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Dimension of Julia Sets of
Polynomial Automorphisms ofC2

Christ ian Wolf

1. Introduction

Let g be a polynomial automorphism ofC2. In a similar way as is done for poly-
nomials inC, we denote byK± the set of points inC2 with bounded forward/
backward orbit underg. We writeJ ± = ∂K± andJ = J+ ∩ J−. We refer toJ ±
as the positive/negative Julia set and toJ as the Julia set ofg. The setJ ± is un-
bounded, closed, and connected, whileJ is compact (see [BS2; BS3; FM; HO]
for more details).

The purpose of the main part of this paper is to show that, under the assump-
tion thatg is a hyperbolic mapping (i.e., the Julia setJ is a hyperbolic set forg),
the complete information about the Hausdorff dimensions ofJ+ andJ− is already
contained in the Julia setJ itself. In particular, the results of Theorem 4.1–4.4 can
be summarized by the following result.

Theorem 1.1. Let g be a hyperbolic polynomial automorphism ofC2 and let
p ∈ J. Then

(i) dimH J
± = dimH W

u/s
ε (p) ∩ J + 2;

(ii) 2 < dimH J
± < 4;

(iii) dimH J = dimH J
+ + dimH J

− − 4.

The main idea in the proof of Theorem1.1(i) is to construct locally a lamination
of C2 such that the intersection of its leaves withJ ± can be represented as the
image ofWu/s

ε (p) ∩ J under a particular holomorphic motion. It is then possible
to verify that locally the Hausdorff dimension ofJ ± is arbitrarily close to that of
W

u/s
ε (p) ∩ J + 2.
Only partial results are known about the Hausdorff dimensions ofJ+ andJ−

(see [FoS; Wo]). One difficulty for a direct calculation is that bothJ+ andJ−
are unbounded sets, and every restriction ofg to a sufficiently large (in the sense
of Hausdorff dimension) compact subset leads—either under forward or under
backward iteration—out of the set. On the other hand, a result of Verjovsky and
Wu [VW] shows that the Hausdorff dimension ofWu/s

ε (p) ∩ J can be calculated
in terms of Bowen’s formula. Therefore, Theorem1.1(i) relates the Hausdorff
dimension ofJ ± to Bowen’s formula.
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The (un)stable set of a hyperbolic set for aC2-diffeomorphism has Lebesgue
measure zero, except in the case of an attractor or repeller (see [Bo]). Theo-
rem 1.1(ii)thus provides an even stronger result for Julia sets of polynomial auto-
morphisms ofC2.

Part (iii) of Theorem 1.1 is the main result of this paper and represents an inter-
section formula for the Hausdorff dimension ofJ. It turns out that the intersection
betweenJ+ andJ− is “nice” in the sense of Hausdorff dimension.

In the second part of this paper we study dependence on the parameters. It is
shown in [VW] that the Hausdorff dimension ofJ is a real-analytic function of
the parameter of the mapping. This result can be easily extended by Theorem 1.1
to the positive/negative Julia setJ ±.

For an analytic family of hyperbolic rational mappings on the Riemann sphere,
it is shown by Ransford [Ra] that the Hausdorff dimension of the Julia set de-
pends subharmonically on the parameter of the mapping. We show the higher-
dimensional counterpart for polynomial automorphisms ofC2.

Corollary 5.5. The Hausdorff dimensions ofJ ± andJ depend plurisubhar-
monically( psh) on the parameter of the mapping.

By proving this, we also obtain a new non–potential-theoretical proof for the fact
that the Lyapunov exponent of the equilibrium measure depends pluriharmoni-
cally on the parameter of the mapping.

In the last part of this paper, we apply our results to polynomial automorphisms
of C2 that are (in a particular sense) close to a hyperbolic polynomial inC. Our re-
sults are essentially based on the work of Fornæss and Sibony [FoS], who showed
the existence of a holomorphic motion that moves the Julia set of the polynomial
holomorphically to a slice ofJ+. We obtain that the Hausdorff dimension ofJ is
close to that of the 1-dimensional Julia set (see Corollary 6.5). In addition, each
value in(3,4) can occur for the Hausdorff dimension ofJ ±. This result is related
to a result of Shishikura [Sh] about the Hausdorff dimension of Julia sets in hy-
perbolic components of the Mandelbrot set.

The results of [RR] and [BS2] imply that every basin of attraction of a non-
trivial polynomial automorphism ofC2 is biholomorphically equivalent toC2 and
nondense inC2. Domains with that property are called Fatou–Bieberbach do-
mains and are a subject of classical complex analysis. By the work of Stensønes
[St], there exists a Fatou–Bieberbach domain inC2 with smooth boundary. As
a counterpart to this remarkable result, we show in Corollary 6.8 that for alls ∈
(0,1) there exists a Fatou–Bieberbach domain inC2 whose boundary has Haus-
dorff dimension 3+ s. These Fatou–Bieberbach domains are obtained as basins
of attraction of hyperbolic quadratic polynomial automorphisms ofC2. In view
of Theorem1.1(ii), ourmethod cannot be applied to obtain a Fatou–Bieberbach
domain inC2 whose boundary has maximal Hausdorff dimension equal to 4.

