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ABSTRACT The paper addresses the question of efficiently sampling the near field and its intensity over
an arbitrary curved line. It aims at finding the minimum number of measurements and their position for
discretizing the near field and its square amplitude without loss of information and follows a common
approach for both the radiation operator and the correspondent lifting operator. A scalar geometry is
examined for both electric and magnetic current sources.
At first, the singular values of the radiation / lifting operator are evaluated by an asymptotic approach and
a change of variables which lead to an operator with a widely investigated spectrum. As the number of
relevant singular values is available in closed form, the dimensions of the near field and its intensity over
the curve are found. Next, starting from a sampling expansion of the pertinent left singular functions,
a non-redundant sampling representation of the near field and its square amplitude is provided. Some
numerical results confirm the analysis. The results may be of great interest especially in antenna testing
by near field data (both standard and phaseless) with an unconventional field scanning system as, for
instance, an UAV mounted probe.

INDEX TERMS Electromagnetic inverse problems, near field sampling, singular value decomposition.

I. INTRODUCTION

FIELD sampling is a relevant research topic arising in
antenna characterization [1]–[5], inverse source [6]–[9],

imaging problems [10]–[14], etc. In particular, sampling
methods employing a non-redundant number of field mea-
surements are gaining an ever-increasing interest since they
allow to save time in the field probing which is dominated by
the mechanical scanning. In this framework, the determina-
tion of the minimum number of measurements to avoid loss
of information in the field discretization is a relevant task
both from the theoretical and the applicative points of view.
Here, the attention is focused on the sampling of the field

radiated by an antenna. The latter is related to the actual or
equivalent source current Ji by the linear model E = TiJi
where Ti stands for the radiation operator.

For establishing the minimum number of measurements
required to correctly sample the radiated field, the number
of degrees of freedom (NDF) must be computed [15], [16].
The latter provides the dimension of the subspace of the
currents that can be stably reconstructed and, at the same
time, the dimension of the subspace of the fields that

allows representing the radiated field with good accuracy.
Accordingly, the NDF represents the “essential” dimension
of the field space and it can be evaluated by determining
the number of significant singular values of the radiation
operator [17], [18].
Once the minimum number of field measurements has

been found, another important task is to find their location.
Classical sampling techniques for the case of planar, cylin-
drical and spherical scanning were introduced respectively
in [19], [20], and [21]. According to such techniques, in the
case of planar scanning the radiated field must be collected
with a uniform sampling step equal to the half-wavelength.
Instead, in the case of spherical scanning, the field must be
observed along the azimuth and elevation coordinates in a
number of points proportional to the radius of the minimum
sphere enclosing the source.
Despite their simplicity, these techniques do not con-

sider the source shape. Hence, they may require collecting
a number of measurements considerably higher than the
NDF. To reduce the field measurements, other sampling
strategies have been conceived [22]–[33]. Among these, the
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one proposed by Prof. Bucci et al. [23] is of great interest
since it avoids loss of information with a number of field
samples proximal to the NDF and provides a closed-form
expression to compute the location of the sampling points.
Such sampling criterion relies on the study of the local band-
width of the so-called reduced field and it can be applied
to sample the field radiated by a source enclosed within an
ellipsoid. Moreover, also planar disk and spherical sources
can be considered since they can be seen as particular cases
of an ellipsoidal source.
Recently, a discretization of the radiation operator that

returns a discrete model with the same singular values of
the continuous one has been proposed in [34], [35]. In these
papers, a warping transformation is exploited to recast the
kernel of the related eigenvalues problem as a convolution
and bandlimited function. Then, the continuous model is dis-
cretized by applying the sampling theory approach exposed
in [36] and a sampling representation of the near field that
employs a number of samples essentially equal to the NDF
is derived.
Despite the approaches in [23] and [35] are different each

other, in the case of 2D strip sources they return the same
non-uniform arrangement of the sampling points along the
observation domain.
In this paper, the sampling approach proposed in [35] for

a 2D magnetic current strip observed in near zone over a
line parallel to the source is generalized to a large class of
smooth curves, both in the case of magnetic or electric cur-
rent strips. The consequent flexibility makes our sampling
scheme suitable also for offset configurations (i.e., geome-
tries where the observation curve is not centered with respect
to the source location) [37], and unconventional observation
curves as the trajectory followed by an UAV-based system
for the in-situ testing of radiating systems [38]–[40].
In the second part of the paper, the approach developed

for the near-field is extended to its intensity, i.e., the square
modulus. This can be of fundamental importance in source
reconstruction problems and antenna testing since, espe-
cially at high frequencies, the phase of the near field cannot
be accurately measured. Accordingly, it arises the need of
addressing a phase retrieval problem to recover the source
current or the far field pattern from only intensity measure-
ments of the near field [41]–[45]. In this framework, the
“essential” dimension of the field intensity plays a key role.
On one hand, it provides the minimum number of phaseless
measurements required to not lose information in the sam-
pling of the near field intensity. On the other, it impacts on
the presence of local minima in the optimization algorithm
solving the correspondent phase retrieval problem. In fact,
the higher the “essential” dimension of the field intensity,
the lower the occurrence of local minima [46], [47].
The “essential” dimension of the field intensity and the

samples positions are found by extending the study over the
radiation operator to the correspondent lifting operator [48].
Therefore, the paper is organized as follows. In Section II,

the mathematical formulation of the problem for the near

FIGURE 1. Geometry of the problem.

field case in a 2D geometry for both magnetic and electric
currents is provided. In Section III, asymptotic approxima-
tions of the operators involved in the computation of the
singular values are discussed. In Section IV, the dimension
of the near field and a sampling strategy is provided. In
Section V, numerical examples corroborating the analytical
results are shown. Finally, Section VII provides the extension
of the developed approach to the near field intensity.

