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Abstract-This semi-tutorial paper discusses the connections 

between the dimension/length profile (DLP) of a linear code, 
which is essentially the same as its “generalized Hamming 
weight hierarchy” 111, and the complexity of its minimal trellis 
diagram. These connections are close andtdeep. DLP duality is 
closely related to trellis duality. The DLP of a code gives tight 
bounds on its state and branch complexity profiles under any 
coordinate ordering; these bounds can often be met. A maximum 
distance separable (MDS) code is characterized by a certain 
extrema1 DLP, from which the main properties of MDS codes 
are easily derived. The simplicity and generality of these interre- 
lationships are emphasized. 

Index Terms-Dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ length profiles, generalized 
Hamming weights, support weights, trellis diagrams, state com- 
plexity, linear codes. 

I. INTRODUCTION 

H E  dimension/length profile (DLP) of an ( n , k )  T linear block code C is the sequence k ( C )  whose 
component k,(C) is the maximum dimension of any sub- 
code (shortened code) of C whose effective length (sup- 
port size) is less than or equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 0 s i s n. The 
length/dimension profile (LDP) is the sequence m(C) 
whose component mj(C) is the minimum effective length 
of any subcode of C whose dimension is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  0 5 j s k. 
Either of these two profiles contains equivalent informa- 
tion about C. 

Considerable interest in LDP’s has been stimulated by 
a paper by Wei [l]. Wei calls the LDP the “generalized 
Hamming weight (GHW) hierarchy” of C ,  since m,(C) is 
the minimum Hamming distance of C. In fact, we shall 
see that the LDP has more to do with length and dimen- 
sion than with distance, which accounts for our terminol- 
ogy. Also, for us the DLP is somewhat more useful than 
the LDP. 

The DLP idea is actually much older, going back at 
least to Helleseth et al. [2], where G H W s  appear as the 
minimum nonzero elements of “support weight distribu- 
tions” [3]. Simonis coined the term “effective length” [4]. 
It has found diverse uses; Wei’s application was to the 
Type I1 wire-tap channel [l]. 
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Quite independently, a sizable literature has developed 
on trellis diagrams of linear codes. A linear code C has a 
well-defined minimal trellis diagram, given a definite or- 
dering of its coordinates [5], [6]. Theoretically, the “com- 
plexity” of a linear code may be defined algebraically by 
the complexity of its minimal trellis diagram. Practically, 
trellis diagrams often lead to efficient trellis-based decod- 
ing algorithms. 

Kasami et al. [7] connected these two topics by using 
Wei’s results to prove that the standard coordinate order- 
ing of a Reed-Muller code is, in fact, the ordering that 
minimizes the size of each state space in its minimal trellis 
diagram. Subsequently, Vardy and Be’ery [SI used GHW 
results to develop lower bounds on the state complexity of 
BCH codes. Ytrehus [91 has sharpened some of these 
bounds. 

The main purpose of this paper is to show that the 
connections between the DLP concept and trellis com- 
plexity are close and deep. 

Given a coordinate ordering, the state and branch com- 
plexity profiles of a linear code C are simple functions of 
the corresponding ordered DLP. Consequently, bounds 
valid for any ordering can be derived from the unordered 
DLP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA n  efficient ordering is one for which these bounds 
are met with equality. For many codes, efficient orderings 
are known. 

There is a close relation between DLP’s and MDS 
(maximum distance separable) codes, as has been recog- 
nized by previous authors. MDS codes may be character- 
ized as those codes whose DLP meets a certain outer 
bound. 

Wei [ l ]  proved a striking duality theorem, relating the 
LDP of a linear code to the LDP of its dual code. We give 
a number of such duality relations. Probably the most 
notable is a simple proof, using DLP duality, that the 
state complexity profile of a linear code and that of its 
dual are identical [5]. Also, an ordering is efficient for a 
code if and only if it is efficient for its dual [71. 

This paper is semi-tutorial. Most of its results are not 
new. However, we believe that the simplicity and general- 
ity of these ideas are noteworthy and important, and that 
this is not sufficiently apparent in the prior literature. 
Therefore we have made an effort to present these ideas 
as simply as possible, and to make clear their interrela- 
tionships. We feel that none of this material would be out 
of place in a first course in coding theory. 
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Section I1 develops basic duality relationships between 
the subcodes (shortened codes) and projections (punc- 
tured codes) of a linear code and its dual. 

Section I11 introduces the DLP, and develops its basic 
properties. Elementary proofs are given of the fundamen- 
tal results of Wei 111, including his duality theorem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
simple bound is given on the DLP of a linear code C, 
which is met if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is MDS. From this result 
follow the main properties of MDS codes. 

Section IV introduces the DLP corresponding to a 
definite coordinate ordering. It is shown that the state and 
branch complexity profiles of C are simple functions of 
this ordered DLP, which leads to DLP bounds on state 
and branch complexity. These bounds can be computed 
using trivial graphical manipulations. In turn, known dis- 
tance bounds on linear codes yield DLP bounds. A num- 
ber of examples show that these bounds are often met 
with equality. This leads to such results as: the state 
complexity profile of the Golay code with its standard 
coordinate ordering [51 is optimum componentwise. A 
code is MDS if and only if its state complexity profile is 
invariant under all coordinate permutations. 

In Section V, we discuss how sectionalization can re- 
duce apparent state complexity, and show that such a 
reduction does not occur with branch complexity. We 
propose that branch complexity ought to be regarded as 
more significant than state complexity. A sectionalization 
is called "efficient" if the maximum branch complexity is 
as small as possible; examples of efficient sectionalizations 
are given. Section V-C discusses an alternative definition 
of branch complexity. 

Section VI is a brief conclusion, with suggestions for 
further research. 

11. PRELIMINARIES: PROJECTIONS, SUBCODES, AND 

DUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An (n ,  k)  linear code C over a field F is a k-dimen- 

sional subspace of the n-dimensional vector space F".  
The parameters n and k are the length and dimension of 
C. The difference r = n - k is the redundancy of C. We 
sometimes denote the length, dimension, and redundancy 
of C by n(C), k (C) ,  and r(C), respectively. 

Both k and r lie in the same range, namely [O, nl. The 
unique ( n ,  n )  code over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF is F". The unique (n ,  0) code is 

(0). 
Let I be an indexset for F". Then an element of F" is 

an n-tuple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = { f i ,  i E I } .  Let J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc I be any subset of I ;  
the complementary subset will be denoted by I - J .  

Projections and subcodes defined on subsets J c I will 
be our fundamental tools. We shall see that, in many 
respects, they are dual concepts. 

