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Abstract

This paper considers dimension-exchange algorithms for load balanc-
ing on trees with finitely-divisible loads (token distribution). We present im-
proved analysis of an existing protocol, and in particular, establish a loga-
rithmic upper bound on the discrepancy of the final distribution. Our second
contribution is a new algorithm, which assuming each node has knowledge
of the total number of nodes, determines a perfectly balanced distribution.
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1 Introduction

A fundamental data distribution problem on networks of processors is that ofload
balancing. Each processor possesses an initialload, which represents an amount
of work to be performed. To minimise the time needed to perform all tasks, one
desires that the load be evenly distributed over all processors. Thus, the goal of
a load balancing algorithm is to redistribute the load in such a way that the max-
imum difference between the loads of two processors (thediscrepancy) is min-
imised. In this paper we considerstatic load balancing, in which it is assumed
that the total load is fixed, and no load is created or destroyed before the redis-
tribution is complete. Furthermore we assumesynchronouscommunication, in
which each processor runs a clock and all these clocks are in step. We model the
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communication network by a simple undirected graph, whose nodes correspond
to processors and edges correspond to communication links.

Types of Load Balancing Algorithms: Load balancing schemes can be dis-
tinguished according to the following four criteria. The first criterion discrimi-
nates between global and local computation. Some data distribution methods em-
ploy a centralised processor to gather and make use of a certain amount ofglobal
information. Such methods are often unsatisfactory, in that they do not take into
account the practical limitations of network communication, or result in unnec-
essarily complex algorithms. In alocal load balancing scheme, each processor is
running the same protocol which can only make use of locally-available informa-
tion, such as the load at that processor and at its neighbours. The second criterion
concerns the number of neighbouring processors with which a given processor
can communicate at each step. In asingle-portmodel each processor may send
and receive at most one message at any one time. This model is considerably
weaker than themulti-port model, also called the Multiple Instruction Multiple
Data (MIMD) model, where concurrent communication to all the neighbours is
allowed. The third criterion deals with how load itself is modelled. One alternative
is to assume that the load isinfinitely-divisible; that is, a real-valued quantity able
to be arbitrarily split among processors. A more realistic model considers the load
to consist of unit-sized jobs (calledtokens). In this model, load balancing is also
calledtoken distribution. The final criterion, which is only applicable in a token
distribution setting, deals with the number of tokens which can be transfered long
a communication link in a single step. In themultiple-tokenmodel an arbitrary
number of tokens can be transfered, while in thesingle-tokenmodel at most one
token can be transfered across an edge in a single step.

In this paper, we are consider token distribution in a single-port single-token
model mainly using local computation only. (In Section 4 we describe a token
distribution algorithm which uses some global information to perform optimal
balancing.) One method for token distribution in the single-port model that re-
quires no global information is the so-calleddimension-exchangemethod. Here
the edges of the network are coloured in a preprocessing step such that no two
edges incident to a common node receive the same colour. (The classical result
of Vizing [11] states that a simple graph with maximum degreeD has such an
edge-colouring withD or D+ 1 colours.) The copy of the algorithm running at
nodev uses the colouring of edges incident tov in order to pair processors for
data exchange. Dimension-exchange algorithms are invariably of the following
general form, where the set of edge colours is taken to bef0;1; : : : ;χ�1g.
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Algorithm DIMENSION-EXCHANGE (nodev)
t 0;
repeat

if there exists an edgevwof colourt modχ incident tov then
exchange information on loads betweenv andw;
compare the loads ofv andw according to some protocol;
if required, send token(s) fromv to w or receive token(s) fromw;

end-if
t t+1;

until some stopping condition is satisfied;

For the dimension-exchange protocols described in this paper, the body of
the ‘if’ statement in the DIMENSION-EXCHANGE algorithm can be implemented
in parallel across all nodes in a constant number of communication steps. We
therefore consider these steps to be executed in one unit of time. In each step,
those edges of the colour under consideration are said to beactive. A sequence of
χ consecutive steps is called around. (During a round every edge is active exactly
once.)

