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In many situations regression analysis is mostly concerned with inferring
about the conditional mean of the response given the predictors, and less
concerned with the other aspects of the conditional distribution. In this paper
we develop dimension reduction methods that incorporate this consideration.
We introduce the notion of the Central Mean Subspace (CMS), a natural
inferential object for dimension reduction when the mean function is of
interest. We study properties of the CMS, and develop methods to estimate
it. These methods include a new class of estimators which requires fewer
conditions than pHd, and which displays a clear advantage when one of the
conditions for pHd is violated. CMS also reveals a transparent distinction
among the existing methods for dimension reduction: OLS, pHd, SIR and
SAVE. We apply the new methods to a data set involving recumbent cows.

1. Introduction. Empirical evidence accumulated during the past few years
indicates that recently developed dimension-reduction methods can be quite
effective for constructing regression summary plots in a largely non-parametric
context. In full generality, the goal of a regression is to infer about the conditional
distribution of the univariate response variable Y given the p × 1 vector of
predictors X: How does the conditional distribution of Y |X change with the value
assumed by X? The dimension-reduction methods approach this question through
a population meta-parameter called the central subspace which is denoted by SY |X.
The central subspace is the smallest subspace of R

p such that Y is independent of
X given ηT X, where the columns of the matrix η form any basis for the subspace.
Knowledge of the central subspace is useful for parsimoniously characterizing how
the distribution of Y |X changes with the value of X. If SY |X is known, the minimal
sufficient summary plot of Y versus ηT X can be used to guide subsequent analysis.
If an estimated basis η̂ of SY |X is available then the summary plot of Y versus η̂ T X
can be used similarly.

Summary plots based on estimates of SY |X can be of significant value in many
phases of a regression analysis, particularly during the initial phases when an
adequate parsimoniously parameterized model is not yet available. Methods of
estimating the central subspace or portions thereof include ordinary least squares
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(OLS), graphical regression [Cook (1994a)], principal Hessian directions [pHd; Li
(1992)], sliced average variance estimation [SAVE; Cook and Weisberg (1991)],
sliced inverse regression [SIR; Li (1991)] and parametric inverse regression [PIR;
Bura and Cook (2001)]. Cook and Weisberg (1999) gave an introductory account
of studying regressions via central subspaces. A comprehensive discussion is
available in Cook (1998a).

While the central subspace is designed to give a complete picture of the
dependence of Y on X, certain characteristics of Y |X may often be of special
interest. Indeed, regression is understood by some to imply a study of the mean
function E(Y |X). Pursuing the mean function through the central subspace can be
inefficient because the scope of the statistical inquiry may be much larger than
necessary.

In Section 2 we introduce the central mean subspace (CMS) and study its
properties. The construction of a CMS is similar in spirit to that for a central
subspace, but dimension reduction is aimed at reducing the mean function alone,
leaving the rest of Y |X as the “nuisance parameter.”

In Section 3 we connect the central mean subspace to literature on the central
subspace. In particular, we show that, in the population, many known techniques
for constructing vectors in the central subspace in fact produce vectors in the
central mean subspace. These results provide an important distinction between
known methods – OLS, pHd, SIR and SAVE – for estimating vectors in the central
subspace SY |X . And they imply that in the first instance we can use two known
methods – OLS and pHd – to estimate vectors in the central mean subspace.

In Section 4 we describe a new class of methods for estimating vectors in the
CMS. This class may be useful because it requires fewer constraints than pHd on
the distribution of the predictors. The new method is applied in Section 5. To avoid
interrupting the development, we have placed most of the proofs in the Appendix.

2. Mean dimension-reduction subspaces and their properties. Consider a
regression consisting of a univariate response variable Y and a p × 1 vector of
random predictors X. We assume throughout this article that the data {yi,xi},
i = 1, . . . , n, are iid observations on (Y,X) with finite moments. We use S(A) to
denote a general subspace of R

p, where A is a p× q matrix whose columns form
a basis in S(A). We use S(·) to denote a dimension-reduction subspace, where
the subscript indicates what response and predictors are involved, and whether the
whole conditional distribution or only the conditional mean is of interest. In some
instances we use S(b,A), where b is a p× 1 vector, to denote the subspace of R

p

spanned by b and the columns of A.

2.1. Overview of central subspaces. A dimension-reduction subspace [Li
(1991)] for the regression of Y on X is any subspace S(η) such that

Y X|ηT X,(2.1)



DIMENSION REDUCTION 457

where denotes independence and η denotes a p × q matrix with q ≤ p. The
statement is thus that Y is independent of X given ηT X. It is equivalent to
saying that the distribution of Y |X is the same as that of Y |ηT X for all values
of X. It implies that the p × 1 predictor vector X can be replaced by the q × 1
predictor vector ηT X without loss of regression information, and thus represents
a potentially useful reduction in the dimension of the predictor vector. When the
intersection of all dimension-reduction subspaces is itself a dimension-reduction
subspace it is called the central subspace [Cook (1994b, 1998a)] and denoted by
SY |X. The central subspace is assumed to exist throughout this article.

As mentioned in the Introduction, the central subspace is designed to capture
the complete conditional distribution of Y |X and thereby give a full picture of the
dependence of Y on X. On the other hand, when the conditional mean E(Y |X) is
of special interest, it may be useful to adapt our inquiry to fit that more specific
objective.

