [1], Ntype = 1, and it violates lepton num-

ber. At dimension-6, ref. [2] classified the 76 baryon number preserving (B) Lagrangian

1The SMEFT assumes there are no light hidden states such as sterile neutrinos or an axion, and that the

Higgs boson form part of an SU(2)w doublet with hypercharge y = 1/2. Other types of EFTs are possible

where these assumptions are relaxed, but we do not consider them here.
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terms; see [3] for earlier work. The eight baryon number violating ( /B) terms were previ-

ously known [4], yielding a total of Nterm = 84. In terms of actual operators rather than

terms in the Lagrangian, the counts explode when flavor structure is allowed. For three

generations of fermions, ng = 3, there are Nop = 2499 independent B operators [5] and 546

/B operators [6]. Hilbert series methods were applied to the SMEFT in refs. [7–10], provid-

ing an elegant way to count the number of operators for arbitrary dimension d. Computing

tools Sim2Int [11], DEFT [12], BasisGen [13], ECO [14], and GrIP [15] were subsequently

developed, allowing for automated counting of operators.

Beyond counting operators, work has been done on their explicit forms as well.

Refs. [16, 17] classified the 18 dimension-7 operators. So far only partial sets of dimension-8

operators exist in the literature. This includes, however, all of the bosonic operators (in a

basis where the number of derivatives is minimized) [18–20]. Our goal in this work is to

find a complete set of dimension-8 operators. A subtlety in constructing the dimension-

8 operator basis is that some operators vanish in the absence of flavor structure. Our

basis contains 231 types of operators corresponding to 1031 Lagrangian terms. For com-

parison, with ng = 1 there are 993 operators, while for ng = 3 there are instead 44807

operators [10]. We find there are 38 terms that vanish when ng = 1, consistent with the

counting of ref. [10].

Although the counting and classification of operators is certainly interesting in its own

right, there is also a wide range of phenomenological implications of dimension-8 operators

as well. For some phenomena dimension-8 is the lowest dimension where the interac-

tions become possible. Most famous among these processes is light-by-light scattering.

Another area where dimension-8 effects have been studied is electroweak precision data

(EWPD) where contributions to the U parameter first arise at dimension-8 [21]. Formally

the dimension-6 operators are the leading terms in the EFT expansion. However there are

various scenarios in which this is not the case practically speaking. Perhaps the most obvi-

ous among these is when the interference between the dimension-6 amplitude and the SM

amplitude is suppressed or even vanishes. Additionally there could be a difference in the

experimental precision of the measurements being considered [22]. Finally, we comment

on the structure the renormalization group evolution (RGE) equations of the dimension-8

operators.

The rest of the paper is organized as follows. Section 2 lays down the notation and

conventions we use, including the semantics of number of operators versus number of types

of operators. We then discuss how we performed the operator classification in section 3

with the results given in section 4. We briefly explore light-by-light scattering, EWPD,

as well as models involving scalar SU(2)w quartets where there is interesting interplay

between dimension-6 and dimension-8 effects in section 5. Additionally we comment on

the renormalization group evolution (RGE) of the dimension-8 operators in section 6 before

concluding in section 7. For convenience we provide tables of dimension-6 and -7 operators

in appendix A.
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2 Notation and conventions

We start by considering the various uses of the word operator. See ref. [23] for further

discussion. We a define operator to be a gauge and Lorentz invariant contraction of fields

and derivatives with specific flavor indices. A Lagrangian term, or just term or short,

collects all of operators with the same gauge and Lorentz structure into a single unit,

i.e. a term collapses the flavor indices of otherwise identical operators. By construction,

a Lagrangian term of mass dimension d ≤ 8 may contain no more than n4
g operators.2

Ref. [23] defines a type of operator as the collection of terms with the combination of

fields (and derivatives) with conjugate counted separately. In this work we use a broader

definition of a type of operator where the conjugate fields are counted in unison with the un-

conjugated fields. Our types of operators are therefore supersets of those in [23], of which

there are 541 to our 231. This definition of a type of operator allows us systematically label

the operators in a phenomenologically friendly way. The largest set of operators we consider

is a class where the operators are grouped by the number of fields of a given spin as well

as the number of derivatives. It is useful to consider subclasses when discussing the RGE

of the dimension-8 operators. Subclasses treat conjugate fields separately. For example,

class 1 has three subclasses, {X4
L, X

2
LX

2
R, X

4
R} ∈ X4, and class 18 also has three subclasses,

{ψ4H2, ψ2ψ̄2H2, ψ̄4H2} ∈ ψ4H2. We tolerate a slight abuse of notation between classes

and subclasses relying on context to distinguish which set is being discussed.

Moving onto physics conventions, the SM Lagrangian is given by

LSM = −1

4

∑
X

XµνX
µν + (DµH

†)(DµH) +
∑
ψ

ψ̄i /Dψ (2.1)

− λ
(
H†H − v2

2

)2

−
[
H†j d̄ Ydq

j + H̃†j ū Yuq
j +H†j ē Yel

j + h.c.
]
.

In eq. (2.1), and throughout this work, we generically refer to field strengths as X =

{GA,W I , B}, and to fermions as ψ = {l, e, q, u, d}.
The gauge covariant derivative is

(Dµq)
jα = ((∂µ + ig1yBµ)δαβ δ

j
k + ig2(tI)jkW

I
µδ

α
β + ig3(TA)αβA

A
µ δ

j
k)q

kβ , (2.2)

where the generators of SU(3)c and SU(2)w are T a and tI = τ I/2, respectively. The U(1)y
hypercharge is given by y with Q = τ3 +y. For SU(3)c fundamental and adjoint indices are

denoted α, β, γ and A,B,C, respectively, while for SU(2)w the fundamental and adjoint

indices are respectively labeled j, k,m and I, J,K.

Anti-symmetrization of indices is denoted by a pair of square brackets, [µν], and sym-

metrization is denoted by a pair of round brackets, (µν). The definition of H̃ is

H̃j = εjkH
†k (2.3)

where εjk = ε[jk] is the SU(2) invariant tensor with ε12 = 1. The dual field strength is

defined as

X̃µν =
1

2
εµνρσX

ρσ (2.4)

with ε0123 = 1.

2Starting at dimension-9 n6
g is possible.
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We will sometimes refer to the following combinations of field strength as they are

typically what are used when counting coefficients,

Xµν
L,R =

1

2
(Xµν ∓ iX̃µν). (2.5)

These field strengths have simple Lorentz transformation properties, XL ∼ (1, 0), XR ∼
(0, 1) under SU(2)L ⊗ SU(2)R. Similarly l and q are left-handed fermion fields, whereas

e, u, and d are right-handed fields. When necessary Lorentz indices in the fundamental

representations are indicated by a, b, ȧ, ḃ, e.g. qL ∼ (qL)a, BR ∼ (BR)(ȧḃ).

The SMEFT extends the SM by adding all of the higher-dimensional operator that

are gauge invariant under the SM with the caveat that redundant operators should not be

included

LSMEFT = LSM +
∑
d>4

L(d). (2.6)

For the dimension-6 operators we keep notation that has been well-established in the lit-

erature, see e.g. [5]. On the other hand, we use a systematic, if at times cumbersome,

notation for labelling the operators of mass-dimension 7 and above. For types of operators

with a single Lagrangian term we label them as follows

L(d) ⊃
∑
type

CtypeQtype, nterm = 1, (2.7)

where nterm is the number of terms of a given type. The type of operator is denoted as the

fields and the derivatives in the operator raised to the power of the number of times that

type of object appears in the operator, e.g. the label leBH3 indicates that this term has

one left-handed lepton field, one right-handed electron field, one hypercharge field strength,

and three Higgs fields. If a type of operator has multiple terms, not counting Hermitian

conjugates, we instead label the operators as

L(d) ⊃
∑
type

nterm∑
i=1

C
(i)
typeQ

(i)
type, nterm > 1. (2.8)

Consider as an explicit example,

L(d=8) ⊃ C(1)

u2GH2D
pr

Q
(1)

u2GH2D
pr

+ C
(2)

u2GH2D
pr

Q
(2)

u2GH2D
pr

+

[
CleBH3

pr
QleBH3

pr
+ h.c.

]
, (2.9)

with

Q
(1)

u2GH2D
pr

= (ūpγ
νTAur)D

µ(H†H)GAµν ,

Q
(2)

u2GH2D
pr

= (ūpγ
νTAur)D

µ(H†H)G̃Aµν ,

QleBH3

pr
= (l̄pσ

µνer)H(H†H)Bµν . (2.10)

Flavor indices explicitly appear in eq. (2.9). Fermion fields have a flavor index p, r, s, t

that runs over 1, 2, 3 for three generations. The fermion fields themselves are in the weak

eigenstate basis. The Yukawa matrices, Ye,u,d, in eq. (2.1) are matrices in flavor space.
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Note that we do not explicitly label the transpose of a spinor in fermion bilinears

involving a charge conjugation operator, e.g. ψ1Cψ2 ≡ ψT1 Cψ2, ψ1Cσµνψ2 ≡ ψ>1 Cσµνψ2.

Finally, it is convenient to define Hermitian derivatives e.g.

iH†
←→
D µH = iH†(DµH)− i(DµH

†)H,

iH†
←→
D I

µH = iH†τ I(DµH)− i(DµH
†)τ IH. (2.11)

3 Operator classification

Having defined our notation in section 2 we can more precisely state our goal. We are trying

to find the minimum number of Lagrangian terms needed to give all of the operators at

dimension-8 subject to the constraint that no term may contain more than n4
g operators.

For bosonic and two-fermion operators this constraint is trivially satisfied as those terms

always contain one and n2
g operators, respectively. Four-fermion operators where two or

more of the fields are identical constitute the interesting cases.

We use existing results from the literature when they are available. All of the bosonic

operators have been classified previously [18–20]. Ref. [19] also gave partial results for

three of the two-fermion classes that were sufficient to allow us to deduce the remaining

operators in those classes. As this work was being finalized refs. [24, 25] appeared, which

classified a subset of four-fermion operators with two derivatives. However there are still

non-trivial results for us to work out in that class.

When classifying the dimension-8 operators we exploit the fact that not only are the

types of operators known, but the number of operators is also known, see ref. [10]. In

particular, we leverage the Python package BasisGen [13], which we use to get the number

of operators for each type of operator. Additionally, we use the Mathematica program

Sym2Int [11], which not only gives the number of operators per type, but also the flavor

representations when there are identical particles in the operator. Furthermore, Sym2Int

gives the number of Lagrangian terms per type of operator except when the operator

contains both derivatives and identical particles. In that case a range is given because the

permutation symmetry of operators with derivatives is ambiguous due to integration by

parts (IBP) redundancies.

Ref. [23] used Sym2Int to derive lower and upper limits on the number of terms of

dimension-8 operators, 1025 ≤ Nterm ≤ 1102. Our basis contains 1031 terms, close to the

lower limit. The counting is clear from [10] for that one generation of fermions there are 993

terms. Of the remaining 38 terms we identified, all of which vanish in the absence of flavor

structure, six of them involve derivatives. For each of these six terms there is another term

of the same type that does not vanish in the absence of flavor structure, which is consistent

with the ambiguity originating from terms with derivatives. In principle this could allow

us to reduce the number of terms in our basis and hit the lower limit. However, the total

number of operators contained in four of the terms is n4
g + 1

2n
3
g(ng − 1), which exceeds

the maximum of operators that can be placed in a single term, n4
g. Therefore these four

potentially redundant terms do need to be retained as independent terms in the Lagrangian.

Finally the last term plus its Hermitian conjugate have a different Lorentz structure than
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the other term (+h.c.) of the same type that does not vanish in the absence of flavor

structure, making it an independent term as well.

Beyond getting the number of terms correct we need to ensure that the operators in

our basis are independent. Operators with derivatives can be related through integration

by parts. When there are multiple derivatives care must be taken to select operators for the

basis that span the entire space of possible operators for that class. See the discussion of

class 16 below for an example of this. Operators can also be related to each other through

the equations of motion (EOM). We use the EOM the remove redundant terms, trading

them for basis operators in the same class, operators with fewer derivatives, and sometimes

operators of lower mass dimension. See the discussion of class 17 below for an example of

this, and see e.g. [26] for the SM equations of motion. Our basis does not explicitly contain

an EOM. Operators with derivatives can be IBP, and some of the resulting terms contain

an EOM. However it is never the case that all of the resulting terms have an EOM. Lastly,

there are various tensor and spinor identities that relate operators to each other. There

are the Fierz identities, for example for SU(2)

(τ I)kj (τ
I)nm = 2δnj δ

k
m − δkj δnm. (3.1)

There are identities involving the Levi-Civita symbol, e.g. in two-dimensions

εjkεmn + εjmεnk + εjnεkm = 0 (3.2)

There are identities for products of Dirac matrices, e.g. the anti-symmetric Dirac tensor is

self-dual

ερτµνσµνPR = 2iσρτPR. (3.3)

3.1 Bosonic operators

1. X4.

The X4 operators for a single Yang-Mills field were classified in ref. [18]. Ref. [20]

generalized this result to the SM field content. Note that dimension-8 is the lowest

dimension where a subclass of operators contains both XL and XR.

2. H8.

(H†H)4 is the only possibility.

3. H6D2.

The H6D2 operators were classified in ref. [19].

4. H4D4.

Both refs. [19] and [20] classified the H4D4 operators.

5. X3H2.

The X3H2 operators were classified in ref. [19]. Note that the two terms in Q
(2)
W 2BH2

are equivalent via the identity

X̃µρY
ρν = −XνρỸρµ −

1

2
XαβỸ

αβδνµ. (3.4)

– 6 –
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For backwards compatibility we construct our basis with Q
(2)
W 2BH2 as originally defined

by ref. [19] as opposed to, say, only keeping the second term.

6. X2H4.

The X2H4 operators were classified in ref. [19].

7. X2H2D2.

Both refs. [19] and [20] classified the X2H2D2 operators.

8. XH4D2.

The XH4D2 operators were classified in ref. [19].

3.2 Two-fermion operators

9. ψ2X2H.

For the dimension-8 class ψ2X2H, 24 terms arise from joining a field strength to a

dimension-6 operator of the form ψ2XH, whereas 48 terms come from the product

of two field strengths and a Yukawa interaction, (X2)(ψ2H). See table 21 for the

dimension-6 operators.

10. ψ2XH3.

In the class ψ2XH3, 16 of the 22 terms are identical to the dimension-6 terms ψ2XH

up to an extra factor of (H†H). The remaining six terms, all involving W I
µν , instead

have the dimension-2 covariant (H†τ IH).

11. ψ2H2D3.

Ref. [19] classified the four terms involving q2H2D3. The remaining 12 terms in the

class can be deduced from the results of ref. [19].

12. ψ2H5.

The class ψ2H5 is identical to the dimension-6 class ψ2H3 up to an extra factor of

(H†H).

13. ψ2H4D.

Ref. [19] classified the four operators involving q2H4D. The term Q
(2)
q2H4D

contains a

sum

Q
(2)
q2H4D

= Q
(2l)
q2H4D

+Q
(2r)
q2H4D

. (3.5)

The term Q
(3)
q2H4D

is related to the righthand side of eq. (3.5) as follows

iQ
(3)
q2H4D

= −Q(2l)
q2H4D

+Q
(2r)
q2H4D

. (3.6)

This can be seen using the following variation of eq. (3.1)

δkj (τ I)nm − (τ I)kj δ
n
m = iεIJK(τJ)nj (τK)km. (3.7)

As was the case with the class 5 operator Q
(2)
W 2BH2 we choose to keep Q

(2)
q2H4D

and

Q
(3)
q2H4D

is our basis as opposed to their summands for backwards compatibility. The

remaining nine terms in the class can be deduced from the results of ref. [19].

– 7 –
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14. ψ2X2D.

We use integration by parts to place the derivative on a fermion field. Then in order

for the operator to not be “reduced” to a class with fewer derivatives through the

use of the equations of motion the fermionic component of the operator must not be

Lorentz invariant. Class 7 also contains two field strengths, see above, and a subset of

the operators in class 7 have covariants formed from Higgs fields and derivatives that

transform as (1, 1) under SU(2)L⊗SU(2)R. We take the field strength components of

that subset of class 7 operators and use them for the class 14 operators, contracting

them with fermionic covariants of the form ψ̄γµDνψ. In particular, we use Q
(1)
G2H2D2

as the template for when a fermion is not charged under a gauge group, Q
(1,4−6)
W 2H2D2

when it is charged under a gauge group, and Q
(1,4−6)
WBH2D2 when it is charged under two

gauge groups. Three terms are not covered by this procedure. They involve quarks

and two gluon field strength where the SU(3)c adjoint indices are contracted with

the symmetric dABC symbol.

15. ψ2XH2D.

Ref. [19] classified the 12 terms involving q2WH2D. Of the remaining 74 terms, 68

of them have a form analogous to those classified by ref. [19]. The final six terms in

the class are instead analogous to the dimension-6 operator QHud with the addition

of a field strength.

16. ψ2XHD2.

Things become more complicated when there are two or more derivatives in the

operator. As such it is useful to introduce some additional machinery to classify the

operators. We use the procedure given in ref. [7] for removing terms that are reducible

through the use of the equations of motion. In a nutshell, the procedure says Lorentz

indices should be symmetrized for representations that are triplets or higher under

either SU(2)L or SU(2)R. In terms of Lorentz indices we have for example

DψL ∼ (DψL)(ab),ȧ, DXR ∼ (DXR)a,(ȧḃċ), D2H ∼ (D2H)(ab),(ȧḃ). (3.8)

We now work through a representative example with field content l̄, e,H,BL following

the procedure laid out in ref. [19]. Using relations like those in (3.8) we see that

operators with a derivative acting on the field strength or two derivatives acting on a

fermion can be reduced using the EOM. Ignoring for the time being constraints from

IBP this leaves us with four possibilities

x1 = (Dl̄)a,(ȧċ)eḋ(DH)b,ḃB(cd)ε
acεbdεȧḋεċḃ,

x2 = l̄ċ(De)a,(ȧḋ)(DH)b,ḃB(cd)ε
acεbdεȧċεḋḃ,

x3 = (Dl̄)a,(ȧċ)(De)b,(ḃḋ)HB(cd)ε
acεbdεȧḃεċḋ,

x4 = l̄ċeḋ(D
2H)(ab),(ȧḃ)B(cd)ε

acεbdεȧċεḃḋ, (3.9)

where we have not shown the SU(2)w contraction as it is trivial.

– 8 –
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To determine redundancies coming from integration by parts we need operators trans-

forming as (1
2 ,

1
2) under the Lorentz group with one fewer derivative than the operators

of interest. There are three possibilities in this example

y1 = (Dl̄)a,(ȧċ)eḋHB(cd)ε
acεȧḋ,

y2 = l̄ċ(De)a,(ȧḋ)HB(cd)ε
acεȧċ,

y3 = l̄ċeḋ(DH)a,ȧB(cd)
1

2
εac(εȧċ + εȧḋ). (3.10)

The derivatives of the yi show which of the xi are related by IBP

Db,ḃ y1 = x1 + x3 = 0,

Db,ḃ y2 = x2 + x3 = 0,

Db,ḃ y3 =
1

2
x1 +

1

2
x2 + x4 = 0, (3.11)

where the appropriate contraction of the remaining Lorentz indices in the leftmost

terms is understood. By inspection of (3.11) we see that any of the four candidate

operator can be transformed into any of the remaining three through the use of IBP.

