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1 IntrodutionThe Standard Model (SM) of strong and eletroweak interations has been suessfullytested to a great preision [1℄. Nevertheless, it is ommonly aepted that it onstitutesmerely an e�etive theory whih is appliable up to energies not exeeding a ertain sale Λ.A �eld theory valid above that sale should satisfy the following requirements:(i) its gauge group should ontain SU(3)C × SU(2)L × U(1)Y of the SM,(ii) all the SM degrees of freedom should be inorporated either as fundamental or om-posite �elds,(iii) at low-energies, it should redue to the SM, provided no undisovered but weaklyoupled light partiles exist, like axions or sterile neutrinos.In most of beyond-SM theories that have been onsidered to date, redution to theSM at low energies proeeds via deoupling of heavy partiles with masses of order Λ orlarger. Suh a deoupling at the perturbative level is desribed by the Appelquist-Carazzonetheorem [2℄. This inevitably leads to appearane of higher-dimensional operators in the SMLagrangian that are suppressed by powers of Λ

LSM = L
(4)
SM +

1

Λ

∑
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k +
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3
1
2Table 1. The SM matter ontentwhere L(4)

SM is the usual �renormalizable� part of the SM Lagrangian. It ontains dimension-two and -four operators only.1 In the remaining terms, Q(n)
k denote dimension-n operators,and C(n)

k stand for the orresponding dimensionless oupling onstants (Wilson oe�ients).One the underlying high-energy theory is spei�ed, all the oe�ients C(n)
k an be deter-mined by integrating out the heavy �elds.Our goal in this paper is to �nd a omplete set of independent operators of dimension 5and 6 that are built out of the SM �elds and are onsistent with the SM gauge symmetries.We do not rely on the original analysis of suh operators by Buhmüller and Wyler [3℄but rather perform the full lassi�ation one again from the outset. One of the reasonsfor repeating the analysis is the fat that many linear ombinations of operators listed inref. [3℄ vanish by the Equations Of Motion (EOMs). Suh operators are redundant, i.e.they give no ontribution to on-shell matrix elements, both in perturbation theory (to allorders) and beyond [4�9℄. Although the presene of several EOM-vanishing ombinations inref. [3℄ has been already pointed out in the literature [10�13℄, no updated omplete list hasbeen published to date. Our �nal operator basis di�ers from ref. [3℄ also in the four-fermionsetor where the EOMs play no role.The artile is organized as follows. Our notation and onventions are spei�ed insetion 2. The omplete operator list is presented in setion 3. Comparison with ref. [3℄is outlined in setion 4. Details of establishing operator bases in the zero-, two- and four-fermion setors are desribed in setions 5, 6 and 7, respetively. We onlude in setion 8.2 Notation and onventionsThe SM matter ontent is summarized in table 1 with isospin, olour, and generation indiesdenoted by j = 1, 2, α = 1, 2, 3, and p = 1, 2, 3, respetively. Chirality indies (L, R)of the fermion �elds will be skipped in what follows. Complex onjugate of the Higgs �eldwill always our either as ϕ† or ϕ̃, where ϕ̃j = εjk(ϕ

k)⋆, and εjk is totally antisymmetriwith ε12 = +1.The well-known expression for L(4)
SM before Spontaneous Symmetry Breakdown (SSB)reads

L
(4)
SM = −

1

4
GAµνG

Aµν −
1

4
W I
µνW

Iµν −
1

4
BµνB

µν + (Dµϕ)† (Dµϕ) +m2ϕ†ϕ−
1

2
λ

(
ϕ†ϕ

)2

+i
(
l̄ 6Dl + ē 6De+ q̄ 6Dq + ū6Du+ d̄ 6Dd

)
−

(
l̄Γeeϕ+ q̄ Γuuϕ̃+ q̄ Γddϕ+ h.c.

)
, (2.1)1Canonial dimensions of operators are determined from the �eld ontents alone, exluding possibledimensionful oupling onstants. The only dimension-two operator in L

(4)
SM is ϕ†ϕ in the Higgs massterm. � 2 �
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where the Yukawa ouplings Γe,u,d are matries in the generation spae. We shall notonsider SSB in this paper. Our sign onvention for ovariant derivatives is exempli�ed by
(Dµq)

αj =
(
∂µ + igsT

A
αβG

A
µ + igSIjkW

I
µ + ig′YqBµ

)
qβk (2.2)Here, TA = 1

2λ
A and SI = 1

2τ
I are the SU(3) and SU(2) generators, while λA and τ I arethe Gell-Mann and Pauli matries, respetively. All the hyperharges Y have been listedin table 1.It is useful to de�ne Hermitian derivative terms that ontain ϕ†

←

Dµϕ ≡ (Dµϕ)†ϕ asfollows:
ϕ†i
↔

Dµ ϕ ≡ iϕ†
(
Dµ −

←

Dµ

)
ϕ and ϕ†i

↔

D I
µ ϕ ≡ iϕ†

(
τ IDµ −

←

Dµτ
I
)
ϕ. (2.3)The gauge �eld strength tensors and their ovariant derivatives read

GAµν = ∂µG
A
ν − ∂νG

A
µ − gsf

ABCGBµG
C
ν , (DρGµν)

A = ∂ρG
A
µν − gsf

ABCGBρ G
C
µν ,

W I
µν = ∂µW

I
ν − ∂νW

I
µ − gεIJKW J

µW
K
ν , (DρWµν)

I = ∂ρW
I
µν − gεIJKW J

ρW
K
µν ,

Bµν = ∂µBν − ∂νBµ, DρBµν = ∂ρBµν . (2.4)Dual tensors are de�ned by X̃µν = 1
2εµνρσX

ρσ (ε0123 = +1), where X stands for GA,
W I or B.The fermion kineti terms in L

(4)
SM are Hermitian up to total derivatives, i.e. iψ̄ 6Dψ−h.c.

