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Abstract. – Prediction of financial time series using artificial neural
networks has been the subject of many publications, even if the predictability of
financial series remains a subject of scientific debate in the financial literature.
Facing this difficulty, analysts often consider a large number of exogenous indica-
tors, which makes the fitting of neural networks extremely difficult. In this paper,
we analyze how to aggregate a large number of indicators in a smaller number
using -possibly nonlinear- projection methods. Nonlinear projection methods are
shown to be equivalent to the linear Principal Component Analysis when the
prediction tool used on the new variables is linear. Furthermore, the computation of
the nonlinear projection gives an objective way to evaluate the number of resulting
indicators needed for the prediction. Finally, the advantages of nonlinear projection
could be further exploited by using a subsequent nonlinear prediction model. The
methodology developed in the paper is validated on data from the BEL20 market
index, using systematic cross-validation results. 

Classification Codes: G00, G14.

1. Introduction

Since the beginning of this century, the question of the predictability of financial series
(at least of stock market prices) has been the subject of a highly controversial debate in
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finance. Fama (1965), in its seminal paper, recalls the meaning of the random walk
hypothesis4 (first proposed by Bachelier, 1900) and presents different empirical tests of
it. He concludes in those terms: “The main conclusion will be that the data seem to
present consistent and strong support for the model. This implies, of course, that chart
reading, though perhaps an interesting pastime, is of no real value to the stock market
investor.” Many empirical works, mainly based on linear statistical tests, have conducted
to the same conclusion in the years sixties and seventies, despite the heavy use of charts
and technical indicators5 by the professional community. However, as underlined by
Campbell et al. (1997), “Recent econometric advances and empirical evidence seem to
suggest that financial asset returns are predictable to some degree”. Among those works,
three of them have constituted main advances in this field. Brock et al. (1992) test two
popular technical trading rules on the Dow Jones market index on the period going from
1897 to 1986. They use a bootstrap methodology to validate their results and conclude
that “their results provide strong support for the technical strategies”. Sullivan et al.
(1999) propose new results on the same data set (extended with 10 new years of data).
Their methodology, still relying on heavy use of bootstrap, allows avoiding (at least to
some extend) the data-snooping bias6 and is applied to a universe of 26 trading rules.
They confirm that the results of Brock et al. (1992) stand up to inspection against data-
snooping effects. The recent contribution of Lo et al. (2000), using a new approach based
on nonparametric kernel regression, confirms that “several technical indicators do
provide incremental information and may have some practical value”. On the basis of all
of those empirical evidences, we will consider that there is some interest in trying to
predict the evolution of financial asset prices, as do Refenes et al. (1997) in their intro-
duction to the methods used in financial engineering.

When time series prediction is viewed as a regression problem, the inputs being past
values of the series and exogenous variables, one may expect useful information (for the
prediction of the series) to be contained in these inputs. Nevertheless, it is difficult to
know if the information content of specific inputs is relevant, redundant or useless.
Furthermore, it is well known that any regression method (in particular non-linear ones,
like multi-layer perceptrons and radial-basis function networks), are difficult to use when
the number of inputs is large. There is thus a strong interest in reducing the number of
inputs; the question is how to reduce the number of inputs without loosing relevant infor-
mation. 

4 Following the random walk hypothesis, successive price changes are statistically independent from each
other: the prices of a financial asset, if the market is informationally efficient, walk at random. The main
justification of the hypothesis is the following: If the market is efficient, at any time, all the available infor-
mation is reflected in the current price level. The price movements are therefore caused by the arrival of
new information, which is by definition due to hazard. 
5 Technical indicators are numerical values calculated on the basis of past prices, volumes, and other
market statistics and used to forecast future prices movements.
6 The concept of data-snooping bias has been proposed by Lo and MacKinlay in 1990 (at least in the finan-
cial literature). This bias in the evaluation of forecasting method appears as soon as a data set is used more
than once for purposes of inference of model selection. It can be illustrated by the “Give me the data, I will
give you the model” sentence.
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In this paper, we will focus on this question and we will compare the classical linear
data compression approach with a new non-linear one. The objective will be to keep as
much as possible the information contained in the initial inputs, while reducing as much
as possible the number of new “constructed” variables (or the dimension of the projec-
tion space). The new “constructed” variables are then used as input to the prediction
algorithm, as illustrated in Figure 1. 