We repeat the same procedure, omitting the details here, to find the class 17 operators

with field content l̄, e,H,BR. In this case there are eight candidate operators, xi, and

six operators in the Lorentz four-vector representation, yi. Given the larger number

of operators in this case we use Mathematica to solve the system of constraints,

yielding two operators.

We are left with a total of three QleHBD2 terms (+h.c.)

εacεbdεȧḃεċḋ l̄ȧ(De)a,(ḃċ)(DH)b,ḋ(BL)cd,

εabεȧḃεċėεḋḟ l̄ȧ(De)a,(ḃċ)(DH)b,ḋ(BR)(ėḟ),

εabεȧḋεḃėεċḟ l̄ȧeḃ(DH)a,ċ(DBR)b,(ḋėḟ), (3.12)

which matches the counting we found using BasisGen. Translating the Lorentz con-

tractions from SU(2)L ⊗ SU(2)R to SO(3, 1) and translating BL and BR to B and B̃

we find

Q
(1)
leBHD2 = (l̄pσ

µνDρer)(DνH)Bρµ

Q
(2)
leBHD2 = (l̄pD

ρer)(D
νH)B̃ρν

Q
(3)
leBHD2 = (l̄pσ

µνer)(D
ρH)(DρBµν). (3.13)

The remaining 42 terms in class 17 can be deduced from the QleHBD2 operators

in (3.13) +h.c..

17. ψ2H3D2.

Starting with relations like those in (3.8) we see that any operator in this class with

two derivatives acting on the same field can be reduced using the EOM. Therefore

– 9 –
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an operator with one derivative on each of the two fermion fields can be traded for

an operator with one derivative on a Higgs field, one derivative on a fermion plus

operators with fewer derivatives. From here we extend the results of ref. [2] to move

any remaining derivatives acting on fermions onto Higgs fields, again plus operators

with fewer derivatives. The first relation is

H†H(DµH)ψ̄σµνDνψ =
i

2
H†H(DµH)ψ̄(γµ /D − /Dγµ)ψ

= iH†H(DµH)ψ̄γµ /Dψ − iH†H(DµH)ψ̄Dµψ

= −iH†H(DµH)ψ̄Dµψ + ψ2H4D + E , (3.14)

where E represents operators that vanish via the EOM. The other relation we need

is

2H†H(DµH)ψ̄Dµψ = H†H(DµH)ψ̄(γµ /D + /Dγµ)ψ

=
(
H†H(DµH)ψ̄γµ /Dψ −H†H(DµH)( /Dψ̄)γµψ

−Dν [H†H(DµH)]ψ̄γνγµψ + T
)

= −Dν [H†H(DµH)]ψ̄γνγµψ + E + T (3.15)

where T stands for a total derivative.

After all this we are left with six terms +h.c. where the derivatives act only on Higgs

fields. In particular, having already established that operators in this class cannot

have two derivatives acting on the same field, the derivatives can either act on H and

H† or there can be one derivative on each of the H fields. For each of these cases the

fermion pair can either be in the (0, 0) or (0, 1) representation of the Lorentz group.

(The classification for the Hermitian conjugate operators proceeds in an identical

fashion.) Finally when the derivatives act on H and H† the covariants can either be

SU(2)w singlets or adjoints. The same logic applies for all three choices for the pair

of fermions.

3.3 Four-fermion operators

18. ψ4H2.

All 38 of the ψ4 dimension-6 terms can be multiplied by (H†H). Focusing on B

preserving operators, an additional 23 terms are formed by inserting a τ I into a ψ4

operator (with at least two left-handed fermions) and joining it to the dimension-2

covariant (H†τ IH). Operators of the type Ql2q2H2 provide three of the these terms,

whereas all other types of operators provide one term (+h.c.). There are also 22

ψ4H2 terms that, schematically, are products of Yukawa interactions, (L̄RH)(L̄RH)

or (L̄RH)(H†R̄L). Among these there is one new type of operator, Ql2udH2 . Bi-

Yukawa terms with four fields that are fundamentals under either SU(2)w or SU(3)c
where two of those fields are identical can be contracted either as singlets or adjoints.
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There are some redundant operators involving identical left-handed fermions. For

example, the terms

Q
(3)
l4H2 = (l̄pγ

µτ I lr)(l̄sγµτ
I lt)(H

†H),

Q
(4)
l4H2 = (l̄pγ

µτ I lr)(l̄sγµlt)(H
†τ IH),

Q
(5)
l4H2 = εIJK(l̄pγ

µτ I lr)(l̄sγµτ
Jτ I lt)(H

†τKH), (3.16)

are related to the operators in our basis

Q
(3)

l4H2

prst

= 2Q
(1)

l4H2

ptsr

−Q(1)

l4H2

prst

,

Q
(4)

l4H2

prst

= Q
(2)

l4H2

stpr

,

iQ
(5)

l4H2

prst

= Q
(2)

l4H2

prst

−Q(2)

l4H2

stpr

. (3.17)

This can be seen using eqs. (3.1) and (3.7).

The terms for baryon number violating operators with dimension-6 analogs follow

the logic laid out for the B operators. However there are two interesting flavor

structures. The dimension-6 operator Qqque is symmetric in its q flavor indices [4].

This constraint is broken by the additional SU(2)w in Qeq2uH2 , giving it full flavor

rank, n4
g. The dimension-6 operator Qqqql also has a flavor constraint [4]

Qqqql
prst

+Qqqql
rpst

= Qqqql
sprt

+Qqqql
srpt

, (3.18)

which can be derived using eq. (3.2). The operators Q
(1,2)
lq3H2 respect this constraint,

leading to each of their Lagrangian terms (+h.c.) containing 2
3n

2
g(2n

2
g + 1) operators.

On the other hand, Q
(3)
lq3H2 has mixed symmetry. It is symmetric in p and r and

antisymmetric in r and s, which causes it to vanish when there is only when gener-

ation of fermions. As a result of the six fundamental SU(2)w indices there are eight

redundant operators

Q
(1a)
lq3H2 = εαβγεmjεkn(qmαp Cqjβr )(qkγs Clnt )(H†H),

Q
(1b)
lq3H2 = εαβγ(τ Iε)mj(τ

Iε)kn(qmαp Cqjβr )(qkγs Clnt )(H†H),

Q
(2a)
lq3H2 = εαβγεmj(τ

Iε)kn(qmαp Cqjβr )(qkγs Clnt )(H†τ IH),

Q
(2b)
lq3H2 = εαβγ(τ Iε)jnεkm(qmαp Cqjβr )(qkγs Clnt )(H†τ IH),

Q
(3a)
lq3H2 = εαβγ(τ Iε)mjεkn(qmαp Cqjβr )(qkγs Clnt )(H†τ IH),

Q
(3b)
lq3H2 = εαβγεjn(τ Iε)km(qmαp Cqjβr )(qkγs Clnt )(H†τ IH),

Q
(4a)
lq3H2 = εαβγε

IJK(τ Iε)mn(τJε)jk(q
mα
p Cqjβr )(qkγs Clnt )(H†τKH),

Q
(4b)
lq3H2 = εαβγε

IJK(τ Iε)mj(τ
Jε)kn(qmαp Cqjβr )(qkγs Clnt )(H†τKH). (3.19)
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The operators in (3.19) can be written in terms of the operators in our basis using

eq. (3.1), eq. (3.7), and the following relations obtained from eq. (3.1)

εmj(τ
Iε)kn + (τ Iε)mjεkn = εmn(τ Iε)jk − (τ Iε)mnεjk,

iεIJK [(τJε)mn(τKε)jk −
1

2
(τJε)mj(τ

Kε)kn] = εmn(τ Iε)jk + (τ Iε)mnεjk. (3.20)

In particular, the relations are

−Q(1a)

lq3H2

prst

= Q
(1)

lq3H2

prst

+Q
(1)

lq3H2

rpst

,

−Q(1b)

lq3H2

prst

= Q
(1)

lq3H2

prst

−Q(1)

lq3H2

rpst

,

Q
(2b)

lq3H2

prst

= Q
(2)

lq3H2

rpst

,

Q
(3b)

lq3H2

prst

= −Q(3)

lq3H2

rpst

,

2Q
(2a)

lq3H2

prst

= (Q
(2)

lq3H2

prst

+Q
(2)

lq3H2

rpst

)− (Q
(3)

lq3H2

prst

+Q
(3)

lq3H2

rpst

),

2Q
(3a)

lq3H2

prst

= (Q
(2)

lq3H2

prst

−Q(2)

lq3H2

rpst

)− (Q
(3)

lq3H2

prst

−Q(3)

lq3H2

rpst

),

Q
(4a)

lq3H2

prst

= Q
(2)

lq3H2

rpst

−Q(3)

lq3H2

rpst

,

1

2
Q

(4b)

lq3H2

prst

= −(Q
(2)

lq3H2

prst

−Q(2)

lq3H2

rpst

)− (Q
(3)

lq3H2

prst

+Q
(3)

lq3H2

rpst

). (3.21)

In addition to /B operators with dimension-6 analogs, three new types of operators

appear. These were three of the types of operators identified by ref. [10] as types

that vanish in the absence of flavor structure. All three contain a Lorentz singlet

pair of quarks in the antisymmetric 3̄ representation of SU(3)c, yielding n3
g(ng −

1) independent operators. The operators of type Qlq3H2 are different from these

three (and others identified by [10]) in that there is at least one Lagrangian term

in the absence of flavor. However not all of the terms are present in the absence of

flavor structure. Dimension-8 is the lowest mass dimension where this happens. The

vanishing of operators in the absence of flavor structure first occurs at dimension-7.

19. ψ4X.

For a pair of currents there are 114 terms formed an operator by contracting the cur-

rents with a field strength, and inserting SU(2)w and SU(3)c generators and invariants

as necessary. There are at least two terms per JJX operator type, one from XL and

one from XR. The largest number of terms is eight, which occurs for operator types

Qu2d2G, Qq2u2G, and Qq2d2G, where the SU(3)c combinations are (8⊗1⊗8), (1⊗8⊗8),

(8⊗ 8⊗ 8)A, and (8⊗ 8⊗ 8)S for the, say, u current, d current and G, respectively.

There are five types of operators that were identified in [10] involving identical

currents contracted with the hypercharge field strength, e.g. (l̄γµl)(l̄γν l)Bµν , which
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vanish in the absence of flavor structure as the contraction forces the fermions into

an antisymmetric flavor representation. For each Lagrangian term the number of

operators is(
⊗ ⊗ ⊗

)
A

= adj ⊕ adj ⊕ ās⊕ s̄a =
1

2
n2
g(n

2
g − 1) (3.22)

The relevant group theory results can be found in e.g. [27]. The electron is a special

case as it does not have SU(2)w or SU(3)c indices. As such only half of the operators of

this class 19 type are independent with the rest being related through a Fierz identity.

For operators with fermion chirality (L̄R)(R̄L) there are two possibilities per field

strength, one with the left-handed field strength and the other with its right-handed

counterpart. For operators with fermion chirality (L̄R)(L̄R) there are instead three

choices for the Lorentz contractions, all with XR. Two of these terms involve a tensor

bilinear and a scalar bilinear while the third has two tensor bilinears. Additionally

when all the fermions are quarks there are two choices for the SU(3)c contractions.

For the baryon number violating operators with two left-handed and two right-

handed fermions there are two possible Lorentz contractions, one with XL and one

with XR. When these operators involve a gluon field strength there are also two pos-

sible arrangements of the SU(3)c indices, 8⊗3⊗3⊗3 = (3⊕ 6̄ . . .)⊗3⊗3 = 1⊕1 . . ..

The operators of type Qeq2uX with X = WR or BL are in antisymmetric flavor

representations for the q pair, and as such vanish in the absence of flavor structure.

Instead Qeq2uX with X = WL or BR are symmetric in p and r. The types involving

gluons have full flavor rank as the q fields can either be a color 3̄ or 6, compensating

for other (anti)symmetries of the operator.

On the other hand, when the fermions all have the same chirality three Lorentz

contractions are possible. For operators of the type Qeu2dB the gauge contractions are

fixed and it is the Lorentz contractions that dictate the flavor representation of the u

pair is, leading to one symmetric and one full rank term +h.c.. Instead forQeu2dG type

operators, the additional freedom coming from the color indices of the gluon, allowing

for full flavor rank, n4
g, in all the Lagrangian terms. In the case of Qlq3X only two of

the three Lorentz contractions are independent due to the identical q fields. There

are two terms of Qlq3G operators (+h.c.) that have the same flavor representations

as the their dimension-6 analog, Qqqql, along with one term of Qlq3W and one term of

Qlq3B, again +h.c.. For each of these types of operators there are an equal number of

operator types that have mixed symmetry, 1
3n

2
g(n

2
g−1), that vanish in the absence of

flavor structure similar to Q
(3)
lq3H2 . Finally there is a third term +h.c. for the operators

involving W I
µν , Q

(2)
lq3W

, that is in a symmetric plus mixed flavor representation.

Operators of the type Qlq3W are another complicated case that deserve further

discussion. Here the quarks can be in either the 2 or the 4 representation of both

SU(2)w and the SU(2)L of the Lorentz group. Naively there are four terms (+h.c.)

to consider with redundant operators handled in a similar fashion as the Qlq3H2 case.

However we can unambiguously combine the two terms that are Lorentz quartets
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into a single term, reducing the number of terms to three +h.c.. To see this consider

the quark flavor symmetries of the four cases. Following ref. [23], specifically its

table 2, we decompose the product of the gauge and Lorentz representations into

irreducible representations of the permutation group of three objects, S3, which gives

us the flavor representations of the three quarks. As we have been seen before, when

the quarks are in the 2 of both SU(2)w and SU(2)L they have symmetric, mixed,

and antisymmetric flavor representations. When one of the two representations is

a 2 and the other is a 4 there is only a mixed flavor representation. Finally, when

both representations are the 4 there is only the symmetric representation. We can

combine the two terms that are in the 4 of SU(2)L into Q
(2)
lq3W

as they contain

distinct flavor representations. This is not unambiguously possible for Q
(1)
lq3W

and

Q
(3)
lq3W

, or Q
(2)
lq3H2 and Q

(3)
lq3H2 as each of those terms contain a mixed representation.

In equations, the naive terms that are in the 4 of SU(2)L are

Q
(2a)
lq3W

= εαβγ(τ Iε)mnεjk(q
mα
p Cσµνqjβr )(qkγs Clnt )W I

µν ,

Q
(2b)
lq3W

= εαβγεmn(τ Iε)jk(q
mα
p Cσµνqjβr )(qkγs Clnt )W I

µν . (3.23)

They can be combined as

2Q
(2)

lq3W
prst

= (Q
(2a)

lq3W
prst

−Q(2a)

lq3W
rpst

)− (Q
(2b)

lq3W
prst

−Q(2b)

lq3W
rpst

). (3.24)

Other combinations are possible of course, but this combination makes it clear there

is a symmetric and a mixed flavor representation.

20. ψ4HD.

In class 20 the operators either have one fermion transforming as ( 1
2 , 0) and three

transforming as (0, 1
2) under the Lorentz group, or vice versa. When describing the

classification of this class we assume the former case. Then, from (3.8) the derivative

cannot act on the left-handed fermion. Otherwise the operator would be reduced by

the EOM.

We start with the baryon number conserving operators. Consider the case when

the four fermion fields are distinguishable, e.g. d̄, d, l̄, e (with conjugate fields are

counted separately). Here there are two independent Lorentz contractions when the

derivative acts on the Higgs field. A third Lorentz structure is related to the first

two by eq. (3.2). When the derivative acts on a fermion there is instead only one

possible Lorentz contraction. We use type Qled2HD as an example. It has the five
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aforementioned candidate terms

x1 = d̄adȧ l̄ḃeċ(DH)bḋε
abεȧḃεċḋ,

x2 = d̄adȧ l̄ḃeċ(DH)bḋε
abεȧḋεċḃ,

x3 = d̄a(Dd)b(ȧḋ) l̄ḃeċH
1

2
εab(2εȧḃεċḋ − εȧḋεċḃ),

x4 = d̄adȧ(Dl̄)a(ḃḋ)eċH
1

2
εab(εȧḃεċḋ + εȧḋεċḃ),

x5 = d̄adȧlḃ(De)a(ċḋ)H
1

2
εabεȧḃεċḋ, (3.25)

where eq. (3.2) is used to remove redundant Lorentz structures. There are two

constraint equations

Dy1 = x1 + x3 +
1

2
x4 +

1

2
x5 = 0,

Dy2 = x2 − x3 +
1

2
x4 = 0, (3.26)

and we choose to keep x1, x2, and x4 in our basis. For other types of operators

where all four fermions are distinguishable we keep the analogs of x1, x2, and x4 as

well. In addition, if there are four fields in the operator that are fundamentals under

SU(2)w or SU(3)c, including the Higgs, then there are two possible contractions of

those gauge indices for each possible Lorentz contraction.

The other possibility is that only three of the fermion fields are unique, e.g. d̄, d, q̄, d.

In this case there is only one way to contract the Lorentz indices when the derivative

acts on the Higgs field, and only two possible ways to assign the derivative to

fermions. When the derivative acts on the Higgs field or the repeated fermion

there are four, two, and one possible gauge contractions when the repeated fermion

is q, one of {l, u, d}, or e, respectively. Instead when the derivative acts on the

fermion is not repeated, e.g. d̄, d, (Dq̄), d, there are two possible gauge contractions

if the repeated fermion is q and only one otherwise. Here the repeated fermion

is in a symmetric Lorentz representation and so the gauge contractions must be

antisymmetric, eliminating half the possibilities.

The baryon number violating operators follow the same rules. There are a couple of

non-trivial flavor cases. When there are duplicate right-handed fermions they form

a symmetric flavor representation if the derivative acts on the Higgs field, and have

full flavor rank if the derivative acts on the one of the duplicate fermions. For the

term Qeq3HD, the derivative acts on one of the q fields, breaking the flavor constrain,

eq. (3.18), giving it full flavor rank.

21. ψ4D2.

We start with operators with equal numbers of left- and right-handed fermions,

both B and /B. There are two ways to assign the derivatives to the fields that are

not related by IBP. The first is to assign the derivatives to fermions that have the
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same Lorentz representation, and second is to assign the derivatives to fermions

with conjugate Lorentz representations. When both currents are electron one of the

representations vanishes in the absence of flavor structure. As previously mentioned

this is due to the fact that the electron is a singlet both SU(2)w and SU(3)c. As

this work was being completed ref. [24] appeared, which classified nine terms from

class 19. Some of their operators subsume both derivatives into the d’Alembertian

operator. Our logic is consistent with the results of ref. [24]. The difference is we

use relations like (3.8) to reduce operators with two derivatives acting on the same

fermion to classes with fewer derivatives. As such the ψ4D2 operators in our basis

where derivatives act symmetrically take the form Dµ(ψ1Γψ2)Dµ(ψ3Γψ4) where

Γ is some, possibly scalar, combination of gamma matrices. The remaining 30

current-current terms and the four terms with chirality (L̄R)(R̄L) in class 19 have

a form analogous to the operators classified by ref. [24]. Also, the derivatives in

Qeq2uD2 break the flavor constraint present in its dimension-6 analog Qqque.