= ∂µ(ψ̄γ
µψ). Total derivatives of gauge-invariant objets in LSM are skipped throughoutthe paper, as they give no physial e�ets. At the dimension-�ve and -six levels, we en-ounter no gauge-invariant operators that are built out of non-abelian gauge �elds only,and equal to total derivatives of gauge-variant objets. At the dimension-four level, thetwo possible suh terms G̃AµνGAµν = 4εµνρσ∂µ

(
GAν ∂ρG

A
σ − 1

3gsf
ABCGAν G

B
ρ G

C
σ

) and theanalogous W̃ I
µνW

Iµν should be understood as impliitly present on the r.h.s of eq. (2.1).They leave the Feynman rules and EOMs una�eted, showing up in topologial quantume�ets only [14�19℄.3 The omplete set of dimension-�ve and -six operatorsThis setion is devoted to presenting our �nal results (derived in setions 5, 6 and 7)for the basis of independent operators Q(5)
n and Q

(6)
n . Their independene means thatno linear ombination of them and their Hermitian onjugates is EOM-vanishing up tototal derivatives.Imposing the SM gauge symmetry onstraints on Q(5)

n leaves out just a single opera-tor [20℄, up to Hermitian onjugation and �avour assignments. It reads
Qνν = εjkεmnϕ

jϕm(lkp)
TClnr ≡ (ϕ̃†lp)

TC(ϕ̃†lr), (3.1)where C is the harge onjugation matrix.2 Qνν violates the lepton number L. After theeletroweak symmetry breaking, it generates neutrino masses and mixings. Neither L
(4)
SM2In the Dira representation C = iγ2γ0, with Bjorken and Drell [21℄ phase onventions.� 3 �
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAνµ GBρν GCµρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

Q eG
fABCG̃Aνµ GBρν GCµρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QfW
εIJKW̃ Iν

µ W Jρ
ν WKµ

ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGAµνG
Aµν QeW (l̄pσ

µνer)τ
IϕW I

µν Q
(1)
ϕl (ϕ†i

↔

Dµ ϕ)(l̄pγ
µlr)

Q
ϕ eG

ϕ†ϕ G̃AµνG
Aµν QeB (l̄pσ

µνer)ϕBµν Q
(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσ
µνTAur)ϕ̃ G

A
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγ
µer)

Q
ϕfW

ϕ†ϕW̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

I ϕ̃W I
µν Q

(1)
ϕq (ϕ†i

↔

Dµ ϕ)(q̄pγ
µqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσ

µνur)ϕ̃ Bµν Q
(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

Q
ϕ eB

ϕ†ϕ B̃µνB
µν QdG (q̄pσ

µνTAdr)ϕG
A
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγ
µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγ
µdr)

Q
ϕfWB

ϕ†τ IϕW̃ I
µνB

µν QdB (q̄pσ
µνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγ

µdr)Table 2. Dimension-six operators other than the four-fermion ones.nor the dimension-six terms an do the job. Thus, onsisteny of the SM (as de�ned byeq. (1.1) and table 1) with observations ruially depends on this dimension-�ve term.All the independent dimension-six operators that are allowed by the SM gauge sym-metries are listed in tables 2 and 3. Their names in the left olumn of eah blok shouldbe supplemented with generation indies of the fermion �elds whenever neessary, e.g.,
Q

(1)
lq → Q

(1)prst
lq . Dira indies are always ontrated within the brakets, and not dis-played. The same is true for the isospin and olour indies in the upper part of table 3.In the lower-left blok of that table, olour indies are still ontrated within the brakets,while the isospin ones are made expliit. Colour indies are displayed only for operatorsthat violate the baryon number B (lower-right blok of table 3). All the other operators intables 2 and 3 onserve both B and L.The bosoni operators (lasses X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Thoseontaining X̃µν are CP-odd, while the remaining ones are CP-even. For the operators on-taining fermions, Hermitian onjugation is equivalent to transposition of generation indiesin eah of the fermioni urrents in lasses (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2(exept for Qϕud). For the remaining operators with fermions, Hermitian onjugates arenot listed expliitly.If CP is de�ned in the weak eigenstate basis then Q−

(+)
Q† are CP-odd (-even) for allthe fermioni operators. It follows that CP-violation by any of those operators requires a� 4 �
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγ
µlt) Qee (ēpγµer)(ēsγ

µet) Qle (l̄pγµlr)(ēsγ
µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating
Qledq (l̄jper)(d̄sq

j
t ) Qduq εαβγεjk

[
(dαp )TCuβr

] [
(qγjs )TClkt

]

Q
(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )TCet

]

Q
(8)
quqd (q̄jpTAur)εjk(q̄

k
sT

Adt) Q
(1)
qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q
(1)
lequ (l̄jper)εjk(q̄

k
sut) Q

(3)
qqq εαβγ(τ Iε)jk(τ

Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q
(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )TCuβr

