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INTRODUCTION

An observation on the intuitive encoding of graphs led the author to the concept
of G, H-separation. A mapping of this type is a kind of characterization of the
structure of the graph H not belonging to the subgraph G of H. This concept turned
out to be fruitful to estimate the dimension of subgraphs of a given graph (chapter
III). This result again is essential for the following considerations (chapters III
and 1V) which deal with the decomposition and composition of graphs via subgraphs.
Using the technique of amalgamation estimates for the dimension of a “‘complex”
graph can be achieved by its components. However, for lack of examples of graphs
for which the dimension is known this technique cannot be demonstrated impressively
in the very general case. Still we can get quite good estimates if we assume a more
special situation in which all graphs to be amalgamated are full subgraphs of the
same graph. This recognition will be applied (in chapter V) to trees which can be
regarded as amalgams of paths. The derived estimate then is simply based on cal-
culating some invariants for the tree namely the number of vertices of a fixed degree
resp. the maximum degree of the vertices in all spheres around a certain “‘central”
point.

I. BASIC DEFINITIONS

1.1. Conventions and notations. Throughout this paper, a graph G = (V(G), E(G))
is a finite undirected and simple graph. E{G) is also used to denote the symmetric
antireflexive binary relation {(x,y)|{x, y} € E(G)}. The complete and discrete
graph with n vertices is denoted by K,, resp. D,, ne N. K, ,, denotes the complete
bipartite graph, K, ,, = D, @ D,, (cf. 1.4). The path and cycle of length n, i.e.
with n edges, is denoted by P, resp. C,. Define P, := K, := D,.

1.2. Numbers.

rt least integer greater than or equal to r; log, m := (log, m)*

k least prime power greater than or equal to k
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|G| cardinality of the graph G: |G| := |V(G)]
d(x) degree of vertex x in G

A(G)  maximum degree in G

dg(x, y) distance of vertices x and y in G

diam G diameter of G

1(G) (vertex) chromatic number of G; x(0) = 0
%4(G)  edge chromatic number of G

1.3. Subsets and subgraphs The k-sphere Si(x) of xe€ V(G) in G is defined by
Si(x) 1= {y e V(G) | dg(x, y) = k}, ke N. For X < V(G), S{X):= u Si(x).

A subgraph of G is a graph H with V(H) < V(G) and E(H) = E( )N V(H)®
(X® denotes the set of all subsets of X containing just two elements). If E(H) =
= E(G)n V(H)'®, H is called full (or induced, spanned) subgraph of G. H < G
and H < G indicate that H is a subgraph resp. full subgraph of G. For X = V(G)
resp. H < G let G[X ] resp. G[ H] be the full subgraph of G induced by X resp. V(H).
The neighbourhood Ng(x) of x in G is the full subgraph of G induced by the “closed”
1-sphere of x, i.e. Ng(x) = G[{x} u §,(x)].

For X < V(G) resp. H < G, Ny(x) resp. No(H) is induced by X U S;(X) resp.
V(H) U 5,(V(H).

1.4. Operations. The complement graph of a graph G is denoted by G°. For two
graphs G, H, the intersection G n H is defined by V(G n H) = V(G)n V(H) and
E(G n H) = E(G) n E(H).

The sum Z G;ofa family {Gy, G,, ..., G,} of graphs is the disjoint union of the

family. The sn ong sum @ G, is obtained from Z G; by adding all edges between G;
and G, i * j. =1 i=

For G < H, H — G is induced by ViH) — V(G) in H: H — G = H[V(H) —
— V(G)]. For G < H, H + G has those vertices that belong to G and those edges
that belong to H but not to G: V(H + G) = V(G) abd E(H + G) = EH[G]) —
— E(G).

1.5. Products. The direct (or categorial) product G x H, weak (or cartesian)
product G [] H and strong product G [X] H of graphs G, H is defined by:
V(G x H) = V(G H) = V(G X H) = V(G) x V(H),
E(G x H) = {{(x1, %), (y1, y2)} | {x1, »:} € E(G) and {x,, y,} e E(H}} ,
E(GOH) = {{(x1,x2), (y1, ¥2)}| either {x, y;} € E(G) and x, = y, or x; = y,
and {x,,y,} € E(H)},
E(G X H) = B(G x H)u E(G O H).
Since all products are associative, we can define the direct product X G;, weak
n i=1
product [ G, and strong product [X] . G, of a family {Gy, Gz, ..., G,} of graphs.

i=1 i=1

i
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If G,=G for all i =1,2,...,n, we shortly write G",G9*, G¥* for the n-th
direct, weak resp. strong power.

1.6. Mappings. A homomorphism f: G — H is a mapping f: V(G) — V(H) that
preserves edges, i.e. {f(x), f(y)} € E(H) whenever {x, y} € E(G). In the case that H
is a complete graph, f is a colouring of G. If f1 G — H is injective and f{G) £ H,
i.e. the image of G is a full subgraph of H, then f is called embedding.

1.7. Dimension (cf. [6]). The dimension of a graph G, denoted by dim G, is the
least natural number » such that G can be embedded into N" where N denotes the
complete graph with vertex-set N. An embedding u: G — N" is called (n-ary)
encoding of G and satisfies {x, y} e E(G) iff u/x) # u(y) for all i =1,.., n.
Obviously, dim G equals the least natural number n such that there exists an embed-
ding u: G - N".

‘Since discrete subgraphs of G correspond to complete subgraphs of G, it is easy
to see that dim G equals the minimum number of equivalences E, ..., E, with the
following properties:

Q) OE,. ~ E(G%) and

(ii) ﬂ E; = A, the trivial equivalence.

If we do not require u to be injective, i.e. if we drop (i), we can possibly do with
one coordinate less; such a minimum will be denoted by idim G (mtersectwn
dimension). We define idimK, = 0, ne N.

The concatenation of two (encoding) vectors u, v is simply denoted by uv.

1. SOME FACTS

Proofs of the following two propositions can be found e.g. in [6]. 2.1 and 2.2
are of more fundamental importance whereas 2.3 states some concrete results.

