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ABSTRACT. This paper has three parts. It is conjectured that for every

elementary amenable group G and every non-zero commutative ring k,

the homological dimension hdk(G) is equal to the Hirsch length h(G)
whenever G has no k-torsion. In Part I this conjecture is proved for

several classes, including the abelian-by-polycyclic groups. In Part II it

is shown that the elementary amenable groups of homological dimension

one are colimits of systems of groups of cohomological dimension one.

In Part III the deep problem of calculating the cohomological dimension

of elementary amenable groups is tackled with particular emphasis on

the nilpotent-by-polycyclic case, where a complete answer is obtained

over Q for countable groups.

INTRODUCTION

This paper is divided into three parts, each devoted to an aspect of the

theory of (co)homological dimension for discrete soluble groups. Wher-

ever possible, we have aimed for results that hold in the class of elementary

amenable groups, since this class may be regarded as the largest class of

groups that warrant the title of generalized soluble groups; by definition it

is the smallest class of groups that contains all finite and abelian groups

and is closed under extensions and directed unions. Homological and coho-

mological dimension, though, are subtle invariants that oblige us to retain

additional hypotheses at various stages of our treatment.

Throughout, k will denote a non-zero commutative ring. The cohomolog-

ical dimension cdk(G) over k of a group G is the least integer m such that

Hm+1(G,M) = 0 for all kG-modules M; or ∞ if no such m exists. The ho-

mological dimension is defined similarly, using homology functors in place

of cohomology functors. It is always the case that hdk G ≤ cdk G. If G is

countable then cdk(G) ≤ hdk(G)+ 1. If k′ is a second non-zero commuta-

tive ring and k→ k′ is a ring homomorphism then hdk′ ≤ hdk and cdk′ ≤ cdk;
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so in particular hdk ≤ hdZ and cdk ≤ cdZ. We say that a group has no k-

torsion when the orders of its finite subgroups are invertible in k. For any

group G, the finiteness of hdk(G) implies that G has no k-torsion. We re-

fer the reader to Bieri’s notes [3] for proofs of these basic facts and other

background material.

In Part I of this paper we study the homological dimension of elementary

amenable groups over arbitrary coefficient rings. We have found that even

in the classical soluble case there is a need for clarification of the existing

literature. Our main result in this direction is Theorem I.3, which shows that

for abelian-by-polycyclic groups G, the homological dimension is equal to

the Hirsch length h(G) when both quantities are finite. In particular, when

finite, the homological dimension of such a group is independent of k.

We conjecture that the homological dimension and Hirsch length always

coincide for elementary amenable groups whenever the former is finite.

This conjecture is claimed for arbitrary soluble groups by Fel′dman [5]

but the argument there is flawed and it seems unlikely, as we shall see,

that there is any elementary way of repairing it. We have already noted

that for any group G, the finiteness of hdk(G) implies that G has no k-

torsion. For soluble groups without k-torsion, one also has the well-known

inequality hdk(G) ≤ h(G) (see [3], Proposition 7.11, for example), and

this remains valid for elementary amenable groups. Moreover, the equal-

ity hdk(G) = h(G) has been firmly established in the case when k is a field

of characteristic zero ([24]).

The second part of the paper begins with a series of examples that moti-

vate the use of filtered colimit systems. We go on to consider the conjecture

that arbitrary groups of cohomological dimension one over Z are locally

free, as well as natural generalizations for other coefficient rings. We shall

prove that this conjecture holds for elementary amenable groups. We also

explain why, for integers ℓ > 1, one cannot characterise groups of cohomo-

logical dimension ℓ in terms of directed colimits.

In the third part we attack the much tougher problem of characterizing

cohomological dimension for elementary amenable groups over arbitrary

coefficient rings. We present a natural conjecture and establish some tech-

nical reductions of it. The nilpotent-by-polycyclic case is investigated in

greater detail with emphasis on the coefficient ring k = Q. In this gener-

ality, we establish the main conjecture for countable groups and present a

significant reduction in the case of groups of greater cardinality.

We thank the referee for reading our original draft so carefully and for

providing such constructive comments.
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I. HOMOLOGICAL DIMENSION

We begin with an account of the following conjecture, discussing previ-

ous work in this direction and presenting partial results concerning group

algebras of soluble groups. Later we shall enlarge the discussion to cover

elementary amenable groups. We assume that the reader is familiar with the

notion of Hirsch length in the setting of solvable groups; it is discussed in

greater generality in (I.15).

Conjecture I.1. Let G be an elementary amenable group with no k-torsion.

Then hdk(G) = h(G).

We wish to emphasize that this conjecture is open for soluble groups. The

statement for elementary amenable groups can be shown to follow easily

from the soluble case. The condition of no k-torsion was discussed in the

introduction. Beyond this, the first thing that we shall prove is the following:

Theorem I.2. Let G be an elementary amenable group with no k-torsion.

Then h(G)/2≤ hdk(G)≤ h(G)

In particular, this shows that the finiteness of hdk(G) is equivalent to

finiteness of h(G) and so for torsion-free elementary amenable groups, finite-

ness of homological dimension over k is independent of k.

Of course we expect the equality hdk(G) = h(G) whenever hdk(G) is

finite. We establish this in a special case by using some of the techniques

introduced by Fel′dman.

Theorem I.3. Conjecture I.1 holds for abelian-by-polycyclic-by-finite groups.

Remark I.4. For any group G, hdk(G) is equal to the supremum of hdk(H)
as H runs through the finitely generated subgroups of G. Naturally this is

useful in proving Theorem I.3. This is false for cohomological dimension,

a point which we discuss more fully in Part II.

It is widely recognized that the homological (or weak) dimension is more

easily understood than the cohomological dimension in the context of group

rings.

Conjecture I.1 is similar in form to many well established results. Stamm-

bach proved this for soluble groups in case k is a field of characteristic zero,

([24], Theorem 1). A very readable account may be found in Bieri’s notes

([3], §7.3). The special case of Theorem I.3 in which k = Z appears in

Bieri’s notes ([3], Theorem 7.10a). Bieri’s account follows similar lines

to Stammbach’s original work, using along the way the fact that if G is a

torsion-free nilpotent group of Hirsch length n then the homology groups

Hn(G,Z) and Hn(G,Q) are both non-zero. Gruenberg also gives a useful

account [9] and goes further by determining both the cohomological di-

mension and the homological dimension for nilpotent groups.
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Stammbach’s argument leads to a weaker conclusion over fields of pos-

itive characteristic. The reason is that p-divisibility in the group results in

premature vanishing of homology with trivial coefficients of characteristic

p. For example, if G is the additive group Z[1/p] and Fp is the field of p

elements then H1(G,Fp) = 0 while it is obvious that hdFp
(G) = 1 because

G has an infinite cyclic subgroup which already has homological dimen-

sion one over any coefficient ring. The issue becomes more acute when

one embeds Z[1/p] into a finitely generated group. The one-relator group

H := 〈x,y; x−1yx = xp〉 contains a copy of Z[1/p] generated by the con-

jugates of y. Moreover H is a metabelian group and so falls within the

remit of Theorem I.3. It is indeed true that hdk(H) equals the Hirsch length

h(H) = 2 no matter what the choice of k, but proving this appears to re-

quire ideas beyond those presented by Bieri, Gruenberg or Stammbach for

dealing with k = Z or k =Q.

On the other hand, there is another paper [5] by Fel′dman which builds

on Stammbach’s work [24] and cites Gruenberg’s notes [9]. Fel′dman an-

nounces Theorem I.3 above but the proof is flawed, as we shall explain.

At the same time, Fel′dman’s paper contains some very important insights

amongst the most crucial of which lead to the following powerful equations.

Theorem I.5 (Fel′dman ([5], Theorem 2.4), Bieri ([3], Theorem 5.5)). Let

N  G ։ Q be a short exact sequence of groups in which N is of type FP

over k. Suppose that Hn(N,kN) is free as a k-module for n = cdk(N) (=
hdk(N)). Then

(i) if cdk(Q)< ∞ then cdk(G) = cdk(N)+ cdk(Q), and

(ii) if hdk(Q)< ∞ then hdk(G) = hdk(N)+hdk(Q).

Fel′dman states this result in case k is a field and Bieri establishes the

generalization to arbitrary k. In both cases of course the inequalities ≤
follow at once from standard spectral sequence arguments.

Fel′dman goes further and states that if G is soluble without k-torsion then

hdk(G) = h(G), (see [5], Theorem 3.6). However the proof offered includes

the sentence “Stammbach’s proof [24] . . . applies for any field . . .”, which

is an assertion we have seen to fail in some cases. For this reason we revisit

Fel′dman’s claim in the context of Theorem I.3 and provide a new proof that

uses the Fel’dman–Bieri Theorem I.5 but avoids appealing to any supposed

variation of Stammbach’s characteristic zero argument.