II. MATHEMATICAL FORMULATION
Consider the 2D geometry invariant along the y-axis depicted
in Fig. 1.
An electric or magnetic density current is directed along

the y−axis and supported over the interval SD = [−a, a].
Hence, it can be expressed as

Ji
(
x′
) = Ji

(
x′
)
ŷ (1)

where the subscript i ∈ {e,m} distinguishes the electric case
by the magnetic one.
The electric field corresponding to Je(x′) has only a com-

ponent directed as the density current; instead, the electric
field radiated by Jm(x′) has two components: one directed
along the x−axis, and the other along the z−axis. The
tangential component E of the electric field is observed
in near zone over a smooth curve �(x) = (x, z(x)) with
x ∈ OD = [xmin, xmax]. Accordingly, E is given by

E(x) = Ti Ji
(
x′
)

(2)

where

Ti : Ji ∈ L2(SD) → E ∈ L2(OD) (3)

with L2(SD) and L2(OD) denoting the space of square inte-
grable functions defined over SD and OD, respectively. For
the geometry at hand, the radiation operator Ti can be
explicitly written as
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TiJi =
∫ +a

−a
gi
(
x′, x

)
Ji
(
x′
)
dx′ (4)

where the Green function gi(x′, x) is given by

gi
(
x′, x

) =

⎧
⎪⎨

⎪⎩

−ζ

√
β

8π
ej

π
4 1√

R(x′,x)e
−jβR(x′,x) for i = e

−
√

β
8π
ej

π
4

z(x)

R
3
2 (x′,x)

e−jβR(x′,x) for i = m
(5)

with β denoting the wavenumber, ζ the impedance of the

medium, and R(x′, x) =
√

(x− x′)2 + z2(x).
Since the radiation operator is linear, its singular system

{σn, vn, un} can be introduced where
• {σn} are the singular values ordered in a non-decreasing
way,

• {un} and {vn} are the left and right singular functions
spanning the current and the field spaces, respectively.

The singular functions are linked each other by

Tiun = σnvn T†
i vn = σnun (6)

with T†
i being the adjoint operator. In this paper, a weighted

adjoint operator is exploited; accordingly, T†
i is defined as

T†
i E =

∫ xmax

xmin
wi
(
x′, x

)
g∗
i

(
x′, x

)
E(x)

∥∥�′(x)
∥∥dx (7)

where
• wi(x′, x) is a positive and real function acting as a
weight,

• ‖�′(x)‖ =
√

1 + [z′(x)]2 is the norm of the first
derivative of �(x).

In light of (6), the following shifted eigenvalues problem
can be written

TiT
†
i vn = σ 2

n vn (8)

from which is evident that the eigenvalues of the auxiliary
operator TiT

†
i are the square of the singular values of T†

i .
The singular values decomposition represents a key math-

ematical tool to achieve the main goals of the paper which
consist in

1. finding the NDF of the near field,
2. providing a sampling representation of the near field

that employs a number of field samples equal to the
NDF.

As concerns the first task, the NDF are given by the num-
ber of significant singular values of the radiation operator. In
particular, since the kernel of Ti (i.e., the Green function gi)
is an entire function of exponential type, its singular values
exhibit an abrupt decay in correspondence of a critical index
M [49], [50]. The latter delimits the most relevant singular
values of Ti and provides an evaluation of the NDF, i.e., the
dimension of the near field.
It is worth noting that the presence of a real and positive

weight function in the adjoint operator definition modifies
only the dynamics of the singular values but not the crit-
ical index at which they abruptly decay [51]. Accordingly,

the number of relevant singular values does not change by
introducing wi(x′, x) in the adjoint operator definition and,
consequently, the NDF can be found by solving the weighted
eigenvalue problem (8).
With regard to the second task, it is addressed by provid-

ing a sampling representation of the left singular functions
{vn} efficient in terms of the required field samples. Then,
recalling that the radiated field E can be expressed in terms
of the left singular functions by the equation E = ∑

n cnvn,
the correspondent sampling representation of the radiated
field efficient is found.