2.1. Proposition. G < H = dim G £ dim H. O
2.2. Proposition. Let x', ..., x*, y, ..., y* be vertices in G with
(i) Vi: {x', ¥'} € E(G) and
(i) Vi < j: {x', y'} ¢ E(G).
Then dim G Z log] k.

2.3. Proposition.
(i) dimK, =1 for n 2 1.
(i) dim K, + K, = n for n = 2.
(iii) dim D, = 2 for n 2 2.
(iv) dim P, = logs n for n = 3.
(v) dim Cypyy = 1 + logj n < dim Cypyy < 2 + logf n for n 2 2.
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(vi) If C,, is a cycle of length m 2 5 with one additional chord, then
logy (m — 2) £ dim C,, £ 2 + log; (m — 2).
(vii) For the cartesian cube Q,:=K5" one has dim Q, =2 gnd dim Q,
=n-—1 for nz3.
Proof. (i)—(v) see e.g. in [6], (vii) see [4]. Ad (vi): W.lo.g. let V(C,)
={0,1,...m~1} and for 0<n<m—2, E(C,)={{i,i+ 1} i=0,1,...

I

fi

om—=1u{{0,m -1}, {n,m — 1}}. m-1
Let u be an encoding of P,,_, with all coordinates m-2 0
in {0, 1, 2} (cf. [6]). Then v is an encoding of C,, if P
one puts: / 1
u(x)as, if xe{l,2,...,m—3}—{n} | :
where o := xmod2, ' }
u(x) =3u(x)22, if xe{0,m—2}, N /
u(m)33, if x=n, _ N !
44...401, if x=m —1. ' \.\'/,/
0 n+t n-1

We now want to find a relation between the dimension of two graphs G, H, where G
is a (not necessarily full) subgraph of H. To this end we introduce a new type of
mapping:

2.4. Definition. For G = H, the mapping o: V(G) - N, is called G, H-separation,
indicated by o: G- N", iff it satisfies

(i) {x, y} € E(G) = Vi: a(x) =+ ¢,/y) and

(i) {x, y} € E(H = G) = 3;: 6(x) = o(y).
For G £ H we define the G, H-separation number o(G, H) to be the minimum
number n such that there exists a G, H-separation ¢: G -* N". For G < H let
o(G,H) = 0.

Equivalent to the existence of a G, H-separation is the existence of a family of
equivalences E,, ..., E, on V{G) such that

(i) UE,QE(H) E(G) and
(i) E )r\UE = f.

Hence, ¢(G, H) is the minimum number of such a family (cf. 1.7).
Let us now state some properties of separations:
A) If G £ G' < H with V(G) + V(G') = V(H) and E(G') = E(G)u {{x, y}| xe
e V(H), ye V(H — G)}, then G £ H implies (G, H) = o(G’, H) since E(H) —
— E(G') = E(H + G).
B) Let Zy, ..., Z, be the components of H -+ G, then ¢(G, H) =
= max {a(H ZoH)|i=1,..,k}.

CO) o(G, H) £ idim G, since U E; = E(G°) implies U E; 2 E(H + G).
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D) (G, K,) = idim G.
E) o(G, H) £ x*(H + G): For each pairset {x, y} of V(G) x V(G), let {x, y} be
a class of the i-th equivalence iff {x, y} € E(G) coloured i. All other classes are

singletons.
F) o(D,H)=1iff D, £ H. O

2.5. Propoesition. G € H = dim G £ dim H + o{(G, H).
Proof. If u is an encoding of H and o: G-»" N" is a G, H-separation. then the
concatenation uc is obviously an encoding of G. ]

Example. If G is an arbitrary subgraph of [J P, (cartesian product of paths of
i=1

lengths ki, ..., k,,), then dim G £ 2m — 1 + Z log; k;. This follows from 3.7 and
=1

the fact that o(G, D P.) < m for each G < O P,,, since if the vertices of [] Py,
i=1 i=1

are numbered one- to -one, ¢ is a G, [:l P, — separation if one puts for x =

= (xy, .. ,x)eV([]Pk)(xe{Ol k}z—l , m):

oi(x) = {number ofx, if x;=0 or {x,x— ¢}eEG),
(x —e;), else,
where e; = (0,...,0,1,0,...,0).
! O
2.6. Proposition.
(i) A(G°) = 1=dimG = 2.
(i) A(G°) > 1 = dim G £ ¥%(G°) £ A(G°) + L.
If K3 £ G then AIG°) £ dim G = x°G°) £ A(G°) + 1.
Proof. (cf. [9, 1.5] resp. [6, 2.3]).
This follows from 2.5, the Vizing Theorem, 2.4.E and the fact that the equivalences

induced by the construction in 2.4.E already satisfy 1.7 (ii) if A(G°) > 1. If K5 £ G°
then each equivalence class contains at most two vertices of G. |

2.7. Lemma.

(i) (G + H, G @ H) = max {1(G), (H)}.
(ii) o ZGL, @ G) =1+ (x — 1) log; n, where x := max y(G,).

15isn
Proof. Ad (1) o(G + H, G@H)..mm{n|uE 2 E(G @ H) — E(G + H),
U E;nE(G + H) =0 (E; equivalences)} = min {n |3 homomorphism f:G +
+ H—»K} = max {¢(G), x(H)}.
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Ad (ii): o Z G; @ G)) = o ZK,(GK), @K,y 1+ —1).log, n ac-
i=1
cording to Corollary 2 5 in [3] and 2 4.C. 0

Now it is easy to see that the following is true (Thm 2.6 in [3]):

2.8. Theorem. dlmZG < max dim G; +0'(ZG,, @G)<maxd1mG + 1+

1£ign i=1 1sign

+(x—1).log; n where x := max x(G)). 0

1<isn

II. SIMPLE AMALGAMATIONS

3.1. Definition. Let G, H, U be graphs such that U = G n H is proper full sub-
graph of both G and H. Then the amalgam of G and H in U is denoted by (G, H:U).

e

The restriction on U to be a proper subgraph (i.e. V(G) + V(U) + V(H)) is to
avoid trivial cases and is tacitly assumed in the whole chapter.

A first approach towards the estimation of the dimension of an amalgam by its
“components” is the following: First encode all vertices belonging to one com-
ponent, G, then encode those belonging to the second component, H, and finally
take care of non-adjacent vertices belonging to different parts of the amalgam,
G —Uresp. H—-U.