This paper is organized as follows. In Section 2 we present the basic definitions
and notations. In Section 3 we show how holomorphic motions can be used to ob-
tain estimates for the Hausdorff dimension of particular subsets ofC2. Section 4 is
devoted to the proof of Theorem 1.1 and represents the main part of this paper. In
Section 5 we study the dependence on parameters for the Hausdorff dimensions of
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the Julia sets; the main part of Section 5 is devoted to proving the facts that imply
Corollary 5.5. The results of Section 4 and 5 are applied in Section 6 to polyno-
mial automorphisms ofC2 that are small perturbations of polynomials inC.

2. Notation and Preliminaries

In this paper we consider polynomial automorphisms ofC2 of the form

g = g1 B · · · B gm. (2.1)

Each mappinggi is a generalized complex Hénon mapping, that is, a mapping of
the form

gi(z, w) = (w, Pi(w)+ aiz), (2.2)

wherePi is a complex polynomial of degreedi ≥ 2 andai is a nonzero complex
number. Ford = (d1, . . . , dm) we denote byHd the space of mappings of the
form (2.1). Note that the degree ofg ∈Hd is equal to

∏m
i=1 di. Eachg ∈Hd de-

pends onk complex and therefore on 2k real variables for some positive integer
k. We can therefore identifyHd as a subspace ofR2k.

It is a result due to Friedland and Milnor[FM] that every polynomial automor-
phism ofC2 is conjugate either to a finite composition of elementary mappings
(with trivial dynamics) or to a finite composition of generalized Hénon mappings
(with nontrivial dynamics). Since dynamical properties are invariant under conju-
gation, each polynomial automorphism ofC2 with nontrivial dynamics is repre-
sented inHd for somed.

The function detDg is constant inC2. We can thus restrict our considerations
to the volume-decreasing case(|detDg| < 1) and the volume-preserving case
(|detDg| = 1), because otherwise we can considerg−1.

As pointed out in the introduction, a mappingg ∈Hd is calledhyperbolicif J
is a hyperbolic set ofg (see [BS2] for the details). We denote by Hypd the sub-
space of all hyperbolic mappings inHd . The most important feature of hyperbolic
sets is that we can associate with each pointp its local stable /unstable manifold
W

s/u
ε (p). We denote byWs/u(p) the (global) stable /unstable manifold ofp. If

g ∈ Hypd , then the (local) stable /unstable manifolds are in fact complex mani-
folds (see [BS2]).

It is shown in [BS2] thatg ∈ Hypd is an Axiom A diffeomorphism and that
J is a basic set ofg. FurthermoreJ has index 1; that is, dimC E

s/u
p = 1 for all

p ∈ J. HereEs/u
p denotes the stable/unstable subspace ofp induced by the hy-

perbolic splitting. It follows thatDg(p)
∣∣
Esp

andDg(p)
∣∣
Eup

can be identified as

C-linear mappings fromC to C. Therefore,g
∣∣
J

is a stable and unstable confor-
mal diffeomorphism. For the definition of stable and unstable conformality and
further details, see [P] and [Wo].

Finally, we recall the definition of the Hausdorff dimension. Assume(X, δ) is a
metric space andA ⊂ X. For s ≥ 0 we define thes-dimensional outer Hausdorff
measureof A to be

Hs(A) = sup
ε>0

inf

{ ∞∑
k=1

diam(Uk)
s : A ⊂

∞⋃
k=1

Uk, diam(Uk) ≤ ε
}
,
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where “diam” denotes the diameter with respect to the metricδ. Then

dimH A = inf {s : Hs(A) = 0} = sup{s : Hs(A) = ∞}
is called theHausdorff dimensionof A.

3. Holomorphic Motions

In this section we introduce the concept of holomorphic motions, which has be-
come a valuable tool for the analysis of dynamics of rational mappings on the Rie-
mann sphere. In particular, Julia sets of rational mappings are moved holomorphi-
cally in hyperbolic parameter space (see [MSS]). Usually holomorphic motions
are defined for subsets of the Riemann sphereC̄. Here we restrict our considera-
tions to subsets ofC.

Definition 3.1. Letr > 0, X ⊂ C, andT = D(0, r). A holomorphic motion
of X is a mappingh : T ×X→ C such that

(i) h(0, ·) = idX;
(ii) h(t, ·) is one-to-one for allt ∈ T ; and

(iii) h(·, x) is holomorphic for allx ∈X.
We considert as a complex time parameter. Note that no continuity ofh(t, ·) is
required in the definition.

LetX, Y be metric spaces. We call a bijective mappingf : X→ Y anα-Hölder
homeomorphismif bothf andf −1are Hölder-continuous with Hölder exponentα.

In general there exists no Fubini theorem for Hausdorff measures. It is there-
fore in general not possible to obtain an upper bound for the Hausdorff dimension
of a set from the Hausdorff dimension of its level sets (see [Ma] for further de-
tails). However, if the level sets are moved holomorphically into each other, we
obtain also an upper bound for the Hausdorff dimension of the set.