For operators with either all left-handed or all right-handed fermions there are three

possible Lorentz contractions, two where the fermions without derivatives form a

scalar and a third where they form a tensor. An example of an IBP constraint

equation for these types of operators is

Q
(1)
lequD2 + 2(Dµ l̄

j
pD

µer)εjk(q̄
k
sut) = E . (3.27)

There is a single term (+h.c.) for the type Qlq3D2 . As was the case with Qeq2uD2 ,

the derivatives in Qlq3D2 break the flavor constraint present in some other operators

of type Qlq3..., allowing the term to have full flavor rank. On the other hand, for the

first time we encounter a term of the type Qeu2d... that vanishes in the absence of

flavor structure. There is also a second type of Qeu2dD2 operator (+h.c.) that has

full flavor rank.

4 The complete set of dimension-8 operators

Having gone through our classification of the dimension-8 operators in the previous section

we are now ready to tabulate the results. Table 1 summarizes the results tables that follow

it. The links in the rightmost column point to the table(s) of results for a given class. The

number of types of operators and the number of Lagrangian terms in the class are given

in the third and fourth columns from the left, respectively. For comparison the number

of operators from ref. [10] is given in the second column from the right. Lines separate

the classes based on the number of fermions in the class. Four-fermion operators are

further divided into subclasses either preserving or violating baryon number. Additionally

the number to the right of the + sign in Ntype,term for the four-fermion operators is the

number of types or terms that vanish in the absence of flavor structure tables 2 and 3

contain bosonic operators. Tables 4, 5, 6, 7, 8, and 9 contain two-fermion operators.

Tables 10, 11, 12, 13, 14, 15, 16, 17, and 18 contain four-fermions operators.
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# Class Ntype Nterm Nop [10] Table(s)

1 X4 7 43 43 2

2 H8 1 1 1 2

3 H6D2 1 2 2 2

4 H4D4 1 3 3 2

5 X3H2 3 6 6 3

6 X2H4 5 10 10 3

7 X2H2D2 4 18 18 3

8 XH4D2 2 6 6 3

9 ψ2X2H 16 96 96n2
g 4

10 ψ2XH3 8 22 22n2
g 5

11 ψ2H2D3 6 16 16n2
g 5

12 ψ2H5 3 6 6n2
g 5

13 ψ2H4D 6 13 13n2
g 5

14 ψ2X2D 21 57 57n2
g 6, 7

15 ψ2XH2D 16 92 92n2
g 7, 8

16 ψ2XHD2 8 48 48n2
g 9

17 ψ2H3D2 3 36 36n2
g 9

18(B)
ψ4H2

19 75 n2
g(67n2

g + ng + 7) 10, 11

18( /B) 4 + 3 12 + 8 1
3n

2
g(43n2

g − 9ng + 2) 10

19(B)
ψ4X

40 + 5 156 + 12 4n2
g(40n2

g − 1) 12, 13, 14

19( /B) 4 44 + 12 2n3
g(21ng + 1) 15

20(B)
ψ4HD

16 134 + 2 n3
g(135ng − 1) 16, 17

20( /B) 7 32 n3
g(29ng + 3) 17

21(B)
ψ4D2

18 55 11
2 n

2
g(9n

2
g + 1) 10, 18

21( /B) 4 10 + 2 n3
g(11ng − 1) 10

B 204 + 5 895 + 14 895(36971), ng = 1(3)

/B 19 + 3 98 + 22 98(7836), ng = 1(3)

Total 223 + 8 993 + 36 993(44807), ng = 1(3)

Table 1. Summary of the contents of the tables to follow. The links in the rightmost column point

to the table(s) of results for a given class. The number of types of operators and the number of

Lagrangian terms in the class are given in the third and fourth columns from the left, respectively.

For comparison the number of operators from ref. [10] is given in the second column from the right.

Lines separate the classes based on the number of fermions in the class. Four-fermion operators

are further divided into subclasses either preserving or violating baryon number. Additionally the

number to the right of the + sign in Ntype(term) for the four-fermion operators is the number of

types(terms) that vanish in the absence of flavor structure.
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1 : X4, X3X′

Q
(1)
G4 (GAµνG

Aµν)(GBρσG
Bρσ)

Q
(2)
G4 (GAµνG̃

Aµν)(GBρσG̃
Bρσ)

Q
(3)
G4 (GAµνG

Bµν)(GAρσG
Bρσ)

Q
(4)
G4 (GAµνG̃

Bµν)(GAρσG̃
Bρσ)

Q
(5)
G4 (GAµνG

Aµν)(GBρσG̃
Bρσ)

Q
(6)
G4 (GAµνG

Bµν)(GAρσG̃
Bρσ)

Q
(7)
G4 dABEdCDE(GAµνG

Bµν)(GCρσG
Dρσ)

Q
(8)
G4 dABEdCDE(GAµνG̃

Bµν)(GCρσG̃
Dρσ)

Q
(9)
G4 dABEdCDE(GAµνG

Bµν)(GCρσG̃
Dρσ)

Q
(1)
W 4 (W I

µνW
Iµν)(W J

ρσW
Jρσ)

Q
(2)
W 4 (W I

µνW̃
Iµν)(W J

ρσW̃
Jρσ)

Q
(3)
W 4 (W I

µνW
Jµν)(W I

ρσW
Jρσ)

Q
(4)
W 4 (W I

µνW̃
Jµν)(W I

ρσW̃
Jρσ)

Q
(5)
W 4 (W I

µνW
Iµν)(W J

ρσW̃
Jρσ)

Q
(6)
W 4 (W I

µνW
Jµν)(W I

ρσW̃
Jρσ)

Q
(1)
B4 (BµνB

µν)(BρσB
ρσ)

Q
(2)
B4 (BµνB̃

µν)(BρσB̃
ρσ)

Q
(3)
B4 (BµνB

µν)(BρσB̃
ρσ)

Q
(1)
G3B dABC(BµνG

Aµν)(GBρσG
Cρσ)

Q
(2)
G3B dABC(BµνG̃

Aµν)(GBρσG̃
Cρσ)

Q
(3)
G3B dABC(BµνG̃

Aµν)(GBρσG
Cρσ)

Q
(4)
G3B dABC(BµνG

Aµν)(GBρσG̃
Cρσ)

1 : X2X′2

Q
(1)
G2W 2 (W I

µνW
Iµν)(GAρσG

Aρσ)

Q
(2)
G2W 2 (W I

µνW̃
Iµν)(GAρσG̃

Aρσ)

Q
(3)
G2W 2 (W I

µνG
Aµν)(W I

ρσG
Aρσ)

Q
(4)
G2W 2 (W I

µνG̃
Aµν)(W I

ρσG̃
Aρσ)

Q
(5)
G2W 2 (W I

µνW̃
Iµν)(GAρσG

Aρσ)

Q
(6)
G2W 2 (W I

µνW
Iµν)(GAρσG̃

Aρσ)

Q
(7)
G2W 2 (W I

µνG
Aµν)(W I

ρσG̃
Aρσ)

Q
(1)
G2B2 (BµνB

µν)(GAρσG
Aρσ)

Q
(2)
G2B2 (BµνB̃

µν)(GAρσG̃
Aρσ)

Q
(3)
G2B2 (BµνG

Aµν)(BρσG
Aρσ)

Q
(4)
G2B2 (BµνG̃

Aµν)(BρσG̃
Aρσ)

Q
(5)
G2B2 (BµνB̃

µν)(GAρσG
Aρσ)

Q
(6)
G2B2 (BµνB

µν)(GAρσG̃
Aρσ)

Q
(7)
G2B2 (BµνG

Aµν)(BρσG̃
Aρσ)

Q
(1)
W 2B2 (BµνB

µν)(W I
ρσW

Iρσ)

Q
(2)
W 2B2 (BµνB̃

µν)(W I
ρσW̃

Iρσ)

Q
(3)
W 2B2 (BµνW

Iµν)(BρσW
Iρσ)

Q
(4)
W 2B2 (BµνW̃

Iµν)(BρσW̃
Iρσ)

Q
(5)
W 2B2 (BµνB̃

µν)(W I
ρσW

Iρσ)

Q
(6)
W 2B2 (BµνB

µν)(W I
ρσW̃

Iρσ)

Q
(7)
W 2B2 (BµνW

Iµν)(BρσW̃
Iρσ)

2 : H8

QH8 (H†H)4

3 : H6D2

Q
(1)
H6 (H†H)2(DµH

†DµH)

Q
(2)
H6 (H†H)(H†τ IH)(DµH

†τ IDµH)

4 : H4D4

Q
(1)
H4 (DµH

†DνH)(DνH†DµH)

Q
(2)
H4 (DµH

†DνH)(DµH†DνH)

Q
(3)
H4 (DµH†DµH)(DνH†DνH)

Table 2. The dimension-eight operators in the SMEFT whose field content is either entirely gauge

field strengths or Higgs boson fields.

4.1 Results for bosonic operators

See tables 2 and 3.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

5 : X3H2

Q
(1)

G3H2 fABC(H†H)GAνµ GBρν GCµρ
Q

(2)

G3H2 fABC(H†H)GAνµ GBρν G̃Cµρ
Q

(1)

W3H2 εIJK(H†H)W Iν
µ W Jρ

ν WKµ
ρ

Q
(2)

W3H2 εIJK(H†H)W Iν
µ W Jρ

ν W̃Kµ
ρ

Q
(1)

W2BH2 εIJK(H†τ IH)B ν
µW

Jρ
ν WKµ

ρ

Q
(2)

W2BH2 εIJK(H†τ IH)(B̃µνW J
νρW

Kρ
µ +BµνW J

νρW̃
Kρ
µ )

6 : X2H4

Q
(1)

G2H4 (H†H)2GAµνG
Aµν

Q
(2)

G2H4 (H†H)2G̃AµνG
Aµν

Q
(1)

W2H4 (H†H)2W I
µνW

Iµν

Q
(2)

W2H4 (H†H)2W̃ I
µνW

Iµν

Q
(3)

W2H4 (H†τ IH)(H†τJH)W I
µνW

Jµν

Q
(4)

W2H4 (H†τ IH)(H†τJH)W̃ I
µνW

Jµν

Q
(1)

WBH4 (H†H)(H†τ IH)W I
µνB

µν

Q
(2)

WBH4 (H†H)(H†τ IH)W̃ I
µνB

µν

Q
(1)

B2H4 (H†H)2BµνB
µν

Q
(2)

B2H4 (H†H)2B̃µνB
µν

7 : X2H2D2

Q
(1)

G2H2D2 (DµH†DνH)GAµρG
Aρ
ν

Q
(2)

G2H2D2 (DµH†DµH)GAνρG
Aνρ

Q
(3)

G2H2D2 (DµH†DµH)GAνρG̃
Aνρ

Q
(1)

W2H2D2 (DµH†DνH)W I
µρW

Iρ
ν

Q
(2)

W2H2D2 (DµH†DµH)W I
νρW

Iνρ

Q
(3)

W2H2D2 (DµH†DµH)W I
νρW̃

Iνρ

Q
(4)

W2H2D2 iεIJK(DµH†τ IDνH)W J
µρW

Kρ
ν

Q
(5)

W2H2D2 εIJK(DµH†τ IDνH)(W J
µρW̃

Kρ
ν − W̃ J

µρW
Kρ
ν )

Q
(6)

W2H2D2 iεIJK(DµH†τ IDνH)(W J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν )

Q
(1)

WBH2D2 (DµH†τ IDµH)BνρW
Iνρ

Q
(2)

WBH2D2 (DµH†τ IDµH)BνρW̃
Iνρ

Q
(3)

WBH2D2 i(DµH†τ IDνH)(BµρW
Iρ
ν −BνρW Iρ

µ )

Q
(4)

WBH2D2 (DµH†τ IDνH)(BµρW
Iρ
ν +BνρW

Iρ
µ )

Q
(5)

WBH2D2 i(DµH†τ IDνH)(BµρW̃
Iρ
ν −BνρW̃

Iρ
µ )

Q
(6)

WBH2D2 (DµH†τ IDνH)(BµρW̃
Iρ
ν +BνρW̃

Iρ
µ )

Q
(1)

B2H2D2 (DµH†DνH)BµρB
ρ
ν

Q
(2)

B2H2D2 (DµH†DµH)BνρB
νρ

Q
(3)

B2H2D2 (DµH†DµH)BνρB̃
νρ

8 : XH4D2

Q
(1)

WH4D2 (H†H)(DµH†τ IDνH)W I
µν

Q
(2)

WH4D2 (H†H)(DµH†τ IDνH)W̃ I
µν

Q
(3)

WH4D2 εIJK(H†τ IH)(DµH†τJDνH)WK
µν

Q
(4)

WH4D2 εIJK(H†τ IH)(DµH†τJDνH)W̃K
µν

Q
(1)

BH4D2 (H†H)(DµH†DνH)Bµν

Q
(2)

BH4D2 (H†H)(DµH†DνH)B̃µν

Table 3. Bosonic dimension-eight operators in the SMEFT containing both gauge field strengths

and Higgs boson fields.

4.2 Results for two-fermion operators

See tables 4, 5, 6, 7, 8 and 9.

4.3 Results for four-fermion operators

See tables 10, 11, 12, 13, 14, 15, 16, 17 and 18.

5 Phenomenology

In this section we briefly discuss a few aspects of phenomenology involving dimension-8

operators, focusing on processes that first start at dimension-8 and/or involve interplay

between dimension-6 and -8 effects. In particular, we discuss light-by-light scattering and

electroweak precision data. We also present a model where dimension-8 effects are arguably

more important than dimension-6 effects.

– 19 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

9 : ψ2X2H + h.c.

Q
(1)
leG2H (l̄per)HG

A
µνG

Aµν

Q
(2)
leG2H (l̄per)HG̃

A
µνG

Aµν

Q
(1)
leW 2H (l̄per)HW

I
µνW

Iµν

Q
(2)
leW 2H (l̄per)HW̃

I
µνW

Iµν

Q
(3)
leW 2H εIJK(l̄pσ

µνer)τ
IHW J

µρW
Kρ
ν

Q
(1)
quG2H (q̄pur)H̃G

A
µνG

Aµν

Q
(2)
quG2H (q̄pur)H̃G̃

A
µνG

Aµν

Q
(3)
quG2H dABC(q̄pT

Aur)H̃G
B
µνG

Cµν

Q
(4)
quG2H dABC(q̄pT

Aur)H̃G̃
B
µνG

Cµν

Q
(5)
quG2H fABC(q̄pσ

µνTAur)H̃G
B
µρG

Cρ
ν

Q
(1)
quGWH (q̄pT

Aur)τ
IH̃GAµνW

Iµν

Q
(2)
quGWH (q̄pT

Aur)τ
IH̃G̃AµνW

Iµν

Q
(3)
quGWH (q̄pσ

µνTAur)τ
IH̃GAµρW

Iρ
ν

Q
(1)
quGBH (q̄pT

Aur)H̃G
A
µνB

µν

Q
(2)
quGBH (q̄pT

Aur)H̃G̃
A
µνB

µν

Q
(3)
quGBH (q̄pσ

µνTAur)H̃G
A
µρB

ρ
ν

Q
(1)
quW 2H (q̄pur)H̃W

I
µνW

Iµν

Q
(2)
quW 2H (q̄pur)H̃W̃

I
µνW

Iµν

Q
(3)
quW 2H εIJK(q̄pσ

µνur)τ
IH̃W J

µρW
Kρ
ν

Q
(3)
quWBH (q̄pσ

µνur)τ
IH̃W I

µρB
ρ
ν

Q
(1)
quWBH (q̄pur)τ

IH̃W I
µνB

µν

Q
(2)
quWBH (q̄pur)τ

IH̃W̃ I
µνB

µν

Q
(1)
quB2H (q̄pur)H̃BµνB

µν

Q
(2)
quB2H (q̄pur)H̃B̃µνB

µν

9 : ψ2X2H + h.c.

Q
(1)
leWBH (l̄per)τ

IHW I
µνB

µν

Q
(2)
leWBH (l̄per)τ

IHW̃ I
µνB

µν

Q
(3)
leWBH (l̄pσ

µνer)τ
IHW I

µρB
ρ
ν

Q
(1)
leB2H (l̄per)HBµνB

µν

Q
(2)
leB2H (l̄per)HB̃µνB

µν

Q
(1)
qdG2H (q̄pdr)HG

A
µνG

Aµν

Q
(2)
qdG2H (q̄pdr)HG̃

A
µνG

Aµν

Q
(3)
qdG2H dABC(q̄pT

Adr)HG
B
µνG

Cµν

Q
(4)
qdG2H dABC(q̄pT

Adr)HG̃
B
µνG

Cµν

Q
(5)
qdG2H fABC(q̄pσ

µνTAdr)HG
B
µρG

Cρ
ν

Q
(1)
qdGWH (q̄pT

Adr)τ
IHGAµνW

Iµν

Q
(2)
qdGWH (q̄pT

Adr)τ
IHG̃AµνW

Iµν

Q
(3)
qdGWH (q̄pσ

µνTAdr)τ
IHGAµρW

Iρ
ν

Q
(1)
qdGBH (q̄pT

Adr)HG
A
µνB

µν

Q
(2)
qdGBH (q̄pT

Adr)HG̃
A
µνB

µν

Q
(3)
qdGBH (q̄pσ

µνTAdr)HG
A
µρB

ρ
ν

Q
(1)
qdW 2H (q̄pdr)HW

I
µνW

Iµν

Q
(2)
qdW 2H (q̄pdr)HW̃

I
µνW

Iµν

Q
(3)
qdW 2H εIJK(q̄pσ

µνdr)τ
IHW J

µρW
Kρ
ν

Q
(1)
qdWBH (q̄pdr)τ

IHW I
µνB

µν

Q
(2)
qdWBH (q̄pdr)τ

IHW̃ I
µνB

µν

Q
(3)
qdWBH (q̄pσ

µνdr)τ
IHW I

µρB
ρ
ν

Q
(1)
qdB2H (q̄pdr)HBµνB

µν

Q
(2)
qdB2H (q̄pdr)HB̃µνB

µν

Table 4. The dimension-eight operators in the SMEFT of class-9 with field content ψ2X2H. All

of the operators have Hermitian conjugates. The subscripts p, r are weak-eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

10 : ψ2XH3 + h.c.