The projection P,(C) of C onto J is the image of C 
under the projection operator PJ,  namely, the map that 
zeroes out components outside of J :  

The restriction of a projection P,(C) to J is sometimes 
called a "punctured code" of C. 

The effectiue length of a code C is the size of its support 
[4], defined as 

s u p p ( ~ )  2 { i  E I :  P,,,(c) z (0)). 

We denote the effective length of C by m(C). Clearly, 
m(C) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n(C).  

A projection P,(C) is a linear code with length 
n[P,(C)] = n(C) = 111, effective length m[P,(C)I I IJI, 
and dimension k [  P,(C)I 5 k. 

The subcode C, of C is defined as the set of all code 
sequences whose components are all zero outside of J :  

C, A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{c E C :  c, = 0, i E J }  

The restriction of a subcode C, to J is sometimes called a 
"shortened code" of C. 

Alternatively, C, may be defined as the intersection of 
C and P,(C). Thus C, is a subcode not only of C, but also 

A subcode C, is a linear code with length n(C,) = 

n(C)  = 111, effective length m(C,) I m[P,(C)I I IJI, and 
dimension k(C,) I k [PJ (C) ]  I k .  

The following relation between the dimensions of a 
projection PJ(C) and the subcode C l - ,  is a first indica- 
tion of the duality of projections and subcodes. 

Lemma 1 (Jirst duality lemma): If C is an (n ,  k )  linear 
code and J c I ,  then 

of PJ (c). 

k [P, (C) I  f k(Cl-,) = k.  

Proog The projection map P,: C + P,(C) is a homo- 
morphism with image P,(C) and kernel Cl_,, so P,(C> = 

Corollaiy (dimension lower bound): If C is an ( n ,  k )  
c /c l -  J .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

linear code and J c I ,  then 

k ( C j )  2 k - ( I  - JI.  

Proof By Lemma 1, k(C,) = k - k[P,-,(C)I 2 k - 
0 

Thus shortening a code in II - JI places can reduce its 
dimension by at most I I - J I. 

The dual code C ' to a linear code C c F" is the set of 
all elements of F" that are orthogonal to all elements of 
C, under the usual inner product over F .  If C is an (n ,  k) 
code, then C' is an (n ,  r )  linear code, where r = n - k .  
The dual to C' is C. C is self-dual if C = C' , which is 
possible only if k = r. 

The following lemma shows that projections of C are 

dual to subcodes of C.  
Lemma 2 (second duality lemma): If C is an (n ,  k)  

linear code and J _C I ,  then, as subspaces of P,(F"), C, 
and P,(C ') are dual codes. Consequently, 

II - JI, since k [P l -  ,(C>l 2 II - JI. 

k [ P , ( C ' ) ]  f k ( C J )  = IJI. 

Proofi C, is the intersection of C and PJ(F").  Obvi- 
ously, if f~ P,(F")  and g E F",  then f and g are 
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orthogonal if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,(g) are orthogonal. 
Every element of C, is orthogonal to every element of 
C and thus to every element of P,(C '). Conversely, if 
f E P,(F") is orthogonal to every element of P,(C'), 
then f is orthogonal to every element of C' , so f is in 
C and thus in C, = C n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,(F"). Hence the dual to P,(C ') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
Corollary: If C is self-dual, then C, and P,(C) are dual 

codes. 
In summary, given an ( n , k )  linear code C with index 

set I and a subset J c I of size I l l ,  the dimensions of C,, 
P,-,(C), P,(C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI), and (C '),-, may be determined from 
any one of them, say k(C,). 

Theorem I (duality): Let C and C' be dual (n ,  k )  and 
(n ,  r )  linear codes, with r = n - k. Let J c I ,  and define 
r(C,) A 1JI - k(C,) .  Then 

(as a subspace of PJF"))  is C,. 

dim C, = k (C , ) ,  dim P,_,(C) = k - k ( C , ) ,  

dim(C'1I-J = r - r (C,) .  dim P,(C') = r(C,), 

Simonis [41, using punctured and shortened codes, 
proves Lemmas 1 and 2, but does not state Theorem 1. 

As an immediate corollary, we may state a generaliza- 
tion of Wei's Theorem 2 [l], even though we have not yet 
defined the "generalized Hamming weights" m,(C). 

are dual (n ,  k )  and (n ,  r )  linear 
codes, then 

Corollary: If C and C 

m , ( ~ )  2 min, {IJI: k ( ~ , )  = j} 

= min, {IJI: k - k[P,-,(C)] = j} 

= min, {VI: IJ'I - ~ [ P , ( c ' ) ]  = j} 

= min, {IJI: ~ [ ( C ' I I - J ]  - r + IJI = j}. 

Wei's Theorem 2 is the third of these identities. 

111. DIMENSION / LENGTH PROFILES 

The dimension/length profile (DLP) of C will be de- 
fined as the sequence 

k ( C )  = { k , ( C ) ,  0 I i I n ) ,  

whose ith component k , (C)  is the maximum dimension of 
any subcode C, with IJI = i :  

k , ( ~ )  max, {ki~,): IJI = i ) ,  o I i I n. 

Alternatively, k , (C)  is the maximum dimension of any 
subcode C, whose effective length is not greater than i: 

k , ( C )  = max, { k ( C , ) :  m(C,) I i } ,  0 I i I n. 

Obviously k , (C)  is nondecreasing with i, and k, (C)  = 0, 
k J C )  = k.  Furthermore, by the corollary to Lemma 1, the 
increments k , + , ( C )  - k, (C)  can be at most 1. Therefore, 
k (C)  rises from 0 to k in k distinct unit steps. 

Equivalently, we may define the length /dimension pro- 
file (LDP) of C ,  whose j th  component is the minimum 
effective length of any subcode whose dimension is j :  

m ( C )  = {m,(C), 0 I j I k] 

m,(C> 2 min, {IJI: k (C , )  = j}, 0 I j I k .  

Alternatively, 

m,(C) = min, {m(C,): k (C , )  = j}, 0 I j 5 k .  

Obviously, m,(C) is nondecreasing with j ,  with m,(C) = 0 
and m,(C) = m(C) I n(C). 

The dimension/length profile of C determines the 
length/dimension profile, and vice versa: m,(C) is the 
least i such that k, (C)  2 j ,  and k,(C) is the greatest j 

such that m,(C) I i. The k distinct unit steps in the DLP 
correspond to k distinct values of m,(C) in the LDP; if 
k ,+ , (C)  - k , (C)  = 1, then m,(C) = i + 1 for j = k I+ , (C) .  