To perform the transformation between the initial inputs and the new variables, we
may choose to use a linear method or a non-linear one. In this paper, we will use
Principal Component Analysis as a linear transformation and Curvilinear Component
Analysis (Lo and MackKinley, 1990) as a non-linear one.

In the following, we will successively present possible projection methods, evaluation
criteria that may be used to assess the quality of the projection, and the methodology that
we used to perform the projection on real data sets. The methodology is of particular
importance, as most of the methods first require the adjustment of parameters, and
secondly could be evaluated through different criteria. Establishing a sound method-
ology, based on objective criteria and applicable in various fields, is the key point of this
paper.

2. Dimension reduction

2.1. Intrinsic Dimension

First, it is important to evaluate the projection dimension, i.e. the dimension of the space
of new variables. If the estimation of this dimension is too small, information will be lost

Fig. 1. The two steps of the methodology.
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in the projection. If it is too large, the usefulness of the method is lost. To evaluate this
dimension, the concept of intrinsic dimension is used. The intrinsic dimension is the
effective number of degrees of freedom of a set; a definition of the intrinsic dimension
can be found in Takens (1985). This concept is presented here with the well-known
horseshoe distribution (Fig. 2): for this data set, the intrinsic dimension is equal to two as
two degrees of freedom are sufficient to uniquely determine any data in the set, although
the data live in R3. The computation of the intrinsic dimension is explained in Grass-
berger and Procaccia (1983), but its determination remains very difficult to apply, not to
say approximate, for high dimensional data sets. Therefore, the intrinsic dimension will
be only considered here as a rough approximation of the dimension that should be used
for the projection. 

2.2. Projection Methods

2.2.1. Principal Component Analysis

Principal Component Analysis (PCA) of a set of data is based on the computation of the
covariance matrix of this set. The singular value decomposition of this matrix provides
the desired linear transformation and it remains to the analyst to choose the number of
principal components to keep (that is to say, the dimension of the projection space).
Hence, in this case, the intrinsic dimension does not need to be evaluated. As PCA is a
linear transformation, any dimension reasonably estimated by PCA (for example by
keeping 95 or 99% of the variance of the initial set) is usually larger than the intrinsic
dimension of the set.

2.2.2. Curvilinear Component Analysis

This nonlinear extension of the Principal Component Analysis (also named Vector Quan-
tization and Projection, see Demartines and Hérault (1997 and 1993)) spreads out the
manifold that contains the data and projects it from a high dimensional space to a smaller
dimensional one. The projection of the horseshoe distribution carried out by Curvilinear
Component Analysis (CCA) is illustrated in Figure 3. The details of the algorithm
will not be explained here but it must be mentioned that the first step consists in a

Fig. 2. Horseshoe distribution.
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quantization of the input space using centroids. The quantization provides a partition of
this space in some clusters in which the data manifold can be considered as linear; Curvi-
linear Component Analysis may thus be considered as a piecewise Principal Component
Analysis. The number of centroids is the important parameter that one must select to
perform an adequate projection. A precise way to choose this parameter will be explained
in the described below an applied to the BEL20 Market Index prediction example. 

2.3. Evaluation Criteria

The goal of the projection is the reduction of the number of inputs (for the prediction
method) and the preservation of the initial information. Several ways can be used to
evaluate how the projection is successful. Looking to Figure 1 again, one can try to
measure if the new variables contain the same information as the initial inputs, without
taking care of the subsequent prediction algorithm. The quality of the projection can also
be evaluated by looking at the end of the chain, i.e. the predicted outputs. The advantage
of this last approach is that the ultimate goal itself is measured, instead of an inter-
mediate criterion that is not guaranteed to be adequate; the drawback is that any short-
coming in the prediction method itself (for example difficulties in the convergence of
non-linear methods) will be measured together with the quality of the projection. The
first criterion detailed below belongs to the first approach, while the three last ones
belong to the second approach.