III. STUDY OF THE OPERATOR TiT
†
i

In this section the operator TiT
†
i is considered and recast as

a convolution and bandlimited operator whose eigenvalues
are known in closed form.
Let us rewrite the eigenvalues problem (8) in the following

explicit form
∫ xmax

xmin
Ki(xo, x)vn(x)dx = σ 2

n vn(xo) (9)

with Ki(xo, x) denoting the pertinent kernel function. The
latter is given by

Ki(xo, x) = ∥∥�′(x)
∥∥

∫ +a

−a
wi
(
x′, x

)
Ai
(
x′, xo, x

)
e−jβa �(x′, xo, x)dx′ (10)

where

Ai
(
x′, xo, x

) =
⎧
⎨

⎩

ζ 2β

8π
√
R(x′,xo)R(x′,x) for i = e
βz(x)z(xo)

8πR
3
2 (x′,xo) R

3
2 (x′,x)

for i = m
(11)

and

�
(
x′, xo, x

) = 1

a

[
R
(
x′, xo

)− R
(
x′, x

)]
(12)

For xo = x, it results that � = 0; accordingly, the integral
(10) can be evaluated by exploiting the integration by parts
method.
For xo �= x, if the hypothesis βa 	 1 is fulfilled, the kernel

function can be asymptotically evaluated. Since the choice
of the asymptotic technique is related to the presence of
stationary points in the phase function �, the solution of the
stationary condition �′(x′, x, xo) = 0 with respect to variable
x′ must be discussed. This is done in Appendix A where
a condition on the observation curve for the absence of
stationary points is provided. In particular, in such Appendix
it is shown that if all the possible straight lines linking
two generic points of the observation curve do not intersect
with the source then equation �′(x′, x, xo) = 0 does not
admit solution ∀xo �= x. When this happens, the integral
(10) can be asymptotically evaluated by considering only
the contributions of the endpoints x′ = a and x′ = −a.
More in detail, after the application of the integration by
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parts method, ∀xo �= x the kernel function Ki(xo, x) can be
written as

Ki(xo, x) = − 1

jβa

∥
∥�′(x)

∥
∥

⎛

⎜
⎝
wi
(
x′, x

)Ai(x′,xo,x)
�′(x′,xo,x) e

−jβa �(x′,xo,x)
∣
∣∣
x′=a
x′=a−∫ a

−a
d
dx′
(
wi
(
x′, x

) Ai(x′,xo,x)
�′(x′,xo,x)

)
e−jβa �dx′

⎞

⎟
⎠ (13)

By the Riemann - Lebesgue lemma, the integral in (13) tends
to zero; hence, the kernel function can be approximated only
with the first term. The latter is not of convolution type (i.e.,
it does not depend on the difference xo − x); accordingly,
an analytical evaluation of the eigenvalues of TiT

†
i is a very

difficult task. To recast Ki(xo, x) in a form more similar to
a convolution kernel, it can be first approximated as

Ki(xo, x)

≈ − 1

jβa

∣∣∣∣ �′(x)
∣∣∣∣ e−j

βa
2 (�(a,xo,x)+�(−a,xo,x))

(
wi(a,x) Ai(a,xo,x)

�′(a,xo,x) ej
βa
2 (�(−a,xo,x)− �(a,xo,x))−

wi(−a,x)Ai(−a,xo,x)
�′(−a,xo,x) e−j

βa
2 (�(−a,xo,x)− �(a,xo,x))

)

(14)

Then, the elliptic coordinates

η(x) = R(−a, x) − R(a, x)

2a
(15)

γ (x) = R(−a, x) + R(a, x)

2a
(16)

can be introduced to recast the kernel function as

Ki(ηo, η) ≈ − 1

jβa

∥∥�′(x(η))
∥∥ dx
dη
e−j βa (γ (ηo)−γ (η))

(
wi(a, η)

Ai(a,ηo,η)
�′(a,ηo,η)

ejβa(ηo−η)−
wi(−a, η)

Ai(−a,ηo,η)
�′(−a,ηo,η)

e−jβa(ηo−η)

)

(17)

where dx/dη is the Jacobian term arising from the change
of the integration variable in the eigenvalue problem (9).
In the new couple of variables ηo = η(xo) and η = η(x),

the exponential terms in (17) depend on the difference (ηo−
η); instead, the amplitude terms are still not convolution.
However, in all the cases where Ai/�′ can be approximated
as the product between a function depending (η − ηo) and
a function depending on η, the kernel function Ki(ηo, η)

can be recast in a convolution form by choosing the weight
function in such a way to compensate all the amplitude terms
depending only on the variable η. More in detail, when the
observation domain is not significantly larger than the source
domain, the numerator and the denominator of Ai/�′ can be
approximated with respect to ηo in a Taylor series stopped
at the first non-zero term, i.e.,

Ai(±a, ηo, η)

�′(±a, ηo, η)
≈ Ai(±a, ηo, ηo)

d�′(±a,ηo,η)
dx

dx
dηo

|ηo=η(ηo − η)
(18)

Then, the kernel function can be written as

Ki(ηo, η) ≈ − 1

jβa

∥∥�′(x(η))
∥∥e−j βa (γ (ηo)−γ (η))

⎛

⎜
⎝
wi(a, η)

Ai(a, η,η)
d�′(a, ηo,η)

dxo
|ηo= η

ej βa (ηo −η)

(ηo−η)
−

wi(−a, η)
Ai(−a, η,η)

d�′(−a, ηo,η)
dxo

|ηo= η

e−j βa (ηo −η)

(ηo−η)

⎞

⎟
⎠ (19)

Now, if the following choice of the weight function is
performed

wi
(
x′, x(η)

) = − d�′(x′,xo(ηo),x(η))
dxo

|ηo=η

2
∥∥�′(x(η))