2.2. Central mean subspace. When focusing on the conditional mean, dimen-
sion reduction hinges on finding a p× k matrix α, k ≤ p, so that the k× 1 random
vector αT X contains all the information about Y that is available from E(Y |X).
This is less restrictive than requiring that αT X contain all the information about
Y that is available from X as in the current literature associated with the central
subspace. The following definition formalizes this idea.

DEFINITION 1. If Y E(Y |X)|αT X then S(α) is a mean dimension-reduction
subspace for the regression of Y on X.

It follows from this definition that a dimension-reduction subspace is neces-
sarily a mean dimension-reduction subspace, because Y X|αT X implies Y
E(Y |X)|αT X. The next proposition gives equivalent conditions for the conditional
independence used in Definition 1.

PROPOSITION 1. The following statements are equivalent:
(i) Y E(Y |X)|αT X,

(ii) Cov[(Y,E(Y |X))|αT X] = 0,
(iii) E(Y |X) is a function of αT X.

The first condition is the same as Definition 1. The second condition is that,
given αT X, Y and E(Y |X) must be uncorrelated. The final condition is what might
be suggested by intuition, E(Y |X) = E(Y |αT X). Any of these three conditions
could be taken as the definition of a mean dimension-reduction subspace.

Paralleling the development of central subspaces, we would like the smallest
mean dimension-reduction subspace, as formalized in the next definition.
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DEFINITION 2. Let SE(Y |X) = ⋂
Sm where intersection is over all mean di-

mension-reduction subspaces Sm. If SE(Y |X) is itself a mean dimension-reduction
subspace, it is called the central mean dimension-reduction subspace, or simply
the central mean subspace (CMS).

The CMS does not always exist, because the intersection of two mean dimen-
sion-reduction subspaces is not necessarily a mean dimension-reduction subspace.
However, when it does exist, SE(Y |X) ⊆ SY |X because the former is the intersection
of a larger collection of subspaces. Hence it may be possible to reduce the
dimension from that of SY |X if E(Y |X) alone is concerned. Under mild conditions,
the existence and uniqueness of the CMS can be guaranteed in the same way
that the existence of the central subspace is guaranteed. For instance, if the
domain of X is open and convex, then the CMS exists and is unique. For location
regressions where Y X|E(Y |X), the central subspace and the CMS are the same,
SE(Y |X) = SY |X. Additional existence results are available in such cases [Cook
(1994a; 1998a), page 111]. We assume in the remainder of this article that the
CMS always exists.

The CMS is intended to play the same role when considering the conditional
mean as the central subspace does when inquiring about the full conditional
distribution of Y |X. If an estimated basis α̂ of SE(Y |X) is available then the
summary plot of Y versus α̂ T X can provide a low-dimensional visualization of the
mean function. Methods of estimating SE(Y |X) are discussed later in this article.

The central subspace is invariant under one-to-one transformations T of the
response, ST (Y )|X = SY |X. This property does not extend to the CMS because
SE(Y |X) does not in general equal SE(T (Y )|X), although the central subspace is
an invariant upper bound on the CMS, SE(T (Y )|X) ⊆ SY |X. Standard response
transformation methodology in linear regression exploits this flexibility by
attempting to find a T so that dim(SE(T (Y )|X))= 1 and E(T (Y )|X) is linear.

It is sometimes helpful to transform X linearly so that the transformed predictors
are uncorrelated, and then study the relation between Y and the transformed
predictors. In general, if Z = AT X + b for some invertible matrix A and some
vector b, then SE(Y |Z) = A−1SE(Y |X) is the CMS for the regression of Y on Z.

In most of the subsequent developments, we work in terms of the standardized
predictor

Z = �−1/2
xx

(
X − E(X)

)
,

where �xx = Var(X) is assumed to be positive definite. In terms of this
standardized predictor, the CMS is SE(Y |X) = �

−1/2
xx SE(Y |Z). The corresponding

sample version Ẑ is obtained by replacing �xx and E(X) with their usual moment
estimates, �̂xx and En(X).
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3. Vectors in the central mean subspace. Having established some basic
properties of the CMS, we now turn our attention to finding population vectors
in that subspace. We will survey available methods for constructing vectors in the
central subspace and demonstrate that some of them in fact produce vectors in
CMS. By categorizing and assessing these methods in relation to CMS, we set the
stage for a new estimation method introduced in Section 4.

3.1. Objective functions and OLS. In their pioneering article, Li and Duan
(1989) demonstrated that a class of estimators, which includes OLS, correctly
estimate the direction of the regression parameter regardless of the shape of the
regression function, provided that the predictor satisfies a linearity condition. They
considered an objective function of the form R(a,b)= E[L(a + bT Z, Y )] where
a ∈ R

1 and b ∈ R
p. Here, the expectation is with respect to the joint distribution of

Y and Z, and L(K,Y ) is strictly convex in K . This use of an objective function is
not meant to imply that any associated model is true or even provides an adequate
fit of the data. Nevertheless, there is a useful connection between SE(Y |Z) and the
vectors derived from these objective functions.

Let

(α,β)= arg min
a,b

R(a,b)(3.1)

denote the population minimizers, and let η be a basis matrix for SY |Z. Li and
Duan (1989) showed, in effect, that if E(Z|ηT Z) is linear in Z and dim(SY |Z)= 1,
then β ∈ SY |Z. From this it is straightforward to relax the dimension restriction: if
E(Z|ηT Z) is linear in Z then β ∈ SY |Z [Cook (1998a), pages 143–147].