3.2. Proposition.

dim (G, H : U) < dim G + dim H + max {y((G — U), y(H — U)}.

Proof. For y := max {y{(G — U), y(H - U)} let /G — U > X,,9: H - U > K,
be homomorphisms, let u and uy be encodings of G resp. H and let a: V(G — U) -
- Ny, B: V(H — U) > N, and y: V(U) - N, (N, = {ne N |n = k}) be enumera-
tions, where k is sufficiently large, i.e. larger than y and all coordinates of the en-
codings ug and ug. Then u defines an encoding of (G, H : U) by

ug(x) a(x) ... a(x) f(x)... f(x), if xeV(G—U),
u(x) = {B(x) ... B(x) uy(x) g(x) g(x) +10)..(9(x)+x—1), if xeV(H-U),
ug(x) ug(x) y(x) ... p(x), if xe¥(U),

where addition is modulo . . O

An improvement of the estimate is attainable if one applies the technique of
separation:

3.3. Proposition. Let G, H, U, K be graphs, U = G n H proper full subgraph
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of both G and H and let hy: G — K, hy: H — K be injective homomorphisms Which
equal on U (i.e. h(x) := hg(x) = hy{x) for each x € V(U)). Then
dim U(G, H : U) < dimK + a(h4(G), K) + o(hy(H), K) +
+ max {y(G — U), y(H — U)}.

Proof. Let uy be an encoding of K, ¢,: he(G) =% N°#(@-K) and ¢,: hy(H) -X
=K NettEK) be a hg(G), K-separation resp. hy(H), K-separation and let f: G —
-~ U=-K, and g: H — U - K, be homomorphisms where y := max {x(G - U),
WH—=U)}. Let a: V(G —-U)> N, B:V(H—U)- N, and y: V(U) = N, be
enumerations as in 3.2 (or anything else to fill the “gaps” of the encodings; essential

point is that these coordinates do not destroy adjacency), k suff. large. Then u
defines an encoding of (G, H : U) by

u(hg(x)) o4(x) a(x) ... ox) f(x) ... f(x), if xeV(G—U),
ulx) ug{hy(x)) B(x) ... B(x) 02(x) g(x) (g(x) + 1). gz F - 1),
\ if x evV(H -,
ug(h(x)) o1(x) a2(x) p(x) ... y(x), if xeV(),
where addition is modulo y. I

Observe that h(H) need not be a full subgraph of K. In 3.2 and+3.3 the last y co-
ordinates result from the fact that no vertex of G — U is adjacent to any vertex
of H — U whence we can replace y in the estimate by

o((G—-U)+(H-U), (G-U)®(H -U)).
Corollary. Let G, H,U be graphs, U = G H be a proper full subgraph of

both G and H and let h: G -~ H be an injective homomorphism (i.e. G is iso-
morphic to a subgraph of H) with h(u) = u for each u € V(U). Then

dim (G, H : U) £ dim H + o(h(G), H) + x(H — U). O
Example. Let 3<m<nand 0 £ k < m — 2. Then
dim %A(C,, C,: P,) < 5 + log; (n — 2).
Proof. Let K = C, be the cycle C, with one additional edge {0, m — 1}; let the

e m=-1 n-1
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vertices of U = P, be numbered {0, 1,...,k}. Then ¢(G,K) = ¢(C,,C;) =0,
o(H,K) = ¢(C,, C;) = 1 and max {3{C, — P,), x(C, — P,)} =2. According to
2.3 (vi) we have dim C, < 2 + log; (n — 2) which completes the estimate. im|

If we do not only demand that U is a common full subgraph of G and H but also
that all its adjacent vertices belong to both G and H then we can slightly improve
the estimate:

3.4. Proposition. Let G, H, U, K be graphs, U = G n H be proper full subgraph
of G and H and let hg: G —> K, hy: H—> K be injective homomorphisms which
equal on U (i.e. h(x) 1= hg(x) = hy/x) for each x.€ V(U)) such that Ni(h'U)) N
N K[V(he{G)) L V(hy(H))] is a full subgraph of both hg'G) and hg{H). Then

dim (G, H : U) £ dim K + max {0{G, K), 6(H, K)} +
+ max {y(G — U), x(H — U)}.

Proof. Here we demand in addition to 3.3 that
(i) {ha(x) | xe V(G — U), {x,u} e E(G)} =
= {hy(x)| xe V(H — U), {x,u} € E(H)} for each u e V(U);
(i) E(K[V(Ng(h(U)) 0 (V(he(G)) v V(hg(H)))]) — E(hs(G)) — E(hy(H)) = 0.
One can apply the same encoding instruction as in 3.3 except that in this situation
o, and o, can both be concatenated simultaneously to uy which is obvious from (i),
(ii) above. 0O

Corollary. Let all assumptions from 3.4 be satisfied and suppose in addition
that he(G) and hg(H) be full subgraphs of K. Then dim (G, H : U) < dim K +
+ max {)(G — U), y(H — U)}. O

Further improvements of the estimates are possible if we restrict the relations
among the two structures G and H. In the case where 4 in 3.3 Corollary is an embed-
ding, we get dim (G, H : U) < dim H + y(H — U), since o(h(G), H) = 0. But
this can be done better:

3.6. Theorem. Let G, H, U be graphs, U = G n H be_proper full subgraph of
both G and H, let h: G — H be an embedding with h{u) = u for each u e V(U)
and let H' := H[Ng(h(G)) — U]. Then dim %(G, H : U) = dim H and

(i) x(H') > 1 = dim A(G, H : U) < dim H + y(H') — 1;

(i) x(H') = 1 = dim (G, H : U) < idim H + 1.

Proof. Let uy be an encoding of H, f: H' — K, be a homomorphism and
a: V(H — H') > N, be an enumeration with k sufficiently large (cf. 3.2).