It seems very unlikely that Stammbach’s proof could ever have a gen-

eralization in the direction suggested by Fel′dman because Stammbach’s

argument uses finite dimensional modules. Let us examine this point more

closely. In case k is a field, let fdhdk(G) denote sup{n ≥ 0; Hn(G,M) 6=
0 for some kG-module M satisfying dimk M < ∞}, the k-finite-dimensional

homological dimension. Stammbach’s argument rests on showing that if
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G is a soluble group of finite Hirsch length h then fdhdQ(G) ≥ h; he does

this by explicitly constructing a module M so that the hth homology is non-

zero. By combining this information with the more elementary inequality

hdQ(G) ≤ h and the trivial observation fdhdQ ≤ hdQ, one concludes that

hdQ(G) = h. But, crucially, if we consider finite fields k and soluble min-

imax groups G, the k-finite-dimensional homological dimension cannot be

a strong enough invariant for the task in hand, as we shall now explain. We

shall need the following easy lemma in our discussion.

Lemma I.6. Let k be a field. Let H be a subgroup of finite index in a group

G with fdhdk(G)< ∞. Then fdhdk(H) = fdhdk(G).

Proof. The inequality fdhdk(H) ≤ fdhdk(G) follows from the Eckmann–

Shapiro lemma because the induction functor takes finite dimensional kH-

modules to finite dimensional kG-modules. If n = fdhdk(G) is finite then

choose a finite dimensional kG-module M such that Hn(G,M) is non-zero.

Now there is a natural embedding of M into the induced module M⊗kH kG

and so the tail end of the long exact sequence of homology for G shows

that Hn(G,M⊗kH kG) is non-zero. Thus, again by the Eckmann–Shapiro

lemma, we have Hn(H,M) is non-zero and fdhdk(H)≥ n. �

Note that the inequality fdhdk(H)≤ fdhdk(G) from the beginning of this

proof really does depend on finite index: we shall see this point in more

detail shortly.

I.7. A review of the theory of soluble minimax groups. A soluble min-

imax group is a group with a series 1 = G0 ⊳ G1 ⊳ . . . ⊳ Gr = G of finite

length in which the factors Gi/Gi−1 are cyclic or quasicyclic. An elemen-

tary amenable minimax group allows arbitrary finite factors in addition.

Both classes are subgroup, quotient and extension closed. Every elementary

amenable minimax group is virtually soluble, in fact virtually nilpotent-by-

abelian. Every virtually torsion-free elementary amenable minimax group

is nilpotent-by-(finitely generated abelian)-by-finite. If p and q are distinct

primes then there is a faithful action of Z[1/q] on Cp∞ and the resulting

semidirect product Cp∞ ⋊Z[1/q] is an example to illustrate that in general,

while always virtually nilpotent-by-abelian, soluble minimax groups need

not be virtually nilpotent-by-(finitely generated abelian). Accounts of the

theory may be found in [20, 21, 19].
�

Diverting from Robinson’s terminology in a way that we hope is

harmless in this context, we shall use the term minimax always to refer

to elementary amenable minimax groups. (Robinson allows for other, more

exotic groups to be included but this has no relevance here.)
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The Hirsch length of a minimax group is simply the count of the number

of infinite cyclic factors in a cyclic/quasicyclic/finite series (cf. I.15). We

can also define an invariant h∗ for minimax groups by counting the number

of infinite factors, and for each prime p we can count the number mp of

factors isomorphic to Cp∞ . It is sometimes useful to consider the set π of

primes p for which G has a section isomorphic to Cp∞ . The independence of

these counts from choice of series follows at once from the Schreier refine-

ment theorem. Note that we also have h∗= h+∑p mp and π = {p; mp 6= 0}.

Proposition I.8. Let p be a prime and let Fp denote the finite field of p el-

ements. Let G be a torsion-free soluble minimax group. Then fdhdFp
(G) =

h(G)−mp(G).

Proof. We may choose a series 1=G0≤G1≤ ·· · ≤Gr terminating in some

subgroup Gr of finite index in G in which the factors are torsion-free abelian

of rank 1. Lemma I.6 shows that, without loss of generality, we may replace

G by Gr and so assume that G = Gr. We establish the result by induction

on r. This follows easily from the following facts.

(i) If M is a finite FpG-module then H j(G,M) is finite for all j.

(ii) If G is torsion-free abelian of rank one and p-divisible (or equiva-

lently has a section isomorphic to Cp∞) then H j(G,M) = 0 for all

finite FpG-modules M and all j > 0.

(i) is easily proved using a spectral sequence argument. (ii) follows from

straightforward calculation. First, the use of long exact cohomology se-

quences can be used to reduce to the case when M is an irreducible G-

module. Since G is abelian, all the cohomology groups with coefficients in

a non-trivial irreducible FpG-module are zero. Thus the only case where

calculation is required is when M = Fp is the trivial module and in this case

a universal coefficient theorem together with the p-divisibility of G shows

that cohomology vanishes in dimensions greater than zero. �

Combining Proposition I.8 with the trivial observation that the inequality

fdhdk(G) ≤ hdk(G) holds for any k, we see that in positive characteristic

Stammbach’s argument leads naturally to the following conclusion.

Lemma I.9. If G is a torsion-free soluble minimax group then for each

prime p, hdFp
(G)≥ h(G)−mp(G).

We have been unable to see how Stammbach’s arguments could be adapted

to yield the conjectured equality hdFp
(G) = h(G).

This concludes our discussion of Fel’dman’s approach to Conjecture I.1.

Henceforth we concentrate on improving the inequality in Lemma I.9 under

additional hypotheses.
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I.10. Constructible soluble groups and inverse duality.

Constructible groups were introduced by Baumslag and Bieri [1]. Con-

structible amenable groups are elementary amenable and virtually of type

F. They can be built up from the trivial group by a finite series of ascending

HNN-extensions and finite extensions. It is now known that all elementary

amenable groups of type FP are constructible, and we refer the reader to

[16] for an up to date account of many homological properties and charac-

terizations of these groups.

Proposition I.11. If G is a torsion-free constructible soluble group then

hdk(G) = cdk(G) = h(G).

Proof. It follows from results of Gildenhuys and Strebel [8] that a torsion-

free constructible soluble group G satisfies hdZ(G) = cdZ(G) = h(G)< ∞.

According to Theorem 9 of [1] torsion-free constructible soluble groups are

inverse duality groups over Z in the sense of §9.3 of [3], that is to say these

groups are duality groups over Z whose dualizing modules are free abelian.

Therefore, writing n = h(G), we have that Hn(G,kG) ∼= Hn(G,ZG)⊗ k 6=
0 for any non-zero commutative ring k. Thus cdk(G) = cdZ(G), and by

duality hdk(G) = hdZ(G). �

This enables us to settle Conjecture I.1 for constructible virtually soluble

groups.

Corollary I.12. If G is constructible and virtually soluble then hdk(G) is fi-

nite if and only if G has no k-torsion and has finite Hirsch length. Moreover,

when these conditions hold, hdk(G) = h(G).

Proof. Constructible virtually soluble groups contain torsion-free subgroups

of finite index to which the Proposition can be applied. The finite index step

up is standard, resting on two observations about a subgroup H of finite in-

dex in a group G:

(i) if hdk(G) < ∞ then hdk(G) = hdk(H) — a simple consequence of

the Shapiro–Eckmann lemma; and

(ii) if G has no k-torsion and hdk(H) < ∞ then hdk(G) < ∞ — this

follows from a variation on the Künneth theorem for tensor powers

of resolutions.

�

I.13. Elementary amenable groups. Having seen that Conjecture I.1 holds

for constructible virtually soluble groups we wish to go further and con-

sider the situation for the much wider class of elementary amenable groups.

The reader will recall that the class of elementary amenable groups is de-

fined to be the smallest class of groups which contains all finite and all
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abelian groups and which is closed under extensions and directed unions.

All groups in this class are amenable. They have received attention in part

because they can be studied using traditional methods from the theory of

generalized soluble groups, but also because at the same time they form a

fascinatingly complicated class of groups encompassing a great range of be-

haviour. We have the following version of Conjecture I.1 for these groups.

Conjecture I.14. Let G be an elementary amenable group and let k be a

non-zero commutative ring. Then hdk(G) is finite if and only if G has no

k-torsion and finite Hirsch length. When these conditions hold we have

hdk(G) = h(G).

The definition of Hirsch length is well known for soluble groups but may

need some elaboration for elementary amenable groups in general. We for-

mulate it as follows.

Definition I.15. The Hirsch length h(G) of an elementary amenable group

is finite and equal to n ≥ 0 if G has a series 1 = G0 ⊳G1 ⊳ · · · ⊳Gr = G in

which the factors are either locally finite or infinite cyclic, and exactly n fac-

tors are infinite cyclic. In all other cases, h(G) = ∞. Note that the Schreier

refinement theorem shows this to be an invariant of the group independent

of any choice of subnormal series.