Where β falls in relation to SE(Y |Z) depends on the choice of L: for some
choices β belongs to SE(Y |Z) while for others it may belong to SY |Z \ SE(Y |Z).
However, if we restrict attention to objective functions

L(a + bT Z, Y )= −Y (a+ bT Z)+ φ(a+ bT Z)(3.2)

based on the natural exponential family for some strictly convex function φ, then
β always belongs to SE(Y |Z):

THEOREM 1. Let γ be a basis matrix for SE(Y |Z), assume that E(Z|γ T Z) is
a linear function of Z and let β be as defined in (3.1) using an exponential family
objective function (3.2). Then β ∈ SE(Y |Z).

The exponential family objective function (3.2) covers many estimation
methods used in practice. In particular, OLS is obtained by setting φ(K)=K2/2.
For future reference we denote the OLS coefficient vector E(YZ) by βyz.
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3.2. SIR and SAVE. It is easy to see that SIR [Li (1991)] and SAVE [Cook and
Weisberg (1991)] can find vectors in SY |Z \ SE(Y |Z): Suppose that SY |Z is spanned
by the columns of the matrix η and Pη is the projection onto SY |Z. Then, E(Z|Y )=
E[E(Z|Y,ηT Z)|Y ] = E[E(Z|ηT Z)|Y ] = PηE(Z|Y ), so that E(Z|Y ) belongs to
SY |Z . However, if we replace η by γ , the basis for SE(Y |Z), then the second equality
need not hold because we do not necessarily have the conditional independence
Y Z|γ T Z. Hence, in general, E(Z|Y ) is in SY |Z but not necessarily in SE(Y |Z).
The same is true of the vectors derived from SAVE.

3.3. y-based pHd. Li’s (1992) y-based method of principal Hessian directions
(pHd) is based on using the third moment matrix �yzz = E{(Y − E(Y ))ZZT } to
infer about SY |Z, assuming normally distributed predictors. However, as described
in the next theorem, pHd in fact targets the CMS.

THEOREM 2. Let γ be a basis matrix for SE(Y |Z). If E(Z|γ T Z) is a linear
function of Z and if Var(Z|γ T Z) is uncorrelated with Y , then S(βyz,�yzz) ⊆
SE(Y |Z).

The requirement that E(Z|γ T Z) be linear implies β ∈ SE(Y |Z) as an application
of Theorem 1. Both conditions stated in this theorem are used to obtain the
conclusion that S(�yzz)⊆ SE(Y |Z).

Cook [(1998b), Theorem 1] showed that the inference procedure proposed by
Li (1992) is not as straightforward as originally claimed. However, the inference
procedure simplifies greatly if Cov(Y,Z) = 0. This condition will not normally
hold, but is guaranteed to hold if we replace Y with population OLS residuals
r = Y −E(Y )−βTyzZ. In short, we can use the relatively straightforward inference
procedure suggested by Cook (1998b) for inferring about the related subspace
S(�rzz), where �rzz is constructed as �yzz, except that Y is replaced with the
residual r :

�rzz = E(rZZT ).(3.3)

For this to be useful, we must understand the relationship between SE(Y |Z), the
subspace we would like to know, and SE(r |Z), the CMS that we can infer about
easily. This is the topic of the next proposition.

Recall that γ is the basis matrix for SE(Y |Z), and that βyz = E(YZ). Define a
residual

r = r(Y,βTyzZ)= a(βTyzZ)+ b(βTyzZ)Y(3.4)

to be a function of Y and βT
yzZ that is linear in Y . For example, r = Y − E(Y )−

βTyzZ satisfies these conditions as does the Pearson residual computed from a
logistic regression model.
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PROPOSITION 2. Assume that E(Z|γ T Z) is linear. Then

SE(Y |Z) = SE(r |Z) + S(βyz),(3.5)

where the summation on the right means the collection of vectors of the form β+β ′
with β in SE(Y |Z) and β ′ in S(βyz).

Proposition 2 is useful because it allows us to infer about SE(Y |Z) by inferring
about S(βyz) and SE(r |Z) using relatively straightforward procedures in the
literature. In particular, it follows from Theorem 2 applied to the regression of r on
Z that S(�rzz) ⊆ SE(r |Z), and we can infer about S(�rzz) by using the inference
procedures discussed by Cook (1998b).

Finally, assuming that E(Z|βTyzZ) is linear and Var(Z|βT
yzZ) is constant, it can

be verified that

�rzz = �yzz − PβyzE(β
T
yzZ)

3/‖βyz‖2.

Thus, S(βyz,�rzz)= S(βyz,�yzz), which returns us to the regression of Y on Z.

4. Vectors in the CMS that require only the linear conditional means.

4.1. Population structure. The vectors in the CMS described in the last section
require two essential conditions:

C.1: the conditional mean E(Z|γ T Z) is linear in Z,
C.2: the conditional variance Var(Z|γ T Z) is uncorrelated with Y .

Predictor linearity conditions such as C.1 used in Theorem 1 are common in
dimension reduction. In general, the requirement that E(Z|AT Z) be linear in Z is
equivalent to requiring that E(Z|PAZ)= PAZ where PA is the projection operator
for S(A) with respect to the standard inner product [Cook (1998a), page 57].
If Z follows an elliptically contoured distribution then E(Z|AT Z) is linear for
all conforming A’s. Hall and Li (1993) show that such linearity will hold to a
reasonable approximation in many problems. The intuition here is that conditional
expectations of the form E(Z|γ T Z) become more linear as p increases with
dim(SE(Y |Z)) fixed. This is related to the work of Diaconis and Freedman (1984)
who argue that almost all low-dimensional projections of high-dimensional data
sets are nearly normal. In addition, these conditions might be induced by using
predictor transformations and predictor weighting [Cook and Nachtsheim (1994)].