2.3.1. Deprojection Measure

The projection by PCA or CCA is a reversible operation; nevertheless the result of a
deprojection (inverse of the projection) will not correspond to the initial inputs. The
mean distance between the initial inputs and the results of the deprojection is called the
deprojection measure; it should be as small as possible and should correspond in ideal
situations to the noise surrounding the information. If the dimension of the projection
space is decreased below the intrinsic dimension, then the deprojection measure will
increase; this will validate or invalidate the rough intrinsic dimension estimation. The
deprojection Measure is also a way to rank several projection methods, as Principal
Component Analysis and Curvilinear Component Analysis, used with the same projec-
tion dimension. The main advantage of this criterion is that it is totally independent of

Fig. 3. Projection carried out by CCA from R3 to R2.
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the prediction method used afterwards. Unfortunately, this advantage has a counterpart:
there is no guarantee that a projection dimension chosen according to this measure will
be optimal when the best prediction outputs are looked for.

2.3.2. Determination Coefficient

This criterion is often used especially in financial applications, in particular for the vola-
tility forecasting (see for example Brailsford and Faff, 1996). Contrary to the previous
criterion, it requires the prediction of the target variable and measures the difference
between the target and the prediction. Let  be the target (output to be predicted),  its
prediction,  the average of . In order to evaluate how the predictions correspond to
the targets, we compute a linear regression according to equation (1) on the whole data
set: 

A and B are the coefficients of this regression. We then compute the determination
coefficient  according to 

The  coefficient measures how the points in the  vs.  plane are close to the
straight line defined by the  and  coefficients. The more r2 is close to one, the more
the points are close to the line and the approximation is considered as correct. This crite-
rion, while used a lot in empirical works, seems not really appropriate in financial appli-
cations. Indeed, financial data are very noisy; the deterministic part (i.e. the part that can
be predicted) is generally far less important than the noisy part. Hence, the standard
deviation of  will be lower than the standard deviation of , resulting in a badly
conditioned regression (1). The use of the determination coefficient is not robust in this
kind of application, as it will be illustrated on the BEL20 market index application.

2.3.3. Mean Square Error

The Mean Square Error  is defined by 

It must be made as small as possible for a successful prediction. Unfortunately, in
financial applications the Mean Square Error is usually very high since the series are
very noisy.
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2.3.4. Percentage of Correct Approximations of Sign

As the amplitude of financial time series is always difficult to predict, it is interesting to
calculate the Percentage of Correct Approximations of Sign  defined by 

The PCAS has to be as large as possible. It has also to verify 

otherwise, this would mean that the approximation would be worst than a constant
approximation (either 100% of positive or of negative signs).

2.4. Methodology

The procedure used to project the initial inputs on new relevant variables is described
here, together with the tests that determine if the projection improves the results of
prediction, and if a nonlinear projection must be used instead of classical linear one. 

In the following, we denote by:
• , 1 ≤ i ≤ n, the technical indicators or exogenous variables used in the prediction
algorithm; note that selected past values of the series may belong to the technical indi-
cators;
•  the input vector containing the values of the series and of the exogenous variables
at time t: 

• T the total number of samples available in the series (1 ≤ t ≤ T);
• D the intrinsic dimension of the learning set.

