
Dimension Compatibility for
Data Mart Integration

Luca Cabibbo and Riccardo Torlone

Dipartimento di Informatica e Automazione
Università degli studi Roma Tre

{cabibbo,torlone}@dia.uniroma3.it

Abstract. The problem of integrating autonomous data marts arises
when, e.g., a large organization (or a federation thereof) needs to com-
bine independently developed data warehouses. It turns out that this
problem can be tackled in a systematic way because of two main rea-
sons. First, data marts are usually structured in a rather uniform way,
along dimensions and facts. Second, data quality in data marts is usually
higher than in generic databases, since they are obtained by reconciling
several data sources. Our scenario of reference is a federation of various
data marts that we need to query in a unified way by means of drill-
across operations. We propose a novel notion of dimension compatibility
and characterize its general properties. We then show the significance
of dimension compatibility in performing drill-across queries over au-
tonomous data marts.

1 Introduction

Nowadays, many data warehouses are developed using the dimensional modeling
approach, that is, as series of coherent data marts [6]. Each data mart provides a
dimensional view of a single business process and an integrated data warehouse
can be built from them by using a bus architecture based on conformed (i.e.,
common) dimensions and facts. In large companies, however, very often different
departments develop their data marts independently, and it turns out that their
combination is a difficult task. Actually, the need of integrating independently
developed and operated data marts arises in other common cases, for instance,
when companies merge or get involved in a federated project. Another common
scenario requiring the integration of autonomous data marts occurs when there
is the need to combine a proprietary data warehouse with multidimensional data
available on the Web [11].

Differently from the general problem of database integration [4], we believe
that the integration of data marts can be tackled in a more systematic way
because of two important reasons. First, any data mart is structured in a rather
uniform way, along the widely accepted notions of dimension and fact. Second,
data quality in a data mart is usually higher than in a generic database, since it
is obtained by cleaning and reconciling several data sources. These observations



suggest that the problem of integrating autonomous data marts can be mainly
focused on the integration of independently developed facts and dimensions.

According to this view, in this paper we introduce and investigate a funda-
mental notion underlying data mart integration: dimension compatibility. Intu-
itively, two dimensions of different data marts are compatible when their common
information is consistent. Similarly, two facts are compatible when their contents
can be combined in a meaningful way. Having compatible dimensions and facts
is important because it gives the ability to look consistently at data across data
marts and to combine and correlate such data, e.g., to perform value chain anal-
yses. In particular, drill-across queries are based on joining multiple data marts
over common dimensions [6].

Assume for instance to have three data marts, describing promotions of prod-
ucts, sales of products, and store inventory levels of products, respectively. A
drill-across query over all these three data marts is needed if we want to identify
products that, although in promotion and available in the stores, have sold under
expectations. For a drill across query, compatibility of dimensions and facts is
required to obtain meaningful results. We show that drill across operations over
incompatible dimensions and facts are not possible or, worse, produce invalid
results. To this end, we introduce a dimension algebra that allows us to select
the relevant portion of a dimension for integration purposes.

This paper provides the foundations for our ultimate goal: the development
of a system for supporting the complex tasks related to the integration of au-
tonomous data marts, similarly to the way in which a system like Clio [9] sup-
ports heterogeneous data transformation and integration.

The integration of heterogenous databases has been extensively studied in
the literature (surveys on the many facets of this issue can be found in [4, 5,
7, 10, 13]). In this paper we take apart the general aspects of the problem and
concentrate our attention on multidimensional data integration. This subject
has been studied by Kimball [6] in the context of data warehouse design. In his
book, he has identified the problem and has introduced, in an informal way, the
notions of dimension and fact conformity. Our notion of compatibility has been
inspired by this work, but extends and formalizes Kimball’s notion of conformity
in a way that, we believe, is more suitable to autonomous data mart integration.
Abellò et al. [1] have investigated properties that are relevant to drill-across
navigation. Although our notion of compatibility is related to such properties,
the goals of the papers differ, since we refer to drill-across queries whereas [1]
refers a weaker form of drill acrossing, specific to interactive navigation. Some
work has been done on the problem of integrating data marts with external data
stored in various formats: object-oriented [12] and XML [11]. This is clearly
related to but different from our goal, since no attempt is made in these papers
to combine multiple multidimensional databases.