With condition C.1 we can use known methods based on exponential family
objective functions to estimate a vector in SE(Y |Z) (Theorem 1). Such methods
may be sufficient when dim(SE(Y |Z)) = 1, but other methods are needed when
dim(SE(Y |Z)) > 1. To obtain multiple vectors in SE(Y |Z) using y-based pHd we
had to require condition C.2 (Theorem 2) which is implied when Var(Z|γ T Z) is
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constant. Both conditions are implied when Z is normally distributed, although
normality is not a necessary condition. In this section we introduce a new class of
vectors in the CMS that requires only C.1. The next theorem lies at the core of this
method.

THEOREM 3. Suppose that U and V are measurable functions of γ T Z and
that E(Z|γ T Z) is linear in Z. Then E{(UY + V )Z} ∈ SE(Y |Z), provided that
(UY + V )Z is integrable.

This theorem provides a method of forming vectors in the CMS, which in turn
provides a basis for constructing estimates of at least a portion of the CMS. We
refer to these as COZY vectors since they come from COvariances between Z and
and constructed responses Y ∗ = UY + V .

To see how Theorem 3 might be used to construct vectors in the CMS, suppose
we know one vector δ0 ∈ SE(Y |Z). We can find another vector δ1 ∈ SE(Y |Z) by
choosing appropriate functions u : R �→ R and v : R �→ R, and then forming the
covariance δ1 = E(Y ∗

1 Z) between Y ∗
1 = u(δT0 Z)Y + v(δT0 Z) (which is an instance

of the constructed response Y ∗) and the standardized predictor vector Z. This
process can then be iterated in the hope of finding additional vectors in the CMS:

δj = E{[u(δTj−1Z)Y + v(δTj−1Z)]Z}
(4.1)

= E{Y ∗
j−1Z}, j = 1,2, . . . ,

where Y ∗
j−1 = u(δTj−1Z)Y + v(δTj−1Z). Of course, we would need at most k =

dim(SE(Y |Z)) vectors.
Two general questions remain regarding the construction of COZY vectors:

How can we find the first vector δ0 that is needed to prime the process? And how
should we choose the functions u and v used in forming the constructed responses
Y ∗? We address these issues in the next section when developing a new method of
estimating the CMS based on the COZY class.

4.2. Iterative Hessian transformation. A first application of Theorem 3 is
straightforward: Setting U = 1 and V = 0 with probability 1, E{(UY + V )Z} =
βyz which we know belongs to SE(Y |Z) under condition C.1 (Theorem 1). Since

any function of βTyzZ is measurable with respect to γ T Z, we can use this first result
to construct additional vectors in the CMS:

COROLLARY 1. Let u : R �→ R and v : R �→ R be any functions such that
{u(βTyzZ)Y + v(βTyzZ)}Z is integrable. Assume condition C.1. Then any vector of

the form E[{u(βTyzZ)Y + v(βTyzZ)}Z] belongs to SE(Y |Z).
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To apply Corollary 1 we must choose the functions u and v. The next corollary
gives two specific COZY sets obtained by choosing (i) u(t) = t and v(t) =
−tE(Y ), and (ii) u(t) = t and v(t) = −tE(Y )− t2. Starting with δ0 = βyz, we
then use (4.1) to form subsequent COZY vectors.

COROLLARY 2. Assume condition C.1. Then:
(i) Span{�j

yzz βyz : j = 0,1, . . .} ⊆ SE(Y |Z), and

(ii) Span{�j
rzz βyz : j = 0,1, . . .} ⊆ SE(Y |Z), where �rzz is as defined in (3.3).

We restrict most of the following discussion to case (i); similar comments hold
for case (ii).

It follows from Corollary 2 that, unless βyz is an eigenvector of �yzz, the
sequence of COZY vectors βyz, �yzz βyz, �2

yzz βyz, . . . provides a set of different
vectors in SE(Y |Z). One question that remains is how large j must be in order

for the first j vectors, βyz, . . . , �
j−1
yzz βyz, to exhaust all possible vectors in the

sequence. This is important because in practice we can compute only a finite
number of these vectors. This question is answered by the next proposition; its
proof is straightforward and omitted.

PROPOSITION 3. Let A be a p × p matrix and β be a p-dimensional vector.
If Ajβ belongs to the subspace spanned by β , . . . , Aj−1β , then so does Asβ for
any s > j .

Since �
j
yzz βyz belongs to SE(Y |Z), which has dimension k, Proposition 3

implies that there is an integer s ≤ k such that the first s vectors in the sequence,
βyz, . . . ,�

s−1
yzz βyz, are linearly independent, and all the subsequent vectors are

linearly dependent on them. This suggests the following estimation scheme (at
the population level). First, compute the p COZY vectors βyz, �yzz βyz, . . . ,

�
p−1
yzz βyz. Let B be the p by p matrix with these vectors as columns and form

the matrix BBT . If v is an eigenvector of BBT , then by Corollary 2 it is also the
eigenvector of PγBBT Pγ , where Pγ is the projection matrix onto SE(Y |Z), and
hence v ∈ SE(Y |Z). Now let v1, . . . ,vp be all the eigenvectors of BBT , so ordered
that their corresponding eigenvalues form a descending sequence λ1 ≥ · · · ≥ λk ≥
0 = · · · = 0. Then v1 is the first eigenvector in SE(Y |Z), v2 is the second eigenvector,
and so on.