Theorem 3.2. Let δ > 0 and leth : T ×X→ C be a holomorphic motion ofX.
Assume

⋃
t∈D(0,r){t} × h(t, X) ⊂ C2 is bounded. Then there existsr0 > 0 such

that for all 0< r1 < r0 we have

dimH

⋃
t∈D(0,r1)

{t} × h(t, X)∈ [dimH X + 2, dimH X + 2+ δ). (3.3)

Proof. Let δ > 0. The holomorphic motionh can be extended to a holomor-
phic motion ofC (see [Sl]). On the other hand, theλ-lemma [MSS] implies that
h(t, ·) is aK(|t |)-quasiconformal homeomorphism. For|t | < 1

3, a result of [BeR]
implies

1≤ K(|t |) ≤ 1+ 3|t |
1− 3|t | . (3.4)

By the Mori inequality (see [A]), we deduce that the mappingh(t, ·) is aK(|t |)−1-
Hölder homeomorphism. This implies that dimH h(t, X) is close to dimH X when
|t | is small. Therefore, we conclude by [Ma, Thm. 7.7] that
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dimH

⋃
t∈D(0,r1)

{t} × h(t, X) ≥ dimH X + 2

for all 0< r1 ≤ r.
For 0< r1 ≤ r we defineAr1 =

⋃
t∈D(0,r1){t} × h(t, X) ⊂ C2 and a mapping

hr1 : D(0, r1)×X→ Ar1, (t, x) 7→ (t, h(t, x)).

It follows from the definition thathr1 is onto. Letρ denote the spherical metric on
C̄. By [BeR, Cor. 2], there existC1, C2 > 0 andα(r1) ≤ 1 with α(r1) → 1 for
r1→ 0 such that

ρ(h(t1, x1), h(t2, x2)) ≤ C1ρ(x1, x2)
α(r1) + C2|t1− t2|

for all x1, x2 ∈X and allt1, t2 ∈D(0, r1). The setAr is bounded. Using that the
spherical metric restricted to a bounded set is equivalent to the Euclidean metric,
we deduce that the mappinghr1 is Hölder-continuous with Hölder exponentα(r1).

We have dimH D(0, r1)×X = 2+dimH X. Hence we can chooser0 > 0 such that
dimH Ar1 < dimH X + 2+ δ for all 0< r1 < r0. This completes the proof.

Remark. It is possible to show that Theorem 3.2 also holds if the setAr is un-
bounded. Since we do not use this fact in the sequel, we leave the proof for the
reader.

4. The Intersection Formula

In this section we present the intersection formula for the Hausdorff dimension of
Julia sets of polynomial automorphisms ofC2. This result, Theorem 4.3, is the
main result of this paper. For the proof we construct locally a lamination ofC2

whose leaves intersected withJ ± are images ofWu/s
ε (p) ∩ J under a particular

holomorphic motion. Throughout this section,ε > 0 is sufficiently small that the
stable manifold theorem holds forWs/u

ε (p).

Theorem 4.1. Letg ∈Hypd andp ∈ J. Then

dimH J
+ = dimH W

u
ε (p) ∩ J + 2.

Proof. The result of [VW] implies thatt u/s = dimH W
u/s
ε (p)∩J does not depend

onp andε. Let us now consider a fixedp ∈ J.
Assertion 1. For allδ > 0 there exists anε0 > 0 such that for all0< ε ≤ ε0

dimH

⋃
q∈Wu

ε (p)∩J
W s
ε (q)∈ [t u + 2, t u + 2+ δ). (4.5)

Proof of Assertion 1.Let δ > 0. If ε is small then there exists a domainD ⊂
C containing 0 and a biholomorphic mappingϕ from a neighborhoodV ⊂ C2 of
p to a neighborhoodU ⊂ C2 of 0 such thatϕ(W u

ε (p)) ⊂ D × {0} ⊂ C2 and
ϕ(p) = 0. The stable manifold theorem implies that the local stable and unsta-
ble manifolds are uniformly transverse (see [KHa]). This property is invariant
under a biholomorphic change of coordinates. Hence we can conclude that the
setsϕ(W s

ε (q)) with q ∈ Wu
ε (p) ∩ J are uniformly transverse toD × {0}. We
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defineX = ϕ(W u
ε (p) ∩ J ); for convenience, we use also the notationWs

ε (x) =
ϕ(W s

ε (ϕ
−1(x))) for x ∈X. Let r be a small positive real number andT = D(0, r).

We define a mapping

h : T ×X→ C, (t, x) 7→ Pr1(W
s
ε (x) ∩ C× {t}).

Here Pr1 denotes the projection to the first coordinate. It is well known that the
property of transverse intersection between two submanifolds remains invariant
if one of the manifolds makes a small change inC1-topology. This shows thath
is well-defined ifr is small enough. Obviouslyh(0, ·) = idX. For all q1, q2 ∈
Wu
ε (p) ∩ J with q1 6= q2, we haveWs

ε (q1) 6= Ws
ε (q2). This follows becauseg

∣∣
J

is an expansive mapping and soh(t, ·) is one-to-one for allt ∈ T . The local stable
manifoldsWs

ε (q) depend continuously onq in C∞-topology, and this property is
invariant under a biholomorphic change of coordinates. Makingε andr smaller if
necessary, we may conclude thatWs

ε (x) is transverse toC×{0} for all x ∈X; note
thatWs

ε (x) is a complex 1-dimensional submanifold ofC2. Therefore,h(·, x) is
holomorphic for allx ∈X. Thus we have shown thath is a holomorphic motion.
We now apply Theorem 3.2 to the holomorphic motionh. Note that Hausdorff di-
mension is invariant under a biholomorphic change of coordinates. This implies
assertion 1.

Assertion 2. For allδ > 0, there exist a neighborhoodU ⊂ J of p and an
ε > 0 such that

dimH

⋃
q∈U

W s
ε (q)∈ [t u + 2, t u + 2+ δ).