Example I :  The dimension/length profile of the (8,4) 
binary extended Hamming code is {O,O, O,O, 1,1,2,3,4). 
From this, it follows that its length/dimension profile is 
{O, 4,6,7, S}, as shown in Fig. 1. Equally, the latter deter- 
mines the former. 

Wei [l]  defines m,(C) as the j th  generalized Hamming 
weight (GHW) of C. The terminology arises from the 
observation that if the minimum Hamming weight of a 
nonzero codeword of C is d,  then m,(C) = d (since 
k , - , (C )  = 0 and k, (C)  = 1). Wei refers to the LDP as 
the GHWhierarchy of C. 

A. DLP Duality 

with components 
We define the inverse DLP of C as the sequence B(C) 

,C,(C) A min, {K[P,(c) ] :  JJI = i } ,  o I i I n. 

Theorem 2: The inverse DLP and DLP of an ( n , k )  
linear code C are related by 

k , ( C )  + k,-,(C) = k ,  0 I i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n.  

Proofi From the first duality lemma, k(C,)  + 

It follows that the inverse DLP i ( C )  can be obtained 
from the DLP k ( C )  by a horizontal reflection about 
i = n/2 and a vertical reflection about j = k/2, or equiv- 
alently, by a 180" rotation about (n/2, k/2), as illustrated 
ifl Fig. 2 for the example (8,4) code. The inverse DLP 
k ( C )  thus rises from 0 to k in k distinct unit steps, which 
occur at the mirror images of the steps of k(C) .  

Moreover, from the second duality lemma, the DLP 
and inverse DLP of C' may be determined from the 

DLP of C via the following dual relationships. 
Theorem 3 (dual DLP): If C is an (n ,  k )  linear code 

with dual C' , then for 0 I i I n, 

k[P,-,(C)I = k.  0 

k , ( ~ )  + ,C,(C') = i .  

Proofi By Lemma 2, k(C,)  + k[P,(C '11 = IJI. 

length n, then the inverse DLP of C and the DLP of C 
are related by 

0 

In other words, if C and C' are dual linear codes of 

k ( C )  + B<c ' = i ,  

where i 2 {i: 0 I i I n}. 
Corollary: If C is self-dual, then k ( C )  + k ( C )  = i. 
It follows that the DLP k(C')  is the difference i - 

k(C),  as illustrated in Fig. 3 for the example (8,4) code. 
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Fig. 4. DLP and inverse DLP of (16,5) code (solid) and (16,111 code 
(dashed). 

Since the unit steps of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk(C)  and k(C’ )  occur at the 
nonzero GHW’s of C and C I , respectively, Wei’s duality 
result thus follows from Theorems 2 and 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Theorem 4 [l]: Given a linear code zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC with dual code 
C ’ , for 1 2 i 5 n, either i is a GHW of C or n - i + 1 

The inverse DLP of C is obtained by rotating the DLP 180” about (n /2 ,  k/2).  other words, is a GHW of c, but not both. 

n 

0 

0 nJ2 

Fig. 2. 

8 

4 

0 

Fig. 3. The DLP 

{ m j ( C  ‘ > , I  i j i r }  = [I, n l  

- { n  - m j ( C )  + I ,  1 i j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k } .  

While this is a striking duality result, it does not appear 
to be directly related to the MacWilliams identities, as 
was suggested by Wei [l]. However, Klove [3] and Simonis 
[4] have been able to prove generalized MacWilliams 
identities for “support weight distributions,” which deter- 
mine GHW hierarchies. 

0 4 8 
B. DLP Bounds and MDS Codes 

of C L  is the difference between i and the inverse 
DLP of C. Graohicallv, the “slope” of the DLP or of the inverse 

Thus k (C ’ )  rises from 0 to r = n - k in r distjnct unit 
steps, which occur whenever there is no step in k (C) .  

Example 2: The DLP of the (16, 5 )  first-order 
Reed-Muller (RM) code is given by [l] 

k ( C )  = ( O , O ,  O , O ,  O , O ,  O , O ,  1 , 1 , 1 , 1 , 2 , 2 , 3 , 4 , 5 1 .  

By Theorem 2, its inverse DLP is 

k ( C )  = {0 ,1 ,2 ,3 ,3 ,4 ,4 ,4 ,4 ,5 ,5 ,5 ,5 ,5 ,5 ,5 ,5} .  

By Theorem 3, the DLP and inverse DLP of the dual 
(16,111 second-order RM code are 

k ( C ’ )  = ( O , O ,  O , O ,  1, 1 , 2 , 3 , 4 , 4 , 5 , 6 , 7 , 8 , 9 ,  10, 111, 

k ( C ’ )  = {0, 1 , 2 , 3 , 4 , 5 , 6 , 7 , 7 ,  

8 ,9 ,10 ,  IO, 11,11,11,111. 

The unit steps of these profiles occur at the following 
places, as shown in Fig. 4: 

k ( C ) :  (8, 12,14,15,16], 

DLP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis eithe; 0” or 45’. Therefore, the DLP and inverse 
DLP are bounded within the regions illustrated in Fig. 5 
for high-rate ( r  < k )  and low-rate ( r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 k )  codes. 

From these bounds and the fact that m,(C) is the 
minimum Hamming distance d of C, we obtain the 
Singleron bound: d s r + 1. Wei therefore calls the lower 
bound of Fig. 5 a “generalized Singleton bound” [ll. 

A maximum distance separable (MDS) code is an (n ,  k )  
linear code C ( k  2 1) that meets the Singleton bound 
with equality. In this paper, a trivial (n,O) code will also 
be defined as MDS, even though its minimum distance is 
conventionally defined as CO. 

The following theorem shows that the bounds of Fig. 5 
are met everywhere with equality if and only if C is MDS. 
In turn, this result implies some of the most important 
properties of MDS codes. 

Theorem 5 (MDS bound): The DLP and inverse DLP of 
an (n ,  k )  linear code C are bounded by 

k ( C ’ ) :  (I ,  2, 3 , 4 , 5 ,  6 , 7 , 9 ,  10, 11, 131, i ( C )  I {0,1,2;.., k ; . . ,  k ] .  

These bounds are met with equality everywhere if and 

only if C is MDS. 

k ( C > :  { 1 , 2 , 3 , 5 ,  9}, 

k (C  I): {4,6 ,7 ,8 ,10 ,  11, 12,13,14, 15,161. 
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C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADistance Bounds on Profiles 

If C is an ( n ,  k )  linear code and the minimum 
Hamming distance between codewords is d ,  then C is 
called an (n, k ,  d )  code. 