Because this method is based on the iterative transformation of βyz by the
Hessian matrix �yzz, we call it the Iterative Hessian Transformation method,
or IHT. Note, however, that when Z is non-Gaussian �yzz ceases to have the
interpretation of the Hessian matrix of the regression function [Cook (1998b)].

The IHT directions vj can be back-transformed to the original scale: uj =
�

−1/2
xx vj , j = 1, . . . , p. Sample IHT directions can be constructed by replacing
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�xx , �yzz and �rzz by their sample estimates, and βyz by the vector of least
squares coefficients. The linear combinations vTj Z = uTj (X − E(X)) will be called
the IHT predictors.

Let the columns of the matrix η form a basis for SY |Z . Li (1992, Theorem 6.1)
showed in effect that if E(Z|ηT Z) is linear and β ∈ SY |Z then S(�yzzβ) ∈ SY |Z.
While Li’s result is related to that of Corollary 2, there are two key differences.
First, Li’s result is in terms of the central subspace and not the more specific CMS
as defined here. Second, Li used his result to address the robustness of pHd rather
than to suggest the possibility of iterating to find additional vectors in the CMS.

4.3. Illustrations. The results of the previous section show that we may need
all p COZYvectors to be assured of exhausting SE(Y |Z), but in practice we may
not need more than the first k = dim(SE(Y |Z)) of them. For instance, if k = 2, βyz
and �yzzβyz could be sufficient, as illustrated in the following example.

To provide some insight into the IHT method, consider the regression model

Y = αT1 Z + f (αT2 Z)+ ε,

where ε Z and without loss of generality E(Y )= 0. We assume that E(Z|αT1 Z),
E(Z|αT2 Z) and E(Z|αT1 Z,αT2 Z) are linear. Also, without loss of generality, we
constrain αT2 Z and f (αT2 Z) to be uncorrelated.

The CMS is spanned by (α1,α2), and

βyz = Cov(Y,Z)

= α1 + αT2 E[αT2 Zf (αT2 Z)]
‖α2‖2

= α1.

Next,

�yzzβyz = E(YZZT )α1

= E[(αT1 Z)2Z] + E[f (αT2 Z)ZZT α1]
= α1

‖α1‖2 E[(αT1 Z)3] + (Pα1 + PQα1α2)E[f (αT2 Z)ZZT α1](4.2)

= α1

‖α1‖2 E[(αT1 Z)3] + α1

‖α1‖2 E[(αT1 Z)2f (αT2 Z)]

+ Qα1α2

‖Qα1α2‖2 E[f (αT2 Z)(αT2 Qα1Z)(αT1 Z)].

The first two terms on the right-hand side of (4.2) are in S(βyz). The first term
will be 0 if αT1 Z is symmetric. The second term will generally be nonzero. The
third term is in the subspace spanned by the part of α2 that is orthogonal to α1 and
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that is what we want. It generally depends on higher order moments and we would
expect it to be nonzero, although it can be zero in carefully constructed cases. For
example, it equals zero if α1 is orthogonal to α2 and αT1 Z αT2 Z.

Using �rzz we obtain similar results,

�rzzβyz = E[f (αT2 Z)ZZT α1]
= α1

‖α1‖2 E[(αT1 Z)2f (αT2 Z)](4.3)

+ Qα1α2

‖Qα1α2‖2 E[f (αT2 Z)(αT2 Qα1Z)(αT1 Z)].

This result differs from (4.2) by the term α1E[(αT1 Z)3]/‖α1‖2 which belongs to
S(βyz), but otherwise the results are essentially the same. In particular,

S(βyz,�yzzβyz)= S(βyz,�rzzβyz)= SE(Y |Z)
provided none of the key terms vanishes.

For a numerical illustration, we generated 200 observations on 5 predictors and
a response as follows:

X1 = ε1,

X2|X1 =X1 + ε2,

X3 = ε3,

X4|X2 = (1 +X2/2)ε4,

X5 = ε5,

Y =X1 +X2
2/2.

All errors εk are independent standard normal random variables. The response Y
was generated without error to emphasize the qualitative nature of the results. The
CMS is spanned by (1,0,0,0,0)T and (0,1,0,0,0)T . Condition C.1 holds, but
C.2 does not hold because Var(X4|X2)= (1 +X2/2)2 which is correlated with Y .
Table 1 gives the first two pHd directions, ĥ1 and ĥ2, and the first two sample IHT

TABLE 1
Sample pHd directions ĥ1 and ĥ2 and IHT directions û1 and û2 from the simulated data

ĥ1 ĥ2 û1 û2

X1 −0.098 0.166 0.022 −0.996
X2 −0.984 −0.011 0.999 0.024
X3 0.050 0.151 0.001 0.062
X4 −0.142 −0.974 0.032 −0.016
X5 −0.017 0.035 0.016 0.017
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a. IHT, View 1 b. IHT, View 2

c. pHd, View 1 d. pHd, View 2

FIG. 1. Summary views from IHT and pHd for the simulated data. View 1 shows the quadratic
component while View 2 is provided for contrast. For IHT, V = Y and (H,O)= (̂vT1 Z, v̂T2 Z). For

pHd, V = Y and (H,O)= (ĥT1 Z, ĥT2 Z).

directions, û1 and û2. pHd found X2 and X4 to be the important predictors, while
IHT correctly picked X1 and X2. In effect, pHd missed the linear component in
favor of the quadratic component and X4. Figure 1 gives a visual representation of
these results. The response surface from IHT gives a very good representation of
the true surface, while the surface for pHd shows only a relatively rough quadratic.