Our Results: In this paper we consider token-distribution on trees. This ap-
proach is of wider significance since an algorithm for token-distribution on trees
can be applied to a spanning tree of an arbitrary network. The first contributions of
this paper is improved analysis of an existing dimension-exchange protocol for ar-
bitrary trees. Previous analysis of this protocol on trees has been for the complete
binary tree only. For a given treeT, we determine the worst case distribution on
T under this protocol. We then prove that for an arbitrary initial distribution on an
n-node treeT with maximum degreeD, this protocol will reduce the discrepancy
to at most

min

�jn
2

k
;1+(D�2)dlog2ne;

�
D+1

2
dlog2ne

��
:

As an example, we show that this protocol will reduce the discrepancy of a
distribution on the completek-ary tree of heighth (k � 1, h � 1) to at most
minf(k+ 1)(h+ 1)=2;(k� 1)h+ 1g. This generalises the result of Houle, Tem-
pero, and Turner [5].

Our second contribution is a new dimension-exchange algorithm which pro-
duces a distribution with discrepancy at most one, which is of course optimal.
For trees of bounded degree, the rate of convergence is shown to be optimal in
the worst-case. Unfortunately, this algorithm assumes that each node has knowl-
edge of the number of nodes in the tree. This is the first known algorithm for
single-token single-port load balancing which achieves optimal discrepancy.
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Related Work: A dimension-exchange algorithm for load balancing on thed-
dimensional hypercube with infinitely divisible loads was proposed by Cybenko
[1]. Cybenko showed that if every exchange results in an equal sharing of the load
between the two nodes involved, then afterd iterations the discrepancy would
be zero. Hosseiniet al. [4] demonstrated that, for infinitely-divisible loads, Cy-
benko’s analysis could be generalised to arbitrary networks.

Assuming finitely-divisible loads, Hosseiniet al. [4] provided a dimension-
exchange algorithm for token distribution on thed-dimensional hypercube which,
afterd steps, reduced the discrepancy to at mostd. Houle and Turner [6] proposed
a dimension-exchange algorithm for the two-dimensional mesh and torus, which
reduces the discrepancy to two for the mesh and four for the torus, both in worst-
case optimal time. The same algorithm is analysed by Houle, Tempero, and Turner
[5] for token distribution on the complete binary tree. They showed that the dis-
crepancy converges to at most the height of the tree, again in optimal time in the
worst case.

Ghosh and Muthukrishnan [3] and Ghoshet al. [2] studied a randomised
dimension-exchange algorithm for token distribution on arbitrary graphs (as well
as a deterministic multi-port algorithm). Their algorithm determines a random
matching at each step, as opposed to cycling through the edges with respect to
a fixed edge-colouring. Note that the result in [2] only guarantees that the dis-
crepancy in ann-node tree will be reduced to at most1

2nlogn. Rabaniet al. [10]
analyse a dimension-exchange algorithm in a multiple-token model that achieves
optimal discrepancy.

The paper is organised as follows. In Section 2 we formalise the token distri-
bution problem and describe two existing dimension-exchange protocols for this
problem. In Section 3 we analyse the performance of these protocols on trees. Our
optimal algorithm is presented in Section 4. Due to space limitations many proofs
are sketched or omitted.

2 Dimension-Exchange Protocols

The token distribution problem was first posed by Peleg and Upfal [8, 9], and
may be stated as follows. Suppose we are given a parallel architecture whose
interconnection network is represented by an undirected graphG = (V;E), and
a distribution functionload : V ! N, where load(v) is the number of tokens
initially at the nodev.

The load of a nodev at timet (that is, immediately before stept) is denoted by
loadt(v). We define the (node-)discrepancybetween nodesv andw at timet to be
∆t(v;w) = jloadt(v)� loadt(w)j. The (edge-)discrepancyof an edgevw at time
t is ∆t(vw) = ∆t(v;w). The (global) maximumandminimum loadat time t are
globalMaxt(G) = maxfloadt(v) : v 2 Vg andglobalMint(G) = minfloadt(v) :
v 2 Vg, respectively. The (global) discrepancyat time t, denoted by∆t(G), is
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defined to be the maximum node-discrepancy taken over all pairs of nodes; that
is, ∆t(G) = globalMaxt(G)�globalMint(G).

The token distribution problemis the problem of redistributing the tokens on
a given graph so that the global discrepancy of the resulting distribution is min-
imised. The following lower bound for the time required to solve the token dis-
tribution problem on trees is proved in [5] using an elementary bisection-width
argument.

Observation 1. There are instances of the token distribution problem on n-node
trees with discrepancy∆ that requireΩ((∆�δ) �n) steps to reduce the discrepancy
to δ.