∥∥Ai(x′, xo(η), x(η))
(20)

all the amplitude terms in (20) depending only on η are
exactly balanced and the kernel function can be rewritten as

K(ηo, η) ≈ e−jβa(γ (ηo)−γ (η)) sinc(βa(ηo − η)) (21)

Accordingly, the eigenvalue problem TT†vn = σ 2
n vn can be

now expressed in the simple and nice form
∫ η(xmax)

η(xmin)
e−jβa(γ (ηo)−γ (η))sinc(βa(ηo − η))vn(η)dη

= σ 2
n vn(ηo) (22)

In Appendix B, the expression of the weight function
wi(x′, η) is explicitly written both for a magnetic and an
electric current. Moreover, it is shown that if |x| ≤ a and
the observation curve �(x) satisfies condition (57) for the
absence of stationary points then wi(x′, x) is surely posi-
tive. Instead, if |x| > a only the concave observation curves
satisfying (57) ensure that wi(x′, x) > 0.

IV. NDF AND SAMPLING OF THE NEAR FIELD
In this section the NDF of the near field is analytically
evaluated. In addition, a sampling representation of the near
field employing a number of field samples equal to the NDF
is provided. In order to find the NDF of the near field, the
number of relevant eigenvalues of (22) must be computed.
Fixing

v̂n(ηo) = e j βa γ (ηo) vn(ηo) (23)

Equation (22) can be rewritten as
∫ ηmin

ηmax

sinc(βa (ηo − η)) v̂n(η)dη = σ 2
n v̂n(ηo) (24)

where ηmax = η(xmax) and ηmin = η(xmin).
The eigenvalues of (24) have been studied by Slepian and

Pollak in [52], where they have shown that the eigenvalues
of a self-adjoint operator with a sinc kernel exhibit a step
like behaviour with the knee occurring at the index

M =
[
βa

π
(ηmax − ηmin)

]
(25)

with [·] denoting the integer part of the correspondent scalar.
The scalar M provides an analytic evaluation of the NDF of
the near field radiated by a magnetic or an electric current
when it is observed over the curve �(x). From (25), it is
evident that the NDF depends only on the wavenumber β

and on some geometrical parameters like the source size 2a
and the endpoints of the observation curve (xmax, z(xmax))
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and (xmin, z(xmin)). Moreover, it is worth highlighting that
the NDF expression can be seen as the product of the fac-
tors. The first factor 2βa/π represents the maximum value
achievable by NDF of the field radiated by a strip source.
Such a number is reached when the observation curve has
an infinite extension along the x− axis or subtend at least
an angle of π .
The second factor [ηmax − ηmin]/2 takes into account that

observation curve is truncated along the x direction or sub-
tend an angle lower than π (in such cases the value of
[ηmax − ηmin]/2 is always lower than 1).
Now, a sampling representation of the near field that

exploits a number of field samples equal to the NDF is
provided. On the basis of (24), it is possible to state that
the eigenfunctions ṽn(ηo) are bandlimited functions with a
bandwidth equal to βa. Accordingly, ṽn(ηo) can be repre-
sented with a good accuracy through the following truncated
Shannon sampling series

ṽn(ηo) =
M∑

m=0

ṽn(ηom) sinc[βa (ηo − ηmin) − mπ ] (26)

where

ηom = ηmin + m
π

βa
∀m ∈ {0, 1, . . . , M} (27)

Note that the index m is chosen in such a way that only the
samples ηom falling into the set [ηmin, ηmax] are considered.
By (23) and (26), the following sampling representation

of vn(ηo) is obtained

vn(ηo) = e−jβaγ (ηo)

M∑

m=0

vn(ηom)ejβaγ (ηom)sinc[βa(ηo − ηmin) − mπ ] (28)

Since the radiated field E can be represented through a lin-
ear combination of the eigenfunctions {vn(ηo)}, it can be
expressed by the following interpolating series

E(xo) = e−jβaγ (xo)

M∑

m=0

E(xom)ejβaγ (xom)sinc[βa(ηo − ηmin) − mπ ] (29)

where ∀m ∈ {0, . . . ,M} the sampling point xom satisfies the
equation η(xom) = ηom. Hence, xom is the solution of the
equation

R(−a, xom) − R(a, xom)

2a
= ηom (30)

which represents the equation of a hyperbola whose foci are
the points (0,−a) and (0, a). Accordingly, Equation (30)
can be also rewritten in the following form

x2
om

ηom2
− z(xom)2

1 − ηom2
= a2 (31)

The latter can be solved only after the observation curve
�(x) = (x, z(x)) has been specified.

FIGURE 2. Pictorial view of the hyperbolas whose intersections with the
observation curve returns the sampling points.

From the previous discussion, it is evident that the
sampling points {xom} are the intersection between the obser-
vation curve 	(x) and the family of hyperbolas described by
(30). A pictorial view of such hyperbolas is given in Fig. 2.
Note that since the equation η(xom) = ηom is nonlinear, the
uniform sampling step in ηo is mapped into a non-uniform
sampling in the variable xo. Accordingly, the field samples
are non-uniformly arranged along the observation domain.

V. NUMERICAL RESULTS
In this section a numerical analysis is performed

1. to corroborate the analytical expression of the NDF
provided by (25),

2. to validate the interpolation formula of the near field
(29).