If x(H') > 1, then u defines an encoding of (G, H : U) by

ug(h(x)) f(x) ... f(x), if xeV(G-U),
u(x) = Qup(x) (f(x) + 1) (f(x) +2) ... (f(x) + ((H') = 1), if xeV(H),
ug(x) a(x) ... «(x), if xeV(H — H'),
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addition modulo x(H’), since for x € V(G — U), y e V(H — U), either {x, y} ¢ E(H),
whence the first dim H coordinates meet in one coordinate, or {x, y} € E(H) implying
f(x) # f(»). If y(H) =1, then {x, y} € E(H) with xe V(G — U), ye V(H — U)
can never occur, whence additional coordinates obtained by a colouring (with one
colour) are superfluous. On the other hand, an additional coordinate is necessary
to distinguish between the encodings of x in G — U and h(x) in H — U. O

Examples. (1) Let 0 < p; < m, < n, and 0 < p, < m, < n,, then

dlm QI(I<Y'l1,"lz’1<"1 12 :pr,pz) § d]m Kru,nz + X(Km‘m.nz—pz) - ]‘ = 3

my- p, E{ n-p,
Ofas1)O0__ 0p0 012 ¢ Oa2 Ofa+ 111 0y1

e+ 1e1  1(v+1)3 163 1(6+1)0 120
N ——" e Ny N e
m,-p, P, ‘ n,-p,

(@:=py, Br=my, y:=ny, d:= ny + p,, 6:=ny + my, {:=n, + ny).
(2) Let 0 < p < my < ny and 0 < m, < n,, then

dim (K, > Koy oy * Dp) < dim Ky + X(KM_MZ) -1 =3

0(p+1)0 0y0

my-p
1(p +1]0 100

SO —
n,~p
0(B+N1 T 05y
v \Vau
my
(@:=my; B:= ny; y:=ny + ny; 6:= ny + my). 0

Now we will demonstrate how the technique of amalgamation works for weak
and strong products of paths. :
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3.7. Proposition. Let be n 2 2, ky, ..., k, = 1. Then

i=1

n-1 n n
Ylog, (1 + k) +loga k, < dim 1P, < n — 1+ Y logi k;.
i=1 i=1

i i=1

i

Proof. Let B,(xy, ..., x,) be the full subgraph of [1 P,, induced by X X;, where
=1

xie{ai’ ai}» a; 2 0, and
X, = {0,1,...,ai}, if X; = da;,
i {a,a; +1,...,2a;}, if x;=a,.

Let us note some properties of B, which are needed in the sequel:

(i) B1,1,..., 1) ~ K& = Q,, cf. 2.3 (vii);

(1) Bo(X 1y e Xim gy @iy Xig15 ener Xp) O B(Xgs oy Xims gy Xypgs 0 Xp)
& By y(Xgs ooy Xim s Xig 1y eeor Xn)s

(1) Bu(X 1y vvs Xim15 205 Xig 15 oees X)) = WB(X1, ey Xio gy @iy Xiggs o0s Xn)s
Bo(X1s ooy Ximgs Qs Xings ever Xg) P Bu(Xa5enes Xiops Gy Xiggs ovns %) O
ABX1, ooy Xjo gy Ty X1 oo0 X))s G5 2 15

(1Y) Bo(X15 cvor Xim gy @iy Xip gy oees %) = (Bu(X15 oy Ximts @iy Xjigy o0y Xp) O
A B X1y eeos Xi gy Aps Xis 1 oees X)) = BuXis s Xim 1 @3 = L, X g or Xi)s
a; z 1;

(v) 1Bk, ...s k) = 2,

:= Y v,mod 2, (vg,...,v,) e V([ P), is a homomorphism.
i=1 i=1

since f:[1 P, —K,, defined by f{(vg,...,0,)) =
i=1

i=

00 12 01
First, let n = 2. dim B,(1,2) = 2: T
777 03 10

Suppose, oy > 0, o, > 1:
dim B,(2*, 2*?) = dim (B,(2*,2%7"),

B,(2%1, 2:=1) : B,(2%,271) 1 By(2, 271)) <
< dim B,(2,2%71) + 2 — 1 £ dim B,(2,2) + o, — 1,

= dim A(B,(2*171,2), B,(241-1,2) : B(2" 71, 2) n B,(2%-1,2)) £
<dimB,(2* L2+ —1+2~1Z ...
o 2dimBy(1,2) + oy =1+ oy =140 +a,,

consequently: dim P, [J Py, < 1 + logj k; + log; k..
Now, assume n > 2.
dim B,(2%, ...., 2*) = dim A(B,(2", ..., 2", 2™ 1),
Bn(zal, v 21"_13 2a"~1) : Bn(\2dx’ (A 2%‘19 21"—1) n Bn(2“’, T 2%—17 2a,.—‘1)) é

3
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< dim B,(2%,...,2",2%7") + 2 — 1 £ ... £ dim B,(2*,...,2" ", 1) +
+ o, £ ... 2dim B,(2%, .., 2% 1, 1) + o, +

+ o,

IIA

"<dlmB( 1)"*‘20‘ *dlan+Zal>

consequently: dim E] P.sn~-1+ Z logi k

i=1 i=1
For the lower estimate apply Proposition 2.2.

i

n—1

n—1
Let dy,...,d,, m:=]](1 +k;), be all (n — I)-tuples of X {0,1,...,k;}. Put
i i=1

i=1
xItim = d.j, yitim = dy j +1) for i=1,...,m, j=0,..,k, — 1. Obviously,
the vertices x1, ..., x™= y1 . y™= satisfy

{x', y'} e E( [l P,) forall i=1,...,mk,,
i=1

{x,y'} ¢ E([OP,,) forall i<j,
i=1

whence

n n—1
dim J P, = log; mk, = logy k, . TT(1 + k) =
i=1

i=1

n—1
= Y log, (1 + k;) + log, k, . O

i=1
In the same fashion an estimate for the strong product of paths can be attained.

3.8. Proposition Let be n 2 2, ky,...,k, =2 1. Then

(a) d1m. X P, =1+ —1). Z(mm{l logy k;} + (2 + (1/(2"" = 1))).
. max {0 log2 k, — 1}),
(b) (i) dim [ Py, 2 Z:logz ke
(i) Let p:= |{k]k; > 1}|. Then dim ;:%jl P,z 2"77 (2P - 1).
(iii) If k; > 2 for some i, then dim ]gnll P, z2"
Proof. Let be B(xy, ..., x,) <

() Bl 1,.... 1) = K& ~ K.
(ii)—(iv) the same as in 3.7.
(v) x(Bu(kys ..., k,)) = 27, since f: [X] . P, - Kz,., defined by f((vy,...,,) 1=

=Y (v;mod 2). 271, (vy, .. ,v)e V( - P,), is a homomorphism.
i=1

Py, defined as in 3.7.