If C is an ( n ,  k ,  d )  code, then its minimum distance d 
imposes bounds on its DLP, or equivalently, on its GHW 
hierarchy. For any subcode C, of C must have minimum 
distance d(C,)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 d ( C )  = d .  Let kmax(n, d )  denote the 

minimum Hamming distance d .  Then, 

Fig. 5. Bounds on DLP and inverse DLP of high-rate and low-rate maximum dimension of a linear code with length and 
codes. 

Pro08 The bounds follow from the elementary 
bounds dim P,(C) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJI, dim zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP,(C) _< dim C = k ,  dim C, 
2 0, and dim C ,  2 dim C - II - JI = IJ1 - r ,  which are 
connected by the first duality lemma, and which hold for 
every subset J G I. 

If the bounds are met with equality, then d ( C )  = m,(C)  
= n - k + 1, so C is MDS. Conversely, if C is MDS, 
then m,(C)  = n - k + 1, which implies k , - , (C )  = 0, so 
in view of the unit-step constraint, the only possible DLP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
is the lower bound to k(C). U 

Remark: In the case of equality, the LDP of C is 
(0, n - k + 1, n - k + 2,..., n}. 

Thus MDS codes are those codes whose DLPs  meet 
the outer bounds of Fig. 5. Their most important charac- 
teristics follow directly from this extrema1 property. 

Corollary: If C is an (n,  k )  MDS code, then 

(a) its dual code C ’ is an ( n ,  r )  MDS code; 

(b) for every subset J c I, the punctured code P,(C) is 
MDS; 

(c) for every subset J G I ,  the shortened code C, is 
MDS; 

(d) in particular, if IJI = k ,  then dim P,(C> = k-i.e., 
every subset J of size k is an information set 
for C ;  

(e) in particular, if JJJ = r + 1 = d ,  then dim C, = 

1-i.e., for every subset J of size d ,  there exists a 
codeword of weight d with support J .  

Remark: From (a) and (e), if IJI = k + 1, then there 
exists a codeword of C’ of weight k + 1 with support J 
-i.e., every subset J of size k + 1 is a check set for C. 

Pro08 (a) If the inverse DLP of C is k ( C )  = 

{0,1,2,..., k , .  . . , k } ,  then from Theorem 3, the DLP of 
C ’ is k(C ’) = {O;..,O, 1,2;.-, r ) ,  so by Theorem 5, C 
is MDS. 

(b) and (c): If the bounds of Theorem 4 are met with 
equality, then dim P,(C) = k l J l ( C )  and dim C, = k, , , (C)  
for every J c I ,  as noted in the proof of Theorem 5. The 
inverse DLP of P,(C) and the DLP of C, are thus equal 
to those of C in the range 0 I i 5 IJI, so by Theorem 5, 
both are MDS (when regarded as codes of length IJI). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

In fact, if C is an ( n ,  k )  MDS code over a finite field 
GF( q), then its entire weight distribution is determined as 
a function of n,  k ,  and q by these properties. 

(d) and (e): Special cases of (b) and (c). 

. 

The Singleton bound is the general bound k,,,(n, d )  = 

n - d + 1, which applies over any field F.  Application of 
this bound results in an alternative derivation of the MDS 
bound of Theorem 5. 

When F is a finite field, sharper bounds are‘ often 
known. For binary codes, Brouwer and Verhoeff [lo] 
tabulate results obtained by generations of coding re- 
searchers. For example, the bounds for d = 4 and d = 8 
are as follows. 

Example 3: The greatest possible DLP for a binary 
linear ( n ,  k ,  4) code is 

( O , O , O , O ,  1,1,2,3,4,4,5,6,7,8,9,10,11,11,12, . - . } .  

Any (2”,2” - m - 1,4) extended Hamming code C, m 
2 2, has this profile-i.e., the (4,1,4) code, the (8,4,4) 
code, the (16,11,4) code, and so forth [l]. Shortened 
codes of these codes also achieve this profile. The corre- 
sponding LDP (GHW hierarchy) is 

{0,4,6,7,8,10,11,12,13,14,15,16,18, . . * } .  

Example 4: The greatest possible DLP for a binary 
linear ( n ,  k ,  8) code is 

4 , 5 , 5 ,  6, 7,8, 9, 10,11, 12, 12;..}. 

This profile is attained by the (8, 1, 8) repetition code, the 
(16, 5, 8) first-order Reed-Muller code, and the (24, 12, 8) 
Golay code [l], but not by any (32, 16, 8) code. The 
corresponding LDP is (0, 8, 12, 14, 15, 16, 18, 19, 20, 21, 
22, 23, 24, ..e}. 

IV. TRELLIS COMPLEXITY AND DLP’s 

A linear block code C may be regarded as (the set of 
output sequences of) a time-varying linear dynamical sys- 
tem, provided that its index set I has a definite order. 
Without loss of generality, we may take I as the set 

which has an implicit natural order. We may then think of 
I as the time axis of C, and use temporal language such as 
“before,” “after,” and so forth. 
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In particular, the following special notation will be used 
for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApast i -  and the future zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi+  with respect to time i: 

We shall see shortly that Theorem 6 implies this corol- 
lary: C is MDS if and only if its state complexity profile is 
invariant under all coordinate permutations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. State Spaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.~ A 

I = { i ’  E I :  i ’  < i} = {0,1;..,i - I}; 

i + L  {i’ E I :  i’ 2 i }  = { i ,  i + 1, . - . ,n  - I}. The state space of C at time i is induced by the 

partition of I into the past and future with respect to time 
i: = { i- ,  i+}. It may be defined as a quotient space in 

several equivalent ways [51, [61: 

It is shown in [5l, [61 that, given an ordered time axis I ,  
there exists a well-defined minimal realization of a linear 
code C, and a corresponding well-defined minimal trellis 
diagram for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC based on well-defined state spaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,(C) 
of C at each time i, 0 I i I n. Parameters of minimal 

trellis diagrams will be given below. 

z . , ( ~ )  c/(c,+ c,+) , P,-(C) /C,- ,  p L + ( c ) / c f + .  

From any of its definitions, the dimension of C,(C) is 

A. Ordered Projiles 
s,(C) 2 dim C,(C) = k - k ( C i - )  - k ( C j + )  

Assuming that the time axis I is IO, l;.., n - l}, we 
define the ordered dimension/length profile of C by 

zi(C) 4& k (C , - ) ,  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i I n. 

Clearlx, g(C) I k(C2, since li-1 = i .  Like k(C) ,  z(C) rises 
from k, (C)  = 0 to k, (C)  = k in k unit steps. 

The inverse ordered DLP of C is defined by 

& ( C )  4 k [ P , - ( C ) I ,  0 I i I n. 