The rest of the paper is organized as follows. In Section 2 we recall MD,
a conceptual model for multidimensional data, introduced in [2], that will be
used throughout this paper. In Section 3 we present an algebra over dimensions,
a tool that will be used, in Section 4, to introduce the notion of dimension



compatibility. In Section 5 we investigate the relationship between compatibility
and the operation of drill across between data marts. Finally, in Section 6, we
sketch some conclusive remark and discuss future directions of research.

2 A dimensional data model

In this section, we describe the MD data model [2], a multidimensional concep-
tual data model that will be used throughout this paper. This choice is moti-
vated by the fact that MD includes a number of concepts that generalize the
notions commonly used in multidimensional analysis or available in commer-
cial OLAP systems, e.g., dimensions, fact tables [6] and cubes [8]. Because of
this, our approach can be considered rather general and can be applied to other
multidimensional data models [14].

MD is based on two main constructs: the dimension and the f-table. A
dimension represents a domain of real-world entities called members. Members
of a dimension can be the days in a time interval, the products sold by a company,
or a collection of stores selling these products. Each dimension is organized into a
hierarchy of levels, corresponding to data domains grouping dimension members
at different granularity. For example, products can be grouped into brands and
categories, and days can be grouped into months and years. Within a dimension,
members at different levels are related through a family of roll-up functions. A
roll-up function relates the members of a pair of levels by mapping each member
having a finer grain (e.g., a product) to a member having a coarser grain (e.g.,
a brand). An f-table is the conceptual counterpart of a fact table and associate
measures to members of dimensions and are used to represent factual data. For
example, the daily sales of a chain of stores can be represented by an f-table that
associates with a product, a day, and a store, the number of items sold of that
product, day, and store, together with the corresponding gross income and cost.
In the following, we provide a more systematic presentation of these notions.

Definition 1 (Dimension). A dimension d is composed of:

– a scheme, made of a finite set L(d) = {l1, . . . , ln} of levels and a partial
order �d on L(d); if l1 �d l2 we say that l1 rolls up to l2;

– an instance, made of a function m associating a set of members with each
level and a family of functions ρ including a roll up function ρl1→l2 : m(l1) →
m(l2) for each pair of levels l1 � l2. ��

We assume that L(d) contains a bottom element ⊥d (wrt �d). We shall simply
write � instead of �d whenever d is clear from the context.

Actually, each member of the bottom level ⊥d of a dimension d (the finest
grain for the dimension) represents a real world entity that we call ground. Mem-
bers of other levels represent groups of ground members. For example, within a
dimension of products, a ground member is a single product, whereas a member
of the level brand describes a single brand, that is, the group composed by all
the products of that brand. The active domain of a dimension d is the set of all
the members that actually belong to the various levels of d.



For each pair of levels l1, l2 of a dimension d such that l1 �d l2, we assume
that the following holds in any instance:

– if o1 ∈ md(l1), then there is an o2 ∈ md(l2) such that ρl1→l2(o1) = o2;
– if o2 ∈ md(l2), then there is at least an o1 ∈ md(l1) such that ρl1→l2(o1) = o2.

Therefore, for each ground member of the dimension there is a member in each
aggregation level to which it rolls up. Furthermore, for each member of a non-
bottom level, there is at least a ground member that rolls up to it.

Let {τ1, . . . , τk} be a predefined set of base types, (including integers, real
numbers, etc.).

Definition 2 (F-table). An f-table f over a set D of dimensions is composed
of:

– a scheme f [A1 : l1, . . . , An : ln] → 〈M1 : τ1, . . . ,Mm : τm〉, where each Ai is
a distinct attribute name, each li is a level of some dimension in D, each
Mj is a distinct measure name, and each τj is some base type; and

– an instance, which is a partial function mapping coordinates for f to facts for
f , where: a coordinate is a tuple over the attributes of f , that is, a function
mapping each attribute name Ai to a member of li; and a fact is a tuple over
the measures of f , that is, a function mapping each measure name Mj to a
value in the domain of type τj. ��

A collection of f-tables over the same dimensions compose a data mart.

Definition 3 (Data mart). A data mart is composed of a set D of dimensions,
and a set F of f-tables over the dimensions in D. ��
Example 1. Figures 1, 2, and 3 show three (autonomous) data marts, each con-
sisting of a single f-table. This example is inspired by case studies discussed
in [6]. The Sales data mart (Figure 1) represents daily sales of products in a
chain of stores. The Store Inventory data mart (Figure 2) represents inventory
snapshots for the same products and stores of the Sales data mart given on a
weekly base. Finally, the Warehouse Inventory data mart (Figure 3) represents
daily inventory snapshots for the warehouses supplying only the food and bev-
erage products to the same stores of the Sales and Store Inventory data marts.