In this paper we establish upper bounds on the discrepancy of the distribution
produced by certain algorithms. With this goal in mind, we now formalise the
notion of a distribution which ‘cannot be improved’ by a particular dimension-
exchange algorithm.

Definition 1. For a given dimension-exchange algorithm, we say a distribution
of tokens on a graphG is stableat some timet, if applying the algorithm leads
to a token distribution at some later timet 0 > t with t 0 � t (mod χ) such that for
every nodev, loadt(v) = loadt0(v). Themaximum stable discrepancyof a graph
G, with respect to a given dimension-exchange algorithm, is the maximumδ 2 N
such that there exists a stable distribution onG with global discrepancyδ.

Our first dimension-exchange protocol, called THRESHOLD-2, always sends
a token across an edge with discrepancy at least two, and has appeared in [2].

Protocol THRESHOLD-2 (nodev, timet)
if there exists an edgevwof colourt modχ incident tov then

send the valueloadt(v) to w and receive the valueloadt(w) from w;
if loadt(v)� loadt(w)+2 then send one token fromv to w; end-if

end-if

Theorem 1. Let G be a connected graph with diameterτ(G). Given an arbitrary
initial distribution of tokens on G, theTHRESHOLD-2 protocol will determine a
distribution on G with discrepancy at mostτ(G).

Proof Sketch. By considering the potential function∑v loadt(v)
2, it can be

proved that under the THRESHOLD-2 protocol, the dimension-exchange algo-
rithm will determine a stable distribution. A distribution is stable under the
THRESHOLD-2 protocol if and only if every edge has discrepancy at most one. It
follows thatτ(G) is an upper bound on the maximum stable discrepancy ofG. To
construct a stable distribution onG with discrepancyτ(G), let v be an end-node
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of a path inG with τ(G) edges. Set the load of every nodew of G to be the graph-
theoretic distance fromw to v. This distribution is stable and has discrepancy
τ(G). 2

Our second dimension-exchangeprotocol, called THRESHOLD-1, is stated be-
low. This rule differs from THRESHOLD-2 in that a token is sent across an edge
with discrepancy one. THRESHOLD-1 was analysed for meshes and tori in [6],
and for complete binary trees in [5]. In Section 3 we analyse THRESHOLD-1 for
arbitrary trees.

Protocol THRESHOLD-1 (nodev, timet)
if there exists an edgevwof colourt modχ incident tov then

send the valueloadt(v) to w and receive the valueloadt(w) from w;
if loadt(v)� loadt(w)+1 then send one token fromv to w; end-if

end-if

Note that this protocol is different to that of Rabaniet al. [10] in two respects.
Firstly THRESHOLD-1 is in the single-token model. Secondly, the protocol in
[10] assumes that each edge has a fixed orientation, and in any token exchange an
excess token (if it exists) follows the direction of the edge.

3 Analysis of the THRESHOLD -1 Protocol

In this section we provide a number-theoretic method for determining the max-
imum stable discrepancy of a given tree under the THRESHOLD-1 protocol in-
troduced in Section 2. LetT be a tree whose edges are coloured 0;1; : : : ;χ� 1.
(Using depth-first search for example, the edges of a tree with maximum degree
D can be coloured withχ = D colours.) Consider the directed graphT 0 obtained
from T by addingχ�deg(v) self-loops to each nodev, where deg(v) is the de-
gree ofv in T, and replacing each edgevw of T by two directed arcs�!vw and�!wv.
Every nodev of T 0 has in-degreeχ and out-degreeχ (where a self-loop counts
as both incoming and outgoing). Colour the arcs�!vw and�!wv of T 0 with the same
colour as the edgevw in T, and colour the self-loops ofT 0 so that for every colour
c2 f0;1; : : : ;χ�1g, each node has precisely one incoming arc and one outgoing
arc coloured withc.

Definition 2. Theobserver tourof T is the cyclic sequenceSof the arcs ofT 0 de-
fined by the following rule: if�!vw is colouredc then the outgoing arc atw coloured
(c+1) modχ is immediately after�!vw in S. For each edgevwof T, vw denotes the
start-node of the arc�!vw in the observer tour ofT, as shown in Figure 1.

Lemma 1. For a tree T , the observer tour defines an Eulerian tour of T0.
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Figure 1: Observer tour of the complete binary tree of height 3.