Such validation is performed by comparing the exact field
computed by the radiation model (2) with the interpolation
series (29). To establish the mismatch between the exact field
and its approximation provided by (29), the relative error

err = ||E − Eexact||
||Eexact|| (32)

is evaluated.
The analysis is developed with reference to different obser-

vation curves. Since the case of a line parallel to the source
has been already examined in [34], [35]; here, at first, the
case of an oblique line is considered. Then, the case of a
circumference arc is examined.

A. AN OBLIQUE LINE
The configuration sketched in Fig. 3 is considered.
The source extends on the interval [−a, a] = [−10λ, 10λ].

The observation curve is the oblique line

z(x) = so · x+ zo (33)
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FIGURE 3. Strip source observed over an oblique line.

FIGURE 4. Diagram of the transformation η = η(x).

with so = 0.15, zo = 5λ, and x ∈ OD = [−22.5λ, 22.5λ].
Since the slope of the observation line satisfies condition
(57), the evaluation of the kernel based only on the endpoints
works well in the considered test case. In Fig. 4 the function
η(x) corresponding to the considered observation curve is
shown. As can be seen from Fig. 4, in the present case,
the trasformation is injective. Accordingly, the anlaysis by
the variables (ηo, η) can be exploited to study the singular
values of the radiation operator.
In Fig. 5 the singular values of the radiation operator

both for an electric and a magnetic current are compared
with the singular values obtained by introducing a weight
function in the adjoint definition. From Fig. 5, it is evident
that the singular values of the radiation operator and those

FIGURE 5. Comparison between the singular values of the radiation operator and
the singular values obtained by introducing a weight function in the adjoint definition.

FIGURE 6. Comparison between the exact field and the interpolation provided by
Equation (29).

obtained by introducing a weight function in the adjoint defi-
nition decay abruptly in correspondence of the same critical
index M. For the considered configuration, such index is
equal to 38 in perfect agreement with the analytical prevision
provided by (25).
Now, the interpolation formula (29) is validated by a

numerical analysis. For the considered configuration, the
sampling points {xom} obtained by the solution of (31) are
given by

xom = ηom

1 − ηom2 − s2oη
2
om

×
[
sozoηom +

√
1 − ηom2

√
z2o + a2

(
1 − ηom2 − s2oηom

2
)]

(34)
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FIGURE 7. Strip source observed over a circumference arc.

In the numerical test, the field radiated by the source
current

Ji
(
x′
) = 0.5

[
cos
( π

2a
x′
)

+ 1
]
e−j0.3βx′ (35)

is considered. In particular, the exact field corresponding
to Je(x′) and Jm(x′) is compared with the approximation
provided by (29) in Fig. 6.
As it can be appreciated from Fig. 6, the interpolated

field overlaps well with the exact field despite the number
of samples used for the interpolation is just equal to the
NDF. In particular, it results that err = 0.032 in the case
of electric current and err = 0.044 in the case of magnetic
current.

B. AN ARC OF CIRCUMFERENCE
In this section, the field radiated by the same source
considered in Section V-A is observed over an arc of cir-
cumference of radius Ro = 13.5λ subtending the angular
sector [−89◦, 89◦]. The geometry is sketched in Fig. 7.

The cartesian equation of the observation curve is

z(x) =
√
R2
o − x2 (36)

Since angular extension of the observation arc is a little bit
lower than a semi-circumference, condition (57) is fulfilled;
hence, the asymptotic analysis based on the contributions of
the endpoints can be applied. Moreover, also the transfor-
mation η = η(x) is injective as it can be appreciated from
Fig. 8.
As concerns the spectrum of the radiation operator, in

Fig. 9 the singular values of the radiation operator both
for an electric and a magnetic current are compared with
the singular values obtained by introducing a weight func-
tion in the adjoint definition. The three diagrams shown in

FIGURE 8. Behavior of the transformation η = η(x).

FIGURE 9. Comparison between the singular values of the radiation operator and
the singular values obtained by introducing a weight function in the adjoint definition.

Fig. 9 exhibit the same number of relevant singular val-
ues. Such number is equal to 40 and it is well estimated
by (25).
As concerns the sampling of the near field, the sampling

points returned by (30) are

xom = ηom

√
a2
(
1 − ηom2

)+ R2
o (37)

In Fig. 10, the exact field radiated by the electric and mag-
netic current in (35) is compared with the interpolated field
provided by (29). Despite the number of field samples is
only 41, the interpolated field matches well with the exact
one; indeed, err = 0.0061 in the case of electric current and
err = 0.0244 in the case of magnetic current.

VI. EXTENSION OF THE APPROACH TO THE NEAR
FIELD INTENSITY
In this section, the approach developed above to evaluate the
“essential” dimension of the near field is extended to the case
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FIGURE 10. Comparison between the exact field and the interpolation provided by
Equation (29).

of its intensity (i.e., the square amplitude). To achieve this
goal, a linear representation of the quadratic problem

|E(x)|2 = ∣
∣Ti Ji

(
x′
)∣∣2=

∣∣
∣∣

∫ a

−a
gi
(
x′, x

)
Ji
(
x′
)
dx′
∣∣
∣∣

2

(38)

is obtained by introducing the lifting operator. Then, the
dimension of the field intensity is found by evaluating the
number of relevant singular values of such an operator with
the same strategy employed before for the radiation operator.
Finally, an efficient sampling criterion of |E|2 is shown.