Note that the granularity of data in the three data marts is different. This
is apparent for time data, given daily in two data marts, but weekly in the
other one. Similarly, products are described as SKUs (stock keeping units, that
is, products that can be sold at retail, like a can of coke) at the stores, but as
packages (boxes of SKUs, e.g., a package of 20 cans of coke) at the warehouses.

Another difference is that the first two data marts contain data about many
products along years 2000-2003, whereas the warehouse data mart contains only
data about food and beverage products along years 2002-2003. ��

It is worth noting that, according to the traditional database terminology, the
MD is a conceptual data model and therefore its schemes can be implemented
using several logical data model. For example, as described in [2], an MD data
mart can be easily implemented as a set of star schemes [6] having a dimension
table for each dimension and a fact table for each f-table.



Daily Sales Facts
Product
Day
Store
Promotion

Product
Dimension (p1)

product (SKU)

categorybrand

Time
Dimension (t1)

day

month

year

week

Promotion
Dimension (m1)

promotion

price red. typemedia type

Store
Dimension (s1)

store

city

state
Quantity Sold
Sales Dollar Amount
Cost Dollar Amount

time span: 2000-2003

Fig. 1. Sales data mart

Store Inventory
Snapshot Facts

Product
Week
Store

Product
Dimension (p2)

product (SKU)

brand

Time
Dimension (t2)

week

year

Store
Dimension (s2)

store

city

state Quantity on Hand
Quantity Sold
Dollar Value at LSP

time span: 2000-2003

Fig. 2. Store Inventory data mart

Warehouse Inventory
Snapshot Facts

Product (package)
Day
Warehouse

Product
Dimension (p3)

Time
Dimension (t3)

day

month

year

Warehouse
Dimension (w3)

warehouse

city

state Packet Quantity on Hand
SKU Quantity on Hand
Dollar Value at Cost

product (package)

product (SKU)

brand

time span: 2002-2003

food& beverage only

Fig. 3. Warehouse Inventory data mart



3 An algebra for dimensions

We now introduce the dimension algebra (DA), a simple algebra over dimensions
that will be used to extract sub-dimensions from a given dimensions. DA is based
on three operators: (i) selection, which restricts a dimension to a subset of its
ground members; (ii) projection, which prunes levels and roll-up functions from
a dimension; (iii) aggregation, which aggregates over a level in a dimension.

In what follows, d denotes a dimension having scheme (L(d),�) and instance
(m, ρ).

Definition 4 (Selection). Let S be a subset of the ground members of d. The
selection σS(d) of d over S is the dimension d′ such that: (i) the scheme of d′

is the same of d and (ii) the instance of d′ contains: the ground members in S,
the members of d that can be reached from them by applying roll-up functions in
ρ, all the roll-up functions of d restricted to the members of d′. ��

Definition 5 (Projection). Let X be a subset of the scheme of d such that:
(i) ⊥d ∈ X and (ii) if X contains l1 � l2 then both l1 and l2 are in X. The
projection πX(d) of d over X is the dimension d′ such that: (i) the scheme of
d′ is X and (ii) the instance of d′ contains: only the members of d that belong
to levels in X and only the roll-up functions ρl1→l2 of d such that l1 � l2 belong
to X. ��

Definition 6 (Aggregation). Let l be a level in L(d). The aggregation ψl(d)
of d over l is the dimension d′ such that: (i) the scheme of d′ contains l, all the
levels of d to which l rolls up, and the restriction of � to these levels, and (ii)
the instance of d′ contains: only the members of d that belong to levels in d′ and
only the roll-up functions ρl1→l2 of d such that l1 � l2 belong to d′. ��

The simplest DA expression consists just of a dimension name, and its result
is the dimension itself. More complex DA expressions can be written by applying
and combining the three DA operators above to a dimension. We denote by E(d)
the dimension obtained by applying a DA expression E to a dimension d.