The fact that pHd missed the linear trend in this example may not be surprising
because it is not very effective at finding linear trends in the first place [Cook
(1998b)]. In addition, as illustrated by this example, failure of condition C.2 can
influence the behavior of pHd. In contrast, IHT can find linear trends and does not
require C.2 to be effective.

In a variety of similar simulations, IHT was found to be superior to pHd
whenever there is a clear linear trend in the data, even if condition C.2 holds. The
linear trend is necessary to provide a reasonable estimate of βyz, which is needed
to prime the procedure. If there is not a linear trend, IHT failed as expected. Basing
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IHT on the residuals r (i.e., using �
j
rzzβyz) instead of the response worked well in

many situations.

5. Asymptotic behavior. In the previous sections we focused on the charac-
terization and estimation of the CMS at the population level. A full-fledged as-
ymptotic analysis of the sample properties exceeds the scope of this paper, and
will be developed in the authors’ future work. In this section we provide a few
basic ideas and results. Three types of asymptotic problems will concern us: the√
n-consistency of the estimators, the asymptotic effects of standardization, and

the test statistic for determining the dimension of the CMS. We will now outline
the asymptotic development for IHT.

The
√
n-consistency is easy to demonstrate. Let B̂ be the sample version of B;

that is,

B̂ = (
β̂yz, �̂yzzβ̂yz, . . . , �̂

p−1
yzz β̂yz

)
,

where β̂yz = En(YZ), �̂yzz = En(YZZT ). By the central limit theorem β̂yz and
�̂yzz are

√
n-consistent. Hence B̂B̂T , being a (matrix-valued) smooth function of

β̂yz and �̂yzz, is a
√
n-consistent estimator of BBT . Consequently the eigenvectors

of the former are
√
n-consistent estimators of the eigenvectors of the latter.

We have described the estimators for CMS in terms of the standardized
explanatory vectors Z to simplify the presentation. In practice, we first transform
the observed X into Ẑ by Ẑ = �̂

−1/2
xx (X − En(X)), and then apply IHT to Ẑ to

obtain the estimated vectors in SE(Z|Y ), say v̂1, . . . , v̂k . They are then multiplied

by �̂
−1/2
xx to become the estimated vectors in SE(Y |X), say û1, . . . , ûk . Since both

transformations involve only
√
n-consistent estimators such as �̂xx and En(X),

they do not affect the
√
n-consistency of the estimators of the CMS. In other words

v̂1, . . . , v̂k are
√
n-consistent estimators of the vectors in SE(Y |Z), and û1, . . . , ûk

are
√
n-consistent estimators of the vectors in SE(Y |X).

An asymptotic test for dimension can be developed along the following
lines. If the rank of B is k, then the smallest p − k eigenvalues BBT are 0.
Hence the corresponding eigenvalues of B̂B̂T behave like noise and their sum
should converge to a definite distribution. This sum, together with its asymptotic
distribution, can then be used to test the hypothesis H0 : rank(BBT ) = k. The
largest k for which this hypothesis is rejected is an estimator of the dimension
of the CMS. To see how this asymptotic distribution can be derived, let vec be
the transformation that maps a matrix A = (a1, . . . ,ap) to the column vector
(aT1 , . . . ,aTp )

T . For any p-dimensional vector β and p× p matrix �, let

θ = θ(β,�)= (
βT ,vec(�)T

)T and b(θ)= vec
(
β, . . . ,�p−1β

)
,

and denote θ (β̂yz, �̂yzz) by θ̂ and θ(βyz,�yzz) by θ0. Because the components
of θ̂ are moment estimators, by the central limit theorem

√
n(θ̂ − θ0) converges in
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distribution to a normal random vector with mean 0 and covariance matrix V(θ0).
By construction, b(θ) is a vector-valued smooth function of θ and b(θ0)= vec(B).
Hence, applying the delta method, we have the convergence

√
n
(
vec(B̂)− vec(B)

) L−→N

(
0 ,

∂b(θ0)

∂θT
V(θ0)

∂bT (θ0)

∂θ

)
.

From here we can apply the Eaton–Tyler factorization [Eaton and Tyler (1994)] to
derive the desired asymptotic distribution.

6. Recumbent cows. For unknown reasons, pregnant dairy cows can become
recumbent—they lie down—either shortly before or after calving. This condition
can be serious, and frequently leads to death of the cow. Clark, Henderson,
Hoggard, Ellison and Young (1987) analyze data collected at the Ruakura (N.Z.)
Animal Health Laboratory on a sample of recumbent cows. We use 254 cases with
complete records to illustrate the dimension-reduction methods described in this
article. The response is binary, Y = 1 for surviving cows, Y = 0 otherwise.

The p = 3 predictors are log(AST), logarithm of serum asparate amino
transferase (U/l at 30C); log(CK), logarithm of serum creatine phosphokinase (U/l
at 30C); and log(UREA), logarithm of serum urea (mmol/l). These predictors were
used in one of the candidate logistic models studied by Clark et al. We deleted two
anomalous cases at the outset, as did Clark et al. (1987).