.‘E:

it
-
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dim B,(2%, ..., 2*) = dim AB,(2, ..., 2%, 2%~ 1) |
B,(2%, ..., 2", 2a=1) : B,(2, ..., 2% 2% 1)

A B(27, ..., 2%, B0 1)) < dim B,(29, ..., 221, 2% ) 4

+2" 1< ... <dimB,2%, .., 271, 2) + (@, — 1)(2" — 1) =
= dim A(B,(2%, ..., 2, 1), B,(2*, ..., 2=, 1) 1 B,(2™, ..., 221, 1) A
A B2, .2 1) + (@, — 1) (2" — 1) <
< dim B,(2%, ..., 2", 1) + »(B,(2*, ..., 2", 0)) = 1 + (o, — (2" = 1) =
= dim B,(2, ..., 21, 1) 4+ 271 — 1 4 (g, — 1)(2" — 1) =
= dim B,(2*, ..., 2=, 1) + min {1, log} k,} . (2""* — 1) +
+ max {0, log; k, — 1)} .(2" = 1) £
.. £ dim B,(2%,...,2""2, 1, 1) + (min {1, log] k,_,} +

+ min {1, logy k,}).(2""* — 1) + (max {0, log; k,_, — 1} +
+ max {0, logy k, — 1}).(2" - 1) < ... £dim B,(1, 1, ..., 1) +

+ Y min {1,logy k;} .(2""* — 1) + ¥ max {0,log; k; — 1}.(2" — 1) =
i=1 i=1

=1+ (2 1-1)Y <min{1,log§ ki) + <2 + Py 1) max {0, log] k; — 1})
i=1 -

For the lower estimate apply Proposition 2.2, "
Let x':=(xi,...,x}), ¥ :=(¥i,...,»)eV( . X P.) (i=1,....,]]k) where
Vit=xi+1 (j = 1, ..., n) be numbered in the followmg way: -
=(0,0,...,0),
followed by those x’ with Zx =1 (of course, such that y'e V( [X] - P,)), those

with Zx = 2, and so on.
i=1
It is easy to see that all vertices are numbered such- that {x y'} ¢ E( . P,)

whenever i < j, because all 3/ adjacent to x’ fulfil Z yEn+ Z xi and therefore
=1 =1

Jj=i. Wlog let be ky,...k, > 1, p<n. Then Ky + Kpu-po-1) £ D P,
induced by

{(2,2,. Do U {(81, s Bimp, 0, 80405000, 8,) | £,€ {0, 1}} .
\—T__‘
If k; > 2 for some i, then K, + K,. < 1 P, induced by
£0,0,..,0,3,0,..,0)} U {(e1, .0 2) | &1 € {0, 1]} .
3 O



In the special case where k; = ... = k, = 2, we get

2"—l§dimPl;£'"§1+n.(2n—1_1).

The first lower estimate of the proof above also holds for dim X P,,. On the other

hand, since P,, < K%t if k; > 2, dim X P,, < ¥ log! k;. Thus
1

n i=1

i=1 i
3.9. Proposition. Let be n = 2, k, ..., k, = 3. Then

n

Y log, k; < dim X P, < Y log; k. O
i=1 i=1 i=1

In [2, 6.1] we have proved that, for k, = k, = ... = k, = 2, there holds: n <

< dim P} < n + 1. (The upper estimate follows from the fact that P} is the sum

of 2"~ ! complete bipartite graphs which can be encoded in principal according to

2.8 but with one coordinate less since all summands are isomorphic to subgraphs
of one of them (cf. [3, 2.6 Remark])).

IV. MULTIPLE AMALGAMATIONS

In the last chapter we have developed estimates for the case where two graphs
are glued together. Now we shall investigate the situation where several graphs are
amalgamated via the same subgraph, and then investigate the case where graphs
are amalgamated in different subgraphs.

4.1. Definition. Let G, G,, ..., G,, n = 3, and U be graphs such that U = G; n G},
i =+ j, is proper full subgraph of G;, i = 1, ..., n. Then the amalgam of G, ..., G,

in U is denoted by (G, ..., G, : U).

!

In analogy to Proposition 3.2 using Lemma 2.7, we get the following rough
estimate:

4.2. Proposition.
dim A(Gy, ..., G,: U) £ ¥ dim G, + o( }.(G; -U), ®(G, - U)) <
i=1 i=1 i=1

< .Zldim G+ 1+ (x—1)log n, where y:=maxy(G;, —U). 1

i 1<ign

The generalization of Proposition 3.3 and improvement of Proposition 4.2 now
reads: '
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4.3. Proposition. Let G,, ..., G,, U, K be graphs, U = G;n G;, i = j, be proper
Sfull subgraph of G, (i = 1,...,n) and let h;: G, — K be injective homomor phisms
which equal on U (i.e. h{x) = hyx) for each x € V{U)). Then

dim (G, ..., G, : U) <
< dimK + Y o(h(G), K) + o( (G, — U), @ (G, — U)). 0
i=1 i=1 i=1

4.4. Proposition. Let Gy,...,G,, n =3, U and K be graphs, U = G;n G,
i + j, be proper full subgraphs of G, (i = 1,...,n) and let h;: G, — K be injective
homomorphisms which equal on U (i.e. h(x) 1= h{x) = h/x) for all i,je{1, ..., n}

and x e V(U)) such that N h{U))n K[ U V(h{G))] is full subgraph of h/G),
i=1,...,n Then i=1
dim WG, ..., G,: U) £

n

< dim K + max o({(Gy). K) + o( 3 (G, — U), & (G; — V).

1gign i=1

Proof. This is obvious from the fact that V(U) n V(K + G;) = 0(i = 1,...,n). [J

4.5. Corollary. Let all assumptions of 4.4 be satisfied and suppose in addition
that h{(G)), i = 1, ..., n, be full subgraphs of K. Then

dim %(Gy, ..., G,: U) < dimK + o( Y. (G, - U), ® (G, - V). O
i=1 i=1

Example: Let 3=m; <m,<...sm, and 05k S2my — 4, U:=
1= W(Cypmys Camys - > Cam, * Py).