Example 2. In Example 1, the Time dimension t2 of the Store Inventory data
mart can be computed by applying an aggregation to the Time dimension t1 of
the Sales data mart, as ψweek (t1) (see Figure 4). Similarly, the Time dimension t3
of the Warehouse Inventory data mart can be computed by applying a selection
followed by a projection to the Time dimension t1 of the Sales data mart, as
follows (see Figure 5):

πday,month,year ,day�month,month�year (σO2002−2003
(t1)),

where O2002−2003 denotes the days that belong to years 2002-2003. ��

It is worth noting that DA expressions allow to “reduce” the scheme and/or
the instance of a dimension. Indeed, the goal of a DA expression is to compute



Time
Dimension (t1)

day

month

year

week

Time
Dimension (t3)

week

year

aggregation

time span: 2000-2003 time span: 2000-2003

Fig. 4. Application of a DA expression

Time
Dimension (t1)

day

month

year

week

time span: 2000-2003

Time
Dimension (t3)

day

month

year

time span: 2002-2003

selection and
projection

Fig. 5. Application of another DA expression

a subset of a dimension. Note also that projection and aggregation have dif-
ferent goals, since projections always keep the bottom level whereas non trivial
aggregations drop it.

We now introduce a desirable property of DA expressions.

Definition 7 (Lossless expression). A DA expression E over a dimension d
is lossless if, for each each pair of ground members o1, o2 ∈ md(⊥d) and for each
level l ∈ L(d) such that o1 and o2 roll up to a same member o ∈ md(l) (that
is, ρ⊥d→l

d (o1) = ρ⊥d→l
d (o2) = o), then neither or both o1, o2 belong to the active

domain of E(d). ��
In other words, E is lossless if, whenever a member o belongs to E(d), then
all the members that roll up to o in d belong to E(d) as well. This property is
important because, if E is lossless, then aggregating an f-table over E(d) yields
as result a subset of the facts that can be obtained by aggregating over d, with
the same measures. Otherwise, the result of aggregating over E(d) could produce
different results than aggregating directly over d.

It is possible to show that DA expressions involving only projections and
aggregations are always lossless. On the other hand, if a DA expression involves
selections, the lossless property can fail to hold: it depends on the particular sets
of elements chosen to perform the selections.



4 Dimension compatibility

In this section we present our notion of compatibility among dimensions. Intu-
itively, two dimensions are compatible if their share some information and this
common information is consistent. This is a very important requirement in drill
across queries, where data marts are joined over related dimensions.

The notion of compatibility between dimensions will be introduced gradually,
by first defining the stronger notion of equivalence. In what follows, d1 and
d2 denote two dimensions, belonging to different data marts, having scheme
(L(di),�di

) and instance (mi, ρi), respectively. Moreover, l1 and l2 denote two
levels, l1 ∈ L(d1) and l2 ∈ L(d2).

Definition 8 (Level equivalence). Two levels l1 and l2 are equivalent (writ-
ten l1 ≡ l2) if they have the same members, that is, m1(l1) = m2(l2). ��
Definition 9 (Dimension equivalence). Two dimensions d1 and d2 are equiv-
alent (written d1 ≡ d2) if there exists a bijection φ between L(d1) and L(d2) such
that:

– for each level l ∈ L(d1), l is equivalent to φ(l);
– for each pair of levels l, l′ ∈ L(d1), l �d1 l

′ if and only if φ(l) �d2 φ(l′); and
– for each pair of levels l, l′ ∈ L(d1) such that l �d1 l

′, the roll-up functions
ρl→l′
1 and ρφ(l)→φ(l′)

2 are equal. ��
According to this definition, two equivalent dimensions represent exactly the
same information, apart from differences in the choice of the names given to
levels.

It is still possible that two non-equivalent dimensions have some information
in common. The first requirement is the existence of an operational way to
compare portions of dimensions. This comment leads to the following definitions.

Definition 10 (Dimension comparability). Two dimensions d1 and d2 are
comparable if there exist DA expressions E1 and E2 over d1 and d2, respectively,
such that E1(d1) and E2(d2) are not empty and equivalent. In this case, we say
that d1 and d2 are comparable using E1 and E2. ��
Definition 11 (Dimension intersection). If two dimensions d1 and d2 are
comparable using E1 and E2, then the dimension E1(d1) ≡ E2(d2) is called an
intersection of d1 and d2. ��
We are now ready to introduce our notion of compatibility between dimensions.

Definition 12 (Dimension compatibility). Two dimensions d1 and d2 are
compatible if they are comparable using two lossless DA expressions E1 and E2.

��
In sum, the rationale under the definition of compatibility is that: (i) the inter-
section of two dimensions represents their common information; (ii) DA expres-
sions are used to compute this intersection; and (iii) lossless expressions avoid
inconsistency, in a sense that will be clarified in the following section.