] [
(uγs )TCet

]Table 3. Four-fermion operators.non-vanishing imaginary part of the orresponding Wilson oe�ient. However, one shouldremember that suh a CP is not equivalent to the usual (�experimental�) one de�ned inthe mass eigenstate basis, just beause the two bases are related by a omplex unitarytransformation.Counting the entries in tables 2 and 3, we �nd 15 bosoni operators, 19 single-fermioni-urrent ones, and 25 B-onserving four-fermion ones. In total, there are 15+19+25=59independent dimension-six operators, so long as B-onservation is imposed.4 Comparison with ref. [3℄Comparing the B-onserving operators in tables 2 and 3 with eqs. (3.3)�(3.64) of ref. [3℄,one �nds that(i) The only operator missed in ref. [3℄ is Q(3)
lequ = (l̄jpσµνer)εjk(q̄

k
sσ

µνut). This fat hasbeen already notied in refs. [22, 23℄ where (l̄jpuαt )εjk(q̄
kα
s er) = 1

8Q
(3)
lequ −

1
2Q

(1)
lequ wasused instead. Phenomenologial impliations for top quark physis have been dis-ussed, e.g., in ref. [24, 25℄. � 5 �
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(ii) One linear ombination of the three ϕ4D2-lass operators in eqs. (3.28) and (3.44)of ref. [3℄ must be redundant beause this lass ontains two independent operatorsonly. In fat, presene of all the three operators ontradits orret arguments givenin setion 3.5 of that paper.(iii) The number of single-fermioni-urrent operators in ref. [3℄ beomes equal to oursafter removing all the 16 operators with ovariant derivatives ating on fermion �elds(eqs. (3.30)�(3.37) and (3.57)�(3.59) there). As we shall show in setion 6, all suhoperators are indeed redundant. This fat has been already disussed in refs. [10�12℄for most of the ases. Note that removing those operators helps in eliminating multipleassignment of the same operator names in ref. [3℄.(iv) Our use of ↔Dµ instead of Dµ in lass ψ2ϕ2D does not a�et the formal operatorounting, but atually redues the number of terms to be onsidered. The point isthat Hermitian onjugates of our operators with ↔Dµ have an idential form as thelisted ones, so they do not need to be onsidered separately. On the other hand, usingsalar �eld derivatives with a positive relative sign (opposite to that in eq. (2.3))would give redundant operators only, i.e. linear ombinations of the three ψ2ϕ3-lassterms, EOM-vanishing objets, and total derivatives. This issue has been alreadynotied in ref. [13℄.(v) Fierz identities (for antiommuting fermion �elds) like the following one:
(ψ̄LγµψL)(χ̄Lγ

µχL) = (ψ̄LγµχL)(χ̄Lγ
µψL) (4.1)make 5 out of 29 four-fermion operators in ref. [3℄ linearly dependent on the others.For instane,

(l̄pγµτ
I lr)(l̄sτ

Iγµlt) = 2(l̄jpγµl
k
r )(l̄

k
sγ

µljt ) −Qprstll = 2Qptsrll −Qprstll , (4.2)where the identity
τ Ijkτ

I
mn = 2δjnδmk − δjkδmn (4.3)and eq. (4.1) have subsequently been used. Setion 7 ontains a full desription ofthe four-fermion operator lassi�ation.As far as the operator names and their normalization are onerned, our notation is losebut not idential to the one of ref. [3℄. Taking advantage of the need to modify the notationbeause of redundant operator removal, we do it in several plaes where onveniene is theonly issue.The omplete list of nomenlature and normalization hanges reads:(i) Unneessary rationals are skipped in front of QϕG, QϕW , QϕB, Qϕ, Qll, Q(1)

qq , Q(3)
qq ,

Qee, Quu and Qdd.(ii) TA instead of λA are used in QuG, QdG and Q(8)
... .� 6 �
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(iii) Fierz transformation and multipliation by (−2) is applied in our (L̄L)(R̄R) lass toavoid rossed olour and Dira index ontrations, and to make the notation somewhatmore transparent. In addition, olour-Fierz transformations are applied to linearombinations of the last four operators of this lass.(iv) Operator names are hanged in many ases to avoid multiple use of the same symbols,indiate the presene of essential �elds, and make the nomenlature more systematiin the four-fermion setor. In partiular, the names are modi�ed for QϕWB, QϕfWB
,

Qϕud, as well as in the whole (L̄R)(R̄L) and (L̄R)(L̄R) lasses.One of the reasons for naming our operators with �Q� rather than with �O� is to indiatethat many notational details have hanged. As far as setion 2 is onerned, we have fol-lowed ref. [3℄ everywhere exept for sign onventions for the Yukawa ouplings in eq. (2.1)and inside ovariant derivatives (eq. (2.2)). The latter a�ets signs of operators in lasses
X3 and ψ2Xϕ.5 Bosoni operator lassi�ationBuilding bloks for the SM Lagrangian are the matter �elds from table 1, the �eld strengthtensors Xµν ∈ {GAµν ,W

I
µν , Bµν} and ovariant derivatives of those objets.3 Using themand imposing just the global SU(3)C × SU(2)L × U(1)Y symmetry is su�ient to �nd allthe gauge-invariant operators in LSM.Purely bosoni operators must ontain an even number of the Higgs �elds ϕ (beauseof the SU(2)L representation tensor produt onstraints), and an even number of ovariantderivatives D (beause all the Lorentz indies must be ontrated). Sine both ϕ andD haveanonial dimension one, while X has dimension two, no dimension-�ve operators an arisein the purely bosoni setor. The only possibilities for the dimension-six bosoni operator�eld ontents are thus X3, X2ϕ2, X2D2, Xϕ4, XD4, Xϕ2D2, ϕ6, ϕ4D2 and ϕ2D4.The lass Xϕ4 is empty beause of the antisymmetry of X and absene of any otherobjets with Lorentz indies to be ontrated. We an also skip XD4 beause all the pos-sible ontrations (inluding those with εµνρσ) lead to appearane of at least one ovariantderivative ommutator [Dµ,Dν ] ∼ Xµν , whih moves us to the X2D2 lass.In the following, we shall show that all the possible operators in lasses ϕ2D4, ϕ2XD2and X2D2 redue by the EOMs either to operators ontaining fermions or to lasses X3,