Clearly, z(C) 2 i (C) ,  and Z(C) rises from 0 to k in k 
unit steps. 

By Lemma 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,(c,> = k - k(C,+),  which is not neces- 
sarily equal to k - k , - , (C ) ,  since k ( C n - L - )  may _not be 

equal to k(C,+). However, by Lemma 2, g,(C) + z,(C’) 

We say that a coordinate ordering is an eficient order- 
ing for C if z(C) = k(C)  and $(C) = i (C) .  We then 
have the result of Kasami et al. [7]. 

Lemma 3: A coordinate ordering is efficient for a linear 
code C if and only if it is efficient for its dual code C’ . 

Proof By DLP and ordered DLP duality, k7C ’) = i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

For an MDS code, the ordered profiles are invariant 
under coordinate permutations, by the corollary to Theo- 
rem 5,  and hence all orderings are efficient. In fact, this 
property, which has nothing explicitly to do with distance, 
suffices to characterize MDS codes. 

Theorem 6: The ordered DLP of an (n ,  k )  linear code 
C is invariant under all coordinate permutations if and 
only if C is MDS. 

Proof By the corollary to Theorem 5, part (c), if C is 
MDS, then every ordered DLP of C is equal to k (C)  = 

{O;.., 0,1;--, k } .  Conversely, if every ordered LDP is equal, 
say, to m(C)  = {O, d,  ... } (assuming k 2 1; if k = 0, then 
C is trivially MDS), then the minimum distance of C is d; 
moreover, for every subset J of size d,  there exists a 
codeword of weight d with support J .  Taking J = {[O, d) ,  
[l, d + 1) ... [ n  - d,  n)}, we obtain n - d + 1 linearly in- 
dependent codewords, so k 2 n - d + 1. By the 

0 

- 
- I .  

- Z(C) = i - i ( C )  = k(C L). 

Singleton bound, k = n - d + 1, so C is MDS. 

= Z1(C) - Z,(C). 

We call s ( C )  the state complexityprofile of C. Its maxi- 
mum component will be denoted by s,,,(C) A 
max, {s,(C)}. The minimum s,,,(C) over all coordinate 
orderings is called the state complexity s(C) of C. Muder 
[ l l ]  has argued that the parameter s(C) is “a fundamental 
descriptive characteristic [of C ] ,  comparable to the quan- 
tities n (length), k (size), and d (minimum distance).” 

From the first expression above, the state complexity 
profile of a linear code C is a simple function of its 
ordered dimension/length profile. 

Lemma 4: For a linear code C, the state complexity 
profile of C is the difference between the ordered inverse 
DLP of C and the ordered DLP of C: 

s(C) = Z(C) - ac) .  
It is notable that Lemma 4 yields an easy proof of an 

important duality result. 
Theorem 7 ([.5]): The state complexity profile of the 

dual C L  to a linear code C is the same as the state 
complexity profile of C. 

Proof DLP duality (Theorem 3) applies equally to 
ordered DLP’s. Therefore, 

Now, since ordered profiles are bounded by unordered 
profiles, we have the following. 

Theorem 8 (DLP bound on state complexity):-If C is a 
linear code with DLP k ( C )  and inverse DLP k (C) ,  then 
the state complexity profile s(C) of C is bounded by 

S(C)  2 i ( C )  - k ( C ) ,  

with equality if and only if the coordinate ordering of C is 
efficient. 

0 Proof z(C) I k ( C )  and z(C) 2 k(C>. 
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In general, to minimize state complexity, the ordered 
DLP of C should rise as rapidly as possible. In this sense, 
an ordered DLP that meets the bound of Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 is the 
worst possible profile for an (n ,  k) code. Theorems 5 and 
6 show that, regardless of its coordinate ordering, an MDS 
code has this worst possible profile. 

Explicitly, in the high-rate case, an MDS code has the 
state complexity profile 

O s i r r ,  
s,(C> = r ,  r s i s k ,  

i i ’  n - i ,  k s i s n .  

The low-rate case is the dual of the high-rate case: 

O s i s k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S,(C) = (2, k < i < r ,  

n - i ,  r s i s n .  

Thus we obtain the Wolf bound [121: s,(C) 5 min{k, r). 
This implies s,,,(C) 5 min {k, r); equality holds for MDS 
codes with any coordinate ordering. 

The high-rate and low-rate cases coincide when k = r 
= n/2. For any (n ,  k) code, we have s,(C) 5 n/2, with 
equality if and only if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC is an (n ,n/2)  MDS code and 
i = n/2. 

C. Distance / DLP Bounds on State Complexity Profiles 

The distance bounds of Section 111-C and the DLP 
bound of Theorem 8 yield bounds on the entire state 
complexity profile. (This extends Muder’s method of 
bounding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs(C) [ll].) For a number of good codes, these 
bounds can be achieved. 

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (cont.): The (8,4,4) binary code C has DLP 
k ( C )  = {O,O,O, 0,1,1,2,3,4}, so the DLP bound on its 
state complexity profile is s(C) 2 {0,1,2,3,2,3,2,1,0), as 
shown in Fig. 6. Since, by the d = 4 bounds, k(C) is the 
best possible DLP for an (8,4,4) code, this is the best 
possible state complexity profile (componentwise) for any 
(8,4,4) code. In fact, there exists an efficient coordinate 
ordering that attains this profile [5]. 

Example 4 (cont.): The (24, 12, 8) binary Golay code C 
has DLP 

k ( C )  = ~ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 2 , 2 ,  

3 , 4 , 5 , 5 , 6 , 7 , 8 , 9 ,  10, 11,121, 

so the DLP bound on its state complexity profile is 

s (C>  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 {O, 1 , 2 , 3 , 4 , 5 , 6 , 7 , 6 , 7 , 8 , 9 ,  

8 , 7 , 6 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 ) ,  

as shown in Fig. 7. Since k ( C )  is the best possible DLP for 
a (24,12,8) binary code, this s(C) is the best possible 
state complexity profile for a (24,12,8) binary code. This 
not only confirms Muder’s result [111 that the state com- 
plexity s(C) of the Golay code is 9; it also shows that this 
state complexity profile is optimum componentwise. In 
fact, there exists an efficient coordinate ordering that 
attains this profile [51. 

1147 

0 4 8 

Fig. 6. DLP bound on state complexity profile of (8,4,4) binary code. 
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0 4 8 1 2 1 6 2 0 %  

Fig. 7. DLP bound on state complexity profile of (24,12,8) binary 
Golay code. 