Example 3. Consider again the data marts of Example 1. The Store dimen-
sions s1 and s2 of the Sales and Store Inventory data marts are equivalent.
Their Product dimensions p1 and p2 are not equivalent but compatible; in fact,
p2 can be computed from p1 as πproduct(SKU ),brand,product(SKU )�brand (p1). The
Time dimensions t1 and t2 are also compatible: t2 can be computed as ψweek (t1).
The Store dimension s1 and the Warehouse dimension w3 are compatible, since
ψcity(s1) is equivalent to ψcity(w3). The Product dimensions p1 and p3 are com-
patible too: their common part can be computed by aggregating p3 over level
product (SKU), and by applying to p1 a projection (over levels product (SKU)
and brand and the roll-up relationship between them) and a selection (over food
and beverage products). ��

5 Drill across queries and dimension compatibility

In this section we investigate the impact of dimension compatibility on drill
across queries.

We first define a drill across operator. In [3] we have defined a natural join
operation f1 �� f2 of two f-tables over a set of common attributes (defined on the
same dimensions) whose result is the f-table having as entries the natural join (in
the relational sense) of the entries of f1 and f2 and as facts (i.e., measures) the
juxtaposition of their facts. A drill across operation between two f-tables f1 and
f2 can be defined as an extension of the natural join, in which common attributes
refer to different but compatible dimensions. In this case, before joining f1 and
f2, for each pair of common attributes over compatible dimensions d1 and d2,
we identify an intersection d1∩2 of d1 and d2 and then aggregate f1 and f2 over
the bottom level of d1∩2.

Example 4. Consider again the data marts in Example 1 and a drill across op-
eration over the Sales and Store Inventory data marts. They can be combined
over the compatible dimensions Product, Time, and Store. It follows that the drill
across requires an aggregation of the Sales data mart over the Time dimension
at the week level.

Another possible drill across query is on the Sales and Warehouse Inventory
data marts. Before joining them, they need to be aggregated over the common
city level in the compatible dimensions Store and Warehouse. ��

A number of anomalies can arise in the computation of a drill across query:

– some detail of the original data marts can be lost in the aggregations pre-
ceding the join, when f-tables store facts at different levels of aggregation;

– some data of the original data marts can be lost in the join, when f-tables
refer to members that do not belong to the intersection of compatible di-
mensions.

As an example of the former type of anomaly, the drill across query over the
Sales and Store Inventory data marts of Example 4 could retrieve weekly but not
daily data. As an example of the latter kind of anomaly, the drill across query



over the Sales and Warehouse Inventory data marts of Example 4 retrieves only
data about food and beverage products along years 2002-2003 (see Example 1).

Both cases however refer to a loss of information that is not present in one of
the original data marts. Therefore, these anomalies can be tolerated since they
correspond to the generation of incomplete but correct results.

To understand the impact of dimension compatibility in drill across queries,
let us consider a drill across query involving two comparable but incompatible
dimensions d1 and d2. According to our definitions, this means that we are
able to find data in common between d1 and d2, but the operations required to
select these data produce some loss in the original dimensions that prevent the
correctness of the result of the drill across query. More precisely, incompatibility
implies that an aggregation over the original data marts can differ from the
computation of the same aggregation over the result of the drill across query.

Example 5. Consider two data marts, one representing the costs of buying a set
of products and the second the incomes in selling another set of products. Assume
also that the two sets of products are different but overlapping. If we drill across
over the two data marts, data is meaningful only for the common products. If we
aggregate this data at, e.g., the category level, the costs and incomes obtained
for each category are different from those that can be computed over the two
individual data marts. ��

It is clear that this situation cannot be accepted in drill across queries
over autonomous data marts. Dimension compatibility allows us to prevent this
anomaly.

We now briefly discuss a problem related to measure (fact) compatibility.
Intuitively, two measures of different data marts are compatible when their val-
ues can be combined (e.g., compared, added, or multiplied) in some meaningful
way. This is very important in drill across queries. However, the characteriza-
tion of measure compatibility requires a deep understanding of the semantics of
measures and aggregate functions, as shown by the following example.