X2ϕ2, ϕ6 and ϕ4D2. Next, we shall verify that representatives of the latter four lasses intable 2 indeed form a omplete set of bosoni operators.Sine the neessary lassial EOMs are going to be used at the O
(

1
Λ2

) level, and weare not interested in O
(

1
Λ3

) e�ets, we an neglet all the O
(

1
Λ

) terms in the EOMs, i.e.3If the requirement of gauge invariane was relaxed, gauge �elds and their fully symmetrized derivativeslike ∂(µ1
. . . ∂µn

GA
ν) would be the only additional objets. No expression depending on suh terms ouldbe gauge-invariant beause one an simultaneously nullify all of them at any given spaetime point by anappropriate gauge transformation. � 7 �
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derive them from L
(4)
SM alone. We get then

(DµDµϕ)j = m2ϕj − λ
(
ϕ†ϕ

)
ϕj − ēΓ†

e l
j + εjk q̄

k Γuu − d̄Γ†
dq
j,

(DρGρµ)
A = gs

(
q̄γµT

Aq + ūγµT
Au + d̄γµT

Ad
)
,

(DρWρµ)
I =

g

2

(
ϕ†i
↔

D I
µ ϕ + l̄γµτ

I l + q̄γµτ
Iq

)
,

∂ρBρµ = g′Yϕ ϕ
†i
↔

Dµ ϕ+ g′
∑

ψ∈{l,e,q,u,d}

Yψ ψ̄γµψ. (5.1)Our ordering of operator lasses is suh that those ontaining fewer ovariant derivativesare onsidered to be �lower�. Throughout the paper, operators are going to be reduedfrom higher to lower lasses. For lasses ontaining equal numbers of derivatives, orderingis de�ned by the number of X tensors, i.e. lower lasses ontain fewer X tensors.
ϕ2D4 In this lass, we an restrit our attention to operators where all the derivatives aton a single ϕ �eld, beause other possibilities are equivalent to them up to total derivatives.Contrations with εµνρσ an be ignored beause they lead to appearane of [Dµ,Dν ] ∼

Xµν , whih moves us to lower lasses ontaining X. For the same reason, ordering ofthe ovariant derivatives ating on ϕ an be hosen at will. We use this freedom to get
DµDµϕ as a part of eah of the onsidered operators. This moves us by the EOM to lowerlasses ϕ4D2, ψ2ϕD2, and dimension-four operators multiplied by m2.
ϕ2XD2 Here, we allow for X being possibly dual, and forget about εµνρσ otherwise.Indies of X annot be ontrated with themselves, so they need to be ontrated withboth derivatives. We need to onsider three ases: (i) Eah of the derivatives ats on adi�erent ϕ. We an eliminate this possibility �by parts�, ignoring total derivatives. (ii)Both derivatives at on a single objet. We obtain [Dµ,Dν ] ∼ Xµν and get moved to the
ϕ2X2 lass. (iii) One of the derivatives ats on X, and one on ϕ. We an take advantageeither of the gauge �eld EOM (for the usual tensor) or of the Bianhi identity DρX̃ρµ = 0(for the dual tensor). The EOM moves us to lower lasses ϕ4D2 and ψ2ϕ2D.
X2D2 Similarly to the ϕ2D4 ase, we an restrit our attention to operators where allthe derivatives at on a single tensor. If both derivatives are ontrated with εµνρσ orwith a single tensor, we obtain [Dµ,Dν ] ∼ Xµν , and get moved to the X3 lass. Otherontrations with εµνρσ produe dual tensors. Thus, we allow the non-di�erentiated tensorto be possibly dual, and forget about εµνρσ otherwise. If eah of the derivatives is ontratedwith a di�erent tensor, we an use [Dµ,Dν ] ∼ Xµν to hoose their ordering in suh away that DρXρµ arises. In onsequene, the operator gets redued by the EOM to lowerlasses ϕ2XD2 and ψ2XD.The last possibility to onsider is when the two derivatives are ontrated with them-selves:
(

X̃
)
µνDρDρXµν = −

(

X̃
)
µν (DρDµXνρ +DρDνXρµ) = X3 + ϕ2XD2 + ψ2XD + E ,(5.2)� 8 �
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In the �rst step, the Bianhi identity D[ρXµν] = 0 has been used. Next, [Dρ,Dα] ∼ Xραfollowed by the EOM for X have been applied. The symbol E stands for EOM-vanishingoperators.
X3 Here we begin to enounter lasses whose representatives do appear in table 2. Toindiate that the tensors may be di�erent, we denote them by X, Y and Z in this para-graph. Allowing one of them to be dual, we an forget about εµνρσ otherwise. The onlynon-vanishing and independent ontration of Lorentz indies reads X ν

µ Y ρ
ν Z µ

ρ . Thisimplies that all the three tensors must be di�erent, beause XαµXβνZ
µνgαβ = 0 bythe antisymmetry of Z. Moreover, neither of the two tensors an be related by duality be-ause X ν

µ X̃
ρ
ν = −1

4δ
ρ
µXαβX̃

αβ is symmetri in the indies (µρ), while Z is antisymmetri.It follows that (in partiular) B ν
µ W