Proof of Assertion 2.Let δ > 0, and assume thatε0 is chosen as in assertion 1.
We defineε = ε0/2. The Julia setJ has a local product structure (see [BS2]);
hence there exists a neighborhoodU ⊂ J of p such that the mapping

H : U → Ws
ε (p) ∩ J ×Wu

ε (p) ∩ J,
q 7→ (W s

ε (p) ∩Wu
ε (q),W

u
ε (p) ∩Ws

ε (q))

is a well-defined homeomorphism. Applying the triangle inequality yields⋃
q∈U

W s
ε (q) ⊂

⋃
q∈Wu

ε0
(p)∩J

W s
ε0
(q).

Therefore, assertion 2 follows from assertion 1.

Proof of the Theorem.Let δ > 0. Assertion 2 implies that there existp1, . . . ,

pn ∈ J andε1, . . . , εn > 0 with the property (4.5) such that for

ε = min

{
ε1

2
, . . . ,

εn

2

}
and for allp ∈ J the local stable manifoldWs

ε (p) is contained inWs
εk
(q) for some

q ∈Wu
εk
(pk) ∩ J and somek ∈ {1, . . . , n}. This implies

dimH

⋃
p∈J

W s
ε (p)∈ [t u + 2, t u + 2+ δ).
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It is a result of Bedford and Smillie [BS2] thatWs(J ) = J+. We may thus con-
clude by [Bo, Prop. 3.10] that⋃

p∈J
W s(p) = J+.

On the other hand, we have⋃
n∈N

g−n
(⋃
p∈J

W s
ε (p)

)
=
⋃
p∈J

W s(p).

Hence
dimH J

+ ∈ [2+ t u,2+ t u + δ).
Sinceδ was arbitrary, the proof is complete.

We obtain the analogous result for the Hausdorff dimension ofJ− by applying
Theorem 4.1 to the mappingg−1.

Theorem 4.2. Letg ∈Hypd andp ∈ J. Then

dimH J
− = dimH W

s
ε (p) ∩ J + 2.

Let f be an Axiom A diffeomorphism of a real surface and let3 be a basic set for
f. It is a result of [T] that the Hausdorff dimension and the upper box dimension
ofWs/u

ε (x)∩3 coincide. This result is generalized in [Ba] even to asymptotically
conformal Axiom A homeomorphisms, so it holds in particular forg ∈Hypd . On
the other hand, it follows by a result of [Ha] (see also [KHa]) that the holonomy
mapping ofg ∈Hypd is Lipschitz-continuous. Combining these results yields

dimH J = dimH W
u
ε (p) ∩ J + dimH W

s
ε (p) ∩ J = t u + t s; (4.6)

see [P] and [Wo]. Note that (4.6) was already applied in [VW] and [FO].
The next theorem is the intersection formula for the Julia set ofg. It turns out that

the intersection betweenJ+ andJ− is “nice” in the sense of Hausdorff dimension.

Theorem 4.3 (Intersection Formula).Letg ∈Hypd . Then

dimH J = dimH J
+ + dimH J

− − 4.

Proof. The result is a direct consequence of Theorem 4.1, Theorem 4.2, and
(4.6).

It is even for basic sets of Axiom A diffeomorphisms of real surfaces not known
if an analogous intersection formula holds.

Theorem 4.11 of [Bo] implies that the stable/unstable set ofJ has Lebesgue
measure zero (see Section 1). The next theorem provides an even stronger result:
the Hausdorff dimension ofJ ± is strictly less than 4.

Theorem 4.4. Letg ∈Hypd andp ∈ J. Then

(i) 0 < dimH W
s/u
ε (p) ∩ J < 2;

(ii) 2 < dimH J
± < 4;

(iii) 0 < dimH J < 4.
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Proof. It is sufficient to show (i), because (ii) and (iii) follow immediately from
(i) and Theorem 4.1, Theorem 4.2, and (4.6).

Proof of (i). Without loss of generality, we consider only the unstable mani-
fold. That dimH W u

ε (p) ∩ J > 0 is well-known; see [VW] and [Wo]. Letp ∈ J
andε > 0 small. We writet u = dimH W

u
ε (p) ∩ J. Let us assumet u = 2. The

mappingg is a stable and unstable conformal diffeomorphism. By [P, Thm. 22.1]
we thus obtainH 2(W u

ε (p) ∩ J ) > 0. Note thatH 2 denotes the 2-dimensional
Hausdorff measure defined in Section 2. Analogously to the proof of Theorem 4.1,
there exist a setX ⊂ C and a holomorphic motionh : T × X → C such that⋃
t∈T {t} × h(t, X) is mapped diffeomorphically to

⋃
q∈Wu

ε (p)∩J W
s
ε (q). We have

H 2(X) > 0. Observe that the mappingh(t, ·) is a quasi-conformal homeomor-
phism. Therefore, [As, Thm.1.1] implies that there exists aC > 0 such that
H 2(h(t, X)) > C if |t | is small enough. Thus, by Fubini’s theorem, we conclude
thatH 4

(⋃
t∈T {t}×h(t, X)

)
> 0. In that case the Lebesgue measure ofJ+ would

be positive, which is a contradiction to Theorem 4.11 of [Bo].

Remark. The statement dimH J ± > 2 holds true even without the assumption of
hyperbolicity. This was derived in [FoS] by showing that the Green functionG±
is Hölder-continuous. In the volume-decreasing case we also have dimH J

− < 4
without the assumption of hyperbolicity (see [Wo]).