Example 6. Consider the second drill across query proposed in Example 4, over
the Sales and Store Inventory data marts. Their dimensions Store and Ware-
house are compatible at the city level. However, joining the two data marts on
this common level is meaningful only if a business rule states that each ware-
house in a city supply all and only stores in the same city. If this is not the
case, the drill across over the city level is not correct, since the result of the
query will contain meaningless facts. One possible solution could be to exclude
the dimensions Store and Warehouse from the drill across query. ��

It is worth noting that dimension compatibility is an extension of Kimball’s
dimension conformity [6], since dimension conformity implies dimension com-
patibility, but the converse does not hold in general. We also believe that, in
autonomous data mart integration, dimension compatibility can be achieved
more often than dimension conformity, and therefore it should be considered the
most common criteria when integrating autonomous data marts.



6 Conclusive remarks

In this paper we have investigated the problem of integrating autonomous data
marts, with the goal of querying them using drill-across operations. To this
aim, we have proposed a novel notion of dimension compatibility and related it
to drill-across queries. It turns out the dimension compatibility is a necessary
condition to obtain meaningful results.

It should be said that several concepts related to dimension and fact com-
patibility have been introduced in this paper in a rather informal way. In the
future, we plan to study these notions and their relationships with the problem
of data mart integration in more depth, both from a theoretical and practical
perspective. In particular, we would like to investigate effective strategies for the
integration of autonomous data marts.

In this respect, an integration methodology that refers to the notion of con-
formity could be based around the following main steps.

1. Data marts to be integrated are analyzed, to identify if and how their di-
mensions are compatible.

2. Semantic matching of compatible dimensions is checked, to verify whether
their join is meaningful.

3. Incompatible but related dimensions are identified and, if possible, made
compatible on the basis of external information.

Step 1 could be performed using an interactive, semi-automated tool for data
mart integration, similar in spirit to Clio [9] and supporting a wide range of
scheme-matching and data-mapping techniques. The goal of step 2 is to prevent
the combination of compatible but semantically heterogenous dimensions, as
discussed in Example 6. Finally, step 3 is oriented towards the identification and
enforcement of further matchings and compatibilities, based on inter-scheme
knowledge.

External information, if available, should be used in data mart integration,
e.g., by adding descriptive data to members. Because of autonomy, such extra
knowledge should not be embedded in the original data marts, but it should be
rather stored in a ad-hoc repository and managed by a sort of Federated Data
Warehouse System.

References

1. A. Abelló, J. Samos, and F. Saltor. On relationships offering new drill-across pos-
sibilities. In ACM Fifth Int. Workshop on Data Warehousing and OLAP (DOLAP
2002), pages 7–13, 2002.

2. L. Cabibbo and R. Torlone. A logical approach to multidimensional databases.
In Sixth Int. Conference on Extending Database Technology (EDBT’98), Springer-
Verlag, pages 183–197, 1998.

3. L. Cabibbo and R. Torlone. From a procedural to a visual query language for OLAP.
In Int. Conference on Scientific and Statistical Database Management (SSDBM’98),
pages 74–83, 1998.



4. A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann, 1999.

5. R. Hull. Managing Semantic Heterogeneity in Databases: A Theoretical Perspec-
tive. In 16th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database
Systems, pages 51–61, 1997.

6. R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling. John Wiley & Sons, Second edition, 2002.

7. M. Lenzerini. Data Integration: A Theoretical Perspective. In 21st ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems, pages 233-246, 2002.

8. Microsoft OLE DB programmer’s reference and data access SKD. Microsoft Corpo-
ration, 1998.

9. R.J. Miller, M.A. Hernández, L.M. Haas, L. Yan, C.T.H. Ho, R. Fagin, and L. Popa.
The Clio Project: Managing Heterogeneity. SIGMOD Record, 30(1): 78–83, 2001.

10. R.J. Miller (editor). Special Issue on Integration Management. IEEE Bulletin of
the Technical Committee on Data Engineering, 25(3), 2002.

11. D. Pedersen, K. Riis, and T.B. Pedersen. XML-Extended OLAP Querying. In Int.
Conference on Scientific and Statistical Database Management (SSDBM’02), pages
195–206, 2002.

12. T.B. Pedersen, A. Shoshani, J. Gu, and C.S. Jensen. Extending OLAP Querying
to External Object Databases. In Int. Conference on Information and Knowledge
Management, pages 405–413, 2000.

13. E. Rahm and P.A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334-350, 2001.

14. P. Vassiliadis and T.K. Sellis. A Survey of Logical Models for OLAP Databases.
SIGMOD Record, 28(4):64–69, 1999.