Iρ
ν W̃ Iµ

ρ = 0, i.e. symmetri singlets in produts of twoadjoint representations are absent in the onsidered operator lass. The only other optionto get a gauge singlet from three di�erent tensors is to use the struture onstants fABCor εIJK . This leads us to a onlusion that the four X3-lass operators listed in table 2 areindeed the only possibilities.
X2ϕ2 The Higgs �eld produts ombine to singlets or triplets of SU(2)L. Hyperhargeonstraints imply that they must be of the form ϕ†ϕ or ϕ†τ Iϕ (but not, e.g., ϕ†τ I ϕ̃).The eight X2ϕ2-lass operators in table 2 ontain all the possible ontrations of two �eld-strength tensors that form singlets or triplets of SU(2)L, and singlets of SU(3)C .
ϕ6 For the total hyperharge to vanish, exatly three of the Higgs �elds must be omplexonjugated. Grouping the six �elds into ϕ⋆ϕ pairs, and writing them as in the previousase, we are led to onsider tensor produts of singlets and triplets of SU(2)L. Three tripletsan ombine to an overall singlet only in a fully antisymmetri manner, whih gives zeroin our ase beause all the triplets are idential (εIJK(ϕ†τ Iϕ)(ϕ†τJϕ)(ϕ†τKϕ) = 0). Twotriplets and one singlet ombine to an overall singlet as (ϕ†τ Iϕ)(ϕ†τ Iϕ)(ϕ†ϕ) that equalsto (ϕ†ϕ)3 thanks to eq. (4.3). Thus, the only independent operator in the onsidered lassis the very (ϕ†ϕ)3.
ϕ4D2 Hyperharge onstraints imply that exatly two ϕ �elds must be omplex-onjugated. Sine the two derivatives must be ontrated, either they at on two di�erent
ϕ �elds, or the EOM moves the operator to lower lasses. If they at on two onjugatedor two unonjugated �elds, we eliminate those possibilities �by parts�. If one of them atson a onjugated �eld, and the other on an unonjugated one, our SU(2)L tensor produtontains four distint fundamental representations, whih means that exatly two indepen-dent singlets must be present. Below, we write them on the l.h.s. as produts of tripletsand singlets, while the r.h.s. explains (via the Leibniz rule) what ombinations give the twosimple ϕ4D2-lass operators in table 2:

(ϕ†τ Iϕ)
[
(Dµϕ)†τ I(Dµϕ)

]
(4.3)
= 2

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
− (ϕ†ϕ)

[
(Dµϕ)†(Dµϕ)

]
,

(ϕ†ϕ)
[
(Dµϕ)†(Dµϕ)

]
(5.1)
=

1

2
(ϕ†ϕ)�(ϕ†ϕ) + ψ2ϕ3 + ϕ6 +m2 ϕ4 + E . (5.3)

� 9 �
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6 Single-fermioni-urrent operator lassi�ationTo make general arguments simple, it is onvenient to think �rst in terms of only left-handed fermions ψ ∈ {l, ec, q, uc, dc}, i.e. to use harge onjugates of the SU(2)L-singletfermions as fundamental �elds. In suh a ase, we have only three possibilities for fermioniurrents (up to h..): ψ̄1γµψ2, ψT1 Cψ2 and ψT1 Cσµνψ2. Considering bosoni objets withappropriate numbers of Lorentz indies and ignoring Xµ
µ = 0, omplete sets of buildingbloks for our operators are easily determined for eah of the urrents. They read4

ψ̄1γµψ2 : (ϕD), (XD, ϕ2D, D3),

ψT1 Cψ2 : (ϕ2, D2), (ϕ3, ϕD2),

ψT1 Cσµνψ2 : (X, D2), (Xϕ, ϕD2).

(6.1)A brief look into table 1 ensures that hyperharges of the urrents involving C nevervanish, while hyperharges of the vetor urrents never equal ±1/2. Consequently, lasses
ψ2X, ψ2D2 and ψ2ϕD are empty. Moreover, the Higgs �eld produts in lass ψ2ϕ2 mustgive non-zero hyperharges, in whih ase the only possibilities are ±1. There is only asingle fermioni urrent that an ompensate suh a hyperharge, namely the one built outof two lepton doublets. Thus, we obtain the �eld ontent of the operator in eq. (3.1). Theisospin struture of that operator is the only available one given the antisymmetry of εjkand the presene of just a single Higgs doublet in the SM. This ompletes our disussion ofdimension-�ve operators.In the dimension-six ase, the number of Higgs �elds assoiated with salar and tensorfermioni urrents is always odd. Consequently, those urrents must form isospin doublets.In the standard notation with right-handed singlets, they read ψ̄1ψ2 and ψ̄1σµνψ2. Similarly,vetor urrents an only form isospin singlets or triplets, as they ombine with even numbersof the Higgs �elds. Therefore, even if the isospin singlets are taken right-handed, no vetorurrents with C enter into our onsiderations. We shall thus return to the standard notationin what follows.Classial EOMs for the quarks and leptons that we are going to use below read

i6Dl = Γeeϕ, i6De = Γ†
eϕ†l, i6Dq = Γuuϕ̃+ Γddϕ, i6Du = Γ†

uϕ̃†q, i6Dd = Γ†
dϕ

†q. (6.2)Apart from them, two simple Dira-algebra identities need to be realled, namely
γµγν = gµν − iσµν , γµγνγρ = gµνγρ + gνργµ − gµργν − iεµνρσγ

σγ5 . (6.3)Let us now disuss all the dimension-six lasses one-by-one.5
ψ2D3 Three ovariant derivatives are ontrated here with a ertain ψ̄γµψ urrent. Sim-ilarly as in the previously disussed lasses ϕ2D4 and X2D2, we an remove derivativesating on ψ̄ �by parts�, and hoose ordering of the derivatives ating on ψ at will. Choosingthe ordering as in ψ̄DµD