The transformations of the blood measurements to logarithms effectively in-
duced the linear conditional predictor expectations of the kind discussed in this
article (condition C.1), although this rationale was not stated in the report by
Clark et al. (1987). However, an analysis of the predictors indicated that condi-
tion C.2 might not be reasonable. For example, the score test for heteroscedas-
ticity [Cook and Weisberg (1983)] in the linear regression of log(UREA) on
(log(AST), log(CK)) has a p-value of 0.001. The lack of constant variances
Var(Z|γ T Z) may cause problems for pHd because this allows Var(Z|γ T Z) and
Y to be correlated. To avoid this issue we would like to use a dimension reduction
method that requires only condition C.1. SIR is one possibility, but because the
response is binary it can find at most one direction in SE(Y |Z), a limitation that
is shared by all methods covered by Theorem 1. In short, IHT introduced in Sec-
tion 4.2 seems to be the only known method that can find multiple directions in
SE(Y |Z) and requires only condition C.1.

Table 2 shows the sample IHT directions from the regression of the binary
response on the three predictors using a sample version of the population
calculations described in Section 4.2. The directions were computed in the scale
of the original predictors, except the predictors have been standardized marginally
to have sample standard deviation equal to one. All three sample IHT vectors
�̂
s
yzzβ̂yz were used to form the sample version of B.
Applying the graphical regression methods proposed by Cook (1996, 1998a)

to the regression of Y on the three IHT predictors, we inferred that a good
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TABLE 2
Sample IHT directions ûj = �̂

−1/2
xx v̂j from the recumbent cow data. Predictors have been

standardized marginally to have sample standard deviation equal to one

û1 û2 û3

log(AST) 0.761 0.041 0.716
log(CK) 0.387 −0.595 −0.695
log(UREA) 0.521 0.803 −0.061

summary is provided by the binary response plot for the first two IHT predictors
shown in Figure 2. The correlation between the first IHT predictor and the linear
combination of the predictors from a logistic fit is 0.999, so this discussion covers
what might be a first step for many. Our interpretation of the plot in Figure 2
is based on visual comparisons of the empirical conditional distributions of the
IHT predictors given the response. We see from the figure that the conditional
distributions for the first two IHT predictors differ primarily in location and scale;

FIG. 2. Binary response plot for the first two IHT predictors in the recumbent cow data. Filled
circles correspond to survivors.
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difference in orientation seems less important. Additionally, both conditional
distributions seem consistent with samples from bivariate normal distributions.
Using this as a guide, we concluded that a first logistic model should include
(a) linear and quadratic terms in the first IHT predictor since the conditional
distributions for that predictor differ in both location and scale, and (b) a quadratic
term in the second IHT predictor since the conditional distributions for that
predictor differ primarily in scale. The fit of a logistic model with the three IHT
predictors, their squares, and a cross product between the first two predictors
sustains these conclusions, as the ratios of the estimated coefficients to their
standard errors are less than one for all terms except the linear and quadratic terms
in the first predictor and the quadratic in the second. And the absolute coefficients
for these terms are all larger than about 2 standard errors.

The goal of this example is to illustrate that IHT summary plots can be
informative and can capture the primary dependence in the data. Subsequent use
of the summary plot must depend strongly on the applications context.

7. Discussion.

7.1. Overview. We addressed the problem of how to do dimension reduction
in regression when the mean function alone, rather than the whole conditional
distribution, is of interest. From this consideration the Central Mean Subspace
arises naturally as the inferential object. The CMS is that part of the central
subspace that captures all the information about the mean function available in
the predictors, and shares many parallel properties with the latter. Moreover, the
CMS categorizes transparently the previous methods into two kinds: those, such as
OLS and pHd, that estimate vectors in the CMS and those, such as SIR and SAVE,
that can pick up vectors outside the CMS. This gives us a clear idea of what these
estimators do, and thereby provides guidance on their use.

The new IHT method, as well as other methods that might be developed
from the class of COZY vectors, have two potential advantages: they allow the
investigator to focus on the mean function and they do not require constraints
on the conditional variances variances Var(Z|γ T Z), although linear conditional
expectations E(Z|γ T Z) are still required. Our simulations show that IHT performs
better than pHd when the conditional variance Var(Z|γ T Z) is not a constant.
We make no claim that IHT method is more “powerful” than pHd when both
conditions C.1 and C.2 hold. The IHT predictors, like the pHd predictors, are
partially ordered on their likely relation to the CMS. Plots of the response versus
the first few IHT predictors and, in particular, graphical regression can be used
to aid in determining the number of “significant” directions just as they are used
with other dimension reduction methods in regression [see Cook (1998a) for an
overview]. However, formal testing methods are required for full effectiveness.
Such methods are under consideration, as outlined in Section 5.
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7.2. Comparing SY |Z and SE(Y |Z). A comparison of SY |Z and SE(Y |Z) may be
of general interest in all regressions and of particular interest in some regressions.
Because SE(Y |Z) ⊆ SY |Z, we can use their dimensions as a rough indicator of the
difference between the two subspaces. If dim(SE(Y |Z))= dim(SY |Z) then all of the
regression structure is captured by the mean, while there may be much more to the
regression structure otherwise.

One method for inferring about aspects of D = SY |Z \SE(Y |Z) can be developed
from recent results on partial dimension reduction by Chiaromonte, Cook and
Li (2002). Let γ be an orthonormal basis for SE(Y |Z) and let (γ ,γ 0) be an
orthonormal basis for R

p. Define W = γ T Z and V = γ T
0 Z. Then, assuming it

exists, the central partial subspace S(W)
Y |V for Y |(V,W) is the intersection of all

subspaces S(A) such that

Y V|(AT V,W).(7.1)

It can be shown that SY |Z = SE(Y |Z)+γ 0S
(W)
Y |V and consequently we can infer about

D via S(W)
Y |V .