In [VW] the authors claim that dimH W
s/u
ε (p)∩J < 1. Using the local product

structure ofJ, this would imply thatJ is a Cantor set. Counterexamples to this
statement are mappings in Hypd with a connected Julia set (considered in [BS5])
and mappings in Hypd with an attracting periodic orbit (see [Wo]). In the proof of
[VW] there is a confusion related to the difference between real and complex Ja-
cobian determinants. However, if the proof in [VW] is corrected, it also provides
dimH W

s/u
ε (p) ∩ J < 2.

5. Dependence on Parameters

LetA denote an open subset ofCk. We identifyg = ga for a ∈A and denote by
J ±a andJa its Julia sets respectively. The cases of interest are that eitherA is Hypd
or a disk inC. Note that we have also usedai as a specific parameter, the Jaco-
bian determinant ofgi, but there should be no confusion when we also usea as a
general parameter.

As mentioned earlier,t u/s = dimH W
u/s
ε (p) ∩ J is independent ofp ∈ J and

ε > 0 forg ∈Hypd . Moreover, it is shown in [VW] thatt u/s is given by the unique
solution of

P
(
g
∣∣
J
,∓tφu/s) = 0. (5.7)

HereP
(
g
∣∣
J
, ·) denotes the topological pressure ofg

∣∣
J

(see [Wa] for the definition)
andφu/s ∈ C(J,R) is defined byφu/s(p) = log

∥∥Dg(p)∣∣
E
u/s
p

∥∥. Equation (5.7) is
usually calledBowen’s formula.The mappinga 7→ t

u/s
a is real-analytic in Hypd

(see [VW]). Hence Theorem 4.1 and 4.2 immediately imply the following.

Corollary 5.1. The mappinga 7→ dimH J
±
a is real-analytic inHypd .
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Forg ∈Hypd we denote byM
(
J, g

∣∣
J

)
the space of allg-invariant Borel ergodic

probability measures supported onJ, and for eachµ∈M(J, g∣∣
J

)
the correspond-

ing positive Lyapunov exponent3(µ) is defined by

3(µ) = lim
n→∞

1

n

∫
log‖Dgn‖ dµ. (5.8)

The multiplicative ergodic theorem of Oseledets [O] and the submultiplicativity
of the operator norm guarantee the existence of the limit defining3(µ). Note that
3(µ) is in fact positive, sinceJ is a hyperbolic set forg of index 1. This implies
that everyµ∈M(J, g∣∣

J

)
is a hyperbolic measure.

The next result provides information about the dependence ofM
(
J, g

∣∣
J

)
and

3(µ) on the parameter of the mapping.

Proposition 5.2. Let (ga)a∈D be a holomorphic family inHypd , whereD is
a disk in C with center0. Then there existr > 0 and a family of mappings
(Ta)a∈D(0,r), where eachTa is a bijection fromM

(
J0, g0

∣∣
J0

)
to M

(
Ja, ga

∣∣
Ja

)
,

such that

(1)
(
g0

∣∣
J0
, µ0

)
and

(
ga
∣∣
Ja
, Ta(µ0)

)
are measure-theoretically isomorphic for all

µ0 ∈M
(
J0, g0

∣∣
J0

)
and alla ∈D(0, r); and

(2) for all µ0 ∈M
(
J0, g0

∣∣
J0

)
, the mappinga 7→ 3(Ta(µ0)) is harmonic.

Proof. The result of Jonsson [J] implies that there existr > 0 and a holomorphic
motionh : D(0, r) × J0 → C2 that preserves the dynamics ofga

∣∣
Ja
. More pre-

cisely, we have the following statements:

(i) h(0, ·) = idJ0;
(ii) for all a ∈D(0, r), the mappingh(a, ·) is a homeomorphism fromJ0 to Ja

such thatga
∣∣
Ja
B h(a, ·) = h(a, ·) B g0

∣∣
J0
;

(iii) h(·, p) is holomorphic for allp ∈ J0.

Note that hereh denotes a holomorphic motion in complex dimension 2 (unlike
our previous considerations). For alla ∈D(0, r) we defineTa by

Ta(µ0) = h(a, ·)∗µ0, (5.9)

whereh(a, ·)∗µ0(A) = µ0(h(a, ·)−1(A)) for all Borel setsA ⊂ Ja. It is easy
to see thatTa is a bijection betweenM

(
J0, g0

∣∣
J0

)
andM

(
Ja, ga

∣∣
Ja

)
. It fol-

lows directly from the definition ofTa that
(
g0

∣∣
J0
, µ0

)
and

(
ga
∣∣
Ja
, Ta(µ0)

)
are

measure-theoretically isomorphic (property (1)).
It remains to show property (2). Consider a fixedµ0 ∈M

(
J0, g0

∣∣
J0

)
. For a ∈

D(0, r), we have

3(Ta(µ0)) = lim
n→∞

1

n

∫
log‖Dgna B h(a, ·)‖ dµ0 (5.10)

(see e.g. [Ma, Thm.1.19]). Fora ∈D(0, r) andn∈N, we define

3n(a) = 1

n

∫
log‖Dgna B h(a, ·)‖ dµ0. (5.11)
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Property (iii) of the holomorphic motionh implies that, for a fixedp ∈ J0, the
mappinga 7→ Dgna(h(a, p)) is holomorphic. Thereforea 7→ 3n(a) is harmonic
for all n∈N. The operator norm is submultiplicative. Thus

(n+m)3n+m(a) ≤ n3n(a)+m3m(a) (5.12)

for all n,m∈N and alla ∈D(0, r). This implies that(32n(a))n∈N is a decreasing
sequence of harmonic mappings; hence the mappinga 7→ 3(Ta(µ0)) is also har-
monic. This completes the proof.