µ 6Dψ, we get an operator that redues by the EOMs to lass ψ2ϕD2.4Bosoni terms leading to dimension-�ve and -six operators are olleted in separate brakets.5There are six of them. Note that both the salar and tensor urrents our in the ψ2ϕD2 ase.� 10 �
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ψ2ϕD2 As follows from eq. (6.1), this lass involves salar and tensorfermion urrents only. We remove the derivatives ating on ψ̄ �by parts�, andtake into aount that ψ̄σµνψDµDνϕ and ϕψ̄σµνDµDνψ belong atually tolass ψ2Xϕ beause [Dµ,Dν ] ∼ Xµν . The four remaining possibilities[ ψ̄ψ DµD
µϕ, ϕψ̄DµD

µψ, (Dµϕ)ψ̄σµνDνψ and (Dµϕ)ψ̄Dµψ ℄ are EOM-redued to lowerlasses as follows:
ψ̄ψDµD

µϕ
(5.1)
= ψ4 + ψ2ϕ3 +m2 ψ2ϕ + E ,

ϕψ̄DµD
µψ

(6.3)
= ϕψ̄ 6D 6Dψ + ψ2Xϕ

(6.2)
= ψ2Xϕ + ψ2ϕ2D + E ,

(Dµϕ)ψ̄σµνDνψ =
i

2
(Dµϕ)ψ̄ (γµ 6D − 6Dγµ)ψ = i(Dµϕ)ψ̄γµ 6Dψ − i(Dµϕ)ψ̄Dµψ

(6.2)
= −i(Dµϕ)ψ̄Dµψ + ψ2ϕ2D + E ,

2(Dµϕ)ψ̄Dµψ = (Dµϕ)ψ̄(γµ 6D + 6Dγµ)ψ

= (Dµϕ)ψ̄γµ 6Dψ − ψ̄ 6
←

DγµψD
µϕ− ψ̄γνγµψDνDµϕ+ T

(6.2)
= ψ2ϕ2D + ψ4 + ψ2ϕ3 +m2 ψ2ϕ + ψ2Xϕ + E + T , (6.4)where T stands for a total derivative. In the last step above, one should realize that

ψ̄γνγµψDνDµϕ
(6.3)
= ψ̄ψ DµD

µϕ− iψ̄σνµψDνDµϕ

(5.1)
= ψ4 + ψ2ϕ3 +m2 ψ2ϕ + ψ2Xϕ + E . (6.5)

ψ2XD As in several previous ases, we allow for X being possibly dual, and forgetabout εµνρσ otherwise. Sine we deal here with ψ̄γµψ urrents only, the derivative must beontrated with X. If it ats on X, we obtain either the gauge �eld EOM (for the usualtensor) or the Bianhi identity DρX̃ρµ = 0 (for the dual tensor). The EOM moves us tolower lasses ψ2ϕ2D and ψ4. Removing �by parts� terms with derivatives ating on ψ̄, we�nd that the only expression still to be onsidered is Xµν ψ̄γµDνψ. It gets redued to lowerlasses as follows:
Xµν ψ̄γµDνψ =

1

2
Xµν ψ̄(γµγν 6D + γµ 6Dγν)ψ =

1

2
Xµν ψ̄(γµγν 6D − 6Dγµγν)ψ +Xµν ψ̄γνDµψ

(∗)
=

1

4
Xµν ψ̄(γµγν 6D − 6Dγµγν)ψ =

1

4
Xµν ψ̄γµγν 6Dψ +

1

4
ψ̄ 6
←

DγµγνψX
µν (6.6)

+
1

4
ψ̄γργµγνψD

ρXµν + T
(6.2)
= ψ2Xϕ + ψ2ϕ2D + ψ4 + E + T .In the third step above (denoted by (∗)), we have taken into aount that the last term inthe preeding expression is equal to our initial operator but with an opposite sign. In thelast step, we have used the equality

ψ̄γργµγνψD
ρXµν (6.3)

= 2 ψ̄γµψDρXρµ − iερµνσ ψ̄γ
σγ5ψD

ρXµν = ψ2ϕ2D + ψ4 + E .(6.7)� 11 �
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Both the gauge �eld EOM and the Bianhi identity are neessary in eq. (6.7), irrespetivelyof whether the initial X is dual or not.
ψ2ϕ3 Aording to the arguments given above eq. (6.2), the fermion urrent must be anisospin doublet and olour singlet of the form ψ̄1ψ2, i.e. one of those present in the Yukawaterms in eq. (2.1). The number of onjugated and unonjugated salar �elds in ϕ3 is �xedfor eah of the fermioni urrents by hyperharge onstraints. Combining those salar �eldsinto an isospin doublet is unique beause one of the two doublets in 2̂ ⊗ 2̂ ⊗ 2̂ vanishesin eah of the ases due to ϕ†ϕ̃ = εjk(ϕ

j)⋆(ϕk)⋆ = 0 = εjkϕ
jϕk. Consequently, the onlypossibilities for this lass are the Yukawa terms multiplied by ϕ†ϕ, as in the upper-rightblok of table 2.