That this definition coincides with that of Hillman and Linnell [10] fol-

lows from Lemma I.17 below. To explain this we appeal to an argument of

Wehrfritz:

Proposition I.16 (Wehrfritz [25], (g)). There is an integer-valued function

j(h) of h only such that an elementary amenable group G with h(G) < ∞

has characteristic subgroups τ(G) ≤ N ≤ M with τ(G) torsion, N/τ(G)
torsion-free nilpotent, M/N free abelian of finite rank and |G : M| at most

j(h(G)).

Lemma I.17. Let G be an elementary amenable group of infinite Hirsch

length. Then there is a chain of subgroups G0 < G1 < · · · < Gn < · · · (in-

dexed by the natural numbers) for which the sequence of Hirsch lengths

(h(Gn)) increases without bound.

Proof. For each ordinal α , let Xα be the class of elementary amenable

groups defined by Hillman and Linnell [10]. Recall that X0 is the trivial

groups’ class, X1 consists of all abelian-by-finite groups, and Xα is de-

fined to be (LXα−1)X1 if α is a successor and
⋃

β<α Xβ if α is a limit

ordinal. (Here, (LXα−1)X1 is the class of those groups that are an ex-

tension of a group which is locally Xα−1 by a group which is in X1.) A

group is elementary amenable if and only if it belongs to some Xα , and the
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least such α provides a level allowing arguments by transfinite induction.

The level of G is the least α for which G belongs to Xα ; this is always a

successor ordinal when G is non-trivial.

Towards a contradiction, let G be an elementary amenable group of in-

finite Hirsch length which does not possess a strictly ascending chain of

subgroups as is required by the lemma. Let α be the level of G. We may

assume that groups of level less than α either have finite Hirsch length or

admit an instance of the desired chain. If the latter happens then we are

done. Hence we may assume that every subgroup of G of level less than α
has finite Hirsch length. If there is a bound on the Hirsch numbers of those

subgroups of G that have finite Hirsch length, then it follows that G itself

has finite Hirsch length (see Wehrfritz’ argument, Proposition I.16). So we

may assume that there is no such bound on Hirsch lengths and now it is

clear that we can find a chain of the required type. �

I.18. A lower bound for homological dimension.

Proof of Theorem I.2. First note that, without interfering with the hypothe-

ses, we may replace G by G/T where T < G is the largest normal locally

finite subgroup. So we assume that T = 1. By Remark I.4 there is no loss

of generality in assuming that G is finitely generated and therefore virtually

soluble and minimax. According to Lennox and Robinson ([18], Theorem

C), there are nilpotent subgroups N and S with N normal and S finitely gen-

erated such that NS has finite index in G. Since N is locally polycyclic it is

clear that hdk(N) = h(N). We also have hdk(S) = h(S) (by I.12, for exam-

ple). The result follows because hdk(G) is bounded below by both hdk(N)
and hdk(S) and at least one of these is ≥ h(G)/2. �

I.19. Homological dimension in the abelian-by-polycyclic case.

The Lennox–Robinson result can also be used to make another reduc-

tion. More generally, suppose G = NS is the product of a normal nilpotent

minimax group N and a polycyclic group S. Then S acts on N by conju-

gation and we may form the semidirect product N ⋊ S which then admits

a homomorphism to G given by (s,n) 7→ sn. The kernel of this homomor-

phism is isomorphic to S∩N < S. In particular it is a polycyclic group,

hence of type FP (indeed it is virtually a Poincaré duality group over Z).

If G has no k-torsion Fel′dmans’s result may be applied to deduce that

hdk(G) = hdk(N⋊S)−hdk(S∩N) = hdk(N⋊S)−h(S∩N) and so in order

to establish that hdk coincides with Hirsch length for G, it suffices to do the

same for N ⋊S.

We shall need a variation on the Lennox–Robinson splitting theorem.

The following is preparatory for this. The upper finite radical of an abelian

group is the join of the subgroups that are upper finite. An abelian group A
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is called upper finite if it has the property that A/B is finite whenever it is

finitely generated. The upper finite radical of an abelian group is upper fi-

nite. If A is an abelian minimax group with upper finite radical U then A/U

is finitely generated and free abelian. More generally, a minimax group is

called upper finite when all of its finitely generated quotients are finite: the

class of upper finite groups is a radical class, meaning that the join of all

subnormal upper finite subgroups of a group is upper finite. In a soluble

minimax group G, the upper finite radical has least Hirsch length amongst

normal subgroups K such that the quotient G/K is polycyclic. The follow-

ing proposition uses the spirit of this definition: it can be interpreted as a

“near supplement” result for the upper finite radical of a minimax group.

Further near supplement and near complement results of this kind can be

found in [14]. Theorem I.3 can be interpreted as a statement about minimax

groups G in which the upper finite radical is virtually abelian.

Proposition I.20. Let G be a minimax group with a normal subgroup K

such that G/K is polycyclic. Then G has a polycyclic subgroup H such that

HK has finite index in G.

Proof. It suffices to construct a polycyclic subgroup H such that HK has

the same Hirsch length as G. For if H is such a subgroup then HK/K is a

subgroup of the polycyclic group G/K, and having the same Hirsch length

it must be of finite index.

We focus on Hirsch length and proceed by induction on h∗(G). If h∗(G)=
0 then G is finite. Assume that h∗(G) is non-zero. Let A be an infinite sub-

group with h∗(A) as small as possible subject to |G : NG(A)|<∞. Replacing

G by a subgroup of finite index we may assume that A is normal in G. By

induction, there is a subgroup L containing A such that L/A is polycyclic

and h(LK) = h(G). If L has infinite index in G then induction supplies a

subgroup H such that H(K ∩L) has the same Hirsch length as L and HK

now has the same Hirsch length as G. Therefore we may assume that for

all choices of A, G/A is polycyclic. If there is an infinite abelian torsion

subgroup A normal in G such that G/A is polycyclic then let F be a finite

subset of G whose images in G/A generate G/A and let P be the subgroup

of G generated by F . Since polycyclic groups are finitely presented, we

deduce that P∩A is finitely generated as a G-operator group and therefore

that P∩A has finite exponent. In this case P is polycyclic and has the same

Hirsch length as G so we are done. Therefore we may assume that there are

no torsion choices for A.

This implies that G is just-non-polycyclic in the sense of Robinson and

Wilson [22] and our conclusion follows from the near-splitting result ([22],

2.4(iv)). �
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Proof of Theorem I.3. As in the proof of Theorem I.2, we can reduce to

the case where G is finitely generated. Also we may assume that G has

a torsion-free abelian normal subgroup A of finite Hirsch length such that

G/A is polycyclic. It follows that A is a minimax group. Using the above

splitting result and replacing G by a subgroup of finite index, we may as-

sume that G=AS for some polycyclic subgroup S. As outlined in paragraph

I.19, we may replace G by the semidirect product A⋊S in which the action

of S on A is the same as its conjugation action within G, and with no loss of

generality.

We shall need to appeal to the structure theory of torsion-free abelian

minimax groups. If such a group has Hirsch length h, then it is isomorphic

to a subgroup of the additive group Z[1/m]h for some natural number m.

Let B < A be a free abelian subgroup of A of rank h and let φ be the

endomorphism of B given by b 7→ bm. Let C denote the ascending HNN-

extension BB,φ . The normal closure of B in C is the kernel of the obvious

map from C to the infinite cyclic group generated by the stable letter t of

this HNN extension. This kernel is isomorphic to A⊗Z[1/m]. Thus we

have a natural inclusion

A →֒C ∼=
(
A⊗Z[1/m]

)
⋊ 〈t〉.

A key point to observe is that C is torsion-free and constructible, so it is an

inverse duality group over Z and Proposition I.11 applies. Indeed C has a

finite classifying space, namely the mapping torus of the endomorphism of

the h-dimensional torus given by x 7→ xm.

The action of S < G on A by conjugation extends to an action on A⊗
Z[1/m] and then, by allowing the elements of S to act trivially on the sta-

ble letter t, to C. This last action is well-defined because φ is central in

Aut(A⊗Z[1/m]). We form the semidirect product E =C⋊S and consider

the commutative diagram relating G and E.

A // //

��

G // //

��

S

C // // E // // S.

Regarding Hirsch length, we have h(C)= h(A)+1 and hence h(E)= h(G)+
1. Since C is an inverse duality group and hdk(S) = h(S) is finite, the hy-

potheses of Theorem I.5(ii) are satisfied and we obtain hdk(E) = hdk(C)+
h(S). Moreover, according to Proposition I.11, hdk(C) = h(C).

Finally, note that h(G) and hdk(G) remain unchanged if we replace G =
A⋊ S by Ĝ = (A⊗Z[1/m])⋊ S. This is because Ĝ is an ascending (di-

rected) union of groups each of which contains G as a subgroup of finite

index. Then E is an extension of Ĝ by 〈t〉 and so hdk(E) ≤ hdk(Ĝ) + 1.
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Putting all this together we have hdk(G) ≥ hdk(E)− 1 = hdk(C)− 1 +
h(G/A) = h(C)− 1+ h(G/A) = h(A)+ h(G/A) = h(G). The reverse in-

equality hdk(G) ≤ h(G) is well-known, see for example ([3], Proposition

7.11). �

II. FILTERED COLIMITS AND HOMOLOGICAL DIMENSION ONE

In this part of the paper we fix a non-zero commutative ring k and con-

sider the following

Conjecture II.1. Every group G of homological dimension one over k is a

filtered colimit of groups of cohomological dimension one over k.