With the aim to obtain a linear representation of
|E(x)|2, the quadratic model (38) can be rewritten as
|E(x)|2 = Ti Ji(x′) [Ti Ji(x′′)]∗ and a new unknown function
F(x′, x′′) = Ji(x′) J∗

i (x
′′) can be introduced. Such redefini-

tion of the unknown space allows recasting the quadratic
model (38) into the linear model

|E(x)|2 = Li F
(
x′, x′′

)
(39)

where the lifting operator

Li : F
(
x′, x′′

) ∈ L2(SD x SD) → |E(x)|2 ∈ L+
2 (OD)

is defined as

LiFi =
∫ a

−a

∫ a

−a
gi
(
x′, x

)
g∗
i

(
x′′, x

)
Fi
(
x′, x′′

)
dx′dx′′ (40)

Accordingly, the corresponding adjoint operator is given by

L†
i |E|2

=
∫ xmax

xmin
pi
(
x′, x′′, x

)
g∗
i

(
x′, x

)
gi
(
x′′, x

)|E(x)|2∥∥�′(x)
∥∥dx

(41)

where pi(x′, x′′, x) represents the weight function. Since the
singular values of Li are the square root of the eigenvalues

of LiL
†
i , the self-adjoint operator LiL

†
i is now considered. It

is defined as

LiL
†
i |E|2 =

∫ xmax

xmin
Hi(x, xo)|E(x)|2dx (42)

where the kernel function Hi(xo, x) is given by

Hi(xo, x) = ∥∥�′(x)
∥∥
∫ a

−a

∫ a

−a
pi
(
x′, x′′, x

)
gi
(
x′, xo

)

g∗
i

(
x′′, xo

)
g
∗
i

(
x′, x

)
gi
(
x′′, x

)
dx′dx′′ (43)

By assuming that the weight function can be factorized as
pi(x′, x′′, x) = qi(x′, x) · qi(x′′, x) and considering Eq. (5),
(11) and (12), the kernel function can be rewritten as

Hi(xo, x) = ∥∥�′(x)
∥∥

∣∣∣∣

∫ +a

−a
qi
(
x′, x

)
Ai
(
x′, xo, x

)
e−jβa�(x′,xo,x)dx′

∣∣∣∣

2

(44)

The integral in (44) is exactly the same as the integral in (10).
Hence, if condition (57) for the absence of stationary point is
satisfied, the kernel of LiL

†
i can be evaluated with the same

asymptotic approach shown in Section III. Accordingly, it
can be recast as

Hi(ηo, η) ≈ 1

(βa)2

∥∥�′(x(η))
∥∥ dx
dη

·
∣∣∣∣
∣∣∣

qi(a, η)
Ai(a,η,η)

d�′(a,ηo,η)
dxo

dxo
dηo

|
ηo=η

ejβa(ηo−η)

(ηo−η)
−

qi(−a, η)
Ai(−a,η,η)

d�′(−a,ηo,η)
dxo

dxo
dηo

|ηo=η

e−jβa(ηo−η)

(ηo−η)

∣∣∣∣
∣∣∣

2

(45)

Equation (45) provides the kernel function after the asymp-
totic evaluation, the introduction of the variables (ηo, η), and
the approximation of the amplitude terms.
As concerns the choice of qi(x′, η), it is a little bit different

from (20) since the square modulus appears in the last factor
of (45). In particular, by choosing

qi
(
x′, η

) =
d�(a,ηo,η)

dxo
dxo
dηo

∣∣∣
ηo=η

2
√

dx
dη

√‖	′(x(η))‖Ai(a, η, η)
(46)

it follows that

Hi(ηo, η) ≈ sinc2(βa(ηo − η)) (47)

Accordingly, the operator LiL
†
i is well approximated by

LiL
†
i |E|2 =

∫ ηmax

ηmin

sinc2(βa(ηo − η))|E(η)|2dη (48)

In order to evaluate the “essential” dimension of the space
of the field intensity, the number of relevant eigenvalues of
LiL

†
i are now evaluated.
The latter was studied by Gori and Palma in [53], where

they showed that the eigenvalues of a convolution operator
with a sinc squared kernel exhibit a linear decay with the
respect to the index. Hence, the eigenvalues are given by

λm

(
LiL

†
i

)
=
{ 4π

βa

(
1 − m

M

)
for m ≤ M

0 for m > M
(49)
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where

M =
[

2βa

π
(ηmax − ηmin)

]
(50)

represents the number of eigenvalues of LiL
†
i (or also the

number of singular values of Li) greater than zero. Hence,
it can be taken as an analytic evaluation of the “essential”
dimension of the space of the field intensity. Moreover, it
represents also the minimum number of samples of |E|2
required to sample it without loss of information.
At this juncture, the question of providing the optimal

sampling point and an efficient sampling representation of
|E|2 is addressed. According to (48), the kernel of LiL