Example 3 (cont.): For a code that does not meet the 
distance bound on its state complexity profile, consider a 
(7,3,4) linear binary code C.  It is known that such a code 
must have one word of weight 0 and seven words of 
weight 4. The distance bounds on its DLP, inverse DLP, 
and state complexity profile are 

k ( C )  5 IO,  0, 0, 0 , 1 , 1 , 2 , 3 }  

k ( C )  2 { 0 , 1 , 2 , 2 , 3 , 3 , 3 , 3 }  

S(C) 2 { 0 , 1 , 2 , 2 , 2 , 2 , 1 , 0 ) .  

But an efficient coordinate ordering is impossible, since 
that would imply that both (1111000) and (0001111) are 
codewords, which would imply that the weight-6 word 
(1110111) is a codeword. The best possible ordered pro- 
files for a (7,3,4) code are thus 

z(c) = {O, 1 , 2 , 3 , 3 , 3 , 3 , 3 ) ,  

s ( C )  = ( 0 , 1 , 2 , 3 , 2 , 2 , 1 , 0 1 ;  

the state complexity s(C) is thus 3, not 2. (These results 
can also be derived from the more general results of [131 
and [14], applied either to C or to the dual (7,4,3) code.) 

Example 5: From known results on binary linear (n ,  k, 6) 
codes [lo], the distance bound on the DLP and state 
complexity profile of a (16,7,6) binary linear code are 

k ( C )  5 { O , O , O , O , O , O ,  1 , 1 , 1 , 2 , 2 , 3 , 4 , 4 , 5 , 6 , 7 } ,  

S(C)  2 {O, 1 ,2 ,3 ,3 ,4 ,4 ,4 ,5 ,4 ,4 ,4 ,3 ,3 ,2 ,1 ,0} ,  

so s(C) 2 5. It can be shown that lexiocographic code 
construction of Conway and Sloane [15] (which necessarily 
generates codes satisfying the “chain condition” [161, [171) 
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produces a (16,7,6) “lexicode” with a coordinate ordering 
that meets the DLP bound and achieves s,,,(C) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  
although the inverse DLP and state complexity profile do 
not achieve their bounds everywhere: 

z(C) = IO ,  O , O ,  O , O ,  0 , 1 , 1 , 1 , 2 , 2 , 3 , 4 , 4 , 5 , 6 , 7 } ,  

z(C)  = (0 ,1 ,2 ,3 ,4 ,4 ,5 ,6 ,6 ,7 ,7 ,7 ,7 ,7 ,7 ,7 ,7} ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S ( C )  = {0 ,1 ,2 ,3 ,4 ,4 ,4 ,5 ,5 ,5 ,5 ,4 ,3 ,3 ,2 ,1 ,0} .  

By contrast, Ytrehus [9] has shown that s(C) = 6 for the 
(16,7,6) BCH code (after Vardy. and Be’ery [81 failed to 
find a coordinate ordering with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmax(C) < 6). It is also 
interesting to note that Helleseth and Kumar [18] have 
shown that the (15,6,6) Kasami code achieves the same 
DLP as the (15,6,6) “lexicode.” 

Example 6: The following example indicates how these 
ideas can be applied to more general codes. The 
Nordstrom-Robinson (NR) code is a nonlinear binary 
“(16,8,4)” code. It has been shown [19], [20] that the NR 
code is the binary image of a linear self-dual (8,4) code C 
over the ring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, of integers modulo 4 (the “octacode”), 

and therefore, as a group code [61, its trellis diagram with 
any coordinate ordering is well defined. From the Gries- 
mer bound applied to the binary image of C, its “dimen- 
sion” k,(C) max,{log, IC,l: (JI  = 4) is bounded by 
k , (C)  I 0.5, which implies that s,(C) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3. In fact, a known 
coordinate ordering [20] achieves 

z(C) = {O, O , O ,  0,0.5, 1,2 ,3 ,4} ,  

Z(C) = { 0 , 1 , 2 , 3 , 3 . 5 , 4 , 4 , 4 , 4 } ,  

s ( C )  = (0, 1 , 2 , 3 , 3 . 0 , 3 , 2 ,  1, O}, 

where s,(C) 2 log, C,(C). The same 64-state profile s(C) 
is achieved by a “twisted squaring construction” for the 
NR code [5]. 

Kasami et al. [7], using the GHW hierarchies for RM 
codes of [l], have shown that the standard RM coordinate 
ordering [51 is efficient and yields the best possible state 
complexity profile for all RM codes. The simple bound on 
the DLP of a d = 4 binary code given in Example 3, along 
with DLP duality, proves this result for extended Ham- 
ming codes, first-order RM codes, and their shortened 
codes. 

Vardy and Be’ery [8], using the GHW idea and simple 
low-rate Griesmer bounds, have shown that if d 2 2(n + 
2)/5, then smax(C) 2 k - 1, while if d 2 ( n  + 2)/3, then 
smax(C) 2 k - 2; thus if d / n  is large, then the Wolf 
bound cannot be improved very much. (The codes of 
Examples 5 and 6 meet these lower bounds.) They have 
also used DLP duality to compute lower bounds on s,,,(C) 
for high-rate duals of low-rate codes, and have used 
known distance bounds to compute lower bounds on 
sm,,(C) for mid-rate codes, which are generally well below 
the Wolf bound. They give coordinate orderings for BCH 
codes that approach these bounds, but in general do not 
equal them. Ytrehus [9] has sharpened some of these 
bounds. 

V. BRANCH COMPLEXITY AND DLP’s 

For Viterbi decoding, the total number of trellis 
branches per unit time is usually regarded as a more 
accurate measure of decoding complexity than the size of 
the state space. Thus the branch complexity profile may 
be of more practical importance than the state complexity 
profile. 

We show in this section that the branch complexity 
profile is easily computed from the ordered DLP, like the 
state complexity profile. Furthermore, we show that the 
maximum branch complexity (unlike the maximum state 
complexity) cannot be reduced by constructing a trellis 
with sections comprising more than one time unit (sec- 
tionalization). We therefore propose that branch complex- 
ity should be regarded as more significant than state 
complexity. 

Finally, we briefly discuss an alternative definition of 
branch complexity, applicable when a set of parallel tran- 
sitions may be regarded as a single branch. 

A. Branch Spaces 

and time j 2 i is a triple 
In general [6], a trellis branch between states at time i 

where a,(c) E C,(C) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq ( c )  E C,(C) are the states 
through which the code sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc passes at times i and 
j ,  respectively, and Prl, ,(c) is the part of c that occurs 
during the interval [ i ,  j j .  The set of all such branches is 
the branch space (or trellis section) 

The branch space T,,,(C) is a linear vector space over 
F .  We define its dimension as the branch complexity 
between times i and j: 

b,,,(C) 4 dim T,,,(C). 