-e My M
" my O] muy- 0  2m-1 m 2
. s — e -
k-1 k—1i
. _k P SR W ‘
_____ k k+1 m,+1 m,+ 1

K<cP,[OP, -, with V(K)=1{0,1,...,2m — 1} and EK)={{i,i+ 1}|i=
=0,1,....2m —2}u{{m;+ 1, m; +2} |i=1,..,n}u{{0,2m — 1}}.
Then o(K, Py O Puu-1) = 6(Cyppy Py O Ppmy) = 1, i =1,...,n (24.E), thus
dmK £dimP1 3P, _; + oK, P, 0P, 1) <2+ log; (m, — 1)
and ‘
dim ¥ < dimK + 1 + 1 + logj n =4 + logy (m, — 1) + log; n. O
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The best results can be attained in the case that all G; are full subgraphs of say G,,
since then each G; can be encoded in the first dim G, coordinates by the encoding of
the image of G, in G, and one of the last coordinates can be dropped:

4.6. Theorem. Let Gy,...,G,, n = 3, and U be graphs, U = G;n G;, i * j,
be proper full subgraph of G;, i =1,...,n, let h: G, =G, i=1,..,n—1,
be embeddings with h(u) := hfu) = u for each ueV(U), i=1,..,n — 1, and

n—1 B

let G, := G[(:} V(Ng,(h{G))) — V(U)]. Then

(i) 2(Gy) = 1 =dim A(G,, ..., G,: U) £ 1 + idim G,;
n—-1
(il) x.G,) > 1 =dim WGy, ...,G,:U) £dim G, + o( Y. (G, - U) + G,
n—1 i=1

@ (Gl - U) @® Gr,l) -1 é dim Gn + (X(Gn) - 1) log:(G,")n' O
=1

i

Examples. (1) Let 1 <m,...,m,_; <m,—2 and v be an end-vertex of
P,.,...P, . Then

dim A(P,,, ..., P, _,,C, :v) <dimC,, + log; n.

"0
- e
l/— c H
V 1]
\\\ my, '.
— -
~\
e
-t

(2) Let 1< p<my,....,m,_; <m, and m := m, — p. Then
dim A(K,,,...,K,, K,) <1+ (m—1)log; n.

(3) Let T< P, [J P, be the opposite tree and let v be the vertex top left. It is
easy to see that o7, P4 [0 Py) = 1.

V I,s
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Thus
dim (T, ..., T:v) £dim T+ log; n S dim T + logf n £ 5 + log} n.
\-w—-d

n-times

According to Proposition 5.1 we have

dim A(T, ..., T:v) = logy (187 + 1) = 4 + logy n. O
4.7. Corollary. Let U < G and ¥(G) > 1. Then
dim (G, ...,G:U) £ dim G + (G — U) — 1) log}_yn - O
\————.\/~J
n-times

Let us now turn to the problem that graphs are glued togethet in various subgraphs
and examine when this can be done in one step.

4.8. Definition. Let G;;, U; (i =1,...,n2 2;j =1,..,m = 1) and H be graphs
such that U; = Gi;, n G;, = Gy, n H, ji # j,, is proper full subgraph of G
(J=1,...,m;) and H (i = 1,...,n). Then the amalgam of Gy, ..., Gy, and H
inU; (i = 1, ..., n)is denoted by

QI = Q’I(Gll’ ey Glml :Ul . Gll’ ey GZ’"Z : U2,..., Gnl’ ey Gnm'I . Un .H).

If we want to amalgamate all graphs in one step we have to guarantee that the
graphs except H are not “‘too large”. Else we have to apply 4.2—4.4 several times
(at most n times).

4.9. Proposition. Let G;;, U, (i =1..,n22; j=1,....,m; = 1), H and K
be graphs such that, for each i = 1,...,n, U; = G;;, n G, = G;, nH, j; + j,,
is proper full subgraph of G;{(j = 1, ..., m;) and H. Let h;;: G;; > K be injective
homomorphisms which equal on U, (i.e. hfu):= h;;(u) = h;,(u) for each ue
e V(U,)) and let h: H — K be an injective homomorphism with h|, = h, Moreover,
let for all i, j, r,s, i % j, be satisfied:

(Ne(hoGir — UY)) — B{U)) 0
A (Ng(h;(Gys — Uy)) = hj(Uj)) =0 =h(U)nh(U,).
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With
x = max {z(N{hH)), (Nx U hif Gy — UY) = h(U))}

1<i

H/\

we get
dim % < dimK + o(h(H), K) + max Z o(hif(Gy;), K) +

1<1<n1—

+ max o(H + Z( -U), H @ @ (G, (Gy; —Uy) £

1gizn

< dimK + o(h(H),K) + max Z a(hi{G;), K) +

iy
1gignj=1

+ 1+ (x— 1)log; (1 +maxm)

Sign
If in addition, for each i = 1,...,n, Ng(h{U))) N K[U V(hi(Gi))) v V(h(H))] is
full subgraph of h(G;;) (j = 1, ..., m,) and h(H), then =1
dim A < dim K + max {o(h(H),K), o(h;(G;),K) |1 S i<n, 1 £j < m} +
+ 1+ (x—1)log; (1+maxm) |

If we furthermore restrict the relation between all G;; and H, we get:

4.10. Theorem. Let G, U; (i=1,...,n22; j=1,...,m;21) and H be
graphs such that U; = G;;, 0 G, = Gy; " H, j; * j,, is proper full subgraph
of G; (j=1,. m,) and H (i = 1,...,n) and let h;: G;; - H be embeddings
which equal on U (i e. h{u) 1= hy; (u) = h;;(u) for each u e V(Uy)).