Proof. Suppose the arc�!vw is colouredc. The next arc in the observer tour after
�!vw which is also incident withv is �!wv (otherwise there is a cycle inT). By def-
inition, �!wv is also colouredc, and thus the arc following�!wv in the observer tour
is the outgoing arc atv coloured(c+1) modχ. Continuing in this manner, if the
outgoing arcs atv are ordered(�!vw0;

�!vw1; : : : ;
���!vwχ�1) in the observer tour then�!vwc,

0� c� χ�1, is colouredc. Therefore, at each nodev all arcs incident withv are
traversed before the observer tour repeats itself. Hence the observer tour includes
all arcs ofT 0 and therefore is an Eulerian tour ofT 0. 2

For each edgevw of T, we denote byT(v;w) the connected subtree ofT
obtained by removingvw, and containing the nodev. Since every node hasχ out-
going arcs inT 0, each node ofT(v;w) contributes preciselyχ arcs to the directed
path on the observer tour fromwv to vw. Hence we have the following observation,
where the number of nodes in a treeT is denoted byjTj.

Observation 2. For each edge vw of a tree T, the number of arcs from wv to vw

on the observer tour isχ � jT(v;w)j.

The observer tour definesχ orderings of the nodes ofT in the following man-
ner. For each colourc2 f0;1; : : : ;χ�1g, let Ec = (

�!e0;
�!e1; : : : ;

��!en�1) be the cyclic
ordering of the arcs inT 0 coloured withc ordered as they appear in the observer
tour. Each node has one outgoing arc inEc. If �!ei and�!ej are the outgoing arcs
in Ec at distinct nodesv andw, respectively, then we say thec-gapfrom v to w
is gapc(v;w) = ( j � i) modn. Since 1� gapc(v;w) � n�1, we call an integer
p2 f1;2; : : : ;n�1g a gapof T. Clearlygapc(v;w)+gapc(w;v) = n.

The THRESHOLD-1 protocol has the effect of circulating tokens. To see this,
consider the action of the THRESHOLD-1 protocol, in the case that a nodev of the
treeT initially contains one token, and all other nodes contain zero tokens. Ifxy
is an active edge withload(x) = 1 andload(y) = 0 then one token is sent fromx
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to y. Henceload(x) becomes zero andload(y) becomes one. The token will thus
follow the sequence of edges starting atv which are coloured 0;1;2; : : : ; that is, it
follows the observer tour. By Lemma 1, the observer tour is an Eulerian tour of
T 0. SinceT 0 hasχ �n arcs, afterχ �n steps, the token will have traversed the entire
tree and will have returned tov.

Definition 3. A phaseis a sequence ofn consecutive rounds; that is,χ �n consec-
utive steps. A phase commencing at timet � c (mod χ) is called ac-phase.

For our purposes it shall suffice to consider disjointc-phases for some fixed
colour c. Using the potential function∑v loadt(v)

2 and the notion of a phase
we prove the following result, which implies the maximum stable discrepancy
is an upper bound on the final discrepancy of a given distribution under the
THRESHOLD-1 protocol.

Lemma 2. For an arbitrary initial distribution on a tree T , under the
THRESHOLD-1 protocol, the dimension-exchange algorithm will determine a sta-
ble distribution.

In order to analyse the effects of the THRESHOLD-1 protocol on the circula-
tion of tokens, it will be convenient to adopt a vantage point which itself circulates
through the tree. Associated with each nodev of the tree, we consider there to be
an ‘observer’ which at the start of a phase is atv and thereafter follows the ob-
server tour. The sequence of load values encountered by an observer is critical to
our analysis. We formalise these notions as follows.

Definition 4. Consider a phase of the dimension-exchange algorithm on a treeT
starting at timet0 � c (mod χ). For each nodev of T theobserverof v at timet,
t0 � t < t0+χ �n, denoted byobst(v), is the nodew with gapc(v;w) = t. We say
obs(v) is at wat timet if obst(v) = w. (The load of an observer is thus the load
of the node where the observer is currently situated.) At a particular time point
during the phase, we say an observer ismaximum(respectively,minimum) if the
current load of the observer equalsglobalMaxt0

(T) (globalMint0
(T)); that is, the

maximum (minimum) load at thestart of the phase.

Figure 2 provides an example of a stable token distribution. The colour of
each edge and the load of each node after each step is indicated. There are two
maximum observers and one minimum observer, each of which remain maximum
or minimum observers throughout the phase.

We now describe how to determine the maximum stable discrepancy of a
tree T = (V;E) under the THRESHOLD-1 protocol. Suppose there is a stable
distribution onT at time t � c (mod χ). In Lemma 3 below we show that if
gapc(v;w) = jT(x;y)j for some pair of nodesv, w and some edgexy, then the
node-discrepancy∆t(v;w) � 1. We therefore define thestable gaps for discrep-
ancy 1as follows:

SG1(T) = fjT(x;y)j; jT(y;x)j : xy2 Eg :
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Figure 2: One phase of THRESHOLD-1 on a stable distribution.

SincejT(x;y)j+ jT(y;x)j = n, if p 2 SG1(T) thenn� p 2 SG1(T). It fol-
lows from Observation 2 that the stable gaps for discrepancy 1 determine which
observers meet at an active edge during a phase; see Figure 3.

Lemma 3. Under the action of theTHRESHOLD-1 protocol on a tree T , two ob-
serversobs(v) andobs(w) in a particular c-phase are at end-nodes of a common
active edge during this phase if and only ifgapc(v;w) 2 SG1(T).

v

w

xy

yx

gap

c (v
;
w
)
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c (v; w)

(a)

v

w

xy

yx

gap

c (v
;
w
)

ga
p c

(v;
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(b)

Figure 3: Relative positions ofv, w, and the edgexy in thec-ordering starting atv.

In a stable distribution, whenever two observers meet at an active edge, their
discrepancy must be at most one. Since Lemma 3 characterises when two ob-
servers will meet at an active edge, we have a necessary condition for a distribu-
tion to be stable. The next result asserts that this condition is sufficient.

Lemma 4. A distribution on a tree T is stable under theTHRESHOLD-1 proto-
col at some time t� c (mod χ) if and only if every pair v;w of nodes of T with
gapc(v;w) 2 SG1(T) has node-discrepancy∆t(v;w) � 1.
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For any stable distribution at timet � c (mod χ), we have shown that if two
nodes havec-gap inSG1(T), then their node-discrepancy must be at most one. If
two nodes have ac-gap of(p+q) modn, for somep;q2SG1(T), then in a stable
distribution their node-discrepancy must be at most two. We therefore define the
stable gaps for discrepancy i(i � 2) as follows:

SGi(T) =

�� k

∑
j=1

pj

�
modn : pj 2 SG1(T);1� k� i

�
:

We define thestabilityof a gapp of T to be

stability(p) = minfi � 1 : p2 SGi(T)g

For each gapp, if p 2 SGi(T) thenn� p 2 SGi(T), and hencestability(p) =
stability(n� p). We now provide a second characterisation of stable distributions
under the THRESHOLD-1 protocol in terms of the stability of gaps.

Theorem 2. Let T be a tree whose edges are coloured0;1; : : : ;χ� 1. Under
theTHRESHOLD-1 protocol, a distribution on T is stable at time t� c (mod χ)
if and only if for all pairs of nodes v, w of T , the node-discrepancy∆t(v;w) �
stability(gapc(v;w)).

Proof. ((=) Suppose that for all pairs of nodesv, w of T the node-discrepancy
∆t(v;w) � stability(gapc(v;w)). Then for all pairs of nodesv, w of T with
gapc(v;w) 2 SG1(T), the node-discrepancy∆t(v;w) � 1. By Lemma 4, the dis-
tribution is stable.

(=)) We prove the ‘only if’ part of this result by induction oni with the fol-
lowing induction hypothesis:If a distribution on T is stable at time t� c (mod χ)
under theTHRESHOLD-1 protocol, then for all pairs of nodes v;w of T with
stability(gapc(v;w)) = i, the node-discrepancy∆t(v;w)� i.

The basis of the induction withi = 1 is the ‘only if’ assertion in Lemma 4. Let
i � 2, and assume that the induction hypothesis is true for values less thani. As-
sume, to the contrary, that there is a stable distribution onT at timet � c (mod χ)
such that for some nodesv and w with stability(gapc(v;w)) = i, the node-
discrepancy∆t(v;w) � i+1. Thusgapc(v;w) 2 SGi(T)nSGi�1(T), and hence

gapc(v;w) =

 
i

∑
j=1

pj

!
modn ; (1)

with pj 2 SG1(T). Let x be the node withgapc(v;x) = pi . Observe that
gapc(v;x)+gapc(x;w)� gapc(v;w) (mod n). Hencegapc(x;w)� gapc(v;w)�
pi (mod n), and by (1),

gapc(x;w) =

 
i�1

∑
j=1

pj

!
modn :
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Thus gapc(x;w) 2 SGi�1(T), and by the induction hypothesis,∆t(x;w) �
i�1. Sincepi 2SG1(T), by the basis of the induction,∆t(v;x)� 1. By the triangle
inequality,∆t(v;w) � ∆t(v;x)+∆t(x;w) � 1+(i�1) = i, which contradicts our
initial assumption. 2

For ann-node treeT, we define

MSD(T) =minfi � 1 : SGi(T) = f1;2; : : : ;n�1gg :

Equivalently,MSD(T) is the maximum stability taken over all gaps ofT. Note
thatMSD(T) is not defined with respect to a particular edge-colouring.

Theorem 3. The maximum stable discrepancy of a tree T under the
THRESHOLD-1 protocol isMSD(T).

Proof Sketch. For every gapp of T there exist pairs of nodesv, w with
gapc(v;w)= p. It follows from Theorem 2 that there is no stable distribution onT
with greater global discrepancy thanMSD(T). We now construct, for an arbitrary
time t, a distribution onT with discrepancyMSD(T) which is stable at timet.
Let s be an arbitrary node ofT. Setload(s) 0, and for every other nodev, set
load(v) stability(gapc(s;v)) wheret � c (mod χ). SinceSGi�1(T)�SGi(T)
for everyi � 2, the discrepancy of this distribution isMSD(T). It can be shown
that this distribution is stable at timet, and therefore the maximum stable discrep-
ancy isMSD(T). 2

For everyn-node treeT, 12 SG1(T). It follows that the maximum stable dis-
crepancy ofT under the THRESHOLD-1 protocol is at mostn=2. Let Sk be the
k-star; that is, the tree withk edges all incident to a single node. ThenSG1(Sk) =

f1g. It follows that MSD(Sk) = b(k+ 1)=2c = bn=2c, and the above observa-
tion is tight forSk. By Theorem 1, the maximum stable discrepancy ofSk under
the THRESHOLD-2 protocol is 2. Therefore the THRESHOLD-2 protocol is supe-
rior to the THRESHOLD-1 protocol for star architectures. Conversely, by Theo-
rem 1, then-node pathPn has maximum stable discrepancy ofn� 1 under the
THRESHOLD-2 protocol, and sinceSG1(Pn) = f1;2; : : : ;n�1g, Theorem 3 im-
plies thatPn has maximum stable discrepancy of 1 under the THRESHOLD-1 pro-
tocol. Therefore for paths, THRESHOLD-1 is superior to THRESHOLD-2.

We now establish a logarithmic upper bound on the maximum stable discrep-
ancy of an arbitrary tree under the THRESHOLD-1 protocol. The CONSTRUCT

SUBGRAPH algorithm to follow, given a treeT and gapp of T, determines a
connected subtreeα with p nodes. It does so by building up the subgraphα
from a single node, and maintaining a connected subgraphβ, disjoint from α,
of candidate nodes for inclusion intoα such thatβ has one node adjacent to
a node inα. We implicitly associate the subgraphsα and β with the sets of
nodes which respectively induce them. The algorithm makes use of thecentroid
of a tree, defined as follows. For each nodev of a treeT, let C(v) = maxfjSj :
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S is a connected subgraph ofT n fvgg. A centroid is any nodev of T for which
C(v) is minimum. Kang and Ault [7] show that ifv is a centroid ofT, then
C(v)� jTj=2.

Algorithm CONSTRUCTSUBGRAPH (gapp of a treeT = (V;E))
choose a leaf-nodel of T;
setα flg, β V nflg;
while jαj< p do

let v be a centroid node ofβ with d= deg(v);
let β1;β2; : : : ;βdeg(v) be the connected subgraphs ofβnfvg such that

β1 contains a node adjacent to a node inα, or
if v is adjacent to a node inα thenβ1 = /0;

(refer to Figure 4)
Case 1: ifjαj+ jβ1j> p then setβ β1; else
Case 2: ifjαj+ jβ1j= p then setα α[β1; else
Case 3: ifjαj+ jβ1j< p then

seti min
n

j � 1 : jαj+1+
j

∑
k=1

jβkj> p
o

;

setα α[fvg[
i�1[

j=1

β j andβ βi ;

end-if
end-while

�1

�2 �3

�i

�d�1�d

�

�

v

Figure 4: The subgraphsβ1;β2; : : : ;βd associated with a centroid nodev of β.

Lemma 5. Let p be a gap of an n-node tree T with maximum degree D, and let
M = minf1+(D�2)dlog2ne;bD+1

2 dlog2necg. Then p2 SGM(T).

Proof Sketch. Given a gapp of T, the algorithm CONSTRUCT SUBGRAPH(p)
determines a connected subtreeα with p nodes, such that ifv1;v2; : : : ;vr are
the vertices inα incident to an edge whose other endpoint is not inα then
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r � dlog2ne. For each vertexvi , 1� i � r, let wi;1;wi;2; : : : ;wi;ci be the nodes
adjacent tovi which are not inα, and letwi;ci+1;wi;ci+2; : : : ;wi;di be the nodes
adjacent tovi which are inα, wheredi = deg(vi). For 1� j � di , let γi; j =

jT(wi; j ;vi)j. Eachγi; j 2 SG1(T) and thusn� γi; j 2 SG1(T). It can be shown
that p = ∑i; j(n� γi; j ) modn. Let M1 = ∑r

i=1ci . Then p is the sum modulon
of M1 terms ofSG1(T), and hencep 2 SGM1(T). It can be shown thatM1 �

1+∑r
i=1(di � 2) � 1+ (D� 2)r. Hencep 2 SG1+(D�2)dlog2 ne(T). This estab-

lishes the first part of the result. We can also expressn� p as the sum of terms in
SG1(T) as follows.

n� p = (n� r)+
r

∑
i=1

di

∑
j=ci+1

(n� γi; j) modn :

r = r �1 is the sum ofr terms ofSG1(T). Hencen� r is the sum modulon of
at mostr terms ofSG1(T). Since eachn� γi; j 2 SG1(T), it follows thatn� p is
the sum modulon of at most

r+
r

∑
i=1
(di�ci) =

r

∑
i=1
(1+di�ci) �

r

∑
i=1
(D+1�ci) = r(D+1)�M1

terms ofSG1(T). Hencen� p2SGr(D+1)�M1
(T) and thusp2SGr(D+1)�M1

(T).
Clearly minfM1; r(D+ 1)�M1g � br(D+ 1)=2c. Hencep 2 SGbr(D+1)=2c(T).
Sincer � dlog2ne, p2 SGb(D+1)dlog2 ne=2c(T). This establishes the second part of
the result. 2

By Theorem 3, and Lemmata 2 and 5 we obtain our main result of this section.

Theorem 4. Given an arbitrary initial distribution of tokens on an n-node tree
with maximum degree D, under theTHRESHOLD-1 protocol, the final distribution
has discrepancy at mostminfbn

2c;1+(D�2)dlog2ne;bD+1
2 dlog2necg.

Houle, Tempero, and Turner [5], who introduced the THRESHOLD-1 proto-
col for trees, provided analysis only in the case of the complete binary tree. The
following upper bound on the maximum stable discrepancy of the completek-ary
tree of heighth (k� 1,h� 1) matches the bound in [5] fork= 2 (up to an additive
constant of 1).

Lemma 6. Under theTHRESHOLD-1 protocol, the maximum stable discrepancy
of the complete k-ary tree of height h, Th;k (k� 1;h� 1) is at mostminf(k�1)h+
1;(k+2)(h+1)=2g.

Proof Sketch. The number of nodes inTh;k is jTh;kj =
kh+1�1

k�1 . The upper bound
of (k�1)h+1 is proved by induction on the heighth of Th;k (for fixedk� 1) with
the inductive hypothesis:Every gap p of Th;k is the sum of at most(k� 1)h+ 1
terms infjTj ;kj : 0� j � h�1g. Since eachjTj ;kj 2 SG1(Th;k), the result follows.
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The upper bound of(k+2)(h+1)=2 is proved as follows. Consider the CON-
STRUCT SUBGRAPH algorithm applied to a completek-ary tree of heighth. In
the first iteration, the subtreeβ is a completek-ary tree with a leaf-node removed.
Thereafterβ is a completek-ary tree with progressively smaller height. Hence
βi = (jβj�1)=k, and therefore the algorithm terminates indlogk ne= h+1 itera-
tions. Since the maximum degree isk+1, it follows using the analysis of Lemma 5
that the maximum stable discrepancy is at most(k+2)(h+1)=2. 2

We conjecture that for allh� 1 andk� 1, the maximum stable discrepancy of
Th;k under the THRESHOLD-1 protocol isb(k�1)h=2c or b(k�1)h=2c+1, which
has been confirmed by directly calculatingMSD(Th;k) for the complete binary tree
Th;2 with h� 18, and forTh;k with 1� h� 6 and 1� k� 6.

4 An Optimal Algorithm

In this section we present the algorithm DISCREPANCY-1, which reduces the dis-
crepancy of an arbitrary distribution to at most one. This algorithm depends on
additional information being stored at each node. In particular, each node stores
the maximum number of tokens at that node during certain time periods, and we
assume that each node has knowledge of the total number of nodes in the tree.

A distribution with relatively large discrepancy can be stable under the
THRESHOLD-1 protocol, since maximum and minimum observers may never
meet at an active edge during a phase. In the USELOCALMAX protocol below,
if a node with maximum load is incident to an active edge with discrepancy one,
then no token is sent across the edge — in effect, the THRESHOLD-2 protocol is
running at nodes with maximum load. Note that the choice of ‘freezing’ nodes
with maximum loads is arbitrary; we could instead ‘freeze’ nodes with mini-
mum load. Based purely on local information, however, each node has no way
of knowing if its current load is a global maximum. For each nodev, the algo-
rithm storeslocalMax(v), which can be considered a ‘local approximation’ to the
current global maximum. We shall describe later howlocalMax(v) is determined.

Protocol USELOCALMAX (nodev, timet)
if there exists an edgevwof colourt modχ incident tov then

send the valueloadt(v) to w and receive the valueloadt(w) from w;
if loadt(v)� loadt(w)+2 or

(loadt(v) = loadt(w)+1 andloadt(v) 6= localMax(v)) then
send one token fromv to w;

end-if
end-if

Algorithm DISCREPANCY-1 below runs incycles, each composed of anA-
phasefollowed by aB-phase. During the A-phase, we use the THRESHOLD-1
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protocol, and the local informationlocalMax(v) is updated so that at the end
of the A-phase, for each nodev, localMax(v) is the maximum number of to-
kens stored atv at any one time during the A-phase. In the B-phase we apply the
USELOCALMAX protocol, using the local information gained during the previous
A-phase.

Algorithm DISCREPANCY-1 (nodev, timet)
localMax(v) load(v);

A: for j = 1 to χ �n do
apply THRESHOLD-1(v; t);
if loadt(v)> localMax(v) then localMax(v) loadt(v);
t t+1;

end-for
B: for j = 1 to χ �n do

apply USELOCALMAX(v; t);
t t+1;

end-for

Theorem 5. For an arbitrary initial distribution on a tree T , repeated application
of the algorithmDISCREPANCY-1 will decrease the discrepancy to at most one.
Furthermore, for bounded degree trees, the rate of convergence is asymptotically
optimal in the worst case.

Proof Sketch. We show that if the discrepancy has not decreased by the end
of the A-phase, then during the B-phase either the global maximum decreases or
the global minimum increases. If during the A-phase the discrepancy decreases,
then we are done. We now assume that during the A-phase the discrepancy has
not decreased. Clearly there is at least one maximum observer which has survived
the A-phase. Since such an observer traverses every node of the tree, at the end
of the A-phase, for every nodev of T, localMax(v) is the global maximum at the
start of the A-phase.

If at the end of the B-phase the global maximum has decreased, then the global
discrepancy has decreased, and we are done. Otherwise, we show that since a
maximum ‘does not move’ during the B-phase, the global minimum must increase
during the B-phase. Hence the global discrepancy has decreased by at least one.

The number of steps to reduce the discrepancy of a given distribution to at
most one is no more than 2(∆0(T)�1) �χn, which by the lower bound of Obser-
vation 1 is asymptotically optimal for trees with bounded degree. 2
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