By a filtered colimit system, we mean a colimit system over a filtered

category. A homological simplification arising from this is that the col-

imit functor lim
−→

, when applied to abelian groups or modules, is exact and

in particular, if (Gλ ) is a filtered colimit system of groups and (Mλ ) is a

compatible system of modules, then the natural map

lim
−→

Hn(Gλ ,Mλ )→ Hn(lim−→
Gλ , lim−→

Mλ )

is an isomorphism for all n. This has the important consequence:

Lemma II.2. hdk(lim−→
Gλ )≤ supλ hdk(Gλ ).

We shall see that the conjecture holds in case G is elementary amenable

but that even in this situation, the groups involved in the colimit system

may by necessity be non-amenable. We shall also see that the conjecture

becomes false if dimension one is replaced by higher dimensions.

Before beginning the analysis we review the spectral sequences and ex-

act sequences associated with limits (i.e. inverse limits) and their derived

functors. Limits arise naturally when considering filtered colimit systems of

groups because group cohomology is contravariant as a functor of the group

argument. While the colimit functor over a filtered category with values in

an abelian category is exact, the limit functor lim
←−

has derived functors and

so has a dimension which turns out to depend on the effective cardinality of

the limit system. These classical facts are found in Jensen’s treatise, see es-

pecially ([12], Théorème 4.2). In our context this may be stated as follows.

Theorem II.3. Given a filtered colimit system of groups (Gλ ) there is a

first quadrant spectral sequence with E
p,q
2 = lim

←−
pHq(Gλ ,M) converging to

H p+q(lim
−→

Gλ ,M) for any module M over the colimit lim
−→

Gλ .

In particular, if the colimit system is countably indexed then lim
←−

i van-

ishes for i > 1 and the spectral sequence simplifies to a set of short exact

sequences

0→ lim
←−

1Hn−1(Gλ ,M)→ Hn(lim
−→

Gλ ,M)→ lim
←−

Hn(Gλ ,M)→ 0.
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This provides a source of examples of countable groups for which cdk =
hdk+1.

When the filtered colimit system is indexed by a set of cardinality ℵm

(for a natural number m) then lim
←−

i vanishes for i > m+1. This provides a

source of examples of groups of cardinality ℵm for which cdk = hdk+m+1.

We shall briefly review some of the history of such examples but first we

record how the vanishing of lim
←−

i gives rise to the cohomological version of

Lemma II.2:

Lemma II.4. Let Λ be a small filtered category of cardinality ℵm. Let

(Gλ ) be a filtered colimit system of groups over Λ. Then cdk(lim−→
Gλ ) ≤

supλ cdk(Gλ )+m+1.

For the next three subsections, we work entirely with the coefficient ring

Z.

II.5. Torsion-free nilpotent groups of finite rank.

Gruenberg used the lim
←−

-lim
←−

1 methodology to show that the cohomolog-

ical dimension of a torsion-free nilpotent G is h(G) or h(G)+ 1 according

to whether G is finitely generated or not finitely generated. See ([9], §8.8,

Theorem 5).

II.6. A finitely generated metabelian group with hd = 3 and cd = 4. An

alternative approach to the lim
←−

-lim
←−

1 method uses the universal coefficient

theorem in case k = Z. This says that for a ZG-module M with trivial G-

action there are short exact sequences

0→ Ext(Hn(G,Z),M)→ Hn+1(G,M)→ hom(Hn+1(G,Z),M)→ 0.

In particular if G is a countable group of homological dimension n and

Hn(G,Z) is not a free abelian group then cdZG = n+ 1. Bieri used this

argument to give an example of a group of cohomological dimension 4 and

homological dimension 3 in his paper [2]. His example is the split exension

of the additive group Q2 by an infinite cyclic group Z with action n ·(a,b) =
(n−1a,nb): the point here is that the group is constructed in order to ensure

that H3(G,Z)∼=Q.

II.7. A finitely generated metabelian group with hd= 2 and cd= 3. The

construction of §II.6 cannot be used to address the case cohomological di-

mension 3 and homological dimension 2. So work continued on soluble

groups and the matrix group

H =

{(

(2
3
) j 0

ℓ 1

)

; j ∈ Z, ℓ ∈ Z[1
6
]

}
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emerged as a key example because for a period of time it remained a ques-

tion whether this group had cohomological dimension 2 or 3. Gidlen-

huys settled this by showing that the cohomological dimension is indeed

3 for this group, see [6]. One can see that hd(H) = 2 by observing that

H ∼= Z[1/6]⋊Z, so in particular H is locally-cyclic by cyclic. Alternatively

one could observe that it has Hirsch length 2 and appeal to the results in Part

I. The group H is the colimit that one obtains in the following proposition

when (p,q) = (2,3).

Proposition II.8. Let p and q be coprime integers neither of which equals

0, 1, or −1. Then B(p,q) := 〈a,b; b−1apb = aq〉 has cohomological di-

mension 2 and admits a surjective homomorphism φ such that the colimit

G of the sequence B(p,q)
φ
→ B(p,q)

φ
→ B(p,q)

φ
→ . . . is metabelian and

cdZ(G) = 3, but hdZ(G) = 2.

Proof. First note that B := B(p,q) has cohomological dimension 2 because

it is an HNN extension of the infinite cyclic group 〈a〉, indeed it has a finite

2-dimensional classifying space obtained by attaching a cylinder to a circle,

with one end of the cylinder wrapping around p times, and the other q times.

(B cannot be of cohomological dimension 1 because it can be shown to be

torsion-free with one end. Every 2-generator torsion-free group with more

than one end is free.)

The assignments a 7→ apq and b 7→ b clearly define an endomorphism

of B. This is surjective because 〈apq,b〉 contains both bapqb−1 = ap2
and

b−1apqb = aq2
, and therefore a. To see that the resulting colimit G is

metabelian, observe that for any word w in a and b with exponent sum k

in b, there is a sufficiently large natural number n such that φ n(w) lies in the

coset 〈a〉bk. Let u and v be elements of the derived subgroup of B. Then

u and v have exponent sum zero in b and therefore φ n(u) and φ n(v) both

belong to 〈a〉 and so commute.

Gildenhuys ([6], Theorem 5) characterizes the soluble groups that have

cohomological dimension at most two over Z. In particular he shows that if

such a group is finitely generated then it is finitely presentable. Our colimit

G, on the other hand, is not finitely presentable, because the maps in the

directed system defining it all have non-trivial kernel: the normal form the-

orem for HNN extensions assures us that [a,b−1ab] ∈ kerφ is non-trivial,

for example. Thus the colimit must have dimension at least 3. But since

homology commutes with directed colimits, the homological dimension of

G is 2. �

Note that although the group G constructed in the preceding proof is

not finitely presented, the group Ĝ = G⋊φ Z is, where φ : G→ G is the
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isomorphism induced by φ : B→ B. Indeed Ĝ has a balanced presentation,

Ĝ = 〈a,b, t; b−1apb = aq, t−1at = apq, t−1bt = b〉.

Thus we obtain (concise) finite presentations of metabelian groups that have

homological dimension 3 and cohomological dimension 4.

As a variation on this theme, we shall prove that the group G1 with pre-

sentation

G1 := 〈a,b,c,d; b−1a2b= a3,c−1a3c= a5,d−1a5d = a2,bc= cb,cd = dc,db= bd〉

is metabelian. Similar reasoning to that above shows that the assignments

a 7→ a30, b 7→ b, c 7→ c, d 7→ d determine a surjective endomorphism θ of G1

such that the colimit lim
−→

(G1
θ
→G1

θ
→G1

θ
→ . . .) is metabelian. But now the

deep theory of Bieri–Strebel characterizing finitely presented metabelian

groups may be brought into play. This metabelian colimit has 2-tame Bieri–

Neumann–Strebel invariant and is therefore finitely presented. It follows

that the colimit process must stop in a finite number of steps and hence G1

itself is metabelian and, strikingingly, θ is an automorphism. Conceivably

this example, although not central to the directions of the present paper,

may have interest elsewhere.

II.9. Homological Dimension One. Cohomological dimension one is com-

pletely understood by the theorem [4] of Dunwoody: a group G has coho-

mological dimension≤ 1 over k if and only if it is the fundamental group of

a graph of finite groups whose orders are units in k. The case where k = Z

was proved earlier by Stallings (for finitely generated groups) and Swan (in

general) and simply asserts that the groups are free. Homological dimen-

sion one is not understood. The following Lemma provides the only known

source of such groups:

Lemma II.10. Let n be a natural number. If G is the filtered colimit of a

family of groups Hλ with hdk Hλ ≤ n then hdk G≤ n.