Let H := H[ U U V(Ng(hif(Gi; — U))) — Uy)] and let be satisfied for all
i j:

(gl VNu(hio( Gy = UJ) = UJ) 0 ( G V(Np(hjy(G — Uj)) = 0

Then (i) x(H') > 1:dim A < dim H + (x (H)— 1) log;g (1 -l-maxm)

(ii) (H) = 1: dim ¥ £ 1 + idim H. sisn O
Example. /"H _____ /.. P
/ . i
{ u .
] S t
{ B
PGy T P,
\ ! _—eP
\\ CemeT , Kar
\\ v i
\ - [
\ ~ - ¢
N, & TTeeall : ~
N ~—er
20

H = Cm,m>6G—P,‘U,k =l,i=1andj=1,..,0resp. i=2and j =

ij =

=1,...,p, wlog a2 B, let d:= dy(u,v) (<m[2) andx -maxk,,, i=12.
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Assumeeither%l+Az+d+3<mor%1+1§dand %, +d + 1 £ m. Then
IOgZ Zk11+zk21+m_a_ “y)<d1m‘l[(Pk s"-st

Pkw v. C,,,)<d1mC,,,—l~log2 (o + 1), where y =3ifd = 1, y—41fd>1
Inthecdsewhenm—2n+4 nzlLio=f=2"-1k=1;d=1and k;
for all i, j, then:

u. Py, ...

la

k+1+logyns
SdimUAP,, .., P, iu. Py Piv.Copug) Sk + 1+ logi (n+1). O
P —,

pu—
a-times a-times

V. TREES

In this chapter we want to apply the techniques developed in III and IV to find
upper bounds for the dimension of trees. Before we start with the investigation we
state a lower bound which is useful to get an idea how good the upper bounds are,
at least in special cases.

In the sequel T shall always designate a (finite) tree with diam T 2 2.

5.1. Proposition. dim T = log; (|T| + 1 — n,(T))
Proof. Let P, be a maximal path in 7, i.e. k = diam T. Set
T—l :=®, TO:=Pk’

Tiq:={xeV(T)|IyeT:{x,y}eET)} - T., (i=1k—-1),

T =T, (i=1..k).
j=0

Let the vertices to, t,,...,#, of T, be numbered such that {t,_,t;} € E(T) (i =
=1,..,k). Put x':=1, yli=1,_4, i=1,..,k Hence (Prop. 2.2) dim T, =
= dim P, = log; k = logF (|To| + 1 — nl(To)) For TW we have |T™| =k +
+ 14+ |1], n(T®) =2+ T, and therefore dim T 2 log; (|T™] + 1 —
— ny(TW)) = logy k = dim T,,. Suppose the statement is true for T, ..., T®,
iz 1. If T,y =0, then T = T and the proof is completed. Otherwise we have
T, = T} v T7, where T} = {xe T;| 67(x) = 1}. Let T} = {t,,...,t,}, p = |T}| =
=|T| = |T}|. Put x**/ = ¢, y*™ = ye T,y if {t;, ¥} eE(T), j=1,..., p, where
o= |TO + 1 - ny(TD). Now, |TU+0| = |T®] + |T; ny(TED) = ny(TO) —
=T +|T}| + |Tiss)y . + p = |T<”| + 1 — ny(T®) + p= |TC+D] 4+ 1 —
— ny(TE* D) and dim T4V = logy (« + p). O

Poljak and Pultr proved in [10, 2.1]
dim T 2 log; u(T)
where u(T) is: the. matching number of T. Since ,u(T) |T| = n4(T), the above
bound is stronger. S ‘
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Let us now turn to estimate from above. The most important tools will be Theorem
4.6 and Theorem 4.10.

Using Theorem 4.6 we get a first quite rough result:
5.2. Proposition. dim T < log} diam T + Y n(T)(logy i — 1).
i=3

Proof. If we start the encoding procedure by a maximal path P (of length diam T)
we ensure that all paths that can be amalgamated to P in a vertex of P are subgraphs
of P( in the sense of Thm. 4.6). If, in addition, we make sure that all paths which are
amalgamated in subsequent steps to the already existing subtree of T are as large
as possible we maintain the “subgraph property”, since we started with a maximal
path. Thus we can apply Thm. 4.6 at each step of amalgamation. Since the number
of paths that can be amalgamated in a certain vertex v is determined by d4{v) = 3
the upper bound increases at each step by

log; éfgi)— = log;y 6{v) — 1.

Hence we get the following estimate for dim T

dim T £ logy diam T+ Y (logy 6,{v) — 1) <

veT

or(v)23
< logy diam T+ ) n(T).(logy i — 1). a
i=3
Example. Let S, , be the star consisting of g paths of length p, ¢ =2 3, p = 2.
p,
-’/.
o :
0 :
X g
1
- 1
Sean ]
. H
\‘
Obviously, S,, = U(P,, ..., P,:x), diam S, , = 2p, n,(S,,) =1 and n(S,,) =0
R e

g-times

fori = 3,i % g. Thus, by 5.1 and 5.2:
log; (q(p — 1) +2) < dim S, , < log; p + log; q.

This estimate can be derived, of course, directly from Thm. 4.6, the above proposi-
tion, however, allows to give an estimate simply by calculating some numbers for T.
O

An approach towards a more refined estimate is the application of Theorem 4.10.
Similarly as in 5.2, we start with a maximal path P and fix the midpoint x of P if P
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is even and one of the two central points if P is odd. In a first step we amalgamate
to P in x all those ;{x) — 2 paths that start in x, are pairwise disjoint and disjoint
to P except in x, and are as long as possible. Because of the choice of x and the maxi-
mal length of P we can apply Thm. 4.6 which says that the dimension increases
after the amalgamation by at most

togs 2 ~ 1ogg Or(x) — 1.

We continue by working off simultaneously all vertices y in Sy(x) satisfying
S7(y) > 2, i.e. we amalgamate all 6(y) — 2 paths starting in y and not yet being
amalgamated. According to Theorem 4.10 the dimension increases by at most
logy max {1, max {64(y) | dr{(x, y) = 1} — 1}.

This procedure is repeated with the 2-sphere S,(x) if S,(x) * 0 and so on.