†
i is a

bandlimited function with respect to the variable ηo with a
bandwidth equal to 2βa. Hence, also the left singular func-
tions of the lifting operator have the same bandwidth. This
implies that they can be expressed by a Shannon sampling
series. Moreover, since |E|2 can be written as a linear com-
bination of the first M left singular functions, also the field
intensity can be expanded with a similar sampling series.
Therefore, it results that

|E(xo)|2 =
M∑

m=0

∣
∣E
(
η(xom)

)∣∣2sinc
(
2βa

(
η(xo) − η(xmin)

)− mπ
)

(51)

where

η(xom) = η(xmin) + m
π

2βa
∀m ∈ {0, 1, . . . ,M} (52)

Note that, apart for the exponential terms appearing in (29),
the main difference between the sampling expansion of the
near-field and the correspondent expansion of the near-field
intensity is the bandwidth of the sampling functions that
doubles. Accordingly, the sampling step for the field intensity
halves and number of sampling points doubles.
With the aim to corroborate, the validity of the field

intensity representation provided by (51) the geometry in
Fig. 7 is considered again. In Fig. 11 the exact field inten-
sity corresponding to density current (35) is compared with
its approximation provided by (51).
As can be seen from the Fig. 11, despite the number of

field intensity samples is only equal to the dimension of
the field intensity space (M = 81), the interpolated field
intensity agrees very well with the exact field intensity. In
particular, the relative error is 4.602 · 10−4 in the case of
electric current and it is equal to 2.615 · 10−4 in the case of
magnetic current.

VII. CONCLUSION
In this paper, following the approach developed
in [35] and [48] for the case of linear scanning, a
sampling criterion of the near-field and its intensity
which employs a non-redundant number of samples has
been proposed for the case of a large class of smooth
observation curves. More in detail, the minimum number
of measurements and their locations required to sample the

FIGURE 11. Comparison between the exact field intensity and the interpolation
provided by Equation (51).

near-field and its intensity without loss of information have
been analytically found.
Such goals have been achieved by studying the mathemat-

ical properties of radiation operator and of the correspondent
lifting operator, respectively. In particular, the kernel of the
eigenvalue problems involved in the computation of the
singular values of such operators has been asymptotically
evaluated by taking into account only of the endpoints of
the source. Then, such kernel has been recast as convolu-
tion and bandlimited function by employing a change of
variables. At this juncture, the minimum number of mea-
surements required to well discretize the near field and its
intensity has been computed by determining the number of
relevant singular values of the radiation operator and the lift-
ing operator, respectively. The optimal sampling positions for
the field and its intensity have been found by considering
the bandwidth of the left singular functions expressed in the
new variable.
The main peculiarity of the proposed sampling criterion

is its applicability to a large class of smooth observation
curves. Only some issues can limit the applicability of the
proposed approach. One of these is the presence of stationary
points in the phase of the function that must be integrated to
evaluate the kernel. However, as shown in Appendix A, no
stationary points appears when all the possible straight lines
linking two different point of the observation curve do not
intersect the source. Instead, an interesting setup where the
phase function admits a stationary point is analyzed in [54].
Another issue concerns the injectivity of the transforma-

tion η(x), the positivity of the weight function (discussed
in Appendix B), and the possible singularity in kernel
introduced by the Jacobian term dx/dη appearing in (17).

Despite the above-mentioned points, the proposed sam-
pling method is suitable in several near field techniques
both for the standard scanning (also in offset configuration)
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FIGURE 12. (a) Geometric representation of the angles θo and θ . (b) Pictorial view
of the condition for which x′ is a stationary point.

and for a large set of unconventional observation curves that
can be important also for UAV-mounted probes.

APPENDIX A
DISCUSSION ON THE EXISTENCE OF STATIONARY
POINTS
In this Appendix the solution of the stationary condition

�′ = d�

dx′
= 1

a

(
x− x′

R(x′, x)
− xo − x′

R(x′, xo)

)
= 0 (53)

with respect to variable x′ is discussed.
To solve Eq. (53), a geometric interpretation of the terms

(x−x′)/R(x′, x) and (xo−x′)/R(x′, x) can be exploited. From
the diagram in Fig. 12a, it is evident that

x− x′

R(x′, x)
= sin θ

xo − x′

R(x′, x)
= sin θo (54)

where θo and θ are respectively

• the angle between the axis x = x′ and the line linking
the point (0, x′) to (z(xo), xo);

• the angle among the axis x = x′ and the line linking
the point (0, x′) to (z(x), x).

On the basis of (54), the stationary condition (53) can be
written as

sin θo = sin θ (55)

The latter is satisfied only if the source point (0, x′), and
the points (z(xo), xo) and (z(x), x) of the observation curve
	(x) are aligned (see Fig. 12b). In such a case, x′ represents
the solution of (53) corresponding to the couple (xo, x).

Therefore, it is possible to state that the solutions of (53)
for a given xo are represented by all the source points x′
aligned with the point (z(xo), xo) and another point of the
observation curve �(x). In other words, the stationary points
for a given xo are all the source points x′ that intersect the

FIGURE 13. A configuration with stationary points in the phase function �.