Proof. Homology commutes with filtered colimits:

Hm(G,M)∼= lim
−→

Hm(Hλ ,M)

for all m, and the result follows. �

This leads naturally to Conjecture II.1. One direction of the conjecture

is true and easily deduced from Lemma II.10: if G is the filtered colimit

of groups of cohomological dimension ≤ 1 the Lemma shows that G has

homological dimension ≤ 1. The other direction is open even with k = Z,

in which case the conjecture takes a simplified form:

Conjecture II.11. Every group of homological dimension ≤ 1 over Z is

locally free.
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In [13] it is shown that any counterexample to this would also be a

couterexample to the Atiyah conjecture which states that the von Neumann

dimensions of Hilbert modules for torsion-free groups are integer valued

whenever they are finite.

Proof that Conjecture II.1 implies Conjecture II.11. Let G be a group of ho-

mological dimension 1 over Z. According to Stallings–Swan, groups of co-

homological dimension ≤ 1 are free, so Conjecture II.1 implies that G is a

filtered colimit lim
−→

Gλ of free groups. Let S be a finite subset of G. Choose

λ so that the image of Gλ in G contains S. Choose a finitely generated

Hλ ⊆ Gλ such that the image of Hλ in G contains S. Now for each µ ≥ λ
we have that the image Hµ of Hλ in Gµ is free and either the connecting

map is an isomorphism or the rank of Hµ is strictly less than that of Hλ .

Since the ranks are finite, eventually we will reach a µ where the rank is

minimum and the image of this Hµ in G will be an isomorphic copy of Hµ ,

thus providing a free group containing S. �

Note that the deduction of Conjecture II.11 from II.1 makes use of the fact

that free groups of finite rank are Hopfian in a very strong sense: namely

that proper quotients are either non-free or have fewer generators. This con-

strasts with the situation over Q where there exist groups of cohomological

dimension 1 with two generators and many quotients that also have coho-

mological dimension 1 and two generators: this is illustrated in the proof of

Proposition II.12 below.

Although one might be tempted to think that groups of homological di-

mension one are locally of cohomological dimension 1, this is not the case.

The restricted wreath product Cp ≀C∞ has homological dimension 1 over any

k in which p is invertible and it is finitely generated of cohomological di-

mension 2. However it is not a counterexample to Conjecture II.1. Indeed,

we can confirm Conjecture II.1 for elementary amenable groups.

Proposition II.12. Every elementary amenable group of homological di-

mension ≤ 1 over k is a filtered colimit of groups of cohomological dimen-

sion ≤ 1 over k.

Proof. Suppose that G is a finitely generated elementary amenable group

with hdk(G) = 1. Let T be the largest normal locally finite subgroup of

G. Then G has Hirsch length 1 and G/T is either infinite cyclic or infinite

dihedral. We consider the two cases.

(i) G/T is cyclic: Let g be a generator of G modulo T and let Fn

(n ≥ 0) be a chain of finite subgroups with union T . For each n

let Bn be the (finite) subgroup generated by Fn and g−1Fng. Then

we can build the HNN-extensions Hn := Bn∗Fn,g. There are natural

maps Hn→Hn+1 induced by the inclusions Fn→ Fn+1 and G is the
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colimit of the Hn. Notice that each Hn is the fundamental group of

a graph of finite groups and so has cohomological dimension one.

(ii) G/T is dihedral: This time there are two subgroups H and K which

contain T as a subgroup of index 2 and G is the free product with

amalgamation H ∗T K. Both H and K are locally finite and so we

can view G as the colimit of a sequence of free products with amal-

gamation of finite groups by choosing chains of finite subgroups in

H and K in the same spirit as the first case.

In general, G may be viewed as the filtered colimit of its finitely generated

subgroups and combining this with the analysis above gives the desired

conclusion. �

Two natural questions arise in this context and both have negative an-

swers:

Question II.13. If ℓ is a natural number, is it true that every group of ho-

mological dimension ℓ is a filtered colimit of groups of cohomological di-

mension at most ℓ? In other words, does Conjecture II.1 remain plausible if

the bound 1 is replaced by a higher bound ℓ?

Discussion. No. If ℓ = 3 we have the following decisive counterexample

with coefficient ring Z. Let D be the matrix group
{(

2r3s 0

q 1

)

; r,s ∈ Z, q ∈ Z[1
6
]

}

.

Let H be the subgroup generated by

(
2
3

0

0 1

)

and

(
1 0

1 1

)

and let G :=

D∗H,t be the HNN-extension in which the stable letter centralizes H. Thus

G has the finite presentation

〈a,b,c, t; b−1ab = a2, c−1ac = a3, bc = cb, tbc−1 = bc−1t, ta = at〉.

Moreover, H is the matrix group of (II.7); we saw that it has homolog-

ical dimension 2 and cohomological dimension 3. Similarly, noting that

D ∼= Z[1/6]⋊Z2, we see that D has homological dimension 3 and coho-

mological dimension at most 4. It follows by consideration of the Mayer-

Vietoris sequences associated to the HNN description of G that G has ho-

mological dimension 3 and cohomological dimension at most 4. Finally,

since G contains the direct product H ×〈t〉, which has cohomological di-

mension 4, we conclude that G has cohomological dimension at most 4.

The conclusion: G is a finitely presented group of cohomological dimen-

sion 4 and homological dimension 3. Finite presentation prevents G from

being expressible as a filtered colimit of groups that do not already contain

subgroups isomorphic to G itself and hence any attempt to express G as a

filtered colimit involves groups of cohomological dimension 4.
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This leaves a question about the case ℓ = 2. We do not know of an ex-

ample over Z to rule out the possibility that every group of homological

dimension 2 over Z is a filtered colimit of groups of cohomological dimen-

sion 2 over Z. However there are counterexamples if one works over Q.

For example, consider the function field Fp(x) in one variable over the fi-

nite prime field Fp and consider the subgroup of GL2(Fp) generated by the

matrices (
x 0

0 1

)

,

(
x+1 0

0 1

)

,

(
1 0

1 1

)

.

Again this group is known to be finitely presented and can be expressed

as an ascending HNN extension with base the lamplighter group Cp ≀C∞

generated by the first and third of the matrices above. �

Question II.14. Returning to the case ℓ= 1, is it conceivable that every ele-

mentary amenable group of homological dimension one is a filtered colimit

of elementary amenable groups of cohomological dimension one?

Discussion. No. The lamplighter wreath product W = Cp ≀C∞ is already

a counterexample to this proposal. Dunwoody’s classification shows the

elementary amenable groups of cohomological dimension one are either

locally finite or virtually cyclic, and such a group cannot map onto W . �

III. COHOMOLOGICAL DIMENSION

The inequality hdk ≤ cdk holds universally and so we only need to con-

sider groups with finite homological dimension in this section. For ele-

mentary amenable groups there is a natural conjecture for cohomological

dimension.

Conjecture III.1. Let k be a non-zero commutative ring and let G be an

elementary amenable group with no k-torsion. Then cdk(G) is finite if and

only if G has cardinality less than ℵω . Moreover,

(i) if G is constructible then cdk(G) = h(G);
(ii) if G is countable but not constructible then cdk(G) = h(G)+1; and

(iii) if G is uncountable of cardinality ℵn, (0 < n < ω), then cdk(G) =
h(G)+n+1.

Roughly speaking Conjecture III.1 amounts to saying that the cohomo-

logical dimension is as large as it could possibly be given the constraints laid

down by basic inequalities. In case h(G) = 0 (meaning that G is locally fi-

nite) the statement here was conjectured by Holt [11] for finite prime fields

k and the consistency of this statement with Zermelo–Fraenkel set theory

was established by Kropholler and Thomas [17]. In case G is countable the

result has been established for k = Q when there is a bound on the orders
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of the finite subgroups of G. The general case of the conjecture involves a

melding of these two cases and remains stubbornly difficult to prove. We

shall make some reductions and examine one special case in greater detail.

III.2. Reducing to the minimal counterexamples. Supposing the conjec-

ture to be false, let us see how it might fail. If G is a counterexample then

it is natural to look at sections of G and see whether these are also coun-

terexamples. By a section, we mean any group of the form S/T where T

is normal in S and S is a subgroup of G. The homological dimension and

Hirsch length of any counterexample are finite while the cohomological di-

mension is less than predicted. Consider first the case of countable groups.

We have the following reduction in this case.

Lemma III.3. If G is a countable counterexample to Conjecture III.1 then

every finitely generated subgroup H of G with h(H) = h(G) is either con-

structible or is a counterexample to one of the Conjectures I.1, III.1.