For g ∈ Hypd we denote byµ(g) the equilibrium measure ofg (see [BS2] and
[BS4] for the definition) and by3(g) the positive Lyapunov exponent ofµ(g).
It is shown in [BS4] via potential-theoretical arguments thatµ(g) is the unique
measure of maximal entropy forg and that3(g) depends pluriharmonically on
the parameter ofg. We obtain a new proof for the latter result.

Corollary 5.3. The mappinga 7→ 3(ga) is pluriharmonic inHypd .

Proof. We use the notation of Proposition 5.2. Consider a fixed mappingg0 ∈
Hypd , and assume thatL is a complex line in parameter space containingg0. By
Proposition 5.2, the mappinga 7→ 3(Ta(µ(g0))) is harmonic in a neighborhood
of 0 in L. The equilibrium measure is the unique measure of maximal entropy,
which implies thatTa(µ(g0)) = µ(ga). This completes the proof.

We now present the main result of this section.

Theorem 5.4. The mappinga 7→ t
u/s
a is plurisubharmonic inHypd .

Proof. Without loss of generality, we show only the result fort u. First we con-
sider the situation for a single mappingg ∈ Hypd . The variational principle (see
[Wa]) implies

P
(
g
∣∣
J
,−tφu) = sup

µ∈M(J,g |J )

(
hµ(g)− t

∫
φu dµ

)
, (5.13)

wherehµ(g) denotes the measure-theoretic entropy ofg with respect toµ. Since
g is hyperbolic onJ, there exists aC1 > 0 such that

C1 <

∫
φu dµ (5.14)

for all µ∈M(J, g∣∣
J

)
. Hence (5.7), (5.13), and (5.14) imply that

t u = sup
µ∈M(J,g|J )

(
hµ(g)∫

log
∥∥Dg∣∣

Eu

∥∥ dµ
)
. (5.15)

SinceEu
p is of complex dimension 1, we obtain

∥∥Dgn(p)∣∣
Eup

∥∥ = n−1∏
k=0

∥∥Dg(gk(p))∣∣
Eu
g k(p)

∥∥ (5.16)

for all n∈N and allp ∈ J. Thus∫
log
∥∥Dg∣∣

Eu

∥∥ dµ = 1

n

∫
log
∥∥Dgn∣∣

Eu

∥∥ dµ (5.17)
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for all n ∈ N and allµ ∈ M(J, g∣∣
J

)
. Sinceg is hyperbolic onJ, there exists a

C2 > 0 such that

C2‖Dgn(p)‖ ≤
∥∥Dgn(p)∣∣

Eup

∥∥ ≤ ‖Dgn(p)‖ (5.18)

for all p ∈ J and alln∈N. Hence (5.8), (5.17), and (5.18) imply

3(µ) =
∫

log
∥∥Dg∣∣

Eu

∥∥ dµ (5.19)

for all µ∈M(J, g∣∣
J

)
. By (5.15), we conclude that

t u = sup
µ∈M(J,g |J )

(
hµ(g)

3(µ)

)
. (5.20)

Letg0 ∈Hypd and letL be a complex line in parameter space containingg0. Then
there exists a holomorphic family(ga)a∈D ⊂ Hypd , whereD is a disk with cen-
ter 0 in C such that{ga : a ∈ D} is a neighborhood ofg0 in L. We now apply
Proposition 5.2 to the family(ga)a∈D. Equation (5.20) implies

t ua = sup
µ0∈M(J0,g0 |J0 )

(
hTa(µ0)(ga)

3(Ta(µ0))

)
= sup

µ0∈M(J0,g0 |J0 )

(
hµ0(g0)

3(Ta(µ0))

)
. (5.21)

The mappinga 7→ 3(Ta(µ0)) is harmonic by Proposition 5.2. Note thatx 7→
x−1 is a convex function onR+. This implies that the functiona 7→ 3(Ta(µ0))

−1

is subharmonic (see [Kli, Thm. 2.6.6]). Therefore,t ua is given by the supremum
over a family of subharmonic functions ofa. The mappinga 7→ t ua is real-analytic
and thus, in particular, continuous. We conclude that the mappinga 7→ t ua is sub-
harmonic. This completes the proof.

Remark. Ransford [Ra] showed that the Hausdorff dimension of the Julia set
of an analytic family of hyperbolic rational mappings on the Riemann sphere de-
pends subharmonically on the parameter. Hence Theorem 5.4 can be considered
as the higher-dimensional counterpart (for polynomial automorphisms ofC2) to
Ransford’s result. It should be mentioned that some of the ideas in [Ra] are used
in the proof of Theorem 5.4.

Corollary 5.5. The mappingsa 7→ dimH Ja anda 7→ dimH J
±
a are plurisub-

harmonic inHypd .

Proof. Forga ∈Hypd we have dimH Ja = t ua + t sa ; see (4.6). On the other hand,
it is shown in Theorems 4.1 and 4.2 that dimH J ±a = t u/sa + 2. Therefore, the re-
sult follows immediately from Theorem 5.4.