2.4.1. Mixture

The input vectors  are randomly mixed according to a draw without replacement 
law: 
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2.4.2. Learning and Validation sets

The data must be divided in learning and validation sets. The validation set is used to
check the results obtained on the learning set and justify that no overfitting has occurred.
The validation results can then be used to tune parameters (like the number of centroids
or the projection dimension) of the learning method. The division is made between the
learning set  and the validation set according to 

and 

The  parameter (  needs to be an integer) must be carefully chosen: it must be
large enough to ensure an efficient number of elements in the learning set while paying
attention to keep a sufficient number of elements in the validation set. Some advices will
be given further on how to choose this parameter.

2.4.3. Normalization of Technical Indicators

In the learning set, each of the n indicators  (1 ≤ i ≤ n) must be normalized according to 

where  is the mean value of indicator  evaluated on the learning set, 

 is its standard deviation and  is the normalized value.
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As the normalization is part of the learning, points from the validation set are not
included in the computation of the mean and standard deviation. The validation set is
thus normalized by using the same parameters as those computed on the learning set: 

2.4.4. Intrinsic Dimension

The intrinsic dimension d of the technical indicators of the learning set is computed and
will be used as a first rough approximation of the projection dimension.

2.4.5. First Principal Component Analysis

CCA may be directly used as projection method. Nevertheless, it must be mentioned
that, in practical situations, a preliminary PCA greatly helps the CCA learning. A Prin-
cipal Component Analysis of the technical indicators in the learning set is hence per-
formed. The dimension n1 is chosen as the minimal dimension for which the loss of
information after PCA is negligible. The technical indicators of the learning and valida-
tion sets are projected from a n-dimensional space to a n1-dimensional space according
to the parameters defined by the Principal Component Analysis on the learning set.

2.4.6. First Curvilinear Component Analysis

A first Curvilinear Component Analysis is then performed on the n1-dimensional space,
reducing it to a d-dimensional space. The Curvilinear Component Analysis algorithm is
used, taking only the learning set into account. As a first approximation, the number of
centroids is chosen so that, in average, the local intrinsic dimension in each cluster of the
quantization is equal to d.

2.4.7. Optimization of n1

The projection from a n-dimensional space to a d-dimensional space is repeated using
firstly Principal Component Analysis and secondly Curvilinear Component Analysis
(PCA + CCA), but the intermediate dimension n1 is varied around its initial value. Each
of the projections is also applied on the validation set. The deprojection measure
obtained on the validation set is studied. Usually, this measure has a minimum (or a
bend) and this minimum (or bend) is chosen as the optimal value for n1.

2.4.8. Error Criteria on the validation set

New projections are computed from the n-dimensional to the d-dimensional space by
varying the projection method (PCA-only or PCA + CCA), the number of centroids (in
the nonlinear case) and the projection dimension d. In each case, the deprojection
measure on the validation set is computed. Then, the determination coefficient, the mean
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square error and the percentage of correct approximations of sign are evaluated on the
validation set. For the purpose of computing these three last criteria, we need the
predicted outputs ; these values can be computed by any prediction algorithm,
including linear and non-linear (MLP, RBF, etc.) ones. In the example developed in
Section 3, we will limit ourselves to a basic linear prediction model, the aim of this paper
being to compare linear and non-linear data compression techniques in the field of finan-
cial applications.

2.4.9. Cross-validation

Operations 2.4.1 to 2.4.8 are repeated k times; the four measures and error criteria
computed in 2.4.8 are averaged. Several tuning parameters have still to be optimized.
Since a global optimization is hardly feasible, we propose to determine first the optimal
number of centroids (used in the CCA) by minimizing the deprojection measure, which
is independent of the prediction model. The other errors are used to choose the final
projection dimension (  in the PCA-only case and  in the PCA + CCA one). In
fact, the projection dimension cannot be calculated without the knowledge of the number
of centroids. The choice between the determination coefficient, the mean square error or
the percentage of correct approximations of sign is done according to the goal of the time
series prediction application. The analysis of the influence of these criteria on  or

 will be detailed on the BEL20 Market Index application. The number k of repeti-
tions must be large enough to obtain smooth graphs (criteria vs. dimension); moreover,
the larger  (splitting coefficient between learning and validation sets), the larger k must
be large too (if the learning set is large, the quality of the learning phase is improved but
the validation set is not large enough to obtain reliable results).  If the computing time is
not too long, it is thus appropriate to increase  and k to obtain simultaneously better
analysis and better performances.