Proof. Let G be such a counterexample. Suppose that no finitely gener-

ated subgroups H with h(H) = h(G) are counterexamples to Conjecture

I.1. Then hdk(H) = h(H) for all such subgroups. We deduce that G is not

constructible but nevertheless hdk(G) = cdk(G). Suppose that H is a finitely

generated subgroup of G with h(H) = h(G). Suppose that hdk(H) = h(H).
Then hdk(H) = hdk(G) from which it follows that hdk(H) = cdk(H) and

therefore, assuming Conjecture III.1 is valid for H, we deduce that H is

constructible. �

In view of this it is natural to consider finitely generated groups.

Proposition III.4. If G is a finitely generated counterexample to Conjecture

III.1 and T is the largest locally finite normal subgroup of G then either

G/T is also a counterexample or T is infinite and G/T is constructible.

Proof. Replacing G by a subgroup of finite index we may assume that G/T

is torsion-free. We then have cdk(G/T ) ≤ cdk(G) = h(G) = h(G/T ) and

it follows that G/T is either constructible or is again a counterexample. If

G/T is constructible and T is finite then G is also constructible and so is

no counterexample. Hence, T must be infinite in case G/T is constructible.

�

In order to make progress we need to restrict attention to cases where

Conjecture I.1 holds. Therefore we shall confine attention to the case k =Q

for the remainder of this paper.

III.5. Nilpotent-by-polycyclic-by-finite groups over Q. In the remain-

der of the article we attempt to prove Conjecture III.1 for nilpotent-by-

polycyclic-by-finite groups G with cardinality |G| < ℵω and with k = Q.
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We succeed in the case of countable groups. In the case of groups of greater

cardinality we reduce the problem to a conjecture about the first cohomol-

ogy of countable, locally finite abelian groups.

III.6. The countable case. We shall need the following elementary argu-

ment from commutative algebra.

Lemma III.7. Let S be a commutative ring and let U and V be S-modules

both of which admit composition series. Let I be the set of maximal ideals

I of S such that S/I is isomorphic to a composition factor of U and let J be

the set of maximal ideals J of S such that S/J is isomorphic to a composition

factor of V . If I ∩J = /0 then ExtnS(U,V ) = 0 for all n≥ 0.

Proof. The long exact sequence for Ext may be used to reduce to the case

when both U and V are irreducible. The hypothesis I ∩J = /0 is then re-

duced to the assertion that the annihilators of U and V are distinct maximal

ideals I and J of S. Since S is commutative, all the Ext groups ExtnS(U,V )
inherit S-module structures and are annihilated by both I and J and therefore

by S = I + J. �

Theorem III.8. Let G be a countable group that is nilpotent-by-polycyclic-

by-finite. Then G has finite rational cohomological dimension if and only if

hdQ(G)< ∞, in which case

(i) cdQ(G) = hdQ(G) if G is constructible, and

(ii) cdQ(G) = hdQ(G)+1 if G is not constructible.

Proof. As in ([7], §1.2) we have

h(G) = hdQ(G)≤ cdQ(G)≤ h(G)+1

for any quotient G of G (including G itself) and the condition cdQ(G) =

h(G) is inherited by quotients of G. If G is constructible then we know that

cdQ(G) = hdQ(G) and there is nothing further to prove. Therefore we may

assume that G is not constructible. Let N be a normal nilpotent subgroup

of G such that G/N is polycyclic-by-finite. Since G is not constructible it

follows that G/[N,N] is also not constructible and by the above remarks

we may replace G by this quotient and so assume that G is abelian-by-

polycyclic-by-finite. If G is locally polycyclic-by-finite and infinitely gen-

erated then the methods of [7] can be used to show that cdQ(G) = hdQ+1.

So we assume now that G is finitely generated and without loss of generality

we may replace G by a subgroup of finite index and so assume that G has

an abelian normal subgroup N such that G/N is polycyclic. In this case, N

is finitely generated as a G-operator group and may be regarded as a finitely

generated ZQ-module where Q = G/N.
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If N/N p is finite for all primes p then classical arguments of Philip Hall

show that N has finite rank: this reduces to the minimax case which is

completely resolved in [16]. So we focus on the case when there is a prime p

for which T := N/N p has infinite rank. Again, we may pass to the quotient

G/N p and so we assume that T is an elementary abelian p-subgroup which

is normal in G and that G/T is polycyclic. We could now go further and

pass to a just-non-polycyclic quotient when it would become possible to

invoke the analysis of [22]. However we have found that the main obstacle

in proceeding further lies in dealing with the possibility that G is a non-split

extension of N by G/N and such a non-split extension may persist even in

the just-non-polycyclic case.

We assume henceforth that our group G is primitive and just-non-polycyclic.

The notion and theory of primitive just-non-polycyclic groups is to be found

in [22]. We write T for the Fitting subgroup of G and we suppose that G/T

is the split extension Q := P⋊ A of two free abelian groups P and A of

finite rank. We may also suppose that P is a plinth in the group Q. The

terminology plinth was introduced by Roseblade [23].

Our goal now is to prove that cdQ(G) ≥ h(G)+ 1. We shall do this by

constructing a QG-module M such that Hd+1(G,M) is non-zero, where d

denotes the Hirsch length of G. We build M as a direct sum of an infi-

nite sequence of modules (Mn; n ≥ 1) where each Mn is induced from a

QT -module that has finite dimension as a Q-vector space. In computing

cohomology we take advantage of the fact that polycyclic groups satisfy

Poincaré duality. We may pass to a subgroup of finite index if necessary

in order to assume that Q is both torsion-free and orientable as a Poincaré

duality group. Thus we have isomorphisms H j(Q,V )∼= Hd− j(Q,V ) for ar-

bitrary QQ-modules V . Note that G and Q have the same Hirsch length d

because T is torsion. We only need the extreme case of duality, namely

Hd(Q,V ) ∼= H0(Q,V ) for all V . We shall choose the sequence of QG-

modules Mn so that

(i) H∗(T,Mn) vanishes;

(ii) H1(T,
⊕

Mn) is non-zero.

In addition, we shall make sure that we have some control over some of the

non-zero elements of H1(T,
⊕

Mn). Since countable locally finite groups

have cohomological dimension one over Q, we know that H j(T, ) van-

ishes when j > 1. Also, condition (i) above will imply that for our chosen

sequence, H0(G,
⊕

Mn) = 0. A spectral sequence corner argument together

with Poincaré duality then yields

Hd+1(G,M)∼= Hd(Q,H1(T,M))∼= H0(Q,H1(T,M)).
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The short exact sequence

0→
⊕

Mn→∏Mn→
∏Mn
⊕

Mn
→ 0

leads to a long exact sequence in the cohomology of T which reduces in our

context to an isomorphism

H1
(

T,
⊕

Mn

)
∼= H0

(

T,
∏Mn
⊕

Mn

)

.

For a T -module V , we write V T for the subspace of T -fixed points: that is

V T = H0(T,V ). So our goal is now to make choices of the Mn in such a

way that

H0

(

Q,

(
∏Mn
⊕

Mn

)T
)

is non-zero.

Application of a theorem of Roseblade. In order to choose suitable mod-

ules Mn we first need a set S of subgroups S of T which are normal in G, of

arbitrarily large finite index in T , and are such that the short exact sequences

T/S  G/S ։ G/T split. We shall use an argument of Roseblade [23] to

achieve this.

Recall that P is a plinth in the group Q = PA. Also, T is an elementary

abelian p-group for some prime p and the action of G by conjugation on T

makes T into an FpQ-module, since Q = G/T . Roseblade’s ([23], Theorem

E) shows that if λ is a non-zero element of the group ring R = FpP then

there is a maximal ideal J of R which contains no conjugate of λ . The

proof of ([23], Theorem E) in fact shows that there are infinitely many such

J and the quotient fields FpP/J are of unbounded (finite) cardinality. Let

J denote the set of all these maximal ideals.

The Robinson–Wilson theory [22] shows that T is torsion-free of finite

rank as an FpP-module. By Roseblade’s ([23], Theorem C) there is a free

R-submodule U of T and a non-zero ideal Λ of R such that every finitely

generated R-submodule of T/U is annihilated by a product Λx1Λx2 · · ·Λxn of

conjugates of Λ under Q. Now if J belongs to J then J+Λx1Λx2 · · ·Λxn =R

for any choice of finite product of conjugates of Λ. It follows that T J∩U =
UJ because any element y of T J ∩U/UJ is annihilated by some product

Λx1Λx2 · · ·Λxn and hence there is an expression 1 = j+ z with zJ ⊆UJ and

j ∈ J. Thus y = y j+ z j ∈UJ. This shows that T J < T for any such ideal J.

Since T has finite rank, we deduce that T/T J is both finite and non-trivial.

We appeal to Lemma III.7 with S := FpP to deduce that Hn(P,T/T J) =
ExtnFpP(Fp,T/T J) = 0 for all n and all J ∈J other than the augmentation

ideal p. Let J be a member of J \{p} and let J0 be the intersection of the
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conjugates of J. Then we still have Hn(P,T/T J0) = 0 for all n. The ideal

J0 of FpP is Q-invariant, so T J0 is an FpQ-submodule. A spectral sequence

argument shows at once that Hn(Q,T/T J0) = 0 for all n. In the group G,

T J0 is a normal subgroup and we can form the quotient G/T J0 which is an

extension of T/T J0 by Q. Our vanishing cohomology result shows that this

extension is split.