Q
(1)

leWH3 (l̄pσ
µνer)τ

IH(H†H)W I
µν

Q
(2)

leWH3 (l̄pσ
µνer)H(H†τ IH)W I

µν

QleBH3 (l̄pσ
µνer)H(H†H)Bµν

QquGH3 (q̄pσ
µνTAur)H̃(H†H)GAµν

Q
(1)

quWH3 (q̄pσ
µνur)τ

IH̃(H†H)W I
µν

Q
(2)

quWH3 (q̄pσ
µνur)H̃(H†τ IH)W I

µν

QquBH3 (q̄pσ
µνur)H̃(H†H)Bµν

QqdGH3 (q̄pσ
µνTAdr)H(H†H)GAµν

Q
(1)

qdWH3 (q̄pσ
µνdr)τ

IH(H†H)W I
µν

Q
(2)

qdWH3 (q̄pσ
µνdr)H(H†τ IH)W I

µν

QqdBH3 (q̄pσ
µνdr)H(H†H)Bµν

11 : ψ2H2D3

Q
(1)

l2H2D3 i(l̄pγ
µDν lr)(D(µDν)H

†H)

Q
(2)

l2H2D3 i(l̄pγ
µDν lr)(H

†D(µDν)H)

Q
(3)

l2H2D3 i(l̄pγ
µτ IDν lr)(D(µDν)H

†τ IH)

Q
(4)

l2H2D3 i(l̄pγ
µτ IDν lr)(H

†τ ID(µDν)H)

Q
(1)

e2H2D3 i(ēpγ
µDνer)(D(µDν)H

†H)

Q
(2)

e2H2D3 i(ēpγ
µDνer)(H

†D(µDν)H)

Q
(1)

q2H2D3 i(q̄pγ
µDνqr)(D(µDν)H

†H)

Q
(2)

q2H2D3 i(q̄pγ
µDνqr)(H

†D(µDν)H)

Q
(3)

q2H2D3 i(q̄pγ
µτ IDνqr)(D(µDν)H

†τ IH)

Q
(4)

q2H2D2 i(q̄pγ
µτ IDνqr)(H

†τ ID(µDν)H)

Q
(1)

u2H2D3 i(ūpγ
µDνur)(D(µDν)H

†H)

Q
(2)

u2H2D3 i(ūpγ
µDνur)(H

†D(µDν)H)

Q
(1)

d2H2D3 i(d̄pγ
µDνdr)(D(µDν)H

†H)

Q
(2)

d2H2D3 i(d̄pγ
µDνdr)(H

†D(µDν)H)

QudH2D3 + h.c. i(ūpγ
µDνdr)(H̃

†D(µDν)H)

12 : ψ2H5 + h.c.

QleH5 (H†H)2(l̄perH)

QquH5 (H†H)2(q̄purH̃)

QqdH5 (H†H)2(q̄pdrH)

13 : ψ2H4D

Q
(1)

l2H4D
i(lpγ

µlr)(H
†←→D µH)(H†H)

Q
(2)

l2H4D
i(lpγ

µτ I lr)[(H
†←→D I

µH)(H†H) + (H†
←→
D µH)(H†τ IH)]

Q
(3)

l2H4D
iεIJK(lpγ

µτ I lr)(H
†←→D J

µH)(H†τKH)

Q
(4)

l2H4D
εIJK(lpγ

µτ I lr)(H
†τJH)Dµ(H†τKH)

Qe2H4D i(epγ
µer)(H

†←→D µH)(H†H)

Q
(1)

q2H4D
i(qpγ

µqr)(H
†←→D µH)(H†H)

Q
(2)

q2H4D
i(qpγ

µτ Iqr)[(H
†←→D I

µH)(H†H) + (H†
←→
D µH)(H†τ IH)]

Q
(3)

q2H4D
iεIJK(qpγ

µτ Iqr)(H
†←→D J

µH)(H†τKH)

Q
(4)

q2H4D
εIJK(qpγ

µτ Iqr)(H
†τJH)Dµ(H†τKH)

Qu2H4D i(upγ
µur)(H

†←→D µH)(H†H)

Qd2H4D i(dpγ
µdr)(H

†←→D µH)(H†H)

QudH4D + h.c. i(upγ
µdr)(H̃

†←→D µH)(H†H)

Table 5. The dimension-eight operators in the SMEFT of classes-10, through -13, all of which have

two fermions. The operators QudH4D and QudH2D3 have Hermitian conjugates. The subscripts p, r

are weak-eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

14 : ψ2X2D

Q
(1)

q2G2D
i(q̄pγ

µ←→D νqr)G
A
µρG

Aρ
ν

Q
(2)

q2G2D
fABC(q̄pγ

µTA
←→
D νqr)G

B
µρG

Cρ
ν

Q
(3)

q2G2D
idABC(q̄pγ

µTA
←→
D νqr)G

B
µρG

Cρ
ν

Q
(1)

q2W2D
i(q̄pγ

µ←→D νqr)W
I
µρW

Iρ
ν

Q
(2)

q2W2D
εIJK(q̄pγ

µτ I
←→
D νqr)W

J
µρW

Kρ
ν

Qq2B2D i(q̄pγ
µ←→D νqr)BµρB

ρ
ν

Q
(1)

u2G2D
i(ūpγ

µ←→D νur)G
A
µρG

Aρ
ν

Q
(2)

u2G2D
fABC(ūpγ

µTA
←→
D νur)G

B
µρG

Cρ
ν

Q
(3)

u2G2D
idABC(ūpγ

µTA
←→
D νur)G

B
µρG

Cρ
ν

Qu2W2D i(ūpγ
µ←→D νur)W

I
µρW

Iρ
ν

Qu2B2D i(ūpγ
µ←→D νur)BµρB

ρ
ν

Q
(1)

d2G2D
i(d̄pγ

µ←→D νdr)G
A
µρG

Aρ
ν

Q
(2)

d2G2D
fABC(d̄pγ

µTA
←→
D νdr)G

B
µρG

Cρ
ν

Q
(3)

d2G2D
idABC(d̄pγ

µTA
←→
D νdr)G

B
µρG

Cρ
ν

Qd2W2D i(d̄pγ
µ←→D νdr)W

I
µρW

Iρ
ν

Qd2B2D i(d̄pγ
µ←→D νdr)BµρB

ρ
ν

14 : ψ2X2D

Q
(4)

q2G2D
ifABC(q̄pγ

µTA
←→
D νqr)(G

B
µρG̃

Cρ
ν − G̃BµρGCρν )

Q
(5)

q2G2D
fABC(q̄pγ

µTA
←→
D νqr)(G

B
µρG̃

Cρ
ν + G̃BµρG

Cρ
ν )

Q
(1)

q2GWD
(q̄pγ

µTAτ I
←→
D νqr)(G

A
µρW

Iρ
ν −GAνρW Iρ

µ )

Q
(2)

q2GWD
i(q̄pγ

µTAτ I
←→
D νqr)(G

A
µρW

Iρ
ν +GAνρW

Iρ
µ )

Q
(3)

q2GWD
(q̄pγ

µTAτ I
←→
D νqr)(G

A
µρW̃

Iρ
ν −GAνρW̃ Iρ

µ )

Q
(4)

q2GWD
i(q̄pγ

µTAτ I
←→
D νqr)(G

A
µρW̃

Iρ
ν +GAνρW̃

Iρ
µ )

Q
(1)

q2GBD
(q̄pγ

µ←→D νqr)(BµρG
Aρ
ν −BνρGAρµ )

Q
(2)

q2GBD
i(q̄pγ

µ←→D νqr)(BµρG
Aρ
ν +BνρG

Aρ
µ )

Q
(3)

q2GBD
(q̄pγ

µ←→D νqr)(BµρG̃
Aρ
ν −BνρG̃Aρµ )

Q
(4)

q2GBD
i(q̄pγ

µ←→D νqr)(BµρG̃
Aρ
ν +BνρG̃

Aρ
µ )

Q
(3)

q2W2D
iεIJK(q̄pγ

µτ I
←→
D νqr)(W

J
µρW̃

Kρ
ν − W̃ J

µρW
Kρ
ν )

Q
(4)

q2W2D
εIJK(q̄pγ

µτ I
←→
D νqr)(W

J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν )

Q
(1)

q2WBD
(q̄pγ

µτ I
←→
D νqr)(BµρW

Iρ
ν −BνρW Iρ

µ )

Q
(2)

q2WBD
i(q̄pγ

µτ I
←→
D νqr)(BµρW

Iρ
ν +BνρW

Iρ
µ )

Q
(3)

q2WBD
(q̄pγ

µτ I
←→
D νqr)(BµρW̃

Iρ
ν −BνρW̃ Iρ

µ )

Q
(4)

q2WBD
i(q̄pγ

µτ I
←→
D νqr)(BµρW̃

Iρ
ν +BνρW̃

Iρ
µ )

Q
(4)

u2G2D
ifABC(ūpγ

µTA
←→
D νur)(G

B
µρG̃

Cρ
ν − G̃BµρGCρν )

Q
(5)

u2G2D
fABC(ūpγ

µTA
←→
D νur)(G

B
µρG̃

Cρ
ν + G̃BµρG

Cρ
ν )

Q
(1)

u2GBD
(ūpγ

µ←→D νur)(BµρG
Aρ
ν −BνρGAρµ )

Q
(2)

u2GBD
i(ūpγ

µ←→D νur)(BµρG
Aρ
ν +BνρG

Aρ
µ )

Q
(3)

u2GBD
(ūpγ

µ←→D νur)(BµρG̃
Aρ
ν −BνρG̃Aρµ )

Q
(4)

u2GBD
i(ūpγ

µ←→D νur)(BµρG̃
Aρ
ν +BνρG̃

Aρ
µ )

Q
(4)

d2G2D
ifABC(d̄pγ

µTA
←→
D νdr)(G

B
µρG̃

Cρ
ν − G̃BµρGCρν )

Q
(5)

d2G2D
fABC(d̄pγ

µTA
←→
D νdr)(G

B
µρG̃

Cρ
ν + G̃BµρG

Cρ
ν )

Q
(1)

d2GBD
(d̄pγ

µ←→D νdr)(BµρG
Aρ
ν −BνρGAρµ )

Q
(2)

d2GBD
i(d̄pγ

µ←→D νdr)(BµρG
Aρ
ν +BνρG

Aρ
µ )

Q
(3)

d2GBD
(d̄pγ

µ←→D νdr)(BµρG̃
Aρ
ν −BνρG̃Aρµ )

Q
(4)

d2GBD
i(d̄pγ

µ←→D νdr)(BµρG̃
Aρ
ν +BνρG̃

Aρ
µ )

Table 6. The hadronic dimension-eight operators in the SMEFT of class-14. The subscripts p, r

are weak-eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

14 : ψ2X2D

Ql2G2D i(l̄pγ
µ←→D ν lr)G

A
µρG

Aρ
ν

Q
(1)

l2W2D
i(l̄pγ

µ←→D ν lr)W
I
µρW

Iρ
ν

Q
(2)

l2W2D
εIJK(l̄pγ

µτ I
←→
D ν lr)W

J
µρW

Kρ
ν

Ql2B2D i(l̄pγ
µ←→D ν lr)BµρB

ρ
ν

Qe2G2D i(ēpγ
µ←→D νer)G

A
µρG

Aρ
ν

Qe2W2D i(ēpγ
µ←→D νer)W

I
µρW

Iρ
ν

Qe2B2D i(ēpγ
µ←→D νer)BµρB

ρ
ν

14 : ψ2X2D

Q
(3)

l2W2D
iεIJK(l̄pγ

µτ I
←→
D ν lr)(W

J
µρW̃

Kρ
ν − W̃ J

µρW
Kρ
ν )

Q
(4)

l2W2D
εIJK(l̄pγ

µτ I
←→
D ν lr)(W

J
µρW̃

Kρ
ν + W̃ J

µρW
Kρ
ν )

Q
(1)

l2WBD
(l̄pγ

µτ I
←→
D ν lr)(BµρW

Iρ
ν −BνρW Iρ

µ )

Q
(2)

l2WBD
i(l̄pγ

µτ I
←→
D ν lr)(BµρW

Iρ
ν +BνρW

Iρ
µ )

Q
(3)

l2WBD
(l̄pγ

µτ I
←→
D ν lr)(BµρW̃

Iρ
ν −BνρW̃ Iρ

µ )

Q
(4)

l2WBD
i(l̄pγ

µτ I
←→
D ν lr)(BµρW̃

Iρ
ν +BνρW̃

Iρ
µ )

15 : (R̄R)XH2D

Q
(1)

e2WH2D
(ēpγ

νer)D
µ(H†τ IH)W I

µν

Q
(2)

e2WH2D
(ēpγ

νer)D
µ(H†τ IH)W̃ I

µν

Q
(3)

e2WH2D
(ēpγ

νer)(H
†←→D IµH)W I

µν

Q
(4)

e2WH2D
(ēpγ

νer)(H
†←→D IµH)W̃ I

µν

Q
(1)

e2BH2D
(ēpγ

νer)D
µ(H†H)Bµν

Q
(2)

e2BH2D
(ēpγ

νer)D
µ(H†H)B̃µν

Q
(3)

e2BH2D
(ēpγ

νer)(H
†←→D µH)Bµν

Q
(4)

e2BH2D
(ēpγ

νer)(H
†←→D µH)B̃µν

Q
(1)

u2GH2D
(ūpγ

νTAur)D
µ(H†H)GAµν

Q
(2)

u2GH2D
(ūpγ

νTAur)D
µ(H†H)G̃Aµν

Q
(3)

u2GH2D
(ūpγ

νTAur)(H
†←→D µH)GAµν

Q
(4)

u2GH2D
(ūpγ

νTAur)(H
†←→D µH)G̃Aµν

Q
(1)

u2WH2D
(ūpγ

νur)D
µ(H†τ IH)W I

µν

Q
(2)

u2WH2D
(ūpγ

νur)D
µ(H†τ IH)W̃ I

µν

Q
(3)

u2WH2D
(ūpγ

νur)(H
†←→D IµH)W I

µν

Q
(4)

u2WH2D
(ūpγ

νur)(H
†←→D IµH)W̃ I

µν

Q
(1)

u2BH2D
(ūpγ

νur)D
µ(H†H)Bµν

Q
(2)

u2BH2D
(ūpγ

νur)D
µ(H†H)B̃µν

Q
(3)

u2BH2D
(ūpγ

νur)(H
†←→D µH)Bµν

Q
(4)

u2BH2D
(ūpγ

νur)(H
†←→D µH)B̃µν

15 : (R̄R)XH2D

Q
(1)

d2GH2D
(d̄pγ

νTAdr)D
µ(H†H)GAµν

Q
(2)

d2GH2D
(d̄pγ

νTAdr)D
µ(H†H)G̃Aµν

Q
(3)

d2GH2D
(d̄pγ

νTAdr)(H
†←→D µH)GAµν

Q
(4)

d2GH2D
(d̄pγ

νTAdr)(H
†←→D µH)G̃Aµν

Q
(1)

d2WH2D
(d̄pγ

νdr)D
µ(H†τ IH)W I

µν

Q
(2)

d2WH2D
(d̄pγ

νdr)D
µ(H†τ IH)W̃ I

µν

Q
(3)

d2WH2D
(d̄pγ

νdr)(H
†←→D IµH)W I

µν

Q
(4)

d2WH2D
(d̄pγ

νdr)(H
†←→D IµH)W̃ I

µν

Q
(1)

d2BH2D
(d̄pγ

νdr)D
µ(H†H)Bµν

Q
(2)

d2BH2D
(d̄pγ

νdr)D
µ(H†H)B̃µν

Q
(3)

d2BH2D
(d̄pγ

νdr)(H
†←→D µH)Bµν

Q
(4)

d2BH2D
(d̄pγ

νdr)(H
†←→D µH)B̃µν

Q
(1)

udGH2 + h.c. (ūpγ
νTAdr)(H̃

†←→D µH)GAµν

Q
(2)

udGH2 + h.c. (ūpγ
νTAdr)(H̃

†←→D µH)G̃Aµν

Q
(1)

udWH2 + h.c. (ūpγ
νdr)(H̃

†←→D IµH)W I
µν

Q
(2)

udWH2 + h.c. (ūpγ
νdr)(H̃

†←→D IµH)W̃ I
µν

Q
(1)

udBH2 + h.c. (ūpγ
νdr)(H̃

†←→D µH)Bµν

Q
(2)

udBH2 + h.c. (ūpγ
νdr)(H̃

†←→D µH)B̃µν

Table 7. The leptonic dimension-eight operators in the SMEFT of class-14, and the dimension-eight

operators of class-15 with field content (R̄R)X2H. The operators QudXH2 have distinct Hermitian

conjugates. The subscripts p, r are weak-eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

15 : (L̄L)XH2D

Q
(1)
l2WH2D (l̄pγ

ν lr)D
µ(H†τ IH)W I

µν

Q
(2)
l2WH2D (l̄pγ

ν lr)D
µ(H†τ IH)W̃ I

µν

Q
(3)
l2WH2D (l̄pγ

ν lr)(H
†←→D IµH)W I

µν

Q
(4)
l2WH2D (l̄pγ

ν lr)(H
†←→D IµH)W̃ I

µν

Q
(5)
l2WH2D (l̄pγ

ντ I lr)D
µ(H†H)W I

µν

Q
(6)
l2WH2D (l̄pγ

ντ I lr)D
µ(H†H)W̃ I

µν

Q
(7)
l2WH2D (l̄pγ

ντ I lr)(H
†←→D µH)W I

µν

Q
(8)
l2WH2D (l̄pγ

ντ I lr)(H
†←→D µH)W̃ I

µν

Q
(9)
l2WH2D εIJK(l̄pγ

ντ I lr)D
µ(H†τJH)WK

µν

Q
(10)
l2WH2D εIJK(l̄pγ

ντ I lr)D
µ(H†τJH)W̃K

µν

Q
(11)
l2WH2D εIJK(l̄pγ

ντ I lr)(H
†←→D JµH)WK

µν

Q
(12)
l2WH2D εIJK(l̄pγ

ντ I lr)(H
†←→D JµH)W̃K

µν

Q
(1)
l2BH2D (l̄pγ

ντ I lr)D
µ(H†τ IH)Bµν

Q
(2)
l2BH2D (l̄pγ

ντ I lr)D
µ(H†τ IH)B̃µν

Q
(3)
l2BH2D (l̄pγ

ντ I lr)(H
†←→D IµH)Bµν

Q
(4)
l2BH2D (l̄pγ

ντ I lr)(H
†←→D IµH)B̃µν

Q
(5)
l2BH2D (l̄pγ

ν lr)D
µ(H†H)Bµν

Q
(6)
l2BH2D (l̄pγ

ν lr)D
µ(H†H)B̃µν

Q
(7)
l2BH2D (l̄pγ

ν lr)(H
†←→D µH)Bµν

Q
(8)
l2BH2D (l̄pγ

ν lr)(H
†←→D µH)B̃µν

15 : (L̄L)XH2D

Q
(1)
q2GH2D (q̄pγ

νTAτ Iqr)D
µ(H†τ IH)GAµν

Q
(2)
q2GH2D (q̄pγ

νTAτ Iqr)D
µ(H†τ IH)G̃Aµν

Q
(3)
q2GH2D (q̄pγ

νTAτ Iqr)(H
†←→D IµH)GAµν

Q
(4)
q2GH2D (q̄pγ

νTAτ Iqr)(H
†←→D IµH)G̃Aµν

Q
(5)
q2GH2D (q̄pγ

νTAqr)D
µ(H†H)GAµν

Q
(6)
q2GH2D (q̄pγ

νTAqr)D
µ(H†H)G̃Aµν

Q
(7)
q2GH2D (q̄pγ

νTAqr)(H
†←→D µH)GAµν

Q
(8)
q2GH2D (q̄pγ

νTAqr)(H
†←→D µH)G̃Aµν

Q
(1)
q2WH2D (q̄pγ

νqr)D
µ(H†τ IH)W I

µν

Q
(2)
q2WH2D (q̄pγ

νqr)D
µ(H†τ IH)W̃ I

µν

Q
(3)
q2WH2D (q̄pγ

νqr)(H
†←→D IµH)W I

µν

Q
(4)
q2WH2D (q̄pγ

νqr)(H
†←→D IµH)W̃ I

µν

Q
(5)
q2WH2D (q̄pγ

ντ Iqr)D
µ(H†H)W I

µν

Q
(6)
q2WH2D (q̄pγ

ντ Iqr)D
µ(H†H)W̃ I

µν

Q
(7)
q2WH2D (q̄pγ

ντ Iqr)(H
†←→D µH)W I

µν

Q
(8)
q2WH2D (q̄pγ

ντ Iqr)(H
†←→D µH)W̃ I

µν

Q
(9)
q2WH2D εIJK(q̄pγ

ντ Iqr)D
µ(H†τJH)WK

µν

Q
(10)
q2WH2D εIJK(q̄pγ

ντ Iqr)D
µ(H†τJH)W̃K

µν

Q
(11)
q2WH2D εIJK(q̄pγ

ντ Iqr)(H
†←→D JµH)WK

µν

Q
(12)
q2WH2D εIJK(q̄pγ

ντ Iqr)(H
†←→D JµH)W̃K

µν

Q
(1)
q2BH2D (q̄pγ

ντ Iqr)D
µ(H†τ IH)Bµν

Q
(2)
q2BH2D (q̄pγ

ντ Iqr)D
µ(H†τ IH)B̃µν

Q
(3)
q2BH2D (q̄pγ

ντ Iqr)(H
†←→D IµH)Bµν

Q
(4)
q2BH2D (q̄pγ

ντ Iqr)(H
†←→D IµH)B̃µν

Q
(5)
q2BH2D (q̄pγ

νqr)D
µ(H†H)Bµν

Q
(6)
q2BH2D (q̄pγ

νqr)D
µ(H†H)B̃µν

Q
(7)
q2BH2D (q̄pγ

νqr)(H
†←→D µH)Bµν

Q
(8)
q2BH2D (q̄pγ

νqr)(H
†←→D µH)B̃µν

Table 8. The dimension-eight operators in the SMEFT of class-15 with field content (L̄L)X2H.