3. Application to the BEL20 Market Index 

The methodology is tested on the BEL20 Market Index7 from December 1st, 1987 to
February 14th, 1998 (2663 daily observations). This index is represented in Figure 4. Its
choice has been motivated by two main reasons: first, the Belgian Stock Market has not
been the subject of numerous studies in the field of technical analysis. As such, the risk
of data-snooping bias is reduced. Second, being a small market, the level of efficiency is
probably not so high as with the major international stock markets, offering therefore
more opportunities to the use of technical analysis approaches. 42 technical indicators
have been used (they are described in Tab. 1). These indicators are strongly correlated
(the condition number of the covariance matrix is almost infinite, the smallest eigenvalue
being almost equal to zero). 

7 The twenty most representative shares of the Belgian Stock Market compose this market index.
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Predicting this series is not easy: the phenomenon is not stationary8. Furthermore, the
correlation coefficient correlation between the current price and the next day price is
0.999, while the one between the current return and the next day return is 0.099; two
results that seem at first sight to confirm the random walk hypothesis. The daily return

 of this market is calculated according to 

and is represented in Figure 5. The mean of  is close to zero.
The methodology described in the previous section is then applied.
• Stages 2.4.1 to 2.4.3 are performed.
• Stage 2.4.4: The intrinsic dimension of the technical indicators is 7. 
• Stage 2.4.5: The result of the Principal Component Analysis is shown in Figure 6.
This result is the percentage of information kept by a Principal Component Analysis
versus the projection dimension.  
The initial projection dimension n1 is chosen equal to 30; a linear projection from a

42-dimensional space to a 30-dimensional space is performed (keeping 98% of the
variance of the initial set). 

• Stage 2.4.6: A nonlinear projection (CCA) is performed from a 30-dimensional space
to a 7-dimensional space. An initial number of centroids is computed: 125. 
• Stage 2.4.7: The projection from a 42-dimensional space to a 7-dimensional space is
repeated using Principal Component Analysis and Curvilinear Component Analysis;
the intermediate dimension n1 is swept around the initial value (30). The deprojection

TABLE I. Short description of the 42 technical indicators.

Indicators Number

Lagged value of the returns 4

Lagged value of the variance of the returns 3

Moving average of the returns 3

Slope of the lagged value of the prices 3

Lagged value of the short and long interest rate level 3

Lagged value of the variance of the short and long interest rate 3

Slope of the lagged value of the prices 3

Technical indicators based on the SP 500 market index 12

Technical indicators based on the currency exchange rate 8

8 An augmented Dickey-Fuller test confirms the presence of a unit root at a level of confidence of 1%. 
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measure obtained on the validation set is represented in Figure 7. The optimal value of
n1 corresponds to the bend on the curve: 27. 
• Stages 2.4.8 and 2.4.9: First, the number of centroids is optimized, using the depro-
jection measure. It turns out that the initial value (125) is confirmed. Then, a new set of
projections is performed from the 42-dimensional space to the d-dimensional space
when varying d around 7. Note that, for the sake of validation of our methodology, the
computations have been done for d = 2 to 24. Each projection has been repeated
20 times (k = 20), while varying the learning and validation sets. For each trial, a linear
prediction model of  based on the projected data is estimated on the learning set.
Then, the determination coefficient, the mean square error and the percentage of
correct approximations of sign are calculated on the validation set; theses three criteria
are shown in Figures 8, 9 and 10 respectively. 

4. Discussion

It can be noticed that the PCA-only method gives slightly better results that the
PCA + CCA method. We might have expected the opposite, or at least equivalent results.
In fact, this phenomenon may be explained by a too small number of data and by the

Fig. 4. BEL20 Market Index from December 1st, 1987 to February 14th, 1998.

yt
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Fig. 6. Percentage of information kept by a PCA versus the projection dimension.