6. Small Perturbations of Polynomials in C

In this section we show that the Hausdorff dimensions ofJ+ andJ are related to
the Hausdorff dimension of the Julia set of a hyperbolic quadratic polynomial in
C, provided the corresponding complex Hénon mapping is a small perturbation
of the polynomial.
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Let us recall some definitions for quadratic polynomials (see e.g. [CG]). Forc ∈
C we consider the complex polynomialPc(z) = z2+ c. We will sometimes iden-
tify the mapPc with the complex numberc. We useJc to denote the Julia set of
Pc; letM denote the Mandelbrot set. We callC ⊂M a hyperbolic component
ofM if it is a connected component of the set of allc ∈M such thatPc is hyper-
bolic. In particular, ifC is the set of allc ∈C such thatPc has an attracting fixed
point, then we callC themain cardioid.

In the following we will consider a slightly different normal form for the com-
plex Hénon mapping as in (2.2). For(a, c) ∈ C2 we consider the mapping
ga,c : C2→ C2 defined by

ga,c(z, w) = (Pc(z)+ aw, az).
If a 6= 0 thenga,c is conjugate to a complex Hénon mapping in the usual nor-
mal form (2.2). For small|a| we considerga,c to be a small perturbation of the
polynomialPc. We will also use the notationJa,c, J ±a,c, andK±a,c for the sets cor-
responding to the mappingga,c. In addition we defineJ ±a,c,w = J ±a,c ∩ C × {w}
andK±a,c,w = K±a,c ∩ C× {w}.

The dynamics ofga,c has been observed to be related to the dynamics ofPc for
small values of|a|. The following result compiles some known results from [FoS]
and [HO].

Theorem 6.1. LetC be a hyperbolic component of the Mandelbrot set,c ∈ C
andR � 1. Assume thatPc has an attracting cycle of periodk. Then there exists
an a0(c, R) > 0 such that for all0 < |a| < a0(c, R) the following statements
hold.

(i) ga,c has an attracting cycle of periodk, {p1, . . . , pk}; the interior of K+a,c
consists ofk connected components, each of which is the immediate basin of
attraction of one ofp1, . . . , pk.

(ii) If w ∈C with |w| ≤ R, thenK+a,c,w is a connected compact set.
(iii) ga,c is hyperbolic.
(iv) There exists a holomorphic motionh1: D(0, a0(c, R))× Jc → C such that

h1(a, Jc) = Pr1(J
+
a,c,0),and there exists a holomorphic motionh2 : D(0, R)×

Pr1(J
+
a,c,0)→ C such thath2(w,Pr1(J

+
a,c,0)) = Pr1(J+a,c,w).

(v) The Hausdorff dimension ofJ−a,c satisfies the inequality

2< dimH J
−
a,c ≤ 2− log 2

log|a| .

Remark. The result of Theorem 6.1(iii) is extended in [BS4] to finite com-
positions of generalized Hénon mappings. In particular, one can deduce from
[BS4] that there exists anr > 0 such thatga,c is hyperbolic for all(a, c) ∈
P((0, c), r) \ {0} × D(z, r), whereP((0, c), r) denotes the polydisk with center
(0, c) and radiusr.

Lemma 6.2. Let c ∈ C and letα ∈ C be a repelling periodic point ofPc with
period k ∈ N. Then there exist ana0(c, α) > 0 and a holomorphic mapping
h : D(0, a0(c, α)) → C2 such that, ifa 6= 0, thenh(a) is a saddle point ofga,c
with periodk andh(0) = (α,0).
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Proof. The proof for the existence of a mappingh with the property thath(a) is a
periodic point with periodk is similar to that given for an attracting periodic point
in [FoS, Lemma 3.10]. Analogous to [FoS], we have

gka,c(z, w) = (P k
c (z)+ P(z,w),Q(z,w)),

where all the coefficients ofP andQ contain positive powers ofa. Note thatα is
a repelling fixed point ofP k

c . Thus|(P k
c )
′(α)| > 1. This implies that ifa0(c, α) is

small enough thenDgka,c(h(a)) has at least one eigenvalue of modulus larger than
1. The mappingga,c is volume-decreasing for|a| < 1. This implies that the mod-
ulus of the other eigenvalue is smaller than 1. Therefore,h(a) is a saddle point
of ga,c.

Lemma 6.3. Letg ∈Hypd andp ∈ J, and letU ⊂ C2 be a neighborhood ofp.
ThendimH J

+ ∩ U = dimH J
+.

Proof. We chooseε > 0 such that

Ws =
⋃

q∈Wu
ε (p)∩J

W s
ε (q) ⊂ U.

Analogous to the proof of Theorem 4.1, we conclude that dimH W
s = dimH J

+.
This completes the proof.

We will now show that the Hausdorff dimension ofJ+a,c is related to the Hausdorff
dimension ofJc, if |a| is small.

Theorem 6.4. LetC be a hyperbolic component of the Mandelbrot set,c ∈ C
and δ > 0. Then there exists ana0(c, δ) > 0 such that for all0< |a| < a0(c, δ)

we have
dimH J

+
a,c ∈ (dimH Jc + 2− δ, dimH Jc + 2+ δ).