The subscripts p, r are weak-eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

16 : ψ2XHD2 + h.c.

Q
(1)
leWHD2 (l̄pσ

µνDρer)τ
I(DνH)W I

ρµ

Q
(2)
leWHD2 (l̄pD

ρer)τ
I(DνH)W̃ I

ρν

Q
(3)
leWHD2 (l̄pσ

µνer)τ
I(DρH)(DρW

I
µν)

Q
(1)
leBHD2 (l̄pσ

µνDρer)(DνH)Bρµ

Q
(2)
leBHD2 (l̄pD

ρer)(D
νH)B̃ρν

Q
(3)
leBHD2 (l̄pσ

µνer)(D
ρH)(DρBµν)

Q
(1)
quGHD2 (q̄pσ

µνTADρur)(DνH̃)GAρµ

Q
(2)
quGHD2 (q̄pT

ADρur)(D
νH̃)G̃Aρν

Q
(3)
quGHD2 (q̄pσ

µνTAur)(D
ρH̃)(DρG

A
µν)

Q
(1)
quWHD2 (q̄pσ

µνDρur)τ
I(DνH̃)W I

ρµ

Q
(2)
quWHD2 (q̄pD

ρur)τ
I(DνH̃)W̃ I

ρν

Q
(3)
quWHD2 (q̄pσ

µνur)τ
I(DρH̃)(DρW

I
µν)

Q
(1)
quBHD2 (q̄pσ

µνDρur)(DνH̃)Bρµ

Q
(2)
quBHD2 (q̄pD

ρur)(D
νH̃)B̃ρν

Q
(3)
quBHD2 (q̄pσ

µνur)(D
ρH̃)(DρBµν)

Q
(1)
qdGHD2 (q̄pσ

µνTADρdr)(DνH)GAρµ

Q
(2)
qdGHD2 (q̄pT

ADρdr)(D
νH)G̃Aρν

Q
(3)
qdGHD2 (q̄pσ

µνTAdr)(D
ρH)(DρG

A
µν)

Q
(1)
qdWHD2 (q̄pσ

µνDρdr)τ
I(DνH)W I

ρµ

Q
(2)
qdWHD2 (q̄pD

ρdr)τ
I(DνH)W̃ I

ρν

Q
(3)
qdWHD2 (q̄pσ

µνdr)τ
I(DρH)(DρW

I
µν)

Q
(1)
qdBHD2 (q̄pσ

µνDρdr)(DνH)Bρµ

Q
(2)
qdBHD2 (q̄pD

ρdr)(D
νH)B̃ρν

Q
(3)
qdBHD2 (q̄pσ

µνdr)(D
ρH)(DρBµν)

17 : ψ2H3D2 + h.c.

Q
(1)
leH3D2 (DµH

†DµH)(l̄perH)

Q
(2)
leH3D2 (DµH

†τ IDµH)(l̄perτ
IH)

Q
(3)
leH3D2 (DµH

†DνH)(l̄pσ
µνerH)

Q
(4)
leH3D2 (DµH

†τ IDνH)(l̄pσ
µνerτ

IH)

Q
(5)
leH3D2 (H†DµH)(l̄perD

µH)

Q
(6)
leH3D2 (H†DµH)(l̄pσ

µνerDνH)

Q
(1)
quH3D2 (DµH

†DµH)(q̄purH̃)

Q
(2)
quH3D2 (DµH

†τ IDµH)(q̄purτ
IH̃)

Q
(3)
quH3D2 (DµH

†DνH)(q̄pσ
µνurH̃)

Q
(4)
quH3D2 (DµH

†τ IDνH)(q̄pσ
µνurτ

IH̃)

Q
(5)
quH3D2 (DµH

†H)(q̄purD
µH̃)

Q
(6)
quH3D2 (DµH

†H)(q̄pσ
µνurDνH̃)

Q
(1)
qdH3D2 (DµH

†DµH)(q̄pdrH)

Q
(2)
qdH3D2 (DµH

†τ IDµH)(q̄pdrτ
IH)

Q
(3)
qdH3D2 (DµH

†DνH)(q̄pσ
µνdrH)

Q
(4)
qdH3D2 (DµH

†τ IDνH)(q̄pσ
µνdrτ

IH)

Q
(5)
qdH3D2 (H†DµH)(q̄pdrD

µH)

Q
(6)
qdH3D2 (H†DµH)(q̄pσ

µνdrDνH)

Table 9. The dimension-eight operators in the SMEFT of classes-16, and -17, which have two

fermions and two derivates. All of the operators have Hermitian conjugates. The subscripts p, r

are weak-eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

18 : (L̄R)(R̄L)H2 + h.c.

Q
(1)
leqdH2 (l̄jper)(d̄sqtj)(H

†H)

Q
(2)
leqdH2 (l̄per)τ

I(d̄sqt)(H
†τ IH)

Ql2udH2 (l̄pdrH)(H̃†ūslt)

Q
(5)
lequH2 (l̄perH)(H̃†ūsqt)

Q
(5)
q2udH2 (q̄pdrH)(H̃†ūsqt)

Q
(6)
q2udH2 (q̄pT

AdrH)(H̃†ūsT
Aqt)

18(/B) : ψ4H2 + h.c.

Q
(1)
lqudH2 εαβγεjk(dαpCu

β
r )(qjγs Cl

k
t )(H†H)

Q
(2)
lqudH2 εαβγ(τ Iε)jk(dαpCu

β
r )(qjγs Cl

k
t )(H†τ IH)

Qeq2uH2 εαβγεjk(qjαp Cqmβr )(uγsCet)(H
†
mH

k)

Q
(1)
lq3H2 εαβγεmnεjk(qmαp Cqjβr )(qkγs Clnt )(H†H)

Q
(2)
lq3H2 εαβγ(τ Iε)mnεjk(qmαp Cqjβr )(qkγs Clnt )(H†τ IH)

Qeu2dH2 εαβγ(dαpCu
β
r )(uγsCet)(H

†H)

Q
(3)
lq3H2 εαβγεmn(τ Iε)jk(qmαp Cqjβr )(qkγs Clnt )(H†τ IH)

Qlqu2H2 εαβγεjkεmn(ljpCq
mα
r )(uβsCu

γ
t )H̃kH̃n

Qlqd2H2 εαβγεjkεmn(ljpq
mα
r )(dβsCd

γ
t )HkHn

Qeq2dH2 εαβγεjkεmn(epd
α
r )(qjβs Cqmγt )H̃kH̃n

21 : (L̄R)(R̄L)D2 + h.c.

Q
(1)
leqdD2 Dµ(l̄jper)D

µ(d̄sqtj)

Q
(2)
leqdD2 (l̄jp

←→
D µer)(d̄s

←→
D µqtj)

21(/B) : ψ4D2 + h.c.

Q
(1)
lqudD2 εαβγεjkDµ(dαpCu

β
r )Dµ(qjγs Cl

k
t )

Q
(2)
lqudD2 εαβγεjkDµ(dαpCq

jβ
r )Dµ(uγsCl

k
t )

Qeq2uD2 εαβγεjk(qjαp CDµq
kβ
r )Dµ(uγsCet)

Qlq3D2 εαβγεmnεjk(qmαp CDµq
jβ
r )Dµ(qkγs Clnt )

Q
(1)
eu2dD2 εαβγ(uαpCDµu

β
r )Dµ(dγsCet)

Q
(2)
eu2dD2 εαβγ(uαpCu

β
r )(Dµd

γ
sCD

µet)

Table 10. The dimension-8 operators of classes-18 and -21 whose fermionic content either has the

chiral structure (L̄R)(R̄L) or is baryon number violating. The subscripts p, r, s, t are weak-eigenstate

indices. Operators below the dashed lines vanish when there is only one generation of fermions.

Note that sometimes we will explicitly write factors of the cutoff scale of the effective

theory, Ci → ci/Λ
d−4, to better highlight the different orders in the EFT expansion in our

phenomenological studies.

5.1 Light-by-light scattering

The possibility of non-linear processes involving solely photons had been discussed back in

the 1930s [28–31]. Later in the 1950s the cross section for elastic light-by-light scattering

was computed in QED [32, 33]. Almost 70 years would pass before this process was finally

observed in vacuum in 2019 by the ATLAS collaboration at the LHC [34]. Additionally,

the CMS collaboration reports evidence for elastic light-by-light scattering in vacuum [35].

Interactions in the SMEFT involving four photons first start at dimension-8

LLbL =
α2

90M4
e

[
C

(1)
LbL (FµνF

µν)2 + C
(2)
LbL

(
FµνF̃

µν
)2

+ C̃LbL (FµνF
µν)
(
FρσF̃

ρσ
)]
, (5.1)
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

18 : (L̄L)(L̄L)H2

Q
(1)

l4H2 (l̄pγ
µlr)(l̄sγµlt)(H

†H)

Q
(2)

l4H2 (l̄pγ
µlr)(l̄sγµτ

I lt)(H
†τ IH)

Q
(1)

q4H2 (q̄pγ
µqr)(q̄sγµqt)(H

†H)

Q
(2)

q4H2 (q̄pγ
µqr)(q̄sγµτ

Iqt)(H
†τ IH)

Q
(3)

q4H2 (q̄pγ
µτ Iqr)(q̄sγµτ

Iqt)(H
†H)

Q
(1)

l2q2H2 (l̄pγ
µlr)(q̄sγµqt)(H

†H)

Q
(2)

l2q2H2 (l̄pγ
µτ I lr)(q̄sγµqt)(H

†τ IH)

Q
(3)

l2q2H2 (l̄pγ
µτ I lr)(q̄sγµτ

Iqt)(H
†H)

Q
(4)

l2q2H2 (l̄pγ
µlr)(q̄sγµτ

Iqt)(H
†τ IH)

Q
(5)

l2q2H2 εIJK(l̄pγ
µτ I lr)(q̄sγµτ

Jqt)(H
†τKH)

18 : (R̄R)(R̄R)H2

Qe4H2 (ēpγ
µer)(ēsγµet)(H

†H)

Qu4H2 (ūpγ
µur)(ūsγµut)(H

†H)

Qd4H2 (d̄pγ
µdr)(d̄sγµdt)(H

†H)

Qe2u2H2 (ēpγ
µer)(ūsγµut)(H

†H)

Qe2d2H2 (ēpγ
µer)(d̄sγµdt)(H

†H)

Q
(1)

u2d2H2 (ūpγ
µur)(d̄sγµdt)(H

†H)

Q
(2)

u2d2H2 (ūpγ
µTAur)(d̄sγµT

Adt)(H
†H)

18 : (L̄L)(R̄R)H2

Q
(1)

l2e2H2 (l̄pγ
µlr)(ēsγµet)(H

†H)

Q
(2)

l2e2H2 (l̄pγ
µτ I lr)(ēsγµet)(H

†τ IH)

Q
(1)

l2u2H2 (l̄pγ
µlr)(ūsγµut)(H

†H)

Q
(2)

l2u2H2 (l̄pγ
µτ I lr)(ūsγµut)(H

†τ IH)

Q
(1)

l2d2H2 (l̄pγ
µlr)(d̄sγµdt)(H

†H)

Q
(2)

l2d2H2 (l̄pγ
µτ I lr)(d̄sγµdt)(H

†τ IH)

Q
(1)

q2e2H2 (q̄pγ
µqr)(ēsγµet)(H

†H)

Q
(2)

q2e2H2 (q̄pγ
µτ Iqr)(ēsγµet)(H

†τ IH)

Q
(1)

q2u2H2 (q̄pγ
µqr)(ūsγµut)(H

†H)

Q
(2)

q2u2H2 (q̄pγ
µτ Iqr)(ūsγµut)(H

†τ IH)

Q
(3)

q2u2H2 (q̄pγ
µTAqr)(ūsγµT

Aut)(H
†H)

Q
(4)

q2u2H2 (q̄pγ
µTAτ Iqr)(ūsγµT

Aut)(H
†τ IH)

Q
(1)

q2d2H2 (q̄pγ
µqr)(d̄sγµdt)(H

†H)

Q
(2)

q2d2H2 (q̄pγ
µτ Iqr)(d̄sγµdt)(H

†τ IH)

Q
(3)

q2d2H2 (q̄pγ
µTAqr)(d̄sγµT

Adt)(H
†H)

Q
(4)

q2d2H2 (q̄pγ
µTAτ Iqr)(d̄sγµT

Adt)(H
†τ IH)

18 : (L̄R)(L̄R)H2 + h.c.

Q
(1)

q2udH2 (q̄jpur)εjk(q̄ksdt)(H
†H)

Q
(2)

q2udH2 (q̄jpur)(τ
Iε)jk(q̄ksdt)(H

†τ IH)

Q
(3)

q2udH2 (q̄jpT
Aur)εjk(q̄ksT

Adt)(H
†H)

Q
(4)

q2udH2 (q̄jpT
Aur)(τ

Iε)jk(q̄ksT
Adt)(H

†τ IH)

Q
(1)

lequH2 (l̄jper)εjk(q̄ksut)(H
†H)

Q
(2)

lequH2 (l̄jper)(τ
Iε)jk(q̄ksut)(H

†τ IH)

Q
(3)

lequH2 (l̄jpσµνer)εjk(q̄ksσ
µνut)(H

†H)

Q
(4)

lequH2 (l̄jpσµνer)(τ
Iε)jk(q̄ksσ

µνut)(H
†τ IH)

Q
(3)

l2e2H2 (l̄perH)(l̄setH)

Q
(3)

leqdH2 (l̄perH)(q̄sdtH)

Q
(4)

leqdH2 (l̄perτ
IH)(q̄sdtτ

IH)

Q
(5)

q2u2H2 (q̄purH̃)(q̄sutH̃)

Q
(6)

q2u2H2 (q̄pT
AurH̃)(q̄sT

AutH̃)

Q
(5)

q2d2H2 (q̄pdrH)(q̄sdtH)

Q
(6)

q2d2H2 (q̄pT
AdrH)(q̄sT

AdtH)

Table 11. Most of the dimension-eight operators in the SMEFT of class-9, which are further

divided into subclasses according to their chiral properties. See table 10 for the remaining class-9

operators. Operators with + h.c. have Hermitian conjugates. The subscripts p, r, s, t are weak-