Fig. 5. Daily return of BEL20 Market Index from December 1st, 1987 to February 14th, 1998.
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Fig. 7. The deprojection measure obtained on the validation set
versus the intermediate projection dimension n1.

Fig. 8. Determination coefficient on the validation set versus the projection dimension.
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Fig. 9. Mean square error on the validation set versus the projection dimension.

Fig. 10. Percentage of correct approximations of sign
on the validation set versus the projection dimension.



A. LENDASSE ET AL.46

Fig. 12. Modified  versus  in gray and the new regression result in black.yt ŷt

Fig. 11.  versus  in gray and the regression result in black.yt ŷt
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important noise contained in the series. Another explanation is the use of a linear model
for prediction. One may expect that a nonlinear prediction method would give improved
results, especially when the initial inputs are preprocessed in a nonlinear way; some
results obtained with a nonlinear model may be found in Lendasse et al. (2000). Never-
theless, it must be mentioned that problems related to a difficult convergence of non-
linear models add to the difficulty of choosing the parameters in our methodology,
making the results more difficult to illustrate. Furthermore, the number of trials that must
be averaged in the cross-validation stage has to be increased in order to reduce the effects
of local minima with nonlinear predictors. 

The best projection dimension depends on the criterion: 4 with the determination coef-
ficient, 2 with the mean square error and 4 to 6 with the percentage of correct approxima-
tions of sign; this last one is the only criterion for which a nonlinear projection gives
improved results. Referring to (5), it must be mentioned that this series increases about
53% of the time. It must be stressed that obtaining results on the forecasting of the sign
of daily returns time series is particularly important. The anticipation of the orientation
of the market is at the basis of any market timing strategies, which justify the technical
analysis approach. Furthermore, as mentioned above, a non-linear prediction algorithm
(Verleysen et al., 1999) would still improve the results (the level of improvement
remains limited here because a simple linear prediction model is used).

To obtain correct results with the determination coefficient, the number of trials must
be large because this coefficient is very sensitive to small perturbations on the data. To
calculate it, a regression between  and  is done according to (1). An example of this
regression taken from our application is represented in Figure 11. The regression coeffi-
cients are A = 0 and B = 0.47; the determination coefficient is r2 = 0.011. If only one data
is changed (see the circle in Fig. 12), the regression coefficients become A = 0 and
B = 0.34, and the determination coefficient becomes r2 = 0.006. The reason of this ill-
conditioned result is the small amplitude of  compared to the amplitude of . Unfor-
tunately, a lot of financial applications present such a peculiarity. So, our point of view is
that the use of the determination coefficient criterion should be avoided in financial
applications as a quality of forecasting criterion.   

5. Conclusions

Even if it is considered that there is some interest in trying to predict the evolution of
financial asset prices, the use of a large number of technical indicators remains difficult
with any prediction tool. This paper shows how to use – possibly nonlinear – data
compression techniques to reduce the number of technical indicators used for the predic-
tion.

As the use of non-linear projection tools involves the tuning of several coefficients, the
core of this work is the development of a sound methodology to adjust these parameters,
based on objective criteria. Several of these criteria are presented, and used in appro-
priated circumstances. It is also shown that the use of the determination coefficient is
dangerous in the specific case of financial predictions.

The application of this methodology on the BEL20 Market Index shows that compa-
rable results are obtained when using a linear projection method or a non-linear one,
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when a subsequent linear prediction tool is used. The advantage of the methodology
presented here is that it automatically evaluates the number of new variables that must be
kept after projection, in order to keep the necessary and relevant information needed for
the prediction. Finally, the advantages of a nonlinear projection could be further
exploited by using a subsequent nonlinear prediction tool, even if the results would be
more difficult to illustrate because of the inherent difficulties of nonlinear predictors.
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Program on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime
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