For example, suppose Z is normally distributed so that W V. Then (7.1)
holds if and only if (Y,W) V|AT V. Thus, we can infer about S(W)

Y |V by applying
SIR/SAVE to the multivariate regression of (Y,W) on V. Because γ will usually
be estimated rather than known, new asymptotic tests need to be developed for
careful application.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1. That (i) implies (ii) is immediate. That (iii)
implies (i) is also immediate, because, if E(Y |X) is a function of αT X, then, given
αT X, E(Y |X) is a constant, and hence independent of any other random variable.
Now let’s prove that (ii) implies (iii). By (ii),

E{YE(Y |X)|αT X} = E(Y |αT X)E{E(Y |X)|αT X}.
The left hand side is

E[E{YE(Y |X)|X}|αT X] = E{[E(Y |X)]2|αT X},
and the right hand side is {E[E(Y |X)|αT X]}2. Therefore Var[E(Y |X)|αT X] = 0.
Thus, given αT X, E(Y |X) is a constant. �

PROOF OF THEOREM 1. We first rewrite R(a,b) making use of the fact that
γ is a basis for the central mean subspace:

R(a,b)= E[−Y (a + bT Z)+ φ(a+ bT Z)]
= E[−E(Y |γ T Z)(a+ bT Z)+ φ(a+ bT Z)]
≥ E[−E(Y |γ T Z)(a+ bT E(Z|γ T Z))+ φ(a + bT E(Z|γ T Z))]
= E[−Y (a + bT PγZ)+ φ(a + bT PγZ)].
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The second equality follows because γ is a basis for SE(Y |Z). The inequality
follows because of convexity. The next equality stems from the linearity of
E(Z|γ T Z) which is equivalent to requiring that E(Z|γ T Z) = PγZ, where Pγ is
the projection onto SE(Y |Z) with respect to the usual inner product. Thus,

R(a,b)≥R(a,Pγb)

and the conclusion now follows because β is unique. �

PROOF OF THEOREM 2. It is sufficient to show that if E(Y ) = 0, then
S{E(YZZT )} ⊆ SE(Y |Z). Assume then E(Y )= 0. Now

E(YZZT )= E{YE(ZZT |γ T Z)}
= E{Y (PγZZT Pγ + Var(Z|γ T Z))}
= PγE(YZZT )Pγ .

The conclusion follows since S{PγE(YZZT )Pγ } ⊆ SE(Y |Z). �

PROOF OF PROPOSITION 2. By definition of SE(Y |Z), Y E(Y |X)|γ T X.
Because of the linearity of E(Z|γ T Z), βyz ∈ SE(Y |Z) and hence

r(Y,βTyzZ) r(E(Y |Z),βTyzZ)|γ T Z.

Because r is linear in Y ,

E[r(Y,βTyzZ)|Z] = r(E(Y |Z),βTyzZ).
Thus r E(r|Z)|γ T Z, so that SE(Y |Z) is a mean dimension-reduction subspace for
the regression of r on Z, and

SE(r |Z) ⊆ SE(Y |Z).(A.1)

Next, let ρ be the matrix whose columns form a basis of SE(r |Z); that is,
SE(r |Z) = S(ρ). Then r E(r|Z)|ρT Z. But by Proposition 1, given ρT Z, E(r|Z)
is constant. Hence,

r E(r|Z)|(ρT Z,βTyzZ)

and therefore

(r,βTyzZ) (E(r|Z),βTyzZ)|(ρT Z,βTyzZ).

Since Y = (r − a(βTyzZ))/b(β
T
yzZ), it follows that Y E(Y |Z)|(ρT Z,βTyzZ) and

thus SE(r |Z) + S(βyz) is a mean dimension-reduction subspace for the regression
of Y on Z. Combining this with (A.1) gives the desired conclusion

SE(Y |Z) ⊆ SE(r |Z) + S(βyz)⊆ SE(Y |Z) + S(βyz)= SE(Y |Z),
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where the last equality follows because the linearity of E(Z|γ T Z) implies βyz ∈
SE(Y |Z). �

PROOF OF THEOREM 3. Let W =UE(Y |Z)+V and, as before, let Pγ be the
projection matrix onto S(γ ). Then

E{(UY + V )Z} = E{(UE(Y |Z)+ V )Z} = E(WZ).

Since U and V are measurable with respect to γ T Z, and since E(Y |Z) =
E(Y |γ T Z) by Proposition 1, the random variable W is measurable with respect
to γ T Z. Hence

E(WZ)= E
{
WE

(
Z|γ T Z

)}= PγE(WZ),

where the right hand side belong to S(γ ). �

PROOF OF COROLLARY 2. We only prove part (i); part (ii) can be proved
similarly. In Corollary 1, take u(t)= t and v(t)= −tE(Y ). Then

E
[{
u
(
βTyzZ

)
Y + v

(
βTyzZ

)}
Z
]
= �yzz βyz

belongs to S(γ ). Now suppose that δ = �r−1
yzz βyz belongs to S(γ ). Then δT Z

is measurable with respect to γ T Z. By Theorem 3, E{(δT Z)YZ} = �yzz δ =
�r
yzz βyz also belongs to S(γ ). Hence, by induction, all vectors of the form

�r
yzz βyz belong to S(γ ). �
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