eigenstate indices.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

19 : (L̄L)(L̄L)X

Q
(1)
l4W (l̄pγ

µlr)(l̄sγ
ντ I lt)W

I
µν

Q
(2)
l4W (l̄pγ

µlr)(l̄sγ
ντ I lt)W̃

I
µν

Q
(1)
q4G (q̄pγ

µqr)(q̄sγ
νTAqt)G

A
µν

Q
(2)
q4G (q̄pγ

µqr)(q̄sγ
νTAqt)G̃

A
µν

Q
(3)
q4G (q̄pγ

µτ Iqr)(q̄sγ
νTAτ Iqt)G

A
µν

Q
(4)
q4G (q̄pγ

µτ Iqr)(q̄sγ
νTAτ Iqt)G̃

A
µν

Q
(1)
q4W (q̄pγ

µqr)(q̄sγ
ντ Iqt)W

I
µν

Q
(2)
q4W (q̄pγ

µqr)(q̄sγ
ντ Iqt)W̃

I
µν

Q
(3)
q4W (q̄pγ

µTAqr)(q̄sγ
νTAτ Iqt)W

I
µν

Q
(4)
q4W (q̄pγ

µTAqr)(q̄sγ
νTAτ Iqt)W̃

I
µν

Q
(1)
l2q2G (l̄pγ

µlr)(q̄sγ
νTAqt)G

A
µν

Q
(2)
l2q2G (l̄pγ

µlr)(q̄sγ
νTAqt)G̃

A
µν

Q
(3)
l2q2G (l̄pγ

µτ I lr)(q̄sγ
νTAτ Iqt)G

A
µν

Q
(4)
l2q2G (l̄pγ

µτ I lr)(q̄sγ
νTAτ Iqt)G̃

A
µν

Q
(1)
l2q2W (l̄pγ

µlr)(q̄sγ
ντ Iqt)W

I
µν

Q
(2)
l2q2W (l̄pγ

µlr)(q̄sγ
ντ Iqt)W̃

I
µν

Q
(3)
l2q2W (l̄pγ

µτ I lr)(q̄sγ
νqt)W

I
µν

Q
(4)
l2q2W (l̄pγ

µτ I lr)(q̄sγ
νqt)W̃

I
µν

Q
(5)
l2q2W εIJK(l̄pγ

µτ I lr)(q̄sγ
ντJqt)W

K
µν

Q
(6)
l2q2W εIJK(l̄pγ

µτ I lr)(q̄sγ
ντJqt)W̃

K
µν

Q
(1)
l2q2B (l̄pγ

µlr)(q̄sγ
νqt)Bµν

Q
(2)
l2q2B (l̄pγ

µlr)(q̄sγ
νqt)B̃µν

Q
(3)
l2q2B (l̄pγ

µτ I lr)(q̄sγ
ντ Iqt)Bµν

Q
(4)
l2q2B (l̄pγ

µτ I lr)(q̄sγ
ντ Iqt)B̃µν

Q
(1)
l4B (l̄pγ

µlr)(l̄sγ
ν lt)Bµν

Q
(2)
l4B (l̄pγ

µlr)(l̄sγ
ν lt)B̃µν

Q
(1)
q4B (q̄pγ

µqr)(q̄sγ
νqt)Bµν

Q
(2)
q4B (q̄pγ

µqr)(q̄sγ
νqt)B̃µν

Q
(3)
q4B (q̄pγ

µτ Iqr)(q̄sγ
ντ Iqt)Bµν

Q
(4)
q4B (q̄pγ

µτ Iqr)(q̄sγ
ντ Iqt)B̃µν

19 : (R̄R)(R̄R)X

Q
(1)
u4G (ūpγ

µur)(ūsγ
νTAut)G

A
µν

Q
(2)
u4G (ūpγ

µur)(ūsγ
νTAut)G̃

A
µν

Q
(1)
d4G (d̄pγ

µdr)(d̄sγ
νTAdt)G

A
µν

Q
(2)
d4G (d̄pγ

µdr)(d̄sγ
νTAdt)G̃

A
µν

Q
(1)
e2u2G (ēpγ

µer)(ūsγ
νTAut)G

A
µν

Q
(2)
e2u2G (ēpγ

µer)(ūsγ
νTAut)G̃

A
µν

Q
(1)
e2u2B (ēpγ

µer)(ūsγ
νut)Bµν

Q
(2)
e2u2B (ēpγ

µer)(ūsγ
νut)B̃µν

Q
(1)
e2d2G (ēpγ

µer)(d̄sγ
νTAdt)G

A
µν

Q
(2)
e2d2G (ēpγ

µer)(d̄sγ
νTAdt)G̃

A
µν

Q
(1)
e2d2B (ēpγ

µer)(d̄sγ
νdt)Bµν

Q
(2)
e2d2B (ēpγ

µer)(d̄sγ
νdt)B̃µν

Q
(1)
u2d2G (ūpγ

µur)(d̄sγ
νTAdt)G

A
µν

Q
(2)
u2d2G (ūpγ

µur)(d̄sγ
νTAdt)G̃

A
µν

Q
(3)
u2d2G (ūpγ

µTAur)(d̄sγ
νdt)G

A
µν

Q
(4)
u2d2G (ūpγ

µTAur)(d̄sγ
νdt)G̃

A
µν

Q
(5)
u2d2G fABC(ūpγ

µTAur)(d̄sγ
νTBdt)G

C
µν

Q
(6)
u2d2G fABC(ūpγ

µTAur)(d̄sγ
νTBdt)G̃

C
µν

Q
(7)
u2d2G dABC(ūpγ

µTAur)(d̄sγ
νTBdt)G

C
µν

Q
(8)
u2d2G dABC(ūpγ

µTAur)(d̄sγ
νTBdt)G̃

C
µν

Q
(1)
u2d2B (ūpγ

µur)(d̄sγ
νdt)Bµν

Q
(2)
u2d2B (ūpγ

µur)(d̄sγ
νdt)B̃µν

Q
(3)
u2d2B (ūpγ

µTAur)(d̄sγ
νTAdt)Bµν

Q
(4)
u2d2B (ūpγ

µTAur)(d̄sγ
νTAdt)B̃µν

Q
(1)
e4B (ēpγ

µer)(ēsγ
νet)Bµν

Q
(2)
e4B (ēpγ

µer)(ēsγ
νet)B̃µν

Q
(1)
u4B (ūpγ

µur)(ūsγ
νut)Bµν

Q
(2)
u4B (ūpγ

µur)(ūsγ
νut)B̃µν

Q
(1)
d4B (d̄pγ

µdr)(d̄sγ
νdt)Bµν

Q
(2)
d4B (d̄pγ

µdr)(d̄sγ
νdt)B̃µν

Table 12. The dimension-eight operators in the SMEFT of class-19 with field content JJX with

J = (L̄L) or (R̄R). The subscripts p, r, s, t are weak-eigenstate indices. Operators below the dashed

lines vanish when there is only one generation of fermions.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

19 : (L̄L)(R̄R)X

Q
(1)
l2e2W (l̄pγ

µτ I lr)(ēsγ
νet)W

I
µν

Q
(2)
l2e2W (l̄pγ

µτ I lr)(ēsγ
νet)W̃

I
µν

Q
(1)
l2e2B (l̄pγ

µlr)(ēsγ
νet)Bµν

Q
(2)
l2e2B (l̄pγ

µlr)(ēsγ
νet)B̃µν

Q
(1)
l2u2G (l̄pγ

µlr)(ūsγ
νTAut)G

A
µν

Q
(2)
l2u2G (l̄pγ

µlr)(ūsγ
νTAut)G̃

A
µν

Q
(1)
l2u2W (l̄pγ

µτ I lr)(ūsγ
νut)W

I
µν

Q
(2)
l2u2W (l̄pγ

µτ I lr)(ūsγ
νut)W̃

I
µν

Q
(1)
l2u2B (l̄pγ

µlr)(ūsγ
νut)Bµν

Q
(2)
l2u2B (l̄pγ

µlr)(ūsγ
νut)B̃µν

Q
(1)
l2d2G (l̄pγ

µlr)(d̄sγ
νTAdt)G

A
µν

Q
(2)
l2d2G (l̄pγ

µlr)(d̄sγ
νTAdt)G̃

A
µν

Q
(1)
l2d2W (l̄pγ

µτ I lr)(d̄sγ
νdt)W

I
µν

Q
(2)
l2d2W (l̄pγ

µτ I lr)(d̄sγ
νdt)W̃

I
µν

Q
(1)
l2d2B (l̄pγ

µlr)(d̄sγ
νdt)Bµν

Q
(2)
l2d2B (l̄pγ

µlr)(d̄sγ
νdt)B̃µν

Q
(1)
q2e2G (q̄pγ

µTAqr)(ēsγ
νet)G

A
µν

Q
(2)
q2e2G (q̄pγ

µTAqr)(ēsγ
νet)G̃

A
µν

Q
(1)
q2e2W (q̄pγ

µτ Iqr)(ēsγ
νet)W

I
µν

Q
(2)
q2e2W (q̄pγ

µτ Iqr)(ēsγ
νet)W̃

I
µν

Q
(1)
q2e2B (q̄pγ

µqr)(ēsγ
νet)Bµν

Q
(2)
q2e2B (q̄pγ

µqr)(ēsγ
νet)B̃µν

Q
(1)
q2u2G (q̄pγ

µqr)(ūsγ
νTAut)G

A
µν

Q
(2)
q2u2G (q̄pγ

µqr)(ūsγ
νTAut)G̃

A
µν

Q
(3)
q2u2G (q̄pγ

µTAqr)(ūsγ
νut)G

A
µν

Q
(4)
q2u2G (q̄pγ

µTAqr)(ūsγ
νut)G̃

A
µν

19 : (L̄L)(R̄R)X

Q
(5)
q2u2G fABC(q̄pγ

µTAqr)(ūsγ
νTBut)G

C
µν

Q
(6)
q2u2G fABC(q̄pγ

µTAqr)(ūsγ
νTBut)G̃

C
µν

Q
(7)
q2u2G dABC(q̄pγ

µTAqr)(ūsγ
νTBut)G

C
µν

Q
(8)
q2u2G dABC(q̄pγ

µTAqr)(ūsγ
νTBut)G̃

C
µν

Q
(1)
q2u2W (q̄pγ

µτ Iqr)(ūsγ
νut)W

I
µν

Q
(2)
q2u2W (q̄pγ

µτ Iqr)(ūsγ
νut)W̃

I
µν

Q
(3)
q2u2W (q̄pγ

µTAτ Iqr)(ūsγ
νTAut)W

I
µν

Q
(4)
q2u2W (q̄pγ

µTAτ Iqr)(ūsγ
νTAut)W̃

I
µν

Q
(1)
q2u2B (q̄pγ

µqr)(ūsγ
νut)Bµν

Q
(2)
q2u2B (q̄pγ

µqr)(ūsγ
νut)B̃µν

Q
(3)
q2u2B (q̄pγ

µTAqr)(ūsγ
νTAut)Bµν

Q
(4)
q2u2B (q̄pγ

µTAqr)(ūsγ
νTAut)B̃µν

Q
(1)
q2d2G (q̄pγ

µqr)(d̄sγ
νTAdt)G

A
µν

Q
(2)
q2d2G (q̄pγ

µqr)(d̄sγ
νTAdt)G̃

A
µν

Q
(3)
q2d2G (q̄pγ

µTAqr)(d̄sγ
νdt)G

A
µν

Q
(4)
q2d2G (q̄pγ

µTAqr)(d̄sγ
νdt)G̃

A
µν

Q
(5)
q2d2G fABC(q̄pγ

µTAqr)(d̄sγ
νTBdt)G

C
µν

Q
(6)
q2d2G fABC(q̄pγ

µTAqr)(d̄sγ
νTBdt)G̃

C
µν

Q
(7)
q2d2G dABC(q̄pγ

µTAqr)(d̄sγ
νTBdt)G

C
µν

Q
(8)
q2d2G dABC(q̄pγ

µTAqr)(d̄sγ
νTBdt)G̃

C
µν

Q
(1)
q2d2W (q̄pγ

µτ Iqr)(d̄sγ
νdt)W

I
µν

Q
(2)
q2d2W (q̄pγ

µτ Iqr)(d̄sγ
νdt)W̃

I
µν

Q
(3)
q2d2W (q̄pγ

µTAτ Iqr)(d̄sγ
νTAdt)W

I
µν

Q
(4)
q2d2W (q̄pγ

µTAτ Iqr)(d̄sγ
νTAdt)W̃

I
µν

Q
(1)
q2d2B (q̄pγ

µqr)(d̄sγ
νdt)Bµν

Q
(2)
q2d2B (q̄pγ

µqr)(d̄sγ
νdt)B̃µν

Q
(3)
q2d2B (q̄pγ

µTAqr)(d̄sγ
νTAdt)Bµν

Q
(4)
q2d2B (q̄pγ

µTAqr)(d̄sγ
νTAdt)B̃µν

Table 13. The dimension-eight operators in the SMEFT of class-19 with field content (L̄L)(R̄R)X.

The subscripts p, r, s, t are weak-eigenstate indices.
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H
E
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1
0
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1
7
4

19 : (L̄R)(R̄L)X + h.c.

Q
(1)
ledqG (l̄jpσ

µνer)(d̄sT
Aqtj)G

A
µν

Q
(2)
ledqG (l̄jper)(d̄sσ

µνTAqtj)G
A
µν

Q
(1)
ledqW (l̄pσ

µνer)τ
I(d̄sqt)W

I
µν

Q
(2)
ledqW (l̄per)τ

I(d̄sσ
µνqt)W

I
µν

Q
(1)
ledqB (l̄jpσ

µνer)(d̄sqtj)Bµν

Q
(2)
ledqB (l̄jper)(d̄sσ

µνqtj)Bµν

19 : (L̄R)(L̄R)X + h.c.

Q
(1)
q2udG (q̄jpσ

µνTAur)εjk(q̄ksdt)G
A
µν

Q
(2)
q2udG (q̄jpσ

µνur)εjk(q̄ksT
Adt)G

A
µν

Q
(3)
q2udG (q̄jpT

Aur)εjk(q̄ksσ
µνdt)G

A
µν

Q
(4)
q2udG (q̄jpur)εjk(q̄ksσ

µνTAdt)G
A
µν

Q
(5)
q2udG (q̄jpσ

µρTAur)εjk(q̄ksσρνdt)G
Aν
µ

Q
(6)
q2udG (q̄jpσ

µρur)εjk(q̄ksσρνT
Adt)G

Aν
µ

Q
(1)
q2udW (q̄jpσ

µνur)(τ
Iε)jk(q̄ksdt)W

I
µν

Q
(2)
q2udW (q̄jpur)(τ

Iε)jk(q̄ksσ
µνdt)W

I
µν

Q
(3)
q2udW (q̄jpσ

µρur)(τ
Iε)jk(q̄ksσρνdt)W

Iν
µ

Q
(1)
q2udB (q̄jpσ

µνur)εjk(q̄ksdt)Bµν

Q
(2)
q2udB (q̄jpur)εjk(q̄ksσ

µνdt)Bµν

Q
(3)
q2udB (q̄jpσ

µρur)εjk(q̄ksσρνdt)B
ν
µ

Q
(1)
lequG (l̄jpσ

µνer)εjk(q̄ksT
Aut)G

A
µν

Q
(2)
lequG (l̄jper)εjk(q̄ksσ

µνTAut)G
A
µν

Q
(3)
lequG (l̄jpσ

µρer)εjk(q̄ksσρνT
Aut)G

Aν
µ

Q
(1)
lequW (l̄jpσ

µνer)(τ
Iε)jk(q̄ksut)W

I
µν

Q
(2)
lequW (l̄jper)(τ

Iε)jk(q̄ksσ
µνut)W

I
µν

Q
(3)
lequW (l̄jpσ

µρer)(τ
Iε)jk(q̄ksσρνut)W

Iν
µ

Q
(1)
lequB (l̄jpσ

µνer)εjk(q̄ksut)Bµν

Q
(2)
lequB (l̄jper)εjk(q̄ksσ

µνut)Bµν

Q
(3)
lequB (l̄jpσ

µρer)εjk(q̄ksσρνut)B
ν
µ

Table 14. The dimension-eight operators in the SMEFT of class-19 with field content (L̄R)(R̄L)X

or (L̄R)(L̄R)X. All of the operators have Hermitian conjugates. The subscripts p, r, s, t are weak-

eigenstate indices.

where Fµν is the photon field strength, α is the fine structure constant, and Me is the mass

of the electron. The normalization is such that order one coefficients are generated when

the electron is integrated out with E �Me.

– 30 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

19(/B) : ψ4X + h.c.

Q
(1)
lqudG (TA)δγεδαβεjk(dαpCσ

µνuβr )(qjγs Cl
k
t )GAµν

Q
(2)
lqudG (TA)δγεδαβεjk(dαpCu

β
r )(qjγs Cσ

µν lkt )GAµν

Q
(3)
lqudG (TA)δ(αεβ)γδεjk(dαpCσ

µνuβr )(qjγs Cl
k
t )GAµν

Q
(4)
lqudG (TA)δ(αεβ)γδεjk(dαpCu

β
r )(qjγs Cσ

µν lkt )GAµν

Q
(1)
lqudW εαβγ(τ Iε)jk(dαpCσ

µνuβr )(qjγs Cl
k
t )W I

µν

Q
(2)
lqudW εαβγ(τ Iε)jk(dαpCu

β
r )(qjγs Cσ

µν lkt )W I
µν

Q
(1)
lqudB εαβγεjk(dαpCσ

µνuβr )(qjγs Cl
k
t )Bµν

Q
(2)
lqudB εαβγεjk(dαpCu

β
r )(qjγs Cσ

µν lkt )Bµν

Q
(1)
eq2uG (TA)δγεδαβεjk(qjαp Cσµνqkβr )(uγsCet)G

A
µν

Q
(2)
eq2uG (TA)δ(αεβ)γδεjk(qjαp Cqkβr )(uγsCσ

µνet)G
A
µν

Q
(1)
eq2uW εαβγ(τ Iε)jk(qjαp Cσµνqkβr )(uγsCet)W

I
µν

Q
(1)
eq2uB εαβγεjk(qjαp Cqkβr )(uγsCσ

µνet)Bµν

Q
(1)
lq3G (TA)δγεδαβεmnεjk(qmαp Cσµνqjβr )(qkγs Clnt )GAµν

Q
(2)
lq3G (TA)δ(αεβ)γδεmnεjk(qmαp Cqjβr )(qkγs Cσµν lnt )GAµν

Q
(1)
lq3W εαβγ(τ Iε)mnεjk(qmαp Cqjβr )(qkγs Cσµν lnt )W I

µν

Q
(2)
lq3W εαβγ(τ Iε)mjεkn(qmαp Cσµνqjβr )(qkγs Clnt )W I

µν

Q
(1)
lq3B εαβγεmnεjk(qmαp Cqjβr )(qkγs Cσµν lnt )Bµν

Q
(1)
eu2dG (TA)δγεδαβ(dαpCσ

µνuβr )(uγsCet)G
A
µν

Q
(2)
eu2dG (TA)δγεδαβ(uαpCσ

µνuβr )(dγsCet)G
A
µν

Q
(3)
eu2dG (TA)δ(αεβ)γδ(u

α
pCu

β
r )(dγsCσ

µνet)G
A
µν

Q
(1)
eu2dB εαβγ(dαpCσ

µνuβr )(uγsCet)Bµν

Q
(2)
eu2dB εαβγ(uαpCσ

µνuβr )(dγsCet)Bµν

Q
(2)
eq2uW εαβγ(τ Iε)jk(qjαp Cqkβr )(uγsCσ

µνet)W
I
µν

Q
(2)
eq2uB εαβγεjk(qjαp Cσµνqkβr )(uγsCet)Bµν

Q
(3)
lq3G (TA)δ(αεβ)γδεmnεjk(qmαp Cσµνqjβr )(qkγs Clnt )GAµν

Q
(4)
lq3G (TA)δγεδαβεmnεjk(qmαp Cqjβr )(qkγs Cσµν lnt )GAµν

Q
(3)
lq3W εαβγεmn(τ Iε)jk(qmαp Cqjβr )(qkγs Cσµν lnt )W I

µν

Q
(2)
lq3B εαβγεmnεjk(qmαp Cσµνqjβr )(qkγs Clnt )Bµν

Table 15. The baryon number violating dimension-eight operators of class-19. All of the operators

have Hermitian conjugates. The subscripts p, r, s, t are weak-eigenstate indices. Operators below

the dashed line vanish when there is only one generation of fermions.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

20 : ψ4HD + h.c.

Q
(1)
l3eHD i(l̄pγ

µlr)[(l̄set)DµH]

Q
(2)
l3eHD i(l̄pγ

µτ I lr)[(l̄set)τ
IDµH]

Q
(3)
l3eHD i(l̄pγ

µlr)[(Dµ l̄set)H]

Q
(1)
le3HD i(ēpγ

µer)[(l̄sDµet)H]

Q
(1)
leq2HD i(q̄pγ

µqr)[(l̄set)DµH]

Q
(2)
leq2HD i(l̄pγ

µqαr )[(q̄sαet)DµH]

Q
(3)
leq2HD i(q̄pγ

µτ Iqr)[(l̄set)τ
IDµH]

Q
(4)
leq2HD i(l̄pγ

µτ Iqαr )[(q̄sαet)τ
IDµH]

Q
(5)
leq2HD i(q̄pγ

µqr)[(l̄sDµet)H]

Q
(6)
leq2HD i(q̄pγ

ντ Iqr)[(l̄sDµet)τ
IH]

Q
(1)
leu2HD i(ūpγ

µur)[(l̄set)DµH]

Q
(2)
leu2HD i(ūpαγ

µer)[(l̄su
α
t )DµH]

Q
(3)
leu2HD i(ūpγ

µur)[(Dµ l̄set)H]

Q
(1)
led2HD i(d̄pγ

µdr)[(l̄set)DµH]

Q
(2)
led2HD i(d̄pαγ

µer)[(l̄sd
α
t )DµH]

Q
(3)
led2HD i(d̄pγ

µdr)[(Dµ l̄set)H]

Q
(1)
leudHD iεjk(ūpγ

µdr)(ēsl
j
t )DµH

k

Q
(2)
leudHD iεjk(ēpγ

µdαr )(ūsαl
j
t )DµH

k

Q
(3)
leudHD iεjk(ūpγ

µdr)(ēsDµl
j
t )H

k

Q
(2)
le3HD i(ēpγ

µer)[(l̄set)DµH]

20 : ψ4HD + h.c.