ψ2Xϕ The antisymmetri tensor and the single Higgs �eld enfore the fermion urrent tobe an isospin doublet of the form ψ̄1σ
µνψ2. Vanishing total hyperharge an be obtainedonly if the Higgs �eld ombines with the urrents in analogy to the standard Yukawa termsin eq. (2.1). Couplings with Bµν in table 2 show this analogy most transparently. The ten-sorsW I

µν and GAµν need to be ontrated with isospin triplets and olour otets, respetively,whih an be formed just in a single way for eah of the ases, as in table 2. Dualizing the
X tensor in any of the ψ2Xϕ-lass operators in that table would not give anything newbeause of the identities εαβµνσµν = 2iσαβγ5 and γ5ψL,R = ∓ψL,R.
ψ2ϕ2D If the derivative ats on any of the fermion �elds, its ontration with the ψ̄γµψurrent produes EOMs and moves us to the previously disussed lower lass ψ2ϕ3. Thus,it is su�ient to onsider derivatives ating on the salars only. The Higgs �elds an formisospin singlets or triplets, and are olour singlets. The fermion urrents must follow thesame seletion rules, whih allows preisely the urrents listed in the ψ2ϕ2D-lass blok oftable 2, up to Hermitian onjugation of the ūγµd urrent. Hyperharge onstraints deter-mine the number of onjugated and unonjugated Higgs �elds. We begin with removing�by parts� derivatives ating on one of the salars, and forming isospin singlets or tripletsfrom produts of ϕ1 and Dµϕ2, aording to the struture of the orresponding fermionurrents, whih gives unique expressions in all the ases. This way we get operators dif-fering from the ones in table 2 only by the presene of D instead of the ↔D. However, weannot terminate at this point beause the operators without ↔D are not Hermitian, andwe still need to hek whether their Hermitian onjugates are independent from them ornot. Suh a question does not arise for any other blok of tables 2 and 3 beause all theother operators are either manifestly Hermitian (up to �avour permutations in the upperpart of table 3) or their Hermitian onjugates are manifestly independent (due to abseneof hyperharge-onjugated fermion pairs). Suh a manifest independene ours also inthe ase of Qϕud in the onsidered lass, so we leave it with the usual derivative.6 In theremaining seven ases (whih ontain hyperharge-neutral urrents), we form ombinations

6Atually, eϕ†

„
Dµ −

←

Dµ

«
ϕ = 2eϕ†Dµϕ.

� 12 �
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with ↔D as in table 2, and supplement them with symmetrized ombinations of the form
[
ϕ†(Dµ+

←

Dµ)ϕ
]
ψ̄γµψ =

[
∂µ(ϕ

†ϕ)
]
ψ̄γµψ = (ϕ†ϕ)ψ̄(6D+ 6

←

D)ψ + T = ψ2ϕ3 + E + T .(6.8)Thus, the symmetrized ombinations give redundant operators and an be ignored. At thispoint, our lassi�ation of all the single-fermioni-urrent operators has been ompleted.7 Four-fermion operator lassi�ationFour fermion operators are the most numerous but very easy to lassify. As in thebeginning of the previous setion, we think �rst in terms of only left-handed fermions
ψ ∈ {l, ec, q, uc, dc}. Lorentz-singlet produts of the fermioni urrents (6.1) and their Her-mitian onjugates never give �eld ontents like ψψψψ̄ or ψψ̄ψ̄ψ̄. For the remaining options,we searh for zero-hyperharge produts without paying attention to whether they an formisospin or olour singlets. There are several hundreds of ases to be tested, whih is donein less than a seond by a simple omputer algebra ode. Apart from trivial results givingproduts of two zero-hyperharge urrents, only a handful of other possible �eld ontentsare found, namely

(l̄ēcdcq), (qucqdc), (lecquc), (qqql), (dcucucec), (qqūcēc), (qlūcd̄c), (7.1)and their Hermitian onjugates. Apparently, none of them an be eliminated using SU(2)Lor SU(3)C onstraints. The �rst three are B-onserving, while the remaining four are
B-violating.In the ases with two ψ and two ψ̄ �elds in eq. (7.1), it is enough to onsider only asingle pairing of the four �elds into two ψ̄LγµψL urrents.7 As far as SU(2)L is onerned,in eah ase there are two doublet and two singlet �elds, whih gives us only one overallsinglet. Finally, there is only one SU(3)C singlet in ˆ̄3 ⊗ 3̂ for the B-onserving operator,and one in 3̂ ⊗ 3̂ ⊗ 3̂ for the B-violating ones. Consequently, we get just a single operatorfor eah of the three onsidered �eld ontents. They are given by Qledq, Qduq and Qqqu intable 3 after passing to the standard notation with right-handed SU(2)L singlets.In the remaining ases in eq. (7.1), four left-handed ψ �elds our. One both thesalar and tensor urrents from eq. (6.1) are taken into aount, only a single pairing of the�elds into urrents needs to be onsidered.8 Alternatively, one an use the Fierz identity

(ψT1LCσµνψ2L)(ψT3LCσ
µνψ4L) = 4(ψT1LCψ2L)(ψT3LCψ4L) + 8(ψT1LCψ4L)(ψT3LCψ2L) (7.2)to get rid of the tensor urrents. We hoose the latter option everywhere exept for the

(lecquc) �eld ontent (Q(1)†
lequ and Q(3)†

lequ), where we want to retain olour index ontrationswithin the urrents. In the three other ases ((qucqdc), (qqql) and (dcucucec)), onsideringtwo di�erent pairings amounts merely to a di�erent generation index assignment, beausetwo �elds of the same type are always present. One the �elds are paired into urrents, we7There is only one SL(2,C) singlet in (0, 1
2
) ⊗ (0, 1