In conclusion, we now know that there are normal subgroups S := T J0

of G having finite index in T such that G/S is the split extension of T/S

by Q and such that the factors T/S are finite of unbounded order. These S

populate our set S .

III.9. A choice of finite subgroups exhausting T . Choose an ascending

chain F1 < F2 < · · ·< Fj < · · · of finite subgroups of T such that T =
⋃

j Fj.

Since the subgroups of S have unbounded index we can find, for each

n, a subgroup Tn ∈ S of index greater than |Fn|, and therefore such that

Tn +Fn < T .

The definition of Mn. For each n, let Mn be the augmentation ideal of the

rational group algebra Q[T/Tn]. The action of Q on T by conjugation in-

duces an action of Q on T/Tn and this extends to an action of the split

extension T/Tn⋊Q on Mn. Since the extension T/Tn  G/Tn ։ Q is split,

we may regard this as an action of G/Tn and through the natural surjection

G→ G/Tn we obtain an action of G on Mn.

Notice that each Mn is finite dimensional as a Q-vector space. Since T is

locally finite, it follows that each Mn is injective as a QT -module. [To see

this note first that every QT -module V is flat since it is the direct limit of

the projective modules V⊗QTn
QT . The dual V ∗ := homQ(V,Q) is therefore

injective and again finite dimensional. It follows that for any V , the double

dual of V is injective and so in particular if V is finite dimensional then V

itself is injective, being isomorphic to V ∗∗.]

By setting Mn equal to the augmentation ideal in Q[T/Tn] we have ar-

ranged that we have MT
n = 0 for all n. Being also injective, the modules Mn

are cohomologically acyclic as asserted in (i) above.

A sequence (wn) of elements of Mn. The following argument is essentially

the same as that in ([15], Proposition 2.4); for the reader’s convenience we

provide careful details.

As a Q-vector space, Q[T/Tn] has a basis in bijective correspondence

with the elements of T/Tn and we write et for the basis vector which nat-

urally corresponds to t ∈ T/Tn. The vectors un := ∑t∈T/Tn
et and vn :=

∑t∈Tn+Fn/Tn
et both belong to Q[T/Tn]

Fn . Therefore the vector wn := un−

|T : Tn+Fn|vn is an element of Q[T/Tn]
Fn . Moreover, the augmentation map

determined by et 7→ 1 evaluates to zero on wn so we have
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(iii) wn ∈Mn∩Q[T/Tn]
Fn = MFn

n .

The action of Q by conjugation on T induces an action on Mn which per-

mutes the basis (et − e1; 1 6= t ∈ T/Tn). The map µ : Mn→ Q defined by

et − e1 7→ 1 is a QQ-module homomorphism to the trivial module. Under

this map we find that

wn = ∑16=t∈T/Tn
(et − e1)− |T : Tn + Fn|∑1 6=t∈Tn+Fn/Tn

(et − e1) maps to

|T : Tn| − 1− |T : Tn +Fn|(|Tn +Fn : Tn| − 1) = |T : Tn +Fn| − 1 which is

non-zero because of the strict inclusion Tn +Fn < T . By universality, µ
factors through H0(Q,Mn) and hence

(iv) the image of wn under the natural map Mn → H0(Q,Mn) is non-

zero.

The sequence (wn, n ∈N) is an element of the product ∏Mn with the prop-

erty that for all t ∈ T , it differs from the translate (wnt) in only finitely many

coordinates. [If t ∈ Fn0
then wnt = wn for all n≥ n0, and since the chain of

Fj exhausts T , each t is to be found in some Fn0
.] Therefore (wn)+

⊕
Mn

is an element of
(

∏Mn⊕
Mn

)T

which has non-zero image in H0

(

Q,
(

∏Mn⊕
Mn

)T
)

.

The diagram in Figure 1 illustrates what is going on and is explained in its

caption.

This completes the proof of III.8. �

Remarks III.10. We used Roseblade’s theorem to obtain the splittings that

were crucial in the preceding proof. If our original sequence N  G ։ Q

was itself split, this appeal to Roseblade’s theorem would not have been

necessary. Therefore another special case where we can obtain the same

conclusion is

Theorem III.11. Suppose that the finitely generated residually finite group

G is the split extension of an infinite abelian torsion group by a constructible

soluble group. Then the rational cohomological dimension of G is h(G)+1.

The argument is exactly the same, using as before the two sequences (Tn)
and (Fn) inside the torsion kernel. Now we use the fact that constructible

groups satisfy duality. In this generality there may be a (large) dualising

module D and no subgroup of finite index satisfying Poincaré duality but

this simply has to be carried through the calculation as shown in the dia-

gram.

III.12. Uncountable groups. Consideration of the uncountable case of Con-

jecture III.1 leads to the following.
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M // //

��

��

H0(Q,M) //

��

��

⊕
(H0(Q,Mn))

��

��

M∗
χ

// //

����

H0(Q,M∗)
ψ

//

����

∏(H0(Q,Mn))

ω
����

(wn) ∈∏MFn
n

φ

99

//

α
$$

M∗

M
// // H0

(

Q, M∗

M

)
δ

//
∏(H0(Q,Mn))
⊕

(H0(Q,Mn))

(
M∗

M

)T

β
// //

OO

OO

H0

(

Q,
(

M∗

M

)T
)

γ

OO

FIGURE 1. A diagrammatic illustration of the proof of The-

orem III.8: M denotes
⊕

Mn and M∗ denotes ∏Mn. The

natural maps making up the commutative diagram have been

labelled in certain cases for convenience. The image of (wn)
under the composite βα is the desired non-zero cohomol-

ogy class. To check it is non-zero, observe that the image

of (wn) under the composite δγβα is the same as its im-

age under the composite ωψχφ and the latter is seen to be

non-zero by using the properties (iii) and (iv).

Conjecture III.13. Let T  G ։ Q be a short exact sequence of count-

able groups, where T is infinite, locally finite, and abelian, and where Q is

virtually polycyclic with Hirsch length h(Q) = d. Then H i(G,F) = 0 for all

free QG-modules F and all i≤ d.

Remarks III.14. (1) This statement is true in the case d = 1. Indeed, if

G is finitely generated, then H1(G,F) = 0 if and only if G has one end,

which G does, since it is not virtually cyclic and does not contain a non-

abelian free group. And in the general case we write G =
⋃

Gn with the

Gn finitely generated, and consider the following short exact sequence of

functors, which is in effect the special case of the standard spectral sequence

involving the derived functors of lim
←−

; details may be found in Jensens’ text

[12], see especially Théorème 4.2:

0→ lim
←−

1H i−1(Gn,−)→ H i(G,−)→ lim
←−

H i(Gn,−)→ 0.

(2) We are unable to resolve the conjecture in the case d = 2. In that

case, consideration of the spectral sequence for the group extension T 
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M⊗D // //

��

��

M⊗Q D //

��

��

⊕
(Mn⊗Q D)

��

��

M∗⊗D // //

����

M∗⊗Q D //

����

∏(Mn⊗Q D)

����

∏MFn
n ⊗D

88

//

$$

M∗

M
⊗D // //

M∗

M
⊗Q D //

∏(Mn⊗Q D)
⊕
(Mn⊗Q D)

(
M∗

M

)T

⊗D // //

OO

OO

(
M∗

M

)T

⊗Q D

OO

FIGURE 2. The diagram is used in the proof of Theorem

III.11 in just the same way that the diagram of Figure 1 was

employed above.

G ։ G/T shows that H2(G,F) ∼= H1(G/T,H1(T,F)). Alternatively, one

might attempt to proceed by induction on h(G/Q): pass to a subgroup of

finite index and write G = G0 ⋊ Z1 with G0 = T ⋊ Z2 where Z1 and Z2

are infinite cyclic. The spectral sequence for G0 ⋊ Z1 gives H2(G,F) ∼=
H0(Z1,H

2(G0,F)), and the one for T ⋊Z2 gives

H0(Z1,H
2(G0,F))∼= H1(Z2,H

1(T,F)).

Thus, with either approach, one is left to understand modules of the form

H1(T,F), with F a free QG-module.

Theorem III.15. Let G be an uncountable group that is nilpotent-by-polycyclic-

by-finite group. Then G has finite rational cohomological dimension if and

only if hdQ(G)< ∞ and |G|< ℵω .

If hdQ(G)< ∞ and |G|= ℵn, where n∈N, then cdQ(G) = hdQ(G)+n+
1, provided that Conjecture III.13 is true.