Proof. Let R and a0(c, R) be as in Theorem 6.1. Applying Theorem 6.1(iv)
and makinga0(c, R) smaller if necessary, we conclude (similarly to the proof
of Theorem 3.2) that

dimH J
+
a,c,0 ∈ (dimH Jc − δ/2, dimH Jc + δ/2) (6.22)

for all 0< |a| < a0(c, R). Let h2 be the holomorphic motion in Theorem 6.1(iv).
By Theorem 3.2, there exists anr > 0 such that

dimH

( ⋃
|w|<r

J+a,c,w

)
∈ [dimH J

+
a,c,0 + 2, dimH J

+
a,c,0 + 2+ δ/2)

for all 0 < |a| < a0(c, R). Making againa0(c, R) smaller if necessary, we can
assure by Lemma 6.2 that

⋃
|w|<r J+a,c,w contains a saddle orbit for all 0< |a| <

a0(c, R). Thus Lemma 6.3 implies

dimH J
+
a,c ∈ [dimH J

+
a,c,0 + 2, dimH J

+
a,c,0 + 2+ δ/2).

Settinga0(c, δ) = a0(c, R) and applying (6.22) completes the proof.

Corollary 6.5. LetC be a hyperbolic component of the Mandelbrot set and let
c ∈C. Then

lim|a|→0
dimH Ja,c = dimH Jc.
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Proof. For small |a| we deduce from Theorem 6.4 that dimH J+a,c is close to
dimH Jc+ 2. On the other hand, we conclude by Theorem 6.1(v) that dimH J

−
a,c is

close to 2. Therefore, the result follows immediately from Theorem 4.3.

Remark. Even if the Hausdorff dimensions of the Julia setJa,c and the 1-
dimensional Julia setJc are very close, their topological structures are completely
different. If, for instance,c lies in the main cardioid, thenJc is a quasi-circle while
Ja,c is locally the product of a curve and a Cantor set.

LetC be a hyperbolic component of the Mandelbrot set. Theorem 6.1 implies that
there exists a connected componentCH of Hyp2 that containsC in its closure. If
C is the main cardioid then we will refer to the corresponding componentCH as
the main cardioid for complex Hénon mappings.

Lemma 6.6. The cardinality of attracting periodic points is constant in every
connected componentCH of Hypd .

Proof. By [BS2, Thm. 5.6], eachg ∈ CH has finitely many attracting periodic
points. Since hyperbolicity is an open property and since attracting periodic points
are hyperbolic, we can conclude that the mappingCH 3 g 7→ #{α : α is an attract-
ing periodic point ofg} is locally constant; becauseCH is connected, it is constant
in CH .

We recall thatt u/sa,c denotes the Hausdorff dimension of the unstable/stable slice
of ga,c.

Corollary 6.7. Let CH be the main cardioid for complex Hénon mappings.
Then

(i) inf {t ua,c : (a, c)∈CH } = 1;
(ii) sup{t ua,c : (a, c)∈CH } = 2;

(iii) inf {t sa,c : (a, c)∈CH } = 0.

Proof. (i) By Theorem 6.1(i), we know there exists aga0,c0 ∈CH with an attract-
ing fixed point. Therefore Lemma 6.6 implies that allga,c inCH have an attracting
fixed point. We can thus apply a result of [Wo] that implies that the topological
dimension ofWu

ε (p)∩Ja,c is equal to 1 for all(a, c)∈CH . This gives the required
lower bound fort ua,c. On the other hand, we conclude by Theorem 4.1 and Theo-
rem 6.4 thatt ua,0 is close to 1 if|a| is small.

(ii) There exists a sequence(ci)i∈N in the main cardioid such that

lim
i→∞dimH Jci = 2

(see [Sh]). Hence the result follows from Theorem 4.1 and Theorem 6.4.
(iii) The result follows immediately from Theorem 4.2 and Theorem 6.1(v).

Remark. We do not have a nontrivial upper bound fort sa,c. However, Theo-
rem 4.2 and a result of [Wo] imply that, fort sa,c close to 2, it would be necessary
that|a| be close to 1.
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A domain�⊂ Cn (n≥ 2) is calledFatou–Bieberbach domainif it is biholomor-
phically equivalent toCn and�̄ 6= Cn. It is a well-known fact that basins of attrac-
tion of automorphisms ofCn are biholomorphically equivalent toCn (see [RR]).
This implies that basins of attraction of mappings inHd are Fatou–Bieberbach do-
mains. See [BS1; RR] for further information about Fatou–Bieberbach domains.

We obtain the following result about the Hausdorff dimension of boundaries of
Fatou–Bieberbach domains inC2.

Corollary 6.8. For all s ∈ [0,1) there exists a Fatou–Bieberbach domain� ⊂
C2 such thatdimH ∂� = 3+ s.
Proof. By a result of Stensønes [St], there exists a Fatou–Bieberbach domain in
C2 with smooth boundary. This implies the result whens = 0. Suppose now
that 0< s < 1. We conclude by Theorem 4.1 and Corollary 6.7 that there exist
(a1, c1), (a2, c2) in the main cardioid for complex Hénon mappingsCH such that

dimH J
+
a1,c1

< 3+ s < dimH J
+
a2,c2

.

According to Corollary 5.1, there exists(a, c) ∈CH such that dimH J+a,c = 3+ s.
Theorem 6.1 and Lemma 6.6 imply thatga,c has an attracting fixed pointα ∈C2.

By [BS3, Thm. 2] we have∂W s(α) = J+a,c. This completes the proof.

Acknowledgment. I am very grateful to Eric Bedford for his valuable com-
ments on the first draft of this paper.
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