2
) ⊗ ( 1

2
, 0) ⊗ ( 1

2
, 0), whih shows up in eq. (4.1).8There are only two SL(2,C) singlets in ( 1

2
, 0) ⊗ ( 1

2
, 0) ⊗ ( 1

2
, 0) ⊗ ( 1

2
, 0).� 13 �
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determine all the possible isospin and olour index ontrations. Two possibilities exist inthe (qucqdc) and (qqql) ases, while only a single one is present for (dcucucec). They areidenti�ed as Q(1)†
quqd, Q(8)†

quqd, Q(1)
qqq, Q(3)

qqq and Q†
duu.This way we have ompleted establishing a basis for all the operators that annot bewritten as produts of zero-hyperharge urrents, i.e. lasses (L̄R)(R̄L), (L̄R)(L̄R) and

B-violating in table 3. The B-violating ones are idential to those in ref. [26℄ where theoriginal lassi�ation of refs. [20, 27℄ was orreted. It is worth realling that Q(3)
qqq vanishesin the �avour-diagonal ase thanks to symmetry of all the three (τ Iε) matries, and tothe equality ψT1 Cψ2 = ψT2 Cψ1 that follows from the fermion �eld antiommutation andantisymmetry of the C matrix.If the �eld ontent of a four-fermion operator allows to write it as a produt of twozero-hyperharge urrents, we write it like that using the Fierz identity (4.1) if neessary.Next, we pass to the standard notation with right-handed SU(2)L singlets, whih splits theonsidered set into lasses (L̄L)(L̄L), (R̄R)(R̄R) and (L̄L)(R̄R) in table 3. It remains toonvine oneself that the operators listed there indeed form omplete bases for those lasses.In the beginning, one should onsider all the possible produts of urrents that form isospinsinglets or triplets, and olour singlets or otets. Next, it is possible to eliminate severalases in the (L̄L)(L̄L) and (R̄R)(R̄R) lasses using the relation (4.3) together with

TAαβT
A
κλ =

1

2
δαλδκβ −

1

6
δαβδκλ , (7.3)and the Fierz identity (4.1) or its right-handed ounterpart. It is essential to take intoaount that all the possible �avour assignments are inluded in table 3. One of suhsimpli�ations has been already shown in eq. (4.2). The remaining ones read

(ūpγµT
Aur)(ūsT

Aγµut)
(7.3)
=

1

2
(ūαp γµu

β
r )(ū

β
s γ

µuαt ) −
1

6
Qprstuu =

1

2
Qptsruu −

1

6
Qprstuu , (7.4)

(d̄pγµT
Adr)(d̄sT

Aγµdt)
(7.3)
=

1

2
(d̄αp γµd

β
r )(d̄

β
s γ

µdαt ) −
1

6
Qprstdd =

1

2
Qptsrdd −

1

6
Qprstdd , (7.5)

(q̄pγµT
Aqr)(q̄sT

Aγµqt)
(7.3)
=

1

2
(q̄αjp γµq

βj
r )(q̄βks γµqαkt ) −

1

6
Q(1)prst
qq

(4.1)
=

1

2
(q̄αjp γµq

αk
t )(q̄βks γµqβjr ) −

1

6
Q(1)prst
qq

(4.3)
=

1

4
Q(3)ptsr
qq +

1

4
Q(1)ptsr
qq −

1

6
Q(1)prst
qq , (7.6)

(q̄pγµT
Aτ Iqr)(q̄sT

Aτ Iγµqt)
(7.3)
=

1

2
(q̄αp γµτ

Iqβr )(q̄βs γ
µτ Iqαt ) −

1

6
Q(3)prst
qq

(4.3)
= (q̄αjp γµq

βk
r )(q̄βks γµqαjt )−

1

2
(q̄αjp γµq

βj
r )(q̄βks γµqαkt )−

1

6
Q(3)prst
qq

(4.1)
= Q(1)ptsr

qq −
1

2
(q̄αjp γµq

αk
t )(q̄βks γµqβjr ) −

1

6
Q(3)prst
qq

(4.3)
= −

1

4
Q(3)ptsr
qq +

3

4
Q(1)ptsr
qq −

1

6
Q(3)prst
qq . (7.7)Establishing the above relations ompletes the proof that our four-fermion operator set intable 3 is indeed exhaustive. � 14 �
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8 ConlusionsA tremendous simpli�ation of the operator basis by the EOMs an be appreiated byomparing our table 2 that ontains 34 entries with ref. [28℄ where 106 operators involvingbosons are present beause no EOM-redution has been applied. Going down from 106 to51 with the help of EOMs in ref. [3℄ has been a partial suess. It is really amazing that noauthor of almost 600 papers that quoted ref. [3℄ over 24 years has ever deided to rederivethe operator basis from the outset to hek its orretness. As the urrent work shows, theexerise has been straightforward enough for an M. S. thesis [29, 30℄. It has required noextra experiene with respet to what was standard already in the 1980's.From the phenomenologial standpoint, it is hard to overestimate the importane ofknowing the expliit form of power-suppressed terms in the SM Lagrangian. Althoughtheir overall number is sizeable, usually very few of them ontribute to a given proess.For instane, anomalous Wtb ouplings that an be well tested at the LHC are desribedby four operators only (QuW , QdW , Q(3)
ϕq and Qϕud) [12, 13, 31℄. Given 14 operators inthe dimension-four Lagrangian (2.1), it is atually quite surprising that no more than 59operators arise at the dimension-six level.It is interesting to note that if the underlying beyond-SM model is a weakly oupled(perturbative) gauge theory, operators ontaining �eld-strength tensors in table 2 annot betree-level generated [23℄. In onsequene, their Wilson oe�ients Ck are typially O

(
1

16π2
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