FIGURE 14. A configuration without stationary points in the phase function �.

straight lines linking (z(xo), xo) to other points of �(x) (see
Fig. 13).
On the contrary, no stationary points exist when all the

possible straight lines linking the point (z(xo), xo) to other
points (z(x), x) of the observation curve do not intersect with
the source (see Fig. 14). This happens if and only if the slope
of such lines, i.e.,

�z

�x
= z(x) − z(xo)

x− xo
, (56)

is limited by the slopes of the lines linking the endpoints
of the source to the point (z(xo), xo). In particular, for the
absence of stationary points, it must happen that

z(xo)

xo − a
<

�z

�x
<

z(xo)

xo + a
if |xo| < a

�z

�x
<

z(xo)

xo + a
or

�z

�x
>

z(xo)

xo − a
if |xo| > a
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�z

�x
<

z(xo)

xo + a
if |xo| = a

�z

�x
>

z(xo)

xo − a
if |xo| = −a (57)

for each x ∈ [xmin, xmax] : {x �= xo}.
Generalizing the previous discussion to the case where

both xo and x change, it is possible to conclude that the
stationary condition �′ = 0 does not admit solution ∀(xo, x)
such that xo �= x if all the possible straight lines linking two
generic points of the observation curve � do not intersect
with the source. This happens if and only if (57) is fulfilled
∀(xo, x) ∈ [xmin, xmax] × [xmin, xmax] such that xo �= x.

APPENDIX B
DETAILS ON THE WEIGHT FUNCTION
In this Appendix some useful details on the weight function

wi
(
x′, x

) = − d�′
dxo

|xo=x
2
∥∥�′(x)

∥∥Ai(x′, x, x)
(58)

are provided. In particular, its expression is first particu-
larized in the case of magnetic and electric current. Later,
some useful considerations on the sign of weight function
are performed.
In order to write explicitly the weight function wi(x′, x)

in the case of magnetic and electric current, the derivative
of �′ with respect to xo must be computed. The latter is
given by

dφ′

dxo
= − z(xo)

aR3(x′, xo)

(
z(xo) − dz

dxo

(
xo − x′

))
(59)

Now, taking into account that ‖�′(x)‖ =
√

1 + [z′(x)]2

and considering (11) and (59), the weight function can be
rewritten as

wi
(
x′, x

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4π

ζ 2βa

z(x)
(
z(x)− dz

dx (x−x′)
)

R2(x′,x)
√

1+
(
d
dx z(x)

)2
for i = e

4π
βa

z(x)− dz
dx (x−x′)

z(x)

√

1+
(
d
dx z(x)

)2
for i = m

(60)

Equation (60) provides a closed form expression of the
weight function that works until the approximation per-
formed in (18) is true.
Let us note that if the observation curve is a line parallel to

the source, the derivative appearing in (60) is zero. Hence,
at least for a magnetic current, the weight function is a
constant. In such a case, the kernel of TmT†

m is a sinc kernel of
difference type also without the insertion of weight function
in the adjoint operator definition. Hence, in such a particular
case, it is possible to evaluate not only the number of relevant
eigenvalues but also their value.
At this juncture, some useful considerations on the math-

ematical properties of weight function are performed. As
stated in Section II, the weight function must be real and
positive. Since all the terms appearing in (60) are real, the
weight function is surely a real function.

As concerns the sign of wi, the discussion is more intricate.
From Equation (60), it can be observed that the sign of the
weight function is determined by the difference

z(x) − dz

dx

(
x− x′

)
. (61)

Without any information on the observation curve, nothing
can be said on the sign of the difference in (61) and, conse-
quently, on the sign of the weight function. However, if the
observation curve lies in the semi-plane z > 0 and satisfies
condition (57) then wi(x′, x) is positive ∀(x′, x) such that
−a ≤ x′ ≤ a and for each −a ≤ x ≤ a.
In the regions x < −a and x > a, the previous hypothe-

sis on the observation curve are not sufficient to ensure the
positivity of the weight function; however, if the observa-
tion curve lies in the semi-plane z > 0, satisfies condition
(57), and it is also concave then the positivity of the weight
function wi(x′, x) is ensured also in the regions for which
x < −a and x > a.

Note that the fulfilment of (57) and the hypothesis of
concavity of the observation curve imply that such curve
satisfies the following constraints

{
dz
dx >

z(x)
x−a for x < −a

dz
dx <

z(x)
x+a for x > +a (62)

The proof of the positivity of wi(x′, x) under the hypoth-
esis that z(x) > 0 relies on the observation that the worst
condition for the positivity of the weight function is when
dz
dx (x − x′) attains its maximum; in particular, the weight
function is positive until

max

{
dz

dx

(
x− x′

)
}

< z(x) (63)

Accordingly, in order to proof the positivity of wi
(
x′, x

)
it is

sufficient to observe that the fulfilment of (57) implies that
the derivative term dz

dx must satisfy the following constraint

z(x)

x− a
<

dz

dx
<

z(x)

x+ a
for |x| < a

dz

dx
<

z(x)

x+ a
or

dz

dx
>

z(x)

x− a
for |x| > a

dz

dx
<

z(x)

x+ a
for x = a

dz

dx
>

z(x)

x− a
for x = −a (64)

Then, the maximum of dz
dx (x− x′) must be evaluated and

compared with z(x).
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