Q
(1)
l2quHD i(l̄pγ

µlr)[(q̄sut)DµH̃]

Q
(2)
l2quHD i(q̄pαγ

µlr)[(l̄su
α
t )DµH̃]

Q
(3)
l2quHD i(l̄pγ

µτ I lr)[(q̄sut)τ
IDµH̃]

Q
(4)
l2quHD i(q̄pαγ

µτ I lr)[(l̄su
α
t )τ IDµH̃]

Q
(5)
l2quHD i(l̄pγ

µlr)[(q̄sDµut)H̃]

Q
(6)
l2quHD i(l̄pγ

µτ I lr)[(q̄sDµut)τ
IH̃]

Q
(1)
e2quHD i(ēpγ

µer)[(q̄sut)DµH̃]

Q
(2)
e2quHD i(ēpγ

µuαr )[(q̄sαet)DµH̃]

Q
(3)
e2quHD i(ēpγ

µer)[(Dµq̄sut)H̃]

Q
(1)
q3uHD i(q̄pγ

µqr)[(q̄sut)DµH̃]

Q
(2)
q3uHD i(q̄pγ

µτ Iqr)[(q̄sut)τ
IDµH̃]

Q
(3)
q3uHD i(q̄pγ

µTAqr)[(q̄sT
Aut)DµH̃]

Q
(4)
q3uHD i(q̄pγ

µTAτ Iqr)[(q̄sT
Aut)τ

IDµH̃]

Q
(5)
q3uHD i(q̄pγ

µqr)[(Dµq̄sut)H̃]

Q
(6)
q3uHD i(q̄pγ

µτ Iqr)[(Dµq̄sut)τ
IH̃]

Q
(1)
qu3HD i(ūpγ

µur)[(q̄sut)DµH̃]

Q
(2)
qu3HD i(ūpγ

µTAur)[(q̄sT
Aut)DµH̃]

Q
(3)
qu3HD i(ūpγ

µur)[(q̄sDµut)H̃]

Q
(1)
qud2HD i(d̄pγ

µdr)[(q̄sut)DµH̃]

Q
(2)
qud2HD i(d̄pγ

µur)[(q̄sdt)DµH̃]

Q
(3)
qud2HD i(d̄pγ

µTAdr)[(q̄sT
Aut)DµH̃]

Q
(4)
qud2HD i(d̄pγ

µTAur)[(q̄sT
Adt)DµH̃]

Q
(5)
qud2HD i(d̄pγ

µdr)[(Dµq̄sut)H̃]

Q
(6)
qud2HD i(d̄pγ

µTAdr)[(Dµq̄sT
Aut)H̃]

Table 16. The dimension-eight operators in the SMEFT of class-20 whose field content superficially

includes either an electron-type or up-quark-type Yukawa interaction. All of the operators have

Hermitian conjugates. The subscripts p, r, s, t are weak-eigenstate indices. The operator below the

dashed line is redundant when there is only one generation of fermions.
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

20 : ψ4HD + h.c.

Q
(1)

l2qdHD
i(l̄pγ

µlr)[(q̄sdt)DµH]

Q
(2)

l2qdHD
i(q̄pαγ

µlr)[(l̄sd
α
t )DµH]

Q
(3)

l2qdHD
i(l̄pγ

µτ I lr)[(q̄sdt)τ
IDµH]

Q
(4)

l2qdHD
i(q̄pαγ

µτ I lr)[(l̄sd
α
t )τ IDµH]

Q
(5)

l2qdHD
i(l̄pγ

µlr)[(q̄sDµdt)H]

Q
(6)

l2qdHD
i(l̄pγ

µτ I lr)[(q̄sDµdt)τ
IH]

Q
(1)

e2qdHD
i(ēpγ

µer)[(q̄sdt)DµH]

Q
(2)

e2qdHD
i(ēpγ

µdαr )[(q̄sαet)DµH]

Q
(3)

e2qdHD
i(ēpγ

µer)[(Dµq̄sdt)H]

Q
(1)

q3dHD
i(q̄pγ

µqr)[(q̄sdt)DµH]

Q
(2)

q3dHD
i(q̄pγ

µτ Iqr)[(q̄sdt)τ
IDµH]

Q
(3)

q3dHD
i(q̄pγ

µTAqr)[(q̄sT
Adt)DµH]

Q
(4)

q3dHD
i(q̄pγ

µTAτ Iqr)[(q̄sT
Adt)τ

IDµH]

Q
(5)

q3dHD
i(q̄pγ

µqr)[(Dµq̄sdt)H]

Q
(6)

q3dHD
i(q̄pγ

µτ Iqr)[(Dµq̄sdt)τ
IH]

Q
(1)

qu2dHD
i(ūpγ

µur)[(q̄sdt)DµH]

Q
(2)

qu2dHD
i(ūpγ

µdr)[(q̄sut)DµH]

Q
(3)

qu2dHD
i(ūpγ

µTAur)[(q̄sT
Adt)DµH]

Q
(4)

qu2dHD
i(ūpγ

µTAdr)[(q̄sT
Aut)DµH]

Q
(5)

qu2dHD
i(ūpγ

µur)[(Dµq̄sdt)H]

Q
(6)

qu2dHD
i(ūpγ

µTAur)[(Dµq̄sT
Adt)H]

Q
(1)

qd3HD
i(d̄pγ

µdr)[(q̄sdt)DµH]

Q
(2)

qd3HD
i(d̄pγ

µTAdr)[(q̄sT
Adt)DµH]

Q
(3)

qd3HD
i(d̄pγ

µdr)[(q̄sDµdt)H]

20(/B) : ψ4HD + h.c.

Q
(1)

lu2dHD
iεαβγ [DµH

†(uαpCγ
µlr)](u

β
sCd

γ
t )

Q
(2)

lu2dHD
iεαβγ [H†(uαpCγ

µlr)](Dµu
β
sCd

γ
t )

Q
(1)

lud2HD
iεαβγεjk(dαpCγ

µljr)(d
β
sCu

γ
t )DµH

k

Q
(2)

lud2HD
iεαβγεjk(dαpCγ

µljr)(Dµd
β
sCu

γ
t )Hk

Q
(1)

lq2uHD
iεαβγεjnεkmDµH

n†(qmαp Cγµuβr )(qjγs Cl
k
t )

Q
(2)

lq2uHD
iεαβγεknεjmDµH

n†(qmαp Cγµuβr )(qjγs Cl
k
t )

Q
(3)

lq2uHD
iεαβγεjnεkmH

n†(qmαp Cγµuβr )(Dµq
jγ
s Cl

k
t )

Q
(1)

lq2dHD
iεαβγεjnεkm(qmαp Cγµdβr )(qjγs Cl

k
t )DµH

n

Q
(2)

lq2dHD
iεαβγεknεjm(qmαp Cγµdβr )(qjγs Cl

k
t )DµH

n

Q
(3)

lq2dHD
iεαβγεjnεkm(qmαp Cγµdβr )(Dµq

jγ
s Cl

k
t )Hn

Qeq3HD iεαβγεmnεjk(qjαp Cγµer)(Dµq
kβ
s Cqmγt )Hn

Q
(1)

equ2HD
iεαβγ [DµH

†(uαpCγ
µqβr )](uγsCet)

Q
(2)

equ2HD
iεαβγ [H†(uαpCγ

µqβr )](Dµu
γ
sCet)

Q
(1)
equdHD iεαβγεjk(qjαp Cγµuβr )(dγsCet)DµH

k

Q
(2)
equdHD iεαβγεjk(qjαp Cγµdβr )(uγsCet)DµH

k

Q
(3)
equdHD iεαβγεjk(qjαp Cγµuβr )(dγsCDµet)H

k

Table 17. The dimension-eight operators in the SMEFT of class-20 whose field content superficially

includes a down-quark-type Yukawa interaction or is baryon number violating. All of the operators

have Hermitian conjugates. The subscripts p, r, s, t are weak-eigenstate indices.

On the other hand, for a less restrictive energy range, E � Λ, the SMEFT Wilson

coefficients from table 2 appearing in eq. (5.1) are

C
(1)
LbL =

90M4
e

Λ4
16π2

[
1

g4
2

(
c

(1)
W 4 + c

(3)
W 4

)
+

1

g4
1

c
(1)
B4 +

1

g2
2g

2
1

(
c

(1)
W 2B2 + c

(3)
W 2B2

)]
,

C
(2)
LbL =

90M4
e

Λ4
16π2

[
1

g4
2

(
c

(2)
W 4 + c

(4)
W 4

)
+

1

g4
1

c
(2)
B4 +

1

g2
2g

2
1

(
c

(2)
W 2B2 + c

(4)
W 2B2

)]
,

C̃LbL =
90M4

e

Λ4
16π2

[
1

g4
2

(
c

(5)
W 4 + c

(6)
W 4

)
+

1

g4
1

c
(3)
B4 +

1

g2
2g

2
1

(
c

(5)
W 2B2 + c

(6)
W 2B2 + c

(7)
W 2B2

)]
, (5.2)
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J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

21 : (L̄L)(L̄L)D2

Q
(1)
l4D2 Dν(l̄pγ

µlr)Dν(l̄sγµlt)

Q
(2)
l4D2 (l̄pγ

µ←→D ν lr)(l̄sγµ
←→
D ν lt)

Q
(1)
q4D2 Dν(q̄pγ

µqr)Dν(q̄sγµqt)

Q
(2)
q4D2 (q̄pγ

µ←→D νqr)(q̄sγµ
←→
D νqt)

Q
(3)
q4D2 Dν(q̄pγ

µτ Iqr)Dν(q̄sγµτ
Iqt)

Q
(4)
q4D2 (q̄pγ

µ←→D Iνqr)(q̄sγµ
←→
D I
νqt)

Q
(1)
l2q2D2 Dν(l̄pγ

µlr)Dν(q̄sγµqt)

Q
(2)
l2q2D2 (l̄pγ

µ←→D ν lr)(q̄sγµ
←→
D νqt)

Q
(3)
l2q2D2 Dν(l̄pγ

µτ I lr)Dν(q̄sγµτ
Iqt)

Q
(4)
l2q2D2 (l̄pγ

µ←→D Iν lr)(q̄sγµ
←→
D I
νqt)

21 : (R̄R)(R̄R)D2

Qe4D2 Dν(ēpγ
µer)Dν(ēsγµet)

Q
(1)
u4D2 Dν(ūpγ

µur)Dν(ūsγµut)

Q
(2)
u4D2 (ūpγ

µ←→D νur)(ūsγµ
←→
D νut)

Q
(1)
d4D2 Dν(d̄pγ

µdr)Dν(d̄sγµdt)

Q
(2)
d4D2 (d̄pγ

µ←→D νdr)(d̄sγµ
←→
D νdt)

Q
(1)
e2u2D2 Dν(ēpγ

µer)Dν(ūsγµut)

Q
(2)
e2u2D2 (ēpγ

µ←→D νer)(ūsγµ
←→
D νut)

Q
(1)
e2d2D2 Dν(ēpγ

µer)Dν(d̄sγµdt)

Q
(2)
e2d2D2 (ēpγ

µ←→D νer)(d̄sγµ
←→
D νdt)

Q
(1)
u2d2D2 Dν(ūpγ

µur)Dν(d̄sγµdt)

Q
(2)
u2d2D2 (ūpγ

µ←→D νur)(d̄sγµ
←→
D νdt)

Q
(3)
u2d2D2 Dν(ūpγ

µTAur)Dν(d̄sγµT
Adt)

Q
(4)
u2d2D2 (ūpγ

µTA
←→
D νur)(d̄sγµT

A←→D νdt)

Q
(2)
e4D2 (ēpγ

µ←→D νer)(ēsγµ
←→
D νet)

21 : (L̄L)(R̄R)D2

Q
(1)
l2e2D2 Dν(l̄pγ

µlr)Dν(ēsγµet)

Q
(2)
l2e2D2 (l̄pγ

µ←→D ν lr)(ēsγµ
←→
D νet)

Q
(1)
l2u2D2 Dν(l̄pγ

µlr)Dν(ūsγµut)

Q
(2)
l2u2D2 (l̄pγ

µ←→D ν lr)(ūsγµ
←→
D νut)

Q
(1)
l2d2D2 Dν(l̄pγ

µlr)Dν(d̄sγµdt)

Q
(2)
l2d2D2 (l̄pγ

µ←→D ν lr)(d̄sγµ
←→
D νdt)

Q
(1)
q2e2D2 Dν(q̄pγ

µqr)Dν(ēsγµet)

Q
(2)
q2e2D2 (q̄pγ

µ←→D νqr)(ēsγµ
←→
D νet)

Q
(1)
q2u2D2 Dν(q̄pγ

µqr)Dν(ūsγµut)

Q
(2)
q2u2D2 (q̄pγ

µ←→D νqr)(ūsγµ
←→
D νut)

Q
(3)
q2u2D2 Dν(q̄pγ

µTAqr)Dν(ūsγµT
Aut)

Q
(4)
q2u2D2 (q̄pγ

µTA
←→
D νqr)(ūsγµT

A←→D νut)

Q
(1)
q2d2D2 Dν(q̄pγ

µqr)Dν(d̄sγµdt)

Q
(2)
q2d2D2 (q̄pγ

µ←→D νqr)(d̄sγµ
←→
D νdt)

Q
(3)
q2d2D2 Dν(q̄pγ

µTAqr)Dν(d̄sγµT
Adt)

Q
(4)
q2d2D2 (q̄pγ

µTA
←→
D νqr)(d̄sγµT

A←→D νdt)

21 : (L̄R)(L̄R)D2 + h.c.

Q
(1)
q2udD2 Dµ(q̄jpur)εjkD

µ(q̄ksdt)

Q
(2)
q2udD2 Dµ(q̄jpT

Aur)εjkD
µ(q̄ksT

Adt)

Q
(3)
q2udD2 (q̄jp

←→
D µur)εjk(q̄ks

←→
D µdt)

Q
(1)
lequD2 Dµ(l̄jper)εjkD

µ(q̄ksut)

Q
(2)
lequD2 Dµ(l̄jpu

α
r )εjkD

µ(q̄ksαet)

Q
(3)
lequD2 (l̄jp

←→
D µer)εjk(q̄ks

←→
D µut)

Table 18. Most of the dimension-eight operators in the SMEFT of class-21, which are further

divided into subclasses according to their chiral properties. See table 10 for the remaining class-21

operators. Operators with + h.c. have Hermitian conjugates. The subscripts p, r, s, t are weak-

eigenstate indices.

– 34 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

where we have dropped terms that are not enhanced by O(16π2). If the physics beyond

the SM (BSM) that generates (5.2) is loop suppressed then these additional terms must be

included.

Axiomatic principles of quantum field theory such as unitarity, analyticity, and

crossing symmetry yield constraints on the parameters of a theory, see e.g. [36, 37]. For

example, refs. [38, 39] used a once-subtracted dispersion relation to derive sum rules for

the couplings of an extended Higgs boson sector. Dimension-8 SMEFT operators with

four derivatives are constrained by twice-subtracted dispersion relations, which lead to

positivity bounds on Wilson coefficients [20, 25, 40–42]. This follows from the contour

at infinity vanishing due to the Froissart bound [43], and the crossed-channel branch-cut

having the same sign the original-channel making the sum of non-vanishing integrals

positive-definite by the optical theorem.

The positivity bounds on the coefficients in (5.2) are [20]

C
(1)
LbL > 0,

C
(2)
LbL > 0,

4C
(1)
LbLC

(2)
LbL > (C̃LbL)2. (5.3)

Unsurprisingly QED satisfies these bounds, C
(1)
LbL = 1 and C

(2)
LbL = 7/4 when E � Me and

the electron is integrated out at one-loop [44]. The coefficient C̃LbL is not generated in QED

as electromagnetic interactions conserve parity, which also satisfies (5.3). The bounds 5.3

can be combined with other positivity bounds coming from different initial scattering states

to further constrain the X4 SMEFT Wilson coefficients.

5.2 Electroweak precision data

Historically, the constraints on BSM physics from electroweak precision data were fre-

quently summarized in terms of the parameters S, T , and U [45–50]. The leading con-

tributions to S and T come from dimension-6 operators, whereas U first arises from a

dimension-8 operator [21] motivating its discussion here. Additionally this discussion will

help frame the results of section 5.3. However, for heavy BSM physics, it is important to

keep in mind that the SMEFT is the preferred framework to use to describe electroweak

precision data as it is completely general, unlike an STU analysis. For example, the

dimension-6 operators that contribute to S and T also contribute to Higgs and diboson

processes, see e.g. [51]. To put a modern twist on this analysis we use the geometric inter-

pretation of the SMEFT (geoSMEFT) [52–54] to formulate expressions for S, T , and U to

all orders in vT /Λ, with vT defined in eq. (5.5).

Higher-dimensional operators change the definitions of SM parameters in a variety of

ways. Field redefinitions are needed to relate these combinations of inputs to measured

quantities. To start, consider the potential for the Higgs field in the SMEFT through

dimension-8

VSMEFT = λ

(
H†H − v2

2

)2

− cH
Λ2

(H†H)3 − cH8

Λ4
(H†H)4. (5.4)

– 35 –



J
H
E
P
1
0
(
2
0
2
0
)
1
7
4

The dimension-8 operators relevant for EWPD are given in tables 2 and 3. Due to the

presence of the higher-dimensional operators in eq. (5.4), the minimum of Higgs boson

potential is shifted [19, 53]

〈H†H〉 ≡
v2
T

2
=
v2

2

(
1 +

v2

Λ2

3cH
4λ

+
v4

Λ4

9c2
H + 4λcH8

8λ2

)
(5.5)

with vT ≈ 246 GeV.

Now we turn to canonically normalizing the electroweak gauge, Higgs, and Goldstone

bosons. Care must be taken as the field redefinitions are matrix equations. The geometric

interpretation provides an elegant way to perform these transformations to all-orders in

vT /Λ. The Higgs-derivative operators through dimension-8 are

LH,kin = (DµH
†)(DµH) +

cH�

Λ2
(H†H)�(H†H) +

cHD
Λ2

[(DµH
†)H][H†(DµH)]

+
c

(1)
H6D2

Λ4
(H†H)2(DµH

†DµH) +
c

(2)
H6D2

Λ4
(H†H)(H†τ IH)(DµH

†τ IDµH). (5.6)

Defining

H =
1√
2

(
φ2 + iφ1

φ4 − iφ3

)
, (5.7)

we can write eq. (5.6) in the language of the geoSMEFT as

LH,kin =
1

2
hIJ (φ)φIφJ , (5.8)

where φI = (φ1, φ2, φ3, φ4) with 〈φI〉 = vT δI4. The weak eigenstates are related to the

mass eigenstates through a metric on Higgs field space, hIJ , and a unitary matrix not

considered here. We are working with the weak eigenstates and have not introduced the

mass eigenstates here as all we need is the metric hIJ to define the T parameter. See ref. [53]

for expressions involving mass eigenstates. The gauge kinetic terms to all-orders in vT /Λ are

LEW, kin = −1

4
W I
µνW

Iµν − 1

4
BµνB

µν (5.9)

+
cHW
Λ2

(H†H)W I
µνW

Iµν +
cHB
Λ2

(H†H)BµνB
µν +

cHWB

Λ2
(H†τ IH)W I

µνB
µν

+
∞∑
n=0

H2n

Λ4+2n

(
c

(1)
B2H4+2n(H†H)2BµνB

µν + c
(1)
W 2H4+2n(H†H)2W I

µνW
Iµν

+c
(1)
WBH4+2n(H†H)(H†τ IH)W I

µνB
µν + c

(3)
W 2H4+2n(H†τ IH)(H†τJH)W I

µνW
Jµν
)

In the geoSMEFT eq. (5.9) takes the form

LEW, kin = −1

4
gAB(H)WAWB, (5.10)

where WA = (W I , B) = (W 1,W 2,W 3, B) and gAB is another metric on Higgs field space

This metric, gAB, again along with a unitary matrix not considered here, relates the weak

eigenstate gauge bosons to the mass eigenstates.
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The geometric definitions of S, T , and U are

1

16π
S = 〈g34〉+ 〈g43〉,

ᾱ T = 〈h11〉 − 〈h33〉 = 〈h22〉 − 〈h33〉,
1

16π
U = 〈g11〉 − 〈g33〉 = 〈g22〉 − 〈g33〉 (5.11)

where ᾱ takes into account shift in the definition of the fine structure constant due to the

presence of higher-dimensional operators, see appendix A of [54] for an explicit expression.