It can be shown [6] that the branch space is isomorphic 
to the quotient space 

T,, , (C) == C/(C,-@ c,+>. 
This shows that the following lemma holds. 

b,,,(C) of an (n,  k )  linear code C is equal to 
Lemma 5 (branch complexity): The branch complexity 

b;, , (C) = k - k ( C i - )  - k ( C j - )  = z,(C) - z;(C). 

Note that if j = i ,  then T,,;(C) = C,(C); therefore 
b,,,(C) is equal to the state complexity s,(C). For larger 
intervals [ i ,  j ) ,  b;, ;(C) cannot decrease. 

Lemma 6 (monotonicity of branch complexity): If C is 
linear and [ i ,  j )  C_ [i’, j ‘ ) ,  then bitj,(C) 2 bj, j (C),  with 
equality if and only if k ( C i 8 - )  = k (C i - )  and k (C j ,+ )  = 

k(Cj+) .  In particular, if j 2 i ,  then b;, j ( C )  2 s,(C). 
Proof If i ’  I i and j _< j ‘ ,  then b,,, j ,(C) = k - 

k (C ; , - )  - k(C, ,+)  2 k - k(C,- )  - k (C j+ )  = bi, j (C),  since 
0 k (C , , - )  I k (C i - )  and k ( C j , + )  5 k(Ci+) .  
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For the remainder of this subsection, we consider branch 
spaces with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = i + 1. (In the next subsection, we shall 
consider longer intervals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ i ,  j ) . )  For brevity, we write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb,(C) 
instead of b,,,+,(C), 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i I n + 1. The parameter 
b,,,(C) = max, {b,(C)) will be called the branch complex- 
ity of C. 

For I J  - il = 1, we have the following tight bounds. 
Theorem 9: If C is linear, then for any given coordinate 

ordering, the branch complexity is bounded by 

s,(C) I b, (C)  I s,(C) + 1, 

s,+,(C) I b,(C)  I s,+,(C) + 1. 

Proot The lower bounds follow from Lemma 5. The 
upper bounds follow from the fact that the increment 

This result demonstrates a close relationship between 
state and branch complexity when the trellis sections have 
length Ij - iI = 1. 

Now we develop a DLP bound on branch complexity 
analogous to Theorem 8. From Lemma 5, 

b, (C)  = g,+l(C) - Z,(C). 

In other words, the branch complexity is the difference 
between the ordered LDP of C, shifted by one position, 
and the ordered DLP of C. Define the shift operator (T by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k(C,+ - k (C ,+ )  cannot exceed 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

then 

Theorem 10 (DLP bound on branch complexit$: If C is 
a linear code with DLP k ( C )  and inverse DLP k(C) ,  then 

b(C)  2 a [ i ( C ) ]  - k ( C ) ,  

with equality if and only if the coordinate ordering of C is 
efficient. 

0 
Example 1 (cont.): The DLP bound on the branch com- 

Proot $C) I k ( C )  and a [ ~ ( C ) l  2 a[i(C)l. 

plexity profile of the (8,4,4) binary code is 

{1,2,3,3,3,3,27 11, 

as shown in Fig. 8. In this case, b,,,(C) = s,,,(C) = 3. 

Since this is the best possible DLP for an (8, 4, 4) binary 
code, this is the best possible branch complexity profile 
for any (8, 4, 4) code. The efficient coordinate ordering of 
[5] in fact attains this profile. 

Example 4 (conl.): The DLP bound on the branch com- 
plexity profile of the (24,12,8) Golay code is 

{0,1,2,3,4,5,6,7,7,7,8,97 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA97 

9,9,8,7,7,7,6,5,4,3,2,1,0)  

as shown in Fig. 9. In this case, b,,,(C) = s,,,(C) = 9. 
Since this is the best possible DLP for a (24,12,8) binary 
code, this is the best possible branch complexity profile 

‘ j / q  
0 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 8 

Fig. 8. DLP bound on branch complexity profile of (8,4,4) binary code. 

0 4 8 1 2 1 6 2 0 2 4  

DLP bound on branch complexity profile of (24,12,8) binary Fig. 9. 
Golay code. 

for a (24,12,8) code. The efficient coordinate ordering of 
[5 ]  in fact attains this profile. 

The results of [ l ]  and [7] show that for all Reed-Muller 
codes, the standard ordering of [5] is efficient and yields 
the best possible branch complexity profile. 

Again, the worst case occurs for MDS codes in any 
coordinate ordering. Then, in the high-rate case, we have 

b(C) = {I ,  2;.., r + 1, r + I;.., r + 1, r,..., I}. 

In the low-rate case (now not the dual of the high-rate 
case), we have 

b(C)  = {1,2;.., k ,  k ; . . ,  k ,  k - l;.., 1). 

The Wolf-type bound for branch complexity is thus 
b,(C) _< min { k ,  r + 1). The two cases now coincide when 
k = ( n  + 1)/2, r = ( n  - 1)/2. This implies that, for any 
( n ,  k )  code, we have b,(C) I ( n  + 1)/2, with equality if 
and only if C is an ( n , ( n  + 1)/2) MDS code and i = 

( n  - l)/2. 

B. Sectionalization 

The apparent maximum state complexity can be re- 
duced by sectionalization; that is, by partitioning the time 
axis I into trellis sections T, ,  of lengths I j  - iI possibly 
greater than 1. For the most part, we will let all section 
lengths be equal. 

Example 1 (cont.): For the (8,4,4) binary code, if the 
time axis is divided into four sections of length 2, then the 
state complexity profile at the section boundaries (the 
values of s,(C) for i even) is {0,2,2,2, O}, so the apparent 
state space size is only 4 states, rather than 8 [51. 

Example 4 (cont.): For the (24,12,8) Golay code, if the 
time axis is divided into three sections of length 8, then 
the state complexity profile at the section boundaries (the 
values of s,(C) for i = 0 mod8) is {0,6,6,0}, so the 
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apparent state space size is only 64 states, rather than 512 

[51. 
Practically, sectionalizations that reduce the apparent 

state complexity in this way often lead to efficient trellis- 
based decoding algorithms (see, e.g., [51 and later papers). 
Theoretically, however, this apparent simplification is 
somewhat dubious. For instance, if the entire time axis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
is collapsed into one section, then the apparent state 
complexity is reduced to zero [ll].  