The bound cdQ(G)≤ hdQ(G)+n+1 is covered by the discussion follow-

ing Theorem II.3. The proof of the corresponding lower bound on cdQ(G)
will be established by induction on n, with Conjecture III.13 providing the

base case of a subsidiary induction that establishes:

Addendum III.16. Let 1→ T → G→ Q→ 1 be a short exact sequence

of groups where G has cardinality ℵn, while T is infinite, locally finite and

abelian, and Q is virtually polycyclic with Hirsch length h(Q) = h. Then

H i(G,F) = 0 for all free modules F and all i 6= h+n+1.
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The strategy of the proof is motivated by an argument of Derek Holt [11].

We begin the main argument. Suppose that hdQ(G) < ∞ and |G| = ℵn.

Passing to a subgroup of finite index we may assume there is a nilpotent

subgroup N ⊳G such that Q = G/N is polycyclic. Note that N = N/[N,N]
has cardinality at most |N|= ℵn. Since h(G) is finite, h(N) is finite, so the

torsion-free rank of N is finite. Thus we may choose a countable subgroup

M < N, invariant under the conjugation action of G such that N/M is a

torsion group. Let M be the preimage of M and note that N/M = N/M has

cardinality ℵn. As in the countable case, we may replace G by G/M. In

other words, there is no loss of generality in assuming that N is a locally

finite abelian group, and we do so henceforth.

Choose a finitely generated H in G such that HN = G (such exists be-

cause G/N is finitely generated). Now H ∩N is normal in G: it is normal

in N because N is abelian, and it is normal in H because N is normal in G.

Since H ∩N is countable, quotienting G by H ∩N does not change its car-

dinality. Thus, without loss of generality, we may assume that H ∩N = 1,

which implies that H is polycyclic.

Regard N as a ZH-module in the usual way. We write N =
⋃

λ∈Λ Nλ

as the union of a continuous chain of ZH-submodules of N of cardinality

ℵn−1. Then G is the union of the continuous chain of subgroups Gλ =Nλ ⋊

H. Here we are supposing that the λ run through the ordinals belonging to

ℵn, that Nλ ⊆ Nµ whenever λ < µ and that the chain is continuous in the

sense that for each limit ordinal λ ∈ℵn, there is an equality Nλ =
⋃

α<λ Nα .

These same remarks about ordering and continuity also apply to the chain

of Gλ .

Note that h(Gλ ) = h(G) = h(H) = hdQ(Gλ ) = hdQ(G).

Lemma III.17. The chain of subgroups Gλ , (λ ∈ℵn), can be chosen so that

for each λ there is a subgroup G′λ of Gλ+1 that contains Gλ as a proper

subgroup of finite index.

Proof. Let H, Nλ be chosen as explained above. The initial choice Gλ :=
Nλ H may not satisfy the conclusion of our lemma but we start with this

and make adjustments. Clearly we may assume that Nλ < Nλ+1 for each

λ ∈ ℵn. For each λ , choose xλ ∈ Nλ+1 rNλ and let Mλ be a submodule

of Nλ+1 containing Nλ , and chosen using Zorn’s Lemma to be maximal

subject to not containing xλ . Then Nλ+1/Mλ has a simple socle Lλ/Mλ

and this is finite by Roseblade’s Main Theorem [23]. Now we may replace

Nλ by Mλ and Gλ = Nλ H by Mλ H. The result follows because each Mλ H

is properly contained in the finite index overgroup Lλ H and this in turn is

contained in Nλ+1H ⊂Mλ+1H. �
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We consider the cohomology of G with coefficients in an arbitrary free

QG-module. For a Q-vector space V we write V G for the free module

V ⊗QG and similarly for any subgroup S of G we write V S for the free

QS-submodule V ⊗QS.

We work with the standard bar resolution for cohomology. Thus coho-

mology classes [θ ] ∈ Hn(G,M) are represented by n-cocycles

θ : G×·· ·×G
︸ ︷︷ ︸

n

→M.

Details may be found in any standard text on group cohomology, see for

example [9].

Lemma III.18. Let d be a natural number. Suppose that the cohomology

groups Hd−1(Gλ ,V G) vanish for all λ . If θ : G×·· ·×G
︸ ︷︷ ︸

d

→ V G is a d-

cocycle whose restriction to Gλ ×·· ·×Gλ
︸ ︷︷ ︸

d

is a coboundary for all λ , then

θ is a coboundary. In other words, every non-zero element of Hd(G,V G)
has non-zero restriction to Hd(Gλ ,V G) for some λ .

Proof. This is a well known argument but we include the details for the

reader’s convenience. For each λ we may choose a cochain

φλ : Gλ ×·· ·×Gλ
︸ ︷︷ ︸

d−1

→V G

such that δφλ agrees with θ on Gλ ×·· ·×Gλ
︸ ︷︷ ︸

d

. We wish to make the choices

of φλ in a compatible way so that if λ < λ ′ then φλ and φλ ′ agree on

Gλ ×·· ·×Gλ
︸ ︷︷ ︸

d−1

. If this can be done then clearly the φλ uniquely determine a

cochain φ and it has the property δφ = θ .

We make the choices of φλ inductively. Suppose that φλ is to be chosen

and that φα have already been chosen in a compatible way for each α < λ .

If λ is a limit ordinal then clearly there is a unique choice for φλ specified by

the fact that its domain Gλ ×·· ·×Gλ is the union of the domains Gα×·· ·×
Gα of the already defined φα , (α < λ ). If λ is a successor ordinal then begin

by choosing any cochain ψ : Gλ ×·· ·×Gλ →V G such that δψ agrees with

θ on Gλ×·· ·×Gλ . We have that δφλ−1 and δψ agree with θ , and therefore

with each other, on Gλ−1× ·· · ×Gλ−1, and hence that the restriction of

ψ−φλ−1 to this domain is a (d−1)-cocycle: it satisfies δ (ψ−φλ−1) = 0.

Now we invoke the hypothesis that Hd−1(Gλ−1,V G) vanishes. Therefore

there is a (d−2)-cochain ξ : Gλ−1×·· ·×Gλ−1
︸ ︷︷ ︸

d−2

such that δξ = ψ−φλ−1.
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Now choose any extension ζ of ξ to Gλ ×·· ·×Gλ
︸ ︷︷ ︸

d−2

and set φλ equal to

ψ−δζ . On Gλ ×·· ·×Gλ
︸ ︷︷ ︸

d

we have δφλ = δ (ψ−δζ ) = δψ = θ and also

φλ extends ψ−δξ = φλ−1 on Gλ−1×·· ·×Gλ−1
︸ ︷︷ ︸

d−1

. �

Lemma III.19. Let [θ ] be a cohomology class in Hd(G,V G) represented

by a cocycle θ . Then for each λ there exists µ ≥ λ such that the restriction

of [θ ] to Hd(Gµ ,V G) lies in the summand Hd(Gµ ,V Gµ).

Proof. This argument may be found in Holt’s paper [11]. Fix λ . Define a

sequence λ j of ordinals in ℵn, indexed by natural numbers j and starting

with λ1 = λ , so that the restriction of θ to Gλ j
×·· ·×Gλ j

has image in the

summand V Gλ j+1
. Then let µ be the limit (i.e. union) of the λ j. �

Lemma III.20. Suppose that K < L ≤ P ≤ G are groups where K has fi-

nite index in L. Then, for all [θ ] ∈ Hd(P,V G), if the restriction of [θ ] to

Hd(K,V G) lies in the summand Hd(K,V K) then this restriction is zero.

Proof. This is an easy variation on Holt’s ([11], Lemma 3). �

We shall now complete the promised deduction of Theorem III.15 and

Addendum III.16 from Conjecture III.13.

Proposition III.21. Conjecture III.13 implies that if G is a nilpotent-by-

polycyclic-by-finite group of cardinality ℵn (where 0 < n < ω) and Hirsch

length h < ∞ and V is any vector space over Q then H i(G,V G) = 0 for all

i 6= n+h+1.

Proof. In the paragraphs following the statement of Addendum III.16 we

discussed how to reduce to the case of a (torsion abelian)-by-polycyclic

group. Now, provided we insist that the torsion-abelian subgroup is infinite,

the statement of the Proposition makes sense for groups of this form when

n = 0, in which case it is a direct translation from Conjecture III.13. This

observation forms the base case for a proof by induction.

Assume now that n ≥ 1 and that G =
⋃

λ∈Λ Gλ , as arranged above. By

induction, Hd−1(Gλ ,V G) = 0 for all d ≤ h+ n, so by Lemma III.18 the

induction will be complete if the restriction to every Gλ of each cohomol-

ogy class [θ ] ∈ Hh+n(G,V G) is zero. It is enough to show, for each λ , that

there exists µ > λ such that the restriction to Hh+n(Gµ ,V G) is trivial, and

in the light of Lemma III.19 we may assume that this last restriction lies in

the summand Hh+n(Gµ ,V Gµ). Finally, Lemma III.17 allows us to employ

Lemma III.20 with K = Gµ and L = G′µ and P = G, and thus we conclude

that the restriction of [θ ] to Hh+n(Gµ ,V G) is zero, as required. �
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