Hence we get the following

5.3. Proposition. Let P be a maximal path in T, i.e. of length diam T, and let x
be its central point if P’s length is even and anyone of its two central points else.
Define Ay 1= 4(x),

A= {xlnax ZlésTe(y) [ dr(x, y) = k} — 1, if this set is non-empty, K1

Then
o0
dim T £ log diam T + Y logy Ak — 1. |
k=0

The concept of “sphere-wise” encoding is too rigid. There is no reason for not
amalgamating simultaneously in different spheres around x. It is therefore easy to
see that the following is true; instead of a proof we will give an algorithm for encoding.

5.4. Proposition. Let P be a maximal path in T, i.e. of length diam T, and let x
be its central point if P’s length is even and anyone of its central points else.
Define ‘

So(x):={x}, Ap:i=d(x),
Si(x) := {yeV(T)| 6y) > 2 and if there is a z € V(T) with dy'x, z) < dr(x, y)
then either 6(z) = 2 or z e §(x) for some j < k},
( (YN — T )
A = {;naxjfs\ey) lyeSix)} -1, if S(x)+90, k=1
Then ©
dim T < logy diam T + ) logy A, — 1. 0

k=0

Before we develop the algorithm we have to introduce a certain set of 0, 1-vectors
which is needed in the encoding procedure.
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Let 1,(i,j), p= 1, i 2 0, je {0, 1}, be recursively defined in the following way:
1,(0,0) = t,(1,1) = 0, £,(0, 1) = £,(1,0) = 1,
(i) = {tp(i,j)tl(ij), it 0=i<2,
pralls i — 2, ) ty(1, ), if 2P <i<2rtt,

5.5. Algorithm.

Al: Let P,,, my, = diam T, be a maximal path in T. Let V(P,,)) = {X00, X015 -+ Xomy}
be numbered such that {x,;, xo;+} € E(T). Encode P, by u.

A2: Put x = x,, where a = mo[2 if m, is even and o = (m, — 1)/2 if m, is odd.
Set k:= 1. If 6;{x) = 2, set A, := P, and continue with A3. Let be P, ,
i=1,..., 6T(x) — 2, be all the paths starting in x, that are pairwise disjoint
and disjoint with P, except in x, and have maximal length. Since P, is maximal
in T and x is in the center of P, , m; < mo[2 resp. m; < (mo — 1)[2 for all
iz 1. Let P, = {Xpmo> Xmy1s --» Xmig,; Where X,.0=x and {X,j, Xmj+,} €
€ E(T)for all i, j. Then u, is an encoding of Wy := (P, Pris -+ s Prspiey-2:%)
if one puts:

u(x)22...2, if y=x,

u(xg ;) t(m,jmod2), if y=x,,;, i,j%0 and m; even

u(xg 4uj) t(my, jmod 2), if y=x,,;, ,j+0 and m; odd,

u(x;) t,(0, jmod 2), if y = xo;,

uo()’) =

where p := logy d,{x) — L.

A3: Set Si(x) = {Xp1s X420 «-o» Xur,}- Set i = 1 and p := log; A,.

Ad: Let be P{), j = 1,..., 6(x;;) — 2, be all paths starting in x,;, being pairwise
disjoint and disjoint with ,_, except in x,; and having maximal length. Set
zo = X; and denote z;e€ V(,_,;) such that di{x,z;) = j + d{x, Zo) and
{z;-1,2;} € E(T)forallj 2 1.Set PS) = {¥,.0, Yu,1s - +» Yimyq;) WHETE Ym0 = 2,
and { Y, Ymys+ 1) € ET) for all j, 5. Define

u-1(zo) BB ... B, if y =zo, where B:=2 + (di{x,2,)M0d?2),
ul(y) = u—4(z;) 1,00, jmod 2), if y=2z, j+0,
u_y(z;) t(myjmod2), if y=y,; j*0.
Set i «— i+ 1. If i < r, repeat A4.
AS: For all vertices y from A, _, for which u, is not yet defined, set

w(y) = u(y)BB... B, where B =2+ (dr{x,y)mod2).
Now u, is an encoding of

Wy 1= WP, .., PDix .. . PO, L, P,(,:f) X - Wi 1)
k
and it holds:
dim Q[k é dim Q[k—l + Iog; Ak .

Set k + k + 1. If §;(x) + 0, continue with A3.
STOP. O
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Example.

gl(x) = {.Vla Yas y3} = Al = 4’

S5)%) ={z1,23, 73,2} > A, =2=5<dimT< 7

Al: A2:
012 0122
101 100 1010 1011 1001 1000
020 021 0201 0200 0210 0211
111 110 1110 1111 1101 1100
000 001 0001 0000 0010 0011
A3—AS5, k= 1: 012222

0201017 02Q111 020022 021022 21122
1 10000
111‘010 111000 111111 111101 11010 11Q.101 110&10/11 1T mn \l\

)
000111 000000 000010 001000 001110 001100
A3—-AS, k=12 0122222
1010333 102};33 1001333 1000333
0201012 0201112 0200272 0210222 0211222

1110103 111000171110000 1111113 1131013 1101113 1191013 103-1 73 1100113.3100003
3 fgo y 1100103-1160073 11Q0 4\_

0000000 0000101 0010000 )
0000100 0010001 ~

0001110 0201111 CO00001 0011102 0011002

O
Remark. Let r be such that §,(x) + 0 and S(x) = 0 foralls > r. If §(x) contains

only those vertices which are adjacent exclusively to end-vertices of T, then one can
put A, = 2 in the above formula, since it is possible to encode all the end-vertices
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by only one additional coordinate (cf. [10, 1.5]). Example:

001 or11

110 021 104,

00i 01j
O

Finally, we want to apply Proposition 5.3 to the following type of symmetrical tree T
with diam T = 2n, in which all vertices of a fixed sphere around the root x have
same degree:

Sp{x)=2%%1, w2 0; =>A, =2%""
o) =2%+1, 20, if dix,y)=ke{l,...,n—1}; =A =2%,
(6:(y) =1, if dgx,y)=n).

Define mgy := 1,
IR A T (I )

Then Thas Y, m, vertices, m, of which have degree 1. This implies the lower bound
k=0
according to Proposition 5.1
n—1

n—2
dimT2logy (1 + Y m)=22+Y q,
k=0 k=0

and the upper bound according to Proposition 5.3

n—1 n—1
dim T < log; diam T+ Y log A, — 1 =1 +logy n+ Y, 0. m]
k=0 k=0
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