Note this shift does not affect our analysis of light-by-light scattering; since all of those

effects start at dimension-8 we can freely trade α for ᾱ. Given (5.11) it straightforward to

work out the contributions to S, T , and U

1

16π
S =

v2
T

Λ2
cHWB +

∞∑
n=0

v4+2n
T

2nΛ4+2n
c

(1)
WBH4+2n ,

ᾱ T = −
v2
T

2Λ2
cHD −

v4
T

2Λ4
c

(2)
H6D2 ,

1

16π
U =

∞∑
n=0

v4+2n
T

2nΛ4+2n
c

(3)
W 2H4+2n , (5.12)

where we give T to O(v4
T /Λ

4) and S and U to all-orders in vT /Λ.

5.3 Scalar SU(2)w quartets

Although the dimension-6 operators are formally the leading terms in the EFT expansion,

there are various reasons why it may be necessary to consider dimension-8 effects. Here

we explore a scenario where the difference in experimental precision in different classes of

measurements causes dimension-8 effects to be important. The measurements are double

Higgs boson production for which only upper limits exists on the cross section exist [55, 56],

and EWPD, which as the name implies, is precisely measured. For example, one of the

more precisely measured observables in this class is the width of the Z boson, which has a

relative precision of 9 · 10−4 [57].

The models under consideration add to the SM field content a new scalar field, Θ, that

is an SU(2)w quartet with either y = 3/2 or 1/2. The Lagrangian for the y = 3/2 case is

LΘ = DµΘ†DµΘ−M2Θ†Θ + [λ1Θ†jkmH
jHkHm + h.c.]

− λα1(H†H)(Θ†Θ)− λα2(H†nH
m)(Θ†jkmΘjkn) +O(Θ4). (5.13)

For the y = 1/2 case the term linear in Θ is instead [λ1Θ†jkmH
jHkH̃m+ h.c.]. Note that Θ

is completely symmetric in its SU(2)w indices. Assuming M � vT we integrate out Θ and

match to the SMEFT. In both cases only one dimension-6 operator, (H†H)3, is generated

at tree level [22, 58, 59]

CH =
|λ1|2

M2
, (5.14)
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while at one-loop the triple W operator, QW , is also generated [58, 60]. At this stage the

scalar quartets look like great candidates to enhance the double Higgs boson production

rate.

However things are not so simple. When electroweak symmetry is broken the term

linear in Θ in eq. (5.13) will force Θ to have a non-zero vacuum expectation value (vev). If

Θ gets a vev, vΘ, its quantum numbers dictate that it contributes to the T parameter [22]

1 + ᾱ T =
v2
T

v2
T − 2v2

Θ[3
2(3

2 + 1)− 3y2]
(5.15)

With this in mind we extend the matching to dimension-8 starting with the y = 3/2

case. We find

L(d=8)
Θ = −λα|λ1|2

M4
(H†H)4 +

3|λ1|2

M4
(H†H)2(DµH

†)(DµH)

+
6|λ1|2

M4
(H†H)H†jH

k(DµH
†
k)(D

µHj) (5.16)

with λα = λα1 + λα2. The last term on the right-hand side of eq. (5.16) is not in our

operator basis. We use the Fierz identity for Pauli matrices, eq. (3.1), to convert that

operator into our basis, yielding for the y = 3/2 case

CH8 = −λα|λ1|2

M4
, C

(1)
H6D2 =

6|λ1|2

M4
, C

(2)
H6D2 =

3|λ1|2

M4
. (5.17)

The y = 1/2 case is slightly more complicated

L(d=8)
Θ = −λα|λ1|2

M4
(H†H)4 +

3|λ1|2

M4
(H†H)2(DµH

†)(DµH)

+
2|λ1|2

M4
(H†H)

[
H†jH

k(DµH
†
k)(D

µHj)

+H†jH
†
k(DµH

k)(DµHj) +HjHk(DµH
†
k)(D

µH†j )
]

(5.18)

Integrating the last two terms by parts, applying the Higgs boson EOM to fields with two

derivatives acting on them, and using eq. (3.1) we find

CH =

(
1− 2λv2

M2

)
|λ1|2

M2
, CH8 = − (λα + 4λ)

|λ1|2

M4
, C

(2)
H6D2 = −|λ1|2

M4

CleH5 = −Y †e
|λ1|2

M4
, CquH5 = −Y †u

|λ1|2

M4
, CqdH5 = −Y †d

|λ1|2

M4
. (5.19)

We included the dimension-6 coefficient CH here as it receives another contribution from

mass term in the Higgs EOM, which was used to reduce a dimension-8 operator into

operators in our basis. This completes the matching of the scalar quartet models to the

SMEFT at dimension-8.

Using (5.12) we see that Ty=3/2 = −3Ty=1/2 = − 3
2ᾱ |λ1|2(vTM )4. Our result for the con-

tributions of these models to the T parameter agrees with what was found in ref. [22]. The

implication of our matching results is that these model cannot in fact provide a large en-

hancement to double Higgs boson production. This was unclear, from an EFT perspective

at least, until the matching was done at dimension-8.
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6 Comments on renormalization group evolution

By construction measurements in an effective field theory take place at energies below the

cutoff scale of the EFT. As such, to link measurements to parameters of possible physics in

the UV, it is crucial to understand how the coefficients EFT operators evolve from one scale

to another. This behavior is described by the renormalization group evolution equations

γijCj = 16π2µ
dCi
dµ
≡ Ċi, (6.1)

where γ is the anomalous dimension matrix and µ is the renormalization scale.

The renormalization group evolution of the SMEFT operators at one-loop is known at

dimension-5 [61], dimension-6 [5, 6, 26, 62], and dimension-7 [17, 63]. The loop diagrams

in the preceding computations were built from one dimension-d SMEFT contact ampli-

tude and one tree level SM amplitude. For the dimension-6 RGE there are also one-loop

amplitudes resulting from two insertions of dimension-5 operators, and ref. [64] computed

these contributions to the RGE equations. Typically, the two dimension-5 operator con-

tribution to the dimension-6 RGE will be suppressed with respect to the one dimension-6

contribution because all odd mass dimension operators in the SMEFT violate at least one

of baryon and lepton number [65, 66].

It is well beyond the scope of this work to compute the RGE equations for the

dimension-8 operators. Instead we content ourselves to make a few comments about the

structure of the associated anomalous dimension. The renormalization of a dimension-8

operator can happen due to one insertion of a dimension-8 operator in a loop amplitude,

two insertions of dimension-6 operators, or one insertion of dimension-5 operator and one

insertion of a dimension-7 operator. The lattermost type of amplitude will typically be sup-

pressed as was the case with the two dimension-5 operator contribution to the dimension-

6 RGE. However, the two dimension-6 operator contribution to the dimension-8 RGE

will generally be comparable in magnitude to the one dimension-8 operator contribution.

Dimension-8 is the lowest mass dimension where there are two co-leading contributions to

the RGE.

Many of the entries in the anomalous dimension matrix vanish [67] including beyond

one-loop [68]. One way to understand these zeroes in the anomalous dimension matrix is

through non-renormalization theorem of ref. [67], which applies to loop amplitudes with

one dimension-d SMEFT insertion and one SM tree level amplitude. To start define holo-

morphic and anti-holomorphic weights as w = n − h and w = n + h, respectively, where

n is the number of particles created by an operator and h is the sum of the helicities of

the particles created. Then the theorem can be stated as operators belonging to subclass

j can renormalize operators of another subclass i if wi ≥ wj and wi ≥ wj . The theorem

can only be violated when the SM tree amplitude contains two Yukawa interactions. The

results of the non-renormalization theorem applied to dimension-8 operators are visualized

in table. 19. Visually the theorem transitions down or to the left in the weight lattice.

A contact amplitude resulting from an insertion of dimension-d SMEFT operators

obeys the relation

2d ≥ wk + wk ≥ d. (6.2)
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Furthermore, restricting to particles of spin-1 or less we also have

d ≥ |wk − wk|. (6.3)

The relations (6.2) and (6.3) do not, in general, respect the weight bounds of SM tree level

amplitudes, wk ≥ 4 and wk ≥ 4 (which apply to non-exceptional amplitudes). Therefore

the theorem needs to be modified to determine vanishing entries among the two dimension-6

contributions to the dimension-8 anomalous dimension matrix as the theorem, as currently

formulated, relies on the SM tree level weight bounds. It would be interesting to examine

in detail the structure of the anomalous dimension matrix resulting from two insertion of

dimension-6 operators.

Inverting the logic of the non-renormalization theorem, operators of the same type will

generically mix under RGE evolution. An interesting restriction on how general the mixing

comes from Lagrangian terms with multiple flavor structures. Examples of such terms

include Ql4H2 , Q
(1,3)
q4H2 , Qu4H2 and Qd4H2 . The different flavor structures in these terms

can only be mixed by Yukawa contributions to the RGE, i.e. gauge and λ contributions

do not mix different flavor structures of a given term. See ref. [6] for further discussion on

this point. On the other hand, at the dimension-6, there are plenty of example of mixing

amongst different terms of the same type. For example, the gauge contribution to the

dimension-6 RGE mixes the bosonic operators CH� and CHD [5]. Along these lines we

expect the mixing of Q
(2)
q2H4D

to be closely related to that of Q
(3)
q2H4D

because, as shown

in section 3, these terms contain orthogonal linear combinations of operators. A similar

relation is expected for Q
(2,3)
l2H4D

.

7 Conclusions

In this work we presented a complete basis of dimension-8 operators in the Standard Model

Effective Field Theory. There are 1031 Lagrangian terms, 38 of which vanish in the absence

of flavor structure. Multiple checks have been passed including that no operator in the basis

can be removed completely using the equations of motion. We also presented a counting

based argument that 1031 is the minimum number of Lagrangian terms needed to represent

all of the dimension-8 SMEFT operators.

As a sample of what can be done with the a complete basis of dimension-8 operators,

we briefly considered the phenomenology of light-by-light scattering, electroweak precision

data, and commented on the structure of the dimension-8 RGE. Additionally, we matched

theories of SU(2)w quartets onto the SMEFT up to dimension-8 allowing to us showcase the

interplay between dimension-6 effects and dimension-8 effects, the latter of which cannot

be neglected in those models.

Note added. Ref. [69] is set to appear on the arXiv simultaneously with this work.

It also presents a complete basis of dimension-8 SMEFT operators. The basis of ref. [69]

contains more Lagrangian terms than our basis as it limits its terms to have only one flavor

representation, whereas we follow the convention of ref. [2], combining flavor representations

together when unambiguously possible to obtain the minimum number of terms.
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w

8 X4
L X3

LH
2,

X2
Lψ

2H,

XLψ
4

X2
LH

4,

XLψ
2φ3,

ψ4H2

ψ2H5 H8

6 X2
LH

2D2,

X2
Lψψ̄D,

XLψ
2HD2,

ψ4D2

XLH
4D2,

X2
Lψ̄

2H,

XLψψ̄H
2D,

ψ2H3D2,

XLψ
2ψ̄2,

ψ3ψ̄HD

H6D2,

ψψ̄H4D,

ψ2ψ̄2H2

ψ̄2H5

4 X2
LX

2
R,

XLXRH
2D2,

H4D4,

XLXRψψ̄D,

XRψ
2HD2,

XLψ̄
2HD2,

ψψ̄H2D3,

ψ2ψ̄2D2

XRH
4D2,

X2
Rψ

2H,

XRψψ̄H
2D,

ψ̄2H3D2,

XRψ
2ψ̄2,

ψψ̄3HD

X2
RH

4,

XRψ̄
2H3,

ψ̄4H2

2 X2
RH

2D2,

X2
Rψψ̄D,

XRψ̄
2HD2,

ψ̄4D2

X3
RH

2,

X2
Rψ̄

2H,

XRψ̄
4

0 X4
R

0 2 4 6 8

w

Table 19. Weight lattice for dimension-8 operators in the SMEFT. By the non-renormalization

theorem of ref. [67] a subclass of operators, j, can renormalize another subclass, i, at one-loop if

wi ≥ wj and wi ≥ wj . Visually this prevents transitions down or to the left.
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A Dimension-6 and -7 operators

For the sake of convenience we reproduce the tables of dimension-6 and -7 operators here.

Table 20 contains the dimension-7 operators, and is adapted from ref. [17]. The classifi-

cation scheme we use for the dimension-7 comes from labelling the classes in table 2 of

ref. [10] in descending order. Table 21 contains the dimension-6 operators, and is adapted
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1 : ψ2XH2 + h.c.

Ql2WH2 εmn(τ Iε)jk(lmp Cσ
µν ljr)H

nHkW I
µν

Ql2BH2 εmnεjk(lmp Cσ
µν ljr)H

nHkBµν

2 : ψ2H4 + h.c.

Ql2H4 εmnεjk(lmp Cl
j
r)H

nHk(H†H)

3(B) : ψ4H + h.c.

Ql3eH εjkεmn(ēpl
j
r)(l

k
sCl

m
t )Hn

QleudH εjk(d̄pl
j
r)(usCet)H

k

Q
(1)
l2qdH εjkεmn(d̄pl

j
r)(q

k
sCl

m
t )Hn

Q
(2)
l2qdH εjmεkn(d̄pl

j
r)(q

k
sCl

m
t )Hn

Ql2quH εjk(q̄mp ur)(lsmCl
j
t )H

k

3(/B) : ψ4H + h.c.

Qlud2H εαβγ(l̄pd
α
r )(uβsCd

γ
t )H̃

Qlq2dH εαβγ(l̄mp d
α
r )(qβsmCq

jγ
t )H†

j

Qld3H εαβγ(l̄pd
α
r )(dβsCd

γ
t )H

Qeqd2H εαβγ(ēpq
jα
r )(dβsCd

γ
t )H†

j

4 : ψ2H3D + h.c.

QleH3D εmnεjk(lmp Cγ
µer)H

nHjiDµH
k

5(B) : ψ4D + h.c.

Ql2udD εjk(d̄pγ
µur)(l

j
sCiDµl

k
t )

6 : ψ2H2D2 + h.c.

Q
(1)
l2H2D2 εjkεmn(ljpCD

µlkr )Hm(DµH
n)

Q
(2)
l2H2D2 εjmεkn(ljpCD

µlkr )Hm(DµH
n)

5(/B) : ψ4D + h.c.

Qlqd2D εαβγ(l̄pγ
µqαr )(dβsCiDµd

γ
t )

Qed3D εαβγ(ēpγ
µdαr )(dβsCiDµd

γ
t )

Table 20. The dimension-seven operators in the SMEFT. The operators are divided into six classes

according to their field content. The classes-3 and -5 are further divided into subclasses according

to their baryon number. All of the operators have Hermitian conjugates. The subscripts p, r, s, t

are weak-eigenstate indices. Operators below the dashed lines in classes-1 and -3 vanish when there

is only one generation of fermions.

from ref. [5]. In contrast with [5] we also include in table 21 the baryon number violating

operators as listed in ref. [6].
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1 : X3

QG fABCGAνµ GBρν GCµρ

QG̃ fABCG̃Aνµ GBρν GCµρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD
(
H†DµH

)∗ (
H†DµH

)
5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

4 : X2H2

QHG H†H GAµνG
Aµν

QHG̃ H†H G̃AµνG
Aµν

QHW H†HW I
µνW

Iµν

QHW̃ H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

QHB̃ H†H B̃µνB
µν

QHWB H†τ IHW I
µνB

µν

QHW̃B H†τ IH W̃ I
µνB

µν

6 : ψ2XH + h.c.

QeW (l̄pσ
µνer)τ

IHW I
µν

QeB (l̄pσ
µνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GAµν

QuW (q̄pσ
µνur)τ

IH̃ W I
µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GAµν

QdW (q̄pσ
µνdr)τ

IHW I
µν

QdB (q̄pσ
µνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγ

µlr)

Q
(3)
Hl (H†i

←→
D I
µH)(l̄pτ

Iγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D I
µH)(q̄pτ

Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)

8 : (L̄L)(L̄L)

Qll (l̄pγ
µlr)(l̄sγµlt)

Q
(1)
qq (q̄pγ

µqr)(q̄sγµqt)

Q
(3)
qq (q̄pγ

µτ Iqr)(q̄sγµτ
Iqt)

Q
(1)
lq (l̄pγ

µlr)(q̄sγµqt)

Q
(3)
lq (l̄pγ

µτ I lr)(q̄sγµτ
Iqt)

8 : (R̄R)(R̄R)

Qee (ēpγ
µer)(ēsγµet)

Quu (ūpγ
µur)(ūsγµut)

Qdd (d̄pγ
µdr)(d̄sγµdt)

Qeu (ēpγ
µer)(ūsγµut)

Qed (ēpγ
µer)(d̄sγµdt)

Q
(1)
ud (ūpγ

µur)(d̄sγµdt)

Q
(8)
ud (ūpγ

µTAur)(d̄sγµT
Adt)

8 : (L̄L)(R̄R)

Qle (l̄pγ
µlr)(ēsγµet)

Qlu (l̄pγ
µlr)(ūsγµut)

Qld (l̄pγ
µlr)(d̄sγµdt)

Qqe (q̄pγ
µqr)(ēsγµet)

Q
(1)
qu (q̄pγ

µqr)(ūsγµut)

Q
(8)
qu (q̄pγ

µTAqr)(ūsγµT
Aut)

Q
(1)
qd (q̄pγ

µqr)(d̄sγµdt)

Q
(8)
qd (q̄pγ

µTAqr)(d̄sγµT
Adt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄jper)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄jpur)εjk(q̄ksdt)

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)

Q
(1)
lequ (l̄jper)εjk(q̄ksut)

Q
(3)
lequ (l̄jpσµνer)εjk(q̄ksσ

µνut)

8 : (/B) + h.c.

Qduql εαβγεjk(dαpCu
β
r )(qjγs Cl

k
t )

Qqque εαβγεjk(qjαp Cqkβr )(uγsCet)

Qqqql εαβγεmnεjk(qmαp Cqjβr )(qkγs Clnt )

Qduue εαβγ(dαpCu
β
r )(uγsCet)

Table 21. The dimension-six operators in the SMEFT. The operators are divided into eight classes

according to their field content. The class-8 ψ4 four-fermion operators are further divided into

subclasses according to their chiral and baryonic properties. Operators with + h.c. have Hermitian

conjugates, as does the ψ2H2D operator QHud. The subscripts p, r, s, t are weak-eigenstate indices.
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