By contrast, the following holds. 
Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11: The maximum branch complexity of a 

linear code C cannot be reduced by sectionalization. 
Proofi Let b,,,, ,(C) attain its maximum b,,,(C) at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i*. Then, in any partition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ, there must be some 
subinterval [ i ,  j )  that includes { i *>  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [ i * ,  i* + 1). But then, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
This theoretical result, in combination with the practi- 

cal importance of branch complexity, suggests that branch 
complexity ought to be regarded as more significant than 
state complexity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An efJicient sectionalization will be defined as one in 
which the maximum branch complexity is equal to smax(C>, 
the maximum state complexity of C. In all examples so far 
that admit an efficient coordinate ordering, except for 
high-rate MDS codes, we have seen that bmaX(C) = 

smax(C); in other words, the exhaustive partition of I is an 
efficient sectionalization. 

Our previous results can be extended easily to section- 
alized trellises. 

Theorem 12 (DLP bound on section complexity): If C is 
a linear code with DLP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk (C)  and inverse DLP k(C),  then 
for any interval [ i ,  j ) ,  the section complexity is bounded by 

by Lemma 6, b,,,(C) 2 b,*,,.+l(C) = bmax(C). 

b,, , (C) 2 i , ( C )  - k , ( C )  = ,'~+,(C)] - k , ( C ) ,  

with equality if the coordinate orderingof C is efficient. 

b,,,(C) = ;,(Cl - z,(C) 2 
0 

In other words, if all section lengths I j  - il are equal, 
then the section complexity profile can be evaluated 
graphically by moving the inverse DLP to the left by 
Ij - iI units, and measuring section complexity at the 
multiples of I j  - il. 

Example 1 (cont.): For the (8,4,4) code, with four sec- 
tions of length 2, the DLP bound on the section complex- 
ity profile is {2,3,3,2}, as shown in Fig. 10(a). Since 
b,,,(C) = s,,,(C) = 3, this sectionalization is efficient. 
Indeed, even the partition into two equal sections of 
length 4 is efficient, since the section complexity profile is 
then {3,3},  as shown in Fig. 10(b). 

Example 4 (cont.): For the (24,12,8) code, with six 
sections of length 4, the DLP bound on the section 
complexity profile is {4,7,9,9,7,4), as shown in Fig. ll(a). 
Since b,,,(C) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs,,,(C) = 9, this sectionalization is ef- 
ficient. For this code, however, a partition into three equal 
sections of length 8 is an inefficient sectionalization, since 
the section complexity profile is then {7,10,7), as shown in 
Fig. ll(b). 

Proofi Follows from 
i , (C) - k, (C) ,  and the definition of cr. 

0 2 4 6  

(a) 

0 4 

(b) 

Fig. 10. DLP bound on section complexity profile of (8,4,4) binary 
code: (a) four sections; (b) two sections. 

0 4 8 1 2 1 6 2 0  

(a) 

0 8 16 

(b) 

Fig. 11. DLP bound on section complexity profile of (24,12,8) Golay 
code: (a) six sections; (b) three sections. 

For low-rate MDS codes ( k / n  5 +), since s,,,(C) = k ,  
any sectionalization is efficient, even the trivial sectional- 
ization with a single section equal to I .  For high-rate 
MDS codes ( k / n  > i), on the other hand, no sectional- 
ization is efficient, since even with the exhaustive parti- 
tion, b,,,(C) = Y + 1 > smax(C) = Y. 

In general, by Lemma 6, efficient sectionalization is 
possible only if, at each i for which s,(C) attains its 
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maximum, the ordered DLP of C is horizontal to the left, 
and/or the inverse ordered DLP is horizontal to the right. 
Then the longest efficient sections extend from the least zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
iJ such th-at Z,,(C) = Z,(C) to the greatest i” such that 

Z,.(C) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZl(C). Efficient sectionalizations are thus more 
likely with low-rate codes. 

For example, much is known about optimum state com- 
plexity profiles of linear block codes. (See, e.g., Vardy and 
Be’ery [8] for a good recent summary.) These results can 
be translated into corresponding results about OPtimUm 

DLP’s* 
Other natural topics for research include: 

C. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAState-Pair Spaces 

If C,,,,) is nontrivial, then there is a space of parallel 
branches of dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk[Cr l , , , ]  connecting the zero state 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,(C) to the zero state in C,(C). By linearity, there is a 
set of parallel transitions (a coset of CL,,,) in P[,,,)(C)) for 
every state pair (U, ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa / )  E C,(C) x C,(C) that actually oc- 
curs in the trellis section T,,,(C) [6]. 

In some applications (e.g., in lattices [211), it may be 
appropriate to regard each such set of parallel transitions 
as a single branch. In other words, we may be concerned 
only with the number of state pairs in the trellis section 

The state-pair space C,,,(C) of C may be obtained by 
projecting T,,,(C) onto C,(C) X C,(C), and is isomorphic 

T,,,(C). 

to [61 

Its dimension, called the state-pair complexity, is thus 
equal to 

The state-pair complexity al, ,(C) is obviously not less 
than either s,(C) or s,(C), and not more than the branch 
complexity b,, ,(C). The improvement over bl, ,(C) is lim- 
ited by kl,-Ll(C), which is the maximum possible value of 
k[C[,,,,]. Thus, the following holds. 

Theorem 13 (DLP bound on state-pair complexity): _’f C 
is a linear code with DLP k ( C )  and inverse DLP k(C) ,  
then 

Example 4 (cont.): The three-section trellis for the 
(24,12,8) Golay code has a state-pair complexity profile of 
{6,9,6}, which meets the DLP bound. Since a,,,(C) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
smax(C) = 9, this sectionalization may be regarded as at 
least “state-pair efficient.” 

VI. CONCLUSION 

It is clear that the topics of dimension/length profiles 
(GHW hierarchies, etc.) of linear codes and of the trellis 
complexity of such codes are parts of a single subject. 
Henceforth, any result in one area should be translated to 
a result in the other. 

(a) development of upper bounds for DLP’s, 

(b) determination of DLP’s for particular codes, 

(c) identification of codes that have efficient coordi- 
nate orderings. 

A substantial amount of work has already been done on 
topics (a) and (b). 

One obvious extension of this work is to lattices. The 
theory of trellis complexity of lattices has progressed in 
parallel with that of linear block codes, due to their 
common group structure [6]. A sequel [21] develops some 
analogous results for lattices, which suggest that these 
ideas will be equally fruitful in that field. 

Another extension would be to convolutional and trellis 
codes. Projections and subcodes of convolutional codes 
onto finite intervals are block codes. Thus convolutional 
code bounds can be derived from block code bounds. 

In conclusion, a unified approach to a number of topics 
in coding theory is emerging, opening broad avenues